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Abstract

We study Bayesian persuasion under approximate best response, where the receiver
may choose any action that is not too much suboptimal, given their posterior belief
upon receiving the signal. We focus on the computational aspects of the problem,
aiming to design algorithms that efficiently compute (almost) optimal strategies for
the sender. Despite the absence of the revelation principle — which has been one
of the most powerful tools in Bayesian persuasion — we design polynomial-time
exact algorithms for the problem when either the state space or the action space is
small, as well as a quasi-polynomial-time approximation scheme (QPTAS) for the
general problem. On the negative side, we show there is no polynomial-time exact
algorithm for the general problem unless P = NP. Our results build on several
new algorithmic ideas, which might be useful in other principal-agent problems
where robustness is desired.

1 Introduction

Bayesian persuasion [Kamenica and Gentzkow, 2011] concerns the problem where a principal (the
“sender”) incentivizes a self-interested agent (the “receiver”) to act in certain ways by selectively
revealing information about the state of the world. A commonly cited simplistic example — which
nonetheless illustrates the essence of the problem — is that of selling apples.
Example 1.1. Suppose a buyer (the receiver) is debating whether they should buy an apple from a
seller (the sender). A priori, the buyer believes the apple (which is, say, a random apple from a large
batch of apples) to be a “good” one with probability 1/3, and a “bad” one with probability 2/3.
Moreover, suppose the buyer derives utility 1 from buying a good apple, and −1 from buying a bad
one. Then, aiming to maximize their expected utility, without any further information, the buyer should
simply not buy the apple, because buying it would lead to expected utility 1× 1

3+(−1)× 2
3 = − 1

3 < 0.
The seller, who has perfect knowledge of the quality of the apple, and wants to “persuade” the buyer
to buy the apple, can of course simply reveal the quality of the apple. Assuming the seller can do so
in a credible way (which is a fundamental assumption in Bayesian persuasion), the buyer will buy the
apple whenever it is good, which happens with probability 1/3.

In fact, the seller can do even better by employing the following strategy: the seller promises to send
a “signal” to the buyer regarding the quality of the apple, which can be either “probably good” or

“definitely bad”. More specifically, if the apple is good, the sender signals that it is “probably good”;
if the apple is bad, the seller signals randomly, that it is “probably good” notwithstanding with
probability 0.499, and that it is “definitely bad” with probability 0.501. Now consider the buyer’s
perspective, assuming the seller does act up to their promises. If the signal says “definitely bad”,
then the buyer should certainly not buy the apple. If, however, the signal says “probably good”,
then the buyer faces a more interesting decision. All the buyer knows is that the probability of (1)
receiving “probably good” and (2) the apple is actually good, happening simultaneously, is 1/3, and
that the probability of (1) receiving “probably good” and (2) the apple is actually bad, happening
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simultaneously, is 2/3× 0.499 < 1/3. So, given the signal, the conditional probability that the apple
is good is larger than 1/2, which means the conditional expected utility of buying the apple is now
positive. In other words, the seller has persuaded the rational buyer to buy the apple whenever the
signal is “probably good”, which happens with probability 1/3+ 2/3× 0.499 ≈ 2/3. This turns out
to be (almost) the best that the seller can do.

Since its introduction by Kamenica and Gentzkow [2011], Bayesian persuasion has attracted enormous
attention from both economists and computer scientists. Indeed, a satisfactory solution to the problem
is often twofold, involving an economic characterization that confines the sender’s strategy space
without loss of generality, and an efficient algorithm that finds the optimal strategy within this
confined strategy space. For example, in the standard (and somewhat idealized) model of Bayesian
persuasion, a prominent principle in economics, namely the revelation principle, states that without
loss of generality, the sender’s optimal strategy is to simply recommend an action (depending on the
state of the world, effectively revealing partial information thereof) for the receiver to take, and make
sure it is in the receiver’s best interest to always follow such a recommendation, given their posterior
belief of the state of the world. The computational problem of searching for the optimal strategy
within this structured space of strategies turns out to be much easier than that of searching over
the unconstrained strategy space. Such characterize-and-solve approaches have proved extremely
successful in Bayesian persuasion — at least in settings where they apply.

The real world, unfortunately, is less precise than the idealized model. Even in the simplistic example
of selling apples, there appear to be numerous subtleties that could potentially derail the supposedly
(almost) optimal strategy of the seller. To name a few: the sender may not know exactly the receiver’s
prior belief, which might be different from the true distribution of the state of the world; the sender
may not know exactly the receiver’s utility function, which might be hard to evaluate even for the
receiver themself; the device that generates randomness for the sender may be imperfect, affecting
the receiver’s posterior belief formed upon receiving a signal. In all these cases, the small inaccuracy
can completely change the receiver’s behavior: in the example of selling apples, the buyer would
never buy the apple if they believe the apple is good a priori with probability 0.32 instead of 1/3, or if
buying a good apple gives them utility 0.98 instead of 1, or if the device that generates randomness for
the seller works in a way such that when the apple is bad, the seller actually signals “probably good”
with probability 0.501 instead of 0.499. From the perspective of the sender, it would appear as if the
receiver is acting in a somewhat suboptimal and unexpected way. As we will show later, the powerful
revelation principle no longer applies in such cases, and the problem of finding the sender’s optimal
strategy becomes much trickier. On top of that, things become even more complicated when there
are more than 2 possible states of the world, and/or more than 2 actions for the receiver to choose
between. All this brings us to our main question: despite the lack of a structural characterization, is
there a principled and efficient way of finding the optimal strategy for the sender that is robust against
such inaccuracy?

1.1 Our Results and Techniques

In this paper, we study Bayesian persuasion in a natural model that accounts for the kind of subtleties
discussed above: roughly speaking, the model allows the receiver to choose any action that is “not too
much suboptimal”, given their posterior belief upon receiving the signal. We focus our attention on
computational aspects of the problem, aiming to design algorithms that efficiently compute (almost)
optimal strategies.

Direct-revalation signaling schemes are suboptimal. Our first finding is negative: there exists
extremely simple problem instances (with only 2 possible actions and 3 possible states), where any
direct-revelation signaling scheme (i.e., a strategy of the sender where each possible signal is a
recommendation of a single action, as discussed above) is suboptimal at least by a factor of 2, or an
additive gap of 1/2. This implies that the revelation principle ceases to work in our model, and the
characterize-and-solve approach can no longer be employed.

LP formulation, and efficient algorithm with small action spaces. The above result highlights
the need for new algorithmic ideas, and we present several of them in this paper. The first one is a
linear program (LP) formulation for optimal strategies. The LP formulation has a similar high-level
structure to the standard one for Bayesian persuasion: the variables correspond to probabilities that
each signal is sent in each possible state of the world, and the constraints enforce the “semantics” of
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the signals, in terms of how the receiver is expected to respond. However, one complication (among
others) in our model is that multiple actions might be taken as the response to any fixed signal, so
the semantics of a signal must be rich enough to encode the subset of actions that are possible in
response to that signal (plus any additional information required to describe a signal). In particular,
this means in general, the number of possible signals is exponential in the number of actions. As
such, the LP formulation alone implies an efficient algorithm for our problem only when the number
of actions is constant or logarithmic. Nonetheless, the LP formulation serves as a building block of
our further algorithmic results.

Efficient algorithm with small state spaces. Next we design an efficient algorithm when the
number of states is constant. To see how this is possible, observe that a subset of actions can each be
chosen as the response to a signal, only if the posterior utilities corresponding to these actions are
all close to the best possible. In other words, if there does not exist a posterior belief given which
a subset of actions are all almost optimal, then this subset itself is “infeasible” as a set of possible
responses. Such a subset of actions can never describe a signal in any strategy. Now the hope is to
argue that the number of feasible subsets of actions is not too large. It turns out this can be obtained
as a consequence of a result in combinatorial geometry, which bounds the number of “cells” in a
low-dimensional space cut by a number of hyperplanes. We show that all feasible subsets induce a
partition of these cells, so the same bound applies to the number of subsets too. In fact, one can show
that the number of feasible subsets of actions is nO(m), where n and m are the number of actions and
that of states, respectively.

Now we know the number of relevant subsets of actions cannot be too large, but it remains a
problem to find these subsets. To this end, we make yet another geometric observation: the cells that
correspond to feasible subsets of actions form a single “connected component”, which means we can
enumerate all feasible subsets by traversing this component. More specifically, we start from any
feasible subset, and try all its “neighbors” by swapping in or out a single possible action. For each
neighbor, we check its feasibility by solving another LP. By repeating this procedure we can reach all
feasible subsets, in time polynomial in the number of feasible subsets. Once we have computed all
feasible subsets, we simply solve the LP for optimal strategies restricted to these subsets, which is of
polynomial size when the number of states m is constant. This gives us an efficient algorithm with
constant-size state spaces.

Hardness of exact computation of the general problem. Knowing that the problem can be solved
with small action spaces or small state spaces, it is then natural to seek an efficient algorithm that
works unconditionally, without restrictions on any parameters of the problem. We show, unfortunately,
that such an algorithm does not exist unless P = NP. We do so by reducing from an “equally hard”
variant of the subset sum problem: given a set of 2n integers that sum to 0, decide whether there are
n integers out of the 2n that also sum to 0. The idea of the reduction is that such a set of n integers
corresponds to a signal that gives the sender the highest posterior utility possible. To ensure this, the
utility functions need to exhibit delicate structures, such that a signal that corresponds to either too
many or too few integers must be suboptimal. The latter appears to be a quite ambivalent condition —
in fact, this is only possible with the kind of inaccuracy that we consider. We believe the ideas of our
reduction are potentially useful in other principal-agent problems where robustness is required.

Approximation in quasi-polynomial time. In light of the hardness result, we turn our attention to
approximation algorithms. We present a quasi-polynomial-time approximation scheme (QPTAS):
for any target additive error ε > 0, we give an ε-approximate algorithm that runs in time quasi-
polynomial in m and n, where the time complexity may depend on ε. The idea is to cover the space
of all possible posterior utility functions using small cells, and consider a representative point in each
cell with a small error. It is known that a covering of size O(log n/ε2) exists, which has already
proven useful in other game-theoretic computational problems [Althöfer, 1994, Lipton et al., 2003,
Gan et al., 2023]. However, one difficulty in our model is that there are certain types of errors that
are unacceptable, no matter how small. For example, fixing a strategy, the sender’s utility can be
discontinuous in the receiver’s utility function, and any error near points of discontinuity can lead to
a huge gap in the sender’s utility. Similarly, because of the robustness component in the model, a
small error in the sender’s utility may lead to a totally different response from the receiver. To avoid
such gaps, we allow approximation only in the sender’s utility, and refrain from estimating the action
that the receiver will respond with. Instead, we consider the approximate worst-case utility of the
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sender, which turns out to be tractable using linear constraints involving approximate utility functions.
Combining this with the LP formulation discussed above, we have an LP of quasi-polynomial size,
which can be solved in quasi-polynomial time.

1.2 Related Works

We defer a detailed discussion of related work to Appendix A. Our work connects to two lines of
work, the computational aspect of Bayesian persuasion [Dughmi and Xu, 2016, Dughmi, 2017, 2014,
Bhaskar et al., 2016, Rubinstein, 2017, Babichenko and Barman, 2016, 2017, Xu, 2020, Zhou et al.,
2022] and various notions of robust Bayesian persuasion [de Clippel and Zhang, 2022, Chen and Lin,
2023, Camara et al., 2020, Zu et al., 2021, Collina et al., 2023, Kosterina, 2022, Dworczak and Pavan,
2022, Hu and Weng, 2021, Castiglioni et al., 2020, Wu et al., 2022, Babichenko et al., 2022]. We also
discuss the comparison between our paper and that of Gan et al. [2023] on robust Stackelberg games.

2 Preliminaries

Our model builds on the classic Bayesian persuasion model with a single sender and a single
receiver. At a high level, the model formalizes a scenario where the sender, possessing private
information about the true state, aims to influence the receiver’s decision-making by strategically
sending partial information about the true state according to a pre-committed signaling scheme. We
start by introducing the basic setting and notations, and then introduce the robust Bayesian persuasion
model that considers a receiver who acts not exactly, but approximately in accordance with their best
interest in the decision-making process.

2.1 Bayesian persuasion: the classical model

Basic setting and notations. Let Ω be the states of the world with |Ω| = m, and ∆(Ω) be the set
of all probability distributions on Ω. For all distributions µ ∈ ∆(Ω), let supp(µ) be the support of µ,
i.e., supp(µ) ≜ {ω ∈ Ω | µ(ω) > 0}. We use µ0 ∈ ∆(Ω) to denote the prior distribution over states
and assume that µ0 is common knowledge between the sender and the receiver.

Signaling scheme. Let Σ (|Σ| < ∞) be a finite set of signals. A signaling scheme φ : Ω → Σ
is a randomized mapping from the states of the world to probability distributions over signals. In
the Bayesian persuasion protocol, the sender first commits to a signaling scheme φ, then observes
the true state of the world ω ∼ µ0, and sends signal σ ∼ φ(ω) to the receiver. We use φ(ω, σ)
to denote the probability of sending signal σ conditioning on observing ω as the true state, and
φ(σ) =

∑
ω′∈Ω µ0(ω

′)φ(ω′, σ) to denote the marginal probability of a signal σ ∈ Σ being realized.

Upon receiving the signal σ, the receiver performs a Bayes update on µ0 using knowledge about the
scheme π to obtain a posterior belief µσ ∈ ∆(Ω), i.e.,

µσ(ω) =
µ0(ω)φ(ω, σ)

φ(σ)
.

In addition, algebraic manipulations based on the Bayes’ rule suggest that the signaling scheme φ
can be viewed as the process of creating a distribution over posterior distributions that satisfy the
Bayes plausibility condition [Kamenica and Gentzkow, 2011, Gentzkow and Kamenica, 2016]:

∀ω ∈ Ω, µ0(ω) =
∑
ω∈Ω

φ(σ) · µσ(ω). (Bayes plausibility)

Throughout this paper, we will frequently adopt this perspective, especially in the characterization of
(robust) utilities.

Utilities and best response sets Although only the receiver can take actions, their action influences
both the sender and the receiver’s utility, both of which also depend on the state of the world. Let A
be the action space of the receiver with |A| = n. We use s : Ω×A → [0, 1] to denote the sender’s
utility and r : Ω × A → [0, 1] to denote the receiver’s utility, where both utilities are normalized
to be between 0 and 1. Additionally, for distributions µ ∈ ∆(Ω), we abuse the notations and use
s(µ, a) = Eω∼µ s(ω, a) and r(µ, a) = Eω∼µ r(ω, a) to denote the sender and receiver’s expected
utilities under the state distribution µ.
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Receiver’s strategies A receiver’s strategy, denoted with ρ : Σ→ A, is a (possibly randomized)
mapping from the observed signals to actions which specifies the receiver’s strategy of choosing
responses. Given a signaling scheme φ and a receiver strategy ρ, we use S(φ, ρ) to denote the
expected sender utility, which is computed as

S(φ, ρ) ≜
∑
σ∈Σ

φ(σ) · s(µσ, ρ(σ)) =
∑
ω∈Ω

∑
σ∈Σ

µ0(ω)φ(ω, σ)s(ω, ρ(σ)).

The classical model of Bayesian persuasion assumes that the receiver’s strategy ρ(σ) is always the
exact best response of the posterior distribution µσ that maximizes their expected posterior utility
(ties are broken in favor of the sender). Formally, the best response action action is defined as

a⋆(µσ) ≜ argmax
a∈A

r(µσ, a),
1

and the receiver’s strategy is assumed to satisfy ρ(σ) = a⋆(µσ). In this paper, we will relax this exact
best-response assumption to allow for approximate best responses.

2.2 Robust Bayesian persuasion with approximate best responses

In this paper, we allow for some degree of suboptimality in the receiver’s response. Specifically, we
assume that the expected utility under receiver’s response ρ(σ) is not too suboptimal compared to the
best action a⋆(µσ). Formally, if we use BRδ(·) to denote the set of δ-optimal responses on the input
belief:

BRδ(µ) ≜ {a ∈ A | r(µ, a) > r(µ, a⋆(µ))− δ } , (1)

then a receiver’s strategy ρ : Σ→ A is δ-best response (or δ-BR) if it satisfies ρ(σ) ∈ BRδ(µσ) for
all σ ∈ Σ. We use BRδ(φ) to denote the set of all δ-BR strategies under the signaling scheme φ.

Robust sender utility In this paper, we adopt the max-min adversarial robustness perspective and
aim to offer robustness guarantees against worst-case δ-BR strategies. We use the robust utility Ŝδ of
a signaling scheme to characterize the expected utility under the worst-case δ-BR strategy:

Ŝδ(φ) = min
ρδ∈BRδ(φ)

S(φ, ρδ).

The sender aims to maximize the robust utility through optimizing the signaling scheme. Equivalently,
the sender faces a bi-level optimization problem of the following max-min form:

Ŝ⋆
δ ≜ max

φ⋆
Ŝδ(φ

⋆) = max
φ⋆

min
ρδ∈BRδ(φ⋆)

S(φ⋆, ρδ). (sender’s objective)

Solving the optimization problem in (sender’s objective) includes (1) finding an appropriate signal
space Σ that is sufficient to achieve the optimal utility and (2) optimizing for the optimal signaling
scheme given the signal space.
Remark 2.1 (worst-case δ-BR strategy). It is not hard to see that the worst-case δ-BR strategy ρδ
that achieves (sender’s objective) will choose the worst action that minimizes the sender’s utility for
each posterior distribution separately, i.e.,

ρδ(σ) ∈ argmin
a∈BRδ(µσ)

s(µσ, a).

Therefore, the robust utility under any signaling scheme φ can be equivalently written as

Ŝδ(φ) =
∑
σ∈Σ

φ(σ) · s(µσ, ρδ(σ)) =
∑
σ∈Σ

φ(σ) · min
a∈BRδ(µσ)

s(µσ, a).

Remark 2.2 (Strict inequality in definition of BRδ set). In eq. (1), we use strict inequality so that the
sender’s strategy space is closed and compact, and the sender’s objective is well-defined. This is a
non-essential choice: one could instead define δ-BR responses using weak inequality and investigate
the sender’s supremum robust utility, which would not change the nature of the problem.

1When there are multiple actions a⋆(µσ) that maximizes the receiver’s utility, we define a⋆(µσ) to be the
maximizer that achieves the highest sender’s utility.
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3 LP formulation and algorithm with small action spaces

As we show in Appendix B, the powerful revelation principle fails in the robustness model that we
study. In fact, we establish the following claim.
Proposition 3.1 (Proposition B.1 in Appendix B). There exists a sequence of Bayesian persuasion
instances with a robustness level δ = Θ(1), such that the following holds in the limit: any direct-
revelation scheme φ is suboptimal, at least by a factor of 2 or an additive gap of 1

2 . That is, for any
direct-revelation scheme φ,

Ŝδ(φ) ≤
1

2
Ŝ⋆
δ , and Ŝδ(φ) ≤ Ŝ⋆

δ −
1

2
.

The above proposition highlights the need for new algorithmic ideas to efficiently compute (approxi-
mately) optimal robust schemes.

In this section, we present a linear program (LP) that computes the optimal robust utility Ŝ⋆
δ and the

optimal robust signaling scheme φ⋆. Although the high-level idea is similar to the LP formulation for
computing the optimal non-robust scheme in standard Bayesian persuasion [Dughmi and Xu, 2016,
Dughmi, 2017], our robust LP formulation follows significantly different semantics.

We characterize the maximum number of signals needed to achieve the optimal robust utility in
Lemma 3.2. This lemma can be viewed as a generalized (and unfortunately, much less powerful due to
lack of best responses) version of the revelation-principle style argument in [Kamenica and Gentzkow,
2011, Proposition 1] that accounts for worst-case approximate best responses. See Appendix C for
the proof of the lemma.
Lemma 3.2. There exists an optimal robust signaling scheme that is supported on at most n · 2n−1

signals, in which each signal σ ∈ Σ corresponds to a unique pair of (A, ã) such that ã = a⋆(µσ)
and A = BRδ(µσ).

According to Lemma 3.2, it suffices to consider the following signal space:
Σ = {(A, ã) | A ⊆ A, ã ∈ A},

where each signal σ = (A, ã) satisfies both a⋆(µσ) = ã and BRδ(µσ) = A. Recall from Remark 2.1
that the robust utility can be written as

Ŝ⋆
δ = max

φ

∑
(A,ã)∈Σ

φ((A, ã)) · min
a∈BRδ(µ(A,ã))

s(µ(A,ã, a).

Translating this max-min optimization to a constrained maximization problem, and enforcing the
abovementioned semantics for each signal, we arrive at the following (non-linear) program in Fig. 1.
Although the program in Fig. 1 is not yet a linear program, both the first and second constraints can

maximize
φ,x

∑
(A,ã)∈Σ

x(A, ã)

subject to φ(µ(A,ã)) · s(µ(A,ã), a) ≥ x(A, ã). ∀σ ∈ Σ,∀a ∈ A

a⋆(µσ) = ã ∀(A, ã) ∈ Σ

BRδ(µ(A,ã)) = A ∀(A, ã) ∈ Σ

Figure 1: A program for the optimal robust signaling scheme supported on Σ = {(A, ã)}.

be equivalently written as linear constraints on the conditional probabilities φ(ω, (A, ã)) that define
the signaling scheme φ, using the following observation based on the Bayes’ rule:

∀σ ∈ Σ, φ(µσ) · s(µσ, a) =
∑
ω∈Ω

µ0(ω)φ(ω, σ) · s(ω, a). (2)

Therefore, it remains to characterize the δ-BR response sets, and would be ideal if they could also be
equivalently expressed as linear constraints. Unfortunately, the definition of δ-BR sets involves strict-
inequality constraints due to the issues discussed in Remark 2.2. In particular, for each (A, ã) ∈ Σ,
the third constraint is equivalent to

(1) ∀a ∈ A, s(µσ, a) > s(µσ, ã)− δ; (2) ∀a ∈ A \A, s(µσ, a) ≤ s(µσ, ã)− δ,
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where (1) involves a strict inequality and could lead to open polytopes. Due to such subtleties,
we first consider the LP in Fig. 2 which is a relaxation of the program in Fig. 1 by dropping the
strict-inequality constraint (1). The last two constraints in Fig. 1 guarantee that variables φ(ω,A, ã)
give rise to a valid signal distribution for every state ω ∈ Ω.

maximize
φ,x

∑
(A,ã)∈Σ

x(A, ã)

subject to
∑
ω∈Ω

µ0(ω)φ(ω,A, ã)s(ω, a) ≥ x(A, ã), ∀(A, ã) ∈ Σ,∀a ∈ A∑
ω∈Ω

µ0(ω)φ(ω,A, ã) (r(ω, ã)− r(ω, a)) ≥ 0, ∀(A, ã) ∈ Σ,∀a ∈ A∑
ω∈Ω

µ0(ω)φ(ω,A, ã) (r(ω, ã)− r(ω, a)− δ) ≤ 0, ∀(A, ã) ∈ Σ,∀a ∈ A\A∑
(A,ã)∈Σ

φ(ω,A, ã) = 1 ∀ω ∈ Ω

φ(ω,A, ã) ≥ 0. ∀(A, ã) ∈ Σ

Figure 2: Relaxed LP for the optimal robust signaling scheme

Since Fig. 2 is a relaxation of the original program, its optimal objective provides an upper bound for
Ŝ⋆
δ . However, as we will show later, not only does the optimal objective value exactly equal Ŝ⋆

δ , but
the optimal variables φ⋆ also exactly characterize the optimal robust signaling scheme that achieves
this Ŝ⋆

δ . This gives us an algorithm that efficiently computes the optimal robust signaling scheme
when the number of action spaces is constant or polynomial. We formalize this in Proposition 3.3,
and provide a proof in Appendix C.
Proposition 3.3 (Efficient algorithm for small action space). The optimal robust signaling scheme
can be computed by the linear program in Fig. 2 with size O(2nmn).

4 Efficient algorithm with small state spaces

In this section, we focus on the robust persuasion instances where the action space is large, but the
state space is small. For such instances, our key observation is that among the (n− 1)2n tuples in
Σ, only a small fraction of them can be realized by posterior distributions and therefore serve as
feasible signal candidates. In Section 4.1, we characterize the structural properties of feasible tuples
(A, ã) ∈ Σ and draw connection to the polytopes in the simplex supported on the state space. In
Section 4.2, we leverage these structural insights and design an efficient algorithm that accelerates
the computation of the optimal robust signaling scheme.

4.1 Structural properties

We formally define the feasibility of a candidate tuple (A, ã) ∈ Σ according to the existence of a
posterior distribution that has A as its δ-BR set and ã as its best response action.
Definition 4.1 (Feasible subset-action tuple). A tuple (A, ã) ∈ Σ is feasible if there exists some
posterior distribution µ ∈ ∆(Ω) such that a⋆(µ) = ã and BRδ(µ) = A. We use Σ† to denote the set
of all feasible tuples in Σ.

For each feasible tuple (A, ã) ∈ Σ†, let ∆(A,ã) be the set of posterior distributions that satisfy both
constraints in Definition 4.1:

∆(A,ã) ≜ {µ ∈ ∆(Ω) | a⋆(µ) = ã, BRδ(µ) = A}
It is not hard to see that the subsets ∆(A,ã) partitions the simplex, because each distribution in the
simplex is associated with a unique best response action and δ-BR set. That is,

∆(Ω) =
⋃

(A,ã)∈Σ†

∆(A,ã).
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In addition, each ∆(A,ã) is a polytope in the simplex that is defined by the following constraints that
are linear in the distribution µ:

µ ∈ ∆(A,ã) ⇐⇒


r(µ, a) ≤ r(µ, ã), ∀a ∈ A;

r(µ, a) > r(µ, ã)− δ, ∀a ∈ A;

r(µ, a) ≤ r(µ, ã)− δ, ∀a ∈ A \ a.
(3)

Our key observation is that the linear constraints that characterize different ∆(A,ã) all take one of the
following two forms based on an ordered pair of actions (a, a′) ∈ A×A:

1. Either r(µ, a) ≤ r(µ, a′)− δ, or its complement r(µ, a) > r(µ, a′)− δ;
2. r(µ, a) ≤ r(µ, a′),

which give rise to no more than 2n2 hyperplanes. Although the number of hyperplanes scales
with the potentially large number of actions, when the state space is small, these hyperplanes, and
the polytopes they define, all live within a low-dimensional space. According to a fundamental
theorem in computational geometry (see, e.g., Theorem 28.1.1 in [Halperin and Sharir, 2017]), these
hyperplanes cut the m-dimensional into at most O

(
(2n2)m−1

)
cells. This observation helps us to

bound the number of feasible tuples in the following lemma. The proof of Lemma 4.2 is deferred to
Appendix D.2.
Lemma 4.2. The size of the feasible tuples Σ† satisfy |Σ†| ≤ min

{
n2n−1, nO(m)

}
.

Next, we establish some structural properties on the set of feasible tuples Σ† that could facilitate the
efficient search over candidate signals. In the remainder of this section, we first define a bounded-
degree symmetric difference graph on all tuples in Σ, then show that all feasible tuples in Σ† form a
connected component in the symmetric difference graph.
Definition 4.3 (Symmetric difference graph). In the symmetric difference graph G(Σ, E), each
vertex is a tuple (A, ã) ∈ Σ. Each edge {(A1, ã1), (A2, ã2)} ∈ E represents that the symmetric
difference between tuples (A1, ã1) and (A2, ã2) is of size 1, which is satisfied for the following two
cases:

• A1 = A2, and ã1 ̸= ã2.

• ã1 = ã2 ∈ A1 ∩A2, and |(A1 \A2) ∪ (A2 \A1)| = 1.

The symmetric difference graph G characterizes the structural relationship between tuples in Σ, in
which only any two tuples are connected if and only if their symmetric difference is small enough.
Together with the following lemma, G provides a useful framework for us to search within the
exponentially large vertex set.
Lemma 4.4 (Connectivity). The subgraph of G induced by Σ† is connected.

We defer the proof of Lemma 4.4 to Appendix D.1. At a high level, the proof translates the
connectivity of the polytopes ∆(A,ã) in the simplex space to the connectivity of feasible tuples in the
symmetric distance graph G by analyzing the geometric properties of the common face of shared by
every pair of adjacent polytopes.

4.2 Algorithm

In this section, we present Algorithm 1 that leverages the connectivity of the feasible tuples to
efficiently search for Σ†. This algorithm essentially performs depth-first-search (DFS) on the
connectivity graph by recursively searching all the neighbors with symmetric difference of size 1 to
the given tuple that it’s currently searching. The initial tuple to start the EXPLORE procedure can
be set to any tuple that is already known to be feasible, e.g., the δ-BR set and the optimal response
associated with the prior distribution µ0.

Note that each tuple (A, ã) ∈ Σ is feasible if and only if there exists µ ∈ Σ that satisfies all
three constraints in Equation (3) simultaneously, which can be written as checking the feasibility
of the corresponding LP (with strict-inequality constraints) on the distributions µ. To replace
strict-inequality constraints with non-strict constraints, we propose to check the LP via a margin-
maximization trick in Fig. 4 of Appendix D.3. This LP is defined on a closed polytope, and asserts
feasibility if and only if the optimal margin is strictly positive, i.e., ε⋆ > 0.
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Algorithm 1: EXPLORE

Input: tuple (A, ã) ∈ Σ
1 Check the feasibility of (A, ã) by solving the LP in Fig. 4, ε⋆ ← optimal objective value;
2 if ε⋆ > 0 then
3 Mark (A, ã) checked and feasible;
4 for actions a ∈ A \ {ã} do
5 If (A \ {a}, ã) is unchecked, call EXPLORE((A \ {a}, ã));
6 If (A, a) is unchecked, call EXPLORE((A, a));
7 end
8 for actions a ∈ A \A do
9 If (A ∪ {a}, ã) is unchecked, call EXPLORE((A ∪ {a}, ã));

10 end
11 end
12 else
13 Mark (A, ã) checked and infeasible
14 end

Theorem 4.5. Running Algorithm 2 with initial tuple (BRδ(µ0), a
⋆(µ0)) finds all feasible tuples

Σ† ⊆ Σ by solving at most nO(m) LPs, each of size O(m+ n).

Proof. The correctness of this algorithm is ensured by the connectivity property in Lemma 4.4. It
remains to upper bound the number of feasibility checks performed. Since Algorithm 1 only checks
new a vertex when it has not been checked before, the total number of feasibility checks is upper
bounded by the size of the closed neighborhood of Σ†. Since each tuple (A, ã) ∈ Σ has at most O(n)
neighbors, the degree of any vertex in the symmetric difference graph G is upper bounded by O(n).
Therefore, the size of the closed neighborhood is at most O(n) · |Σ†| ≤ nO(m).

The final step for optimizing signaling schemes is to solve the LP in Fig. 2 with the original signal
space Σ replaced by feasible tuples Σ†. We summarize the entire procedure and its complexity in
Algorithm 2 and Corollary 4.6.

Corollary 4.6. When the number of states m is small, the optimal signaling scheme can be efficiently
computed by Algorithm 2, which involves solving nO(m) LPs of size O(m + n) and then solve a
single LP of size m · nO(m).

Algorithm 2: ALGORITHM FOR SMALL STATE SPACES

(A0, ã0)← (BRδ(µ0), a
⋆(µ0));

Search for Σ† by running SEARCH(A0, ã0);
Solve the LP in Fig. 2 with Σ replaced by Σ†.

5 Approximation algorithm for the general problem

In this section, we first show that the general problem without any restrictions is computationally
hard, then present a quasi-polynomial time approximation scheme (QPTAS) for the problem. The
following claim (proof defered to Appendix E) establishes the computational hardness of finding the
exact optimal robust signaling scheme. This result implies that a polynomial-time exact algorithm for
the robust persuasion problem does not exist unless P = NP.

Theorem 5.1. The problem of computing the exact optimal robust utility is NP-hard.

In the following, we present a QPTAS that computes an ε-approximate optimal δ-robust signaling
scheme φ̂ for any given δ > 0, such that

Ŝδ(φ̂) ≥ Ŝ⋆
δ − ε.
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Our δ-optimal signaling scheme is supported on a significantly different signal space compared to
the optimal schemes for cases of small state space and small action space. The high-level idea is,
instead of enumerating each (BRδ(µ), a

⋆(µ)) set, we partition the simplex ∆(Ω) into small cells,
each centered around a k-uniform distribution µ (to be defined later), and incorporate additional
semantics to ensure that the utility profiles s(µ, ·) are representative enough for all distributions within
this cell. It is useful to have the utilities at µ being representative because we can then determine
the δ-BR sets according to the relative magnitude of utilities at µ and translate the requirements into
linear constraints.

Formally, for an integer k, a distribution µ ∈ ∆(Ω) is k-uniform if ∀ω ∈ Ω, µ(ω) = kω

k for some
integer kω ≤ k. Let Gk ⊆ ∆(Ω) denote the set of all k-uniform distributions on the state space. We
have |Gk| = O(mk). Moreover, by [Althöfer, 1994], for kε =

⌈
log(2n)
2ε2

⌉
, we have:

∀µ ∈ ∆(Ω), ∃µ ∈ Gkε , s.t. ∀a ∈ A, |s(µ, a)− s(µ, a)| ≤ ε.

Accordingly, we define the ε-cell around µ ∈ Gk to be

Cµε = {µ ∈ ∆(Ω) : ∀a ∈ A, |s(µ, a)− s(µ, a)| ≤ ε} .

Note that given ε and µ, µ ∈ Cµε is equivalent to a set of 2n linear constraints on µ.

We consider the following signal space:

Σ̂ =
{
(µ, ã, a) | µ ∈ Gkε′ , ã, ȧ ∈ A

}
, where kε′ =

⌈
log(2n)

2(ε′)2

⌉
, ε′ =

ε

5
(4)

Define LP variables φ(ω, µ, ã, ȧ) for each ω ∈ Ω and each signal (µ, ã, ȧ) ∈ Σ̂ to represent the
conditional probabilities of sending that signal. Each signal σ = (µ, ã, ȧ) is specified by the k-
uniform distribution µ that centers the cell, the best response action ã, and the action ȧ in δ-BR set
that minimizes the sender’s strategy. The LP is defined in Fig. 3.

maximize
φ,x

∑
ω∈Ω

µ0(ω)
∑

(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ)s(ω, ȧ)

subject to
∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) · (s(ω, a)− s(µ, a) + ε′) ≥ 0 (∀a ∈ A, ∀(µ, ã, ȧ) ∈ Σ̂)∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) · (s(ω, a)− s(µ, a)− ε′) ≤ 0 (∀a ∈ A, ∀(µ, ã, ȧ) ∈ Σ̂)∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) (r(ω, ã)− r(ω, a)) ≥ 0, (∀a ∈ A, ∀(µ, ã, ȧ) ∈ Σ̂)∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) (r(ω, ã)− r(ω, a)− δ) ≥ 0,

(∀a s.t. s(µ, a) < s(µ, ȧ)− 2ε′)

(∀(µ, ã, ȧ) ∈ Σ̂)∑
(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ) = 1 (∀ω ∈ Ω)

φ(ω, µ, ã, ȧ) ≥ 0. (∀ω ∈ Ω,∀(µ, ã, ȧ) ∈ Σ̂)

Figure 3: QPTAS for computing an ε-approximate robust signaling scheme, where ε′ = ε
5 .

Intuitively, the first two constraints in Fig. 3 are designed to ensure µ(µ,ã,ȧ) ∈ Cµε . The third and
fourth constraints describe the semantics of the receiver’s response strategy. Finally, the last two
constraints guarantee that φ represents a valid signal distribution on each state. We summarize the
guarantee of the QPTAS in Theorem 5.2 and formally prove it in appendix F.
Theorem 5.2. For any ε > 0 and δ > 0, the optimal solution to the LP in Fig. 3 is an ε-approximate
δ-robust signaling scheme that is supported on O

(
n2m⌈12.5 log(2n)/(ε2)⌉

)
signals.
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A Related Works

Bayesian persuasion. Our paper generalizes the canonical model of Bayesian persuasion for
information design that was introduced by the seminal work of Aumann et al. [1995], Kamenica and
Gentzkow [2011], Brocas and Carrillo [2007]. This framework has been extended to multi-receiver
settings [Bergemann and Morris, 2016, 2019] and supports many important applications, such as
voting [Schnakenberg, 2015, Alonso and Câmara, 2016, Bardhi and Guo, 2018, Wang, 2013, Arieli
and Babichenko, 2019], bilateral trades [Bergemann et al., 2015, Bergemann and Pesendorfer, 2007],
incentivizing exploration [Mansour et al., 2020, 2022, Kremer et al., 2014], to name a few. We refer
the readers to survey papers [Candogan, 2020, Kamenica, 2019] for a comprehensive overview.

Computational aspects of Bayesian persuasion and information design. Our work examines
the computational aspects of Bayesian persuasion, which has gained significant attention since the
seminal work of Dughmi and Xu [2016], Dughmi [2017] that study the algorithmic complexity
of the sender’s optimization tasks in several natural input models. In the multi-receiver settings,
computational challenges are more pronounced, as demonstrated by Dughmi [2014], Bhaskar et al.
[2016] who showed the hardness of computing the optimal signaling scheme in Bayesian zero-sum
games. In addition, Rubinstein [2017] established the hardness of finding even an approximate
solution, revealing that obtaining an ϵ-approximate signaling scheme in two-player zero-sum games
requires quasi-polynomial time. On the positive side, Babichenko and Barman [2017] studied private
persuasion with binary action space and presented an efficient approximation of the optimal signaling
scheme. Xu [2020] addressed the tractability of optimizing signaling schemes without externalities
between the receiver’s payoffs. Recently, Zhou et al. [2022] studied algorithmic information design
of public and private signaling in atomic singleton congestion games, achieving efficient exact
optimization of optimal signaling schemes when the number of resources is constant.

Robust Bayesian persuasion. Recent research on robust Bayesian persuasion has explored various
notions to address the uncertainty and robustness in sender-receiver interactions.. The existing
literature can be roughly divided into two main approaches: max-min models and faulty receiver
models.

Maximin models consider scenarios in which the sender aims to maximize their worst-case utility
under various types of uncertainty. For instance, Dworczak and Pavan [2022] study a two-layer model
where the first layer accounts for arbitrary exogenous information receivers may have, including pes-
simistic scenarios where receivers fully learn the state from exogenous information. The optimization
at the second layer assumes a common prior but is constrained to policies that secure the sender’s
maximin payoff at the first layer. Kosterina [2022] considers a setting where the sender does know
the receiver’s prior belief and assumes that the receiver’s prior can be any distribution that assigns at
least a fixed state-dependent probability to each state. Hu and Weng [2021] consider a model where
starting from a common prior, the receiver gets a private signal resulting in an arbitrary random belief
supported on a given subset of the simplex. They show (1) when the subset is the entire simplex, full
revelation is optimal, and (2) when the subset is a small neighborhood of the common prior, the cost
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of robustness vanishes as the size of the neighborhood vanishes. Babichenko et al. [2022] study a
model with binary actions and the receiver’s utility being uncertain. They show that full uncertainty
is extremely harmful, while if the sender knows the ordinal preferences of the receiver over states,
then there’s a constant additive gap between the maximin strategy and the omniscient one. Chen
and Lin [2023] consider a model similar to ours with ε-best responding receivers. They present a
continuity result that bounds the cost of robustness by O(ε).

On the other hand, faulty receiver models usually assume the sender has full knowledge of the
receiver’s behavioral model, often incorporating bounded rationality or non-standard Bayesian
updates. Feng et al. [2024]study the bounded rationality model through quantal response, which is
a smoothed version of exact best response that models mistakes or “trembling hands”. They focus
on binary actions and identify conditions under which the optimal policy against a best-responding
receiver remains almost optimal under quantal response. They also construct approximately optimal
policies oblivious to the level of bounded rationality. de Clippel and Zhang [2022] consider “non-
Bayesian” updates by the receiver according to an arbitrary but fixed rule. They provide structural
results and rankings of updating rules in terms of both the sender’s and receiver’s utilities. These
works differ from ours in that they assume the sender has full knowledge about the receiver’s fixed
response rule, whereas in our setting, the sender must anticipate worst-case responses from a set of
approximate best responses.

Comparison with [Gan et al., 2023]. Another closely related work is that of Gan et al. [2023]
which studies the computational complexity of robust Stackelberg equilibria under approximate best
responses. While Stackelberg games provide a more general model for principal-agent interactions,
the computational complexity results in [Gan et al., 2023] are not directly applicable to Bayesian
persuasion due to differences in problem representation. Specifically, Bayesian persuasion instances
are typically represented in a more compact form than the “flat” representation used for Stackelberg
games, where principal’s strategy space includes all feasible signaling schemes. This distinction
limits the direct application of algorithms from Gan et al. [2023] to Bayesian persuasion by framing
it as a Stackelberg game instance.

There are also important algorithmic differences between Stackelberg games and Bayesian persuasion.
In Stackelberg games, the search space is constrained to the simplex of probability distributions over
the principal’s action set. In contrast, in Bayesian persuasion, the search space for signaling schemes
is not pre-defined as it requires constructing a signal space, making the design of signal spaces an
important part of the problem. Our paper introduces algorithmic techniques specifically designed for
Bayesian persuasion that achieves a complexity of poly(nO(m)) when the state space size m is small.
In comparison, approaches in Gan et al. [2023] result in a complexity exponential in n.

B Failure of revelation principle

In classical Bayesian persuasion problem where receivers always best respond, an argument via the
revelation principle (see, e.g., [Kamenica and Gentzkow, 2011, Proposition 1]) shows that it suffices
to consider direct revelation schemes that give direct recommendations of which actions to play. This
argument implies that without loss of generality, the number of signals needed is at most the number
of actions. However, in this section, we will show that when robustness enters the picture, direct
revelation schemes fail even to achieve any nontrivial approximation ratios of the optimal robust
utility. Indeed, similar phenomenons were observed by Gan et al. [2023] in the context of Stackelberg
games. As they argue, the absence of the revelation principle in their setting makes the respective
problems more challenging, which is also what happens in our model.

Below we present a simple example with 3 states and 2 actions where direct revelation schemes fail
to match the optimal utility with any nontrivial approximation factor.

Proposition B.1 (Suboptimality of direct-revelation schemes). There exists a sequence of Bayesian
persuasion instances with a robustness level δ = Θ(1), such that the following holds in the limit: any
direct-revelation scheme φ is suboptimal, at least by a factor of 2 or an additive gap of 1

2 . That is, for
any direct-revelation scheme φ,

Ŝδ(φ) ≤
1

2
Ŝ⋆
δ , and Ŝδ(φ) ≤ Ŝ⋆

δ −
1

2
.
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The claim in Proposition B.1 can be established using the family of robust persuasion instances
constructed in Example B.2. The main idea is to create a relatively large robustness level so that
disadvantageous actions enter the receiver’s approximate best response set as long as the posterior is a
mixed distribution. Therefore, to achieve the optimal robust utility, the sender has to adopt a signaling
scheme that deterministically discloses the true state, which requires a signaling space larger than the
action space.
Example B.2. Consider the following family of robust Bayesian persuasion instances parametrized
by ε. Every instance in this family has state space Ω = {ω⊥, ω0, ω1} and action spaceA = {a0, a1}.
The prior distribution µ0 puts a very small probability mass on state ω⊥, and divides the rest of the
probability mass evenly between ω1 and ω2. Formally, for an infinitesimal ε > 0, we have

µ0(ω⊥) = ε, µ0(ω0) = µ0(ω1) =
1− ε

2
.

The utility functions satisfy r = s, where both the receiver obtains utility 1 if the index of the action
matches that of the state (i.e., in the case of (ω1, a1) and (ω0, a0)) and 0 otherwise (see Table 1).
The approximate best response level is δ = 1.

states (Ω)
actions (A)

a0 a1

ω⊥ 0 0
ω0 1 0
ω1 0 1

Table 1: The utility function for both the sender and the receiver. If the state is ω⊥, then both players
have 0 utility. Otherwise, both players get utility 1 if and only if the receiver’s action matches the
true state.

Proof of Proposition B.1. In example B.2, the optimal robust utility Ŝ⋆
δ is at least 1− ε, which can

be achieved by a full-revelation signaling scheme φ⋆ supported on 3 signals. More specifically, φ⋆ is
a deterministic mapping from Ω to a ternary signal space Σ = {σ⊥, σ0, σ1}, such that φ(ωi) ≡ σi

for i ∈ {⊥, 0, 1}. Since this signaling scheme is deterministic, we have φ⋆(σi) = µ0(ωi), and each
posterior distribution µσi

is the degenerate distribution on ωi. They lead to the following approximate
best response sets:

BRδ(µσ⊥) = {a0, a1}, BRδ(µσ0
) = {a0}, BRδ(µσ1

) = {a1}.

Therefore, the sender’s robust utility is given by

Ŝδ(φ
⋆) =

∑
σ∈Σ

φ⋆(σ) · min
a∈BRδ(µσ)

s(µσ, a)

=µ0(ω⊥) · s(µσ⊥ , a0) + µ0(ω0) · s(µσ0 , a0) + µ0(ω1) · s(µσ1 , a1)

=ε · 0 + 1− ε

2
· 1 + 1− ε

2
· 1 = 1− ε.

On the other hand, we claim that any signaling scheme φ : Ω → Σ with |Σ| = 2 has to suffer a
suboptimal utility of Ŝδ(φ) ≤ 1−ε

2 . To see this, note that if a posterior distribution µσ of a signal
σ ∈ Σ is supported on more than one state, then the receiver’s utility of the optimal action is at
most max{µσ(ω0), µσ(ω1)} < 1, which is smaller than the robustness level δ = 1. Therefore, any
posterior µσ that is a mixed distribution must have BRδ(µσ) = {a0, a1}, which implies

min
a∈BRδ(µσ)

s(µσ, a) = min {s(µσ, a0), s(µσ, a1)} = min {µσ(ω0), µσ(ω1)} .

Let us denote the two signals in Σ as σ0 and σ1. At least one of the posterior distributions µσ0
and

µσ1
has to be supported on ≥ 2 states because |Ω| = 3. We have two following cases:

• Case 1. Both signals have mixed posteriors. In this case, we have

Ŝδ(φ) =
∑
σ∈Σ

φ(σ) · min
a∈BRδ(µσ)

s(µσ, a)
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=φ(σ0) ·min {µσ0(ω0), µσ0(ω1)}+ φ(σ1) ·min {µσ1(ω0), µσ1(ω1)}
≤φ(σ0) · µσ0(ω0) + φ(σ1) · µσ1(ω0)

=µ0(ω0) · φ(ω0, σ0) + µ0(ω0) · φ(ω0, σ1) = µ0(ω0) =
1− ε

2
,

where the last few steps follow from the Bayes’ rule.

• Case 2. Only one signal has a mixed posterior. WLOG, assume µσ0 is a mixed distribution
whereas µσ1 is a pure (degenerate) distribution. It is also WLOG to assume that µσ1 is a
degenerate distribution on ω1, because ω0 and ω1 are symmetric and ω⊥ has 0 utility under
both actions. Therefore, we have that σ1 is only sent on state ω1, and φ(σ1) = µ0(ω1). As
for the robust utility, we have

Ŝδ(φ) =
∑
σ∈Σ

φ(σ) · min
a∈BRδ(µσ)

s(µσ, a)

=φ(σ0) ·min {µσ0
(ω0), µσ0

(ω1)}+ φ(σ1) · s(ωσ1
, a1)

=φ(σ0) · 0 + φ(σ1) · 1

=µ0(ω1) =
1− ε

2
,

where the second-to-last step follows from µσ0
(ω1) = 0 because σ1 is only sent on state ω1.

Combining the two cases above, we arrive at the conclusion that any scheme with two signals has
robust utility at most 1−ε

2 , which is half of the optimal robust utility Ŝ⋆
δ . In addition, we note that

Ŝ⋆
δ − Ŝδ(φ) =

1−ε
2 and the above analysis holds for any ε > 0. Therefore, sending ε→ 0 proves the

1
2 additive gap.

C Omitted proofs in Section 3

Proof of Lemma 3.2. Let Σ′ = {(A, ã) | A ⊆ A, ã ∈ A}. Given any signaling scheme φ : Ω→ Σ,
we use Σ(A,ã) to denote the subset of signals σ ∈ Σ that lead to the same best response a⋆ = ã and
the same δ-BR set BRδ(µσ) = A, i.e.,

Σ(A,ã) = {σ ∈ Σ | σ ∈ Σ : a⋆(µσ) = ã,BRδ(µσ) = A}.

Consider an alternative signaling scheme φ′ : Ω→ Σ′ that merges signals in each subset Σ(A,ã):

∀(A, ã) ∈ Σ′, φ′(ω, (A, ã)) =
∑

σ∈Σ(A,ã)

φ(ω, σ).

The subsets Σ(A,ã) naturally form a partition of the original signal space Σ.

We first claim that a⋆(µ(A,ã)) = ã,BRδ(µ(A,ã)) = A. The first claim follows directly from the
revelation principle — since ã is the best response to each σ ∈ Σ(A,ã), it must also be the best
response to the merged signal. For the second claim, from the Bayes’ rule, the posterior of receiving
each signal (A, ã) under the newly constructed scheme φ′ satisfies

∀ω ∈ Ω, µ(A,ã)(ω) =

∑
σ∈Σ(A,ã)

φ(σ)µσ(ω)∑
σ∈Σ(A,ã)

φ(σ)
, (5)

therefore, for each a ∈ A, we have

r(µ(A,ã), a) =

∑
σ∈Σ(A,ã)

φ(σ)r(µσ, a)∑
σ∈Σ(A,ã)

φ(σ)
>

∑
σ∈Σ(A,ã)

φ(σ)(r(µσ, ã)− δ)∑
σ∈Σ(A,ã)

φ(σ)
= r(µ(A,ã), ã)− δ.

Similarly, for each a ∈ A \A, we can conclude that

r(µ(A,ã), a) ≤ r(µ(A,ã), ã)− δ,
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The two cases together established the second claim that BRδ(µ(A,ã)) = A. Finally, for the sender’s
utility, we have

φ′((A, ã))min
a∈A

s(µ(A,ã), a) =min
a∈A

∑
σ∈Σ(A,ã)

φ(σ)s(µσ, a) (Bayes’ rule in eq. (5))

≥
∑

σ∈Σ(A,ã)

φ(σ)min
a∈A

s(µσ, a). (Jensen’s inequality)

Since the above inequalities hold for any (A, ã) ∈ Σ′, the robust utility satisfies

Ŝδ(φ
′) =

∑
(A,ã)∈Σ′

φ′((A, ã)) ·min
a∈A

s(µ(A,ã), a)

≥
∑

(A,ã)∈Σ′

∑
σ∈Σ(A,ã)

φ(σ) · φ(σ)min
a∈A

s(µσ, a) = Ŝδ(φ),

where the last step follows since {Σ(A,ã) | (A, ã) ∈ Σ′} forms a partition of Σ.

We have shown that restricting the signal space to Σ′ = {(A, ã) | A ⊆ A, ã ∈ A} by merging
signals never decreases the robust utility. Therefore, there must exist an optimal signaling scheme
supported on at most |Σ′| = n · 2n−1 signals.

Proof of Proposition 3.3. We use OPT to denote the optimal objective value of Fig. 2, and use
φ⋆,x⋆ to denote the optimal variables that achieve OPT. In addition, let φ⋆ : Ω→ Σ be a signaling
scheme induced by the optimal LP variables φ⋆(ω,A, ã). Since Fig. 2 is a relaxation of the original
problem for computing Ŝ⋆

δ , we have OPT ≥ Ŝ⋆
δ . Therefore, to establish the optimality of φ⋆, it

suffices to show that OPT ≤ Ŝδ(φ
⋆), because it implies

OPT ≤ Ŝδ(φ
⋆) ≤ max

φ
Ŝδ(φ) = Ŝ⋆

δ ≤ OPT,

in which all the inequalities must be tight.

Now we prove OPT ≤ Ŝδ(φ
⋆). Since the third constraint in Fig. 2 ensures that all actions excluded

form A must have suboptimality gap ≥ δ, A is an overestimate of the true δ-BR set, i.e., A ⊇
BRδ(µ(A,ã)). Therefore, we have

Ŝδ(φ
⋆) =

∑
(A,ã)∈Σ

φ⋆(A, ã) min
a∈BRδ(µ(A,ã))

s(µ(A,ã), a)

=
∑

(A,ã)∈Σ

min
a∈BRδ(µ(A,ã))

∑
ω∈Ω

µ0(ω)φ
⋆(ω,A, ã)s(µ(A,ã), a)

≥
∑

(A,ã)∈Σ

min
a∈A

∑
ω∈Ω

µ0(ω)φ
⋆(ω,A, ã)s(µ(A,ã), a) (A ⊇ BRδ(µ(A,ã)))

≥
∑

(A,ã)∈Σ

x⋆(A, ã) (first constraint in Fig. 2)

=OPT, (optimality of x⋆(A, ã) in Fig. 2)

which completes the proof.

D Omitted Proofs from Section 4

D.1 Proof of Lemma 4.4

Proof. We establish this theorem by showing that any two adjacent polytopes ∆(A1,ã1),∆(A2,ã2)

in the m-dimensional simplex corresponds to neighboring vertices (A1, ã1) and (A2, ã2) in the
symmetric difference graph. Since polytopes ∆(A,ã) form a partition of the convex simplex ∆(Ω),
any path through the simplex’s polytopes translates into a connected path in the symmetric difference
graph G, therefore establishing the connectivity of the subgraph induced by Σ†.
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If ∆(A1,ã1),∆(A2,ã2) are adjacent, they must share a common face, which belongs to a hyperplane in
H. Consider the following two cases:

Case 1. If the hyperplane is
∑

ω∈Ω µ(ω)(r(ω, a) − r(ω, a′)) = 0 for some pair of actions (a, a′).
According to the semantics in eq. (3) that defines each polytope, it must be the case that a, a′ each
corresponds to an action in ã1, ã2. WLOG assume a = ã1 and a′ = ã2. Therefore, to show that
{(A1, ã1), (A2, ã2)} ∈ E, it suffices to establish A1 = A2.

Consider two posteriors µ1 ∈ ∆(A1,ã1) and µ2 ∈ ∆(A2,ã2) such that ∥µ1 − µ2∥1 ≤ ε for an
infinitesimal ε > 0, and both µ1, µ2 have a distance of at least ε0 from all other hyperplanes in H.
Such a choice implies

• ∀a ∈ A, |r(µ1, a)− r(µ2, a)| ≤ ∥µ1 − µ2∥1 = ε.

• r(µ1, ã1)−mina∈A1
r(µ1, a) ≤ δ − ε0, and r(µ2, ã2)−mina∈A2

r(µ2, a) ≤ δ − ε0.

Consider the process of fixing ε0 and sending ε→ 0. For any a ∈ A1 = BRδ(µ1), we have

r(µ2, a) ≥ r(µ1, a)− ε ≥ r(µ1, ã1)− (δ − ε0)− ε ≥ r(µ2, ã1)− δ + ε0 − 2ε > r(µ2, ã1)− δ,

which implies a ∈ BRδ(µ2) = A2 and therefore A1 ⊆ A2. In addition, a symmetric argument
implies that A2 ⊆ A1. Therefore, it must be the case that A1 = A2.

Case 2. If the hyperplane is
∑

ω∈Ω µ(ω)(r(ω, a) − r(ω, a′)) = δ for some pair of actions (a, a′).
Once again, we can find two posteriors µ1 ∈ ∆(A1,ã1) and µ2 ∈ ∆(A2,ã2) such that ∥µ1 − µ2∥1 ≤ ε
for an infinitesimal ε > 0, and both µ1, µ2 have a distance of at least ε0 from all other hyperplanes in
H. This immediately implies ã1 = ã2 because otherwise the hyperplane

∑
ω∈Ω µ(ω)(r(ω, a1) −

r(ω, a2)) = 0 will have to separate µ1 and µ2. A similar continuity argument to that in the previous
case shows that a1 = a2 = a and (A1 \A2) ∪ (A2 \A1) = {a′}.
Therefore, in both cases we can conclude that {(A1, ã1), (A2, ã2)} ∈ E. This finishes the proof of
Lemma 4.4.

D.2 Proof of Lemma 4.2

Proof. The first bound follows from |Σ†| ≤ |Σ| ≤ n2n−1. For the second bound, consider the
following set of hyperplanes defined by every pair of receiver’s actions:

H =
⋃

a,a′∈A

{∑
ω∈Ω

µ(ω)(r(ω, a)− r(ω, a′)) = 0,
∑
ω∈Ω

µ(ω)(r(ω, a)− r(ω, a′)) = δ

}
They cut the (m− 1)-dimensional simplex into at most(

|H|
≤ m

)
≤

(
2n2

≤ m

)
≤ nO(m)

cells [Halperin and Sharir, 2017, Theorem 28.1.1]. Since the boundaries of each open polytope
∆(A,ã) are defined by a subset of hyperplanes inH with either strict or non-strict inequalities, each
polytopes remain undivided by any hyperplane. Therefore, we have |Σ†| ≤ nO(m).

D.3 LP for checking the feasibility of state-action tuples

E Proof of Theorem 5.1

Proof. For any given δ ∈ (0, 1), we establish the NP-hardness by constructing a reduction from the
NP-complete problem of Subset Sum (see, e.g., Section 8.8 of [Kleinberg and Tardos, 2006]) to the
problem of finding the optimal δ-robust sender utility in Bayesian persuasion against approximate
responses. This reduction maps instances of the Subset Sum problem to instances of δ-robust
Bayesian persuasion such that an instance of the Subset Sum problem has a solution (a YES instance)
if and only if the corresponding δ-robust persuasion instance yields an optimal utility of at least 1

2 .

We start by introducing the format of a subset sum instance. A subset sum instance is given by a set
X = {x1, · · · , xn} of integers where sum(X) =

∑n
i=1 xi = 0. The problem is to decide whether
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maximize
ε,µ

ε

subject to
∑
ω∈Ω

µ(ω) (r(ω, ã)− r(ω, a)) ≥ 0, ∀a ∈ A∑
ω∈Ω

µ(ω) (r(ω, ã)− r(ω, a)) ≤ δ − ε, ∀a ∈ A∑
ω∈Ω

µ(ω) (r(ω, ã)− r(ω, a′)) ≥ δ, ∀a′ ∈ A \A∑
ω∈Ω

µ(ω) = 1

µ(ω) ≥ 0 ∀ω ∈ Ω.

Figure 4: LP for checking the feasibility of (A, ã) ∈ Σ. The tuple is feasible if and only if ε⋆ > 0.

or not there exists a subset of indices J ⊂ [n] such that |J | = n
2 and sum(XJ) =

∑
j∈J xj = 0. If

there exists such a J , then X is a YES instance. Otherwise, it is a NO instance. One may check the
above version of the problem is also NP-hard. In particular, the requirements that sum(X) = 0 and
|J | = n

2 are without loss of generality, because one may add an additional integer to offset the sum
of all integers if it is nonzero to begin with, as well as enough 0’s so there is always a subset of size
n
2 that sums to 0 iff we have a YES instance. We construct a robust persuasion instance as follows.

States and prior distribution The state space is defined as Ω = {ω1, · · · , ωn}with |Ω| = |X| = n,
and the prior distribution µ0 = Unif(Ω) is a uniform distribution over the entire state space.

Receiver’s action space The receiver’s action spaceA = A∪B ∪C consists of three categories of
actions: malicious guessing actions A = {a1, · · · , an}, benign guessing actions B = {b1, · · · , bn},
and sign matching actions C = {c+, c−}.

Utility functions We define the sender’s utility s and receiver’s utility r as follows. For ease of
presentation, the range of the receiver’s utility is designed to be [0, 2], but it is not hard to rescale it to
[0, 1] to fit our modeling assumptions.

• For a malicious guess ai ∈ A and any i ∈ [n], the utility functions are defined as

r(ωj , ai) =

{
1, i = j

max
{
1− δ

1− 2
n

, 0
}
, i ̸= j

, s(ωj , ai) ≡ 0. (6)

At a high level, malicious guesses result in a constant 0 utility on the sender, but the penalty
of incorrect guesses on the receiver’s side is relatively minor — on top of the base utility
of 1, the receiver only suffers a utility loss of δ

1− 2
n

(when δ < 1− 2
n ) for an incorrect state

guess, which implies that the receiver secures a utility of ≥ 1 − δ as long as the guess is
correct with a probability at least 2

n . This choice of utility function guarantees that to obtain
nontrivial utilities, the sender must prevent the receiver from adopting malicious guesses
by creating enough dispersion in the posterior distributions. In particular, the posterior
probability on any state should not exceed 2

n .

• For benign guess bi ∈ B for any i ∈ [n], the utility functions are defined as

r(ωj , bi) =

{
1, i = j

1− δ, i ̸= j
, s(ωj , bi) =

{
1, i = j
1
2−

2
n

1− 2
n

, i ̸= j
. (7)

At a high level, benign guesses, if correct, are beneficial for both the sender and receiver.
They are intended to encourage the sender to concentrate more probability mass on some
certain state in the posterior distribution. To see this, note that as long as the state ωi is in
the support of the receiver’s posterior, the excepted utility of the receiver will exceed 1− δ
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and the corresponding benign guessing action bi enters the δ-BR set. For the sender, the
expected utility under malicious guess bi reaches 1

2 only when the posterior probability on
ωi is at least 2

n . Therefore, to guarantee that the sender has an expected utility of at least
1/2, the posterior of any state in the support should be no less than 2/n.

• For the matching actions C = {c+, c−}, the utility functions are defined as

r(ωj , c±) = 1± δ

4M
xj , s(ωj , c±) =

1

2
∓ 1

4M
xj , (8)

where M =
∑

x∈X |x| > 0. In this case, the receiver gains utility when her chosen action
matches the sign of the expected value of xi under the posterior distribution, whereas the
sender loses a proportional amount of utility. Specifically, when the posterior is uniform
on a subspace of size n

2 — a design choice that is encouraged by the first two categories of
actions — the receiver chooses sign-matching actions based on the sign of the sum of the
corresponding subset’s elements. In this special case, the sender’s utility falls below < 1

2
unless the subset sum equals zero.

Now, we formally show the reduction from the subset sum problem to δ-robust optimal signaling
scheme by dividing the proof into two claims.

Claim E.1. If X is a YES instance, then Ŝ⋆
δ = Ŝδ(φ

⋆) ≥ 1
2 .

Proof of Claim E.1. For notation convenience, for any subset of indices J ⊆ [n] and any set Ω s.t.
the elements of Ω are indexed by [n], we use XJ to denote the subset of elements with indices in J ,
i.e., XJ = {ωj | j ∈ J}. Let J ⊂ [n] such that |J | = n

2 and sum(XJ) =
∑

j∈J xj = 0. Consider
the following signaling scheme: φ⋆(ωi, σ+) = 1 [i ∈ J ] , φ⋆(ωi, σ−) = 1 [i ∈ ([n] \ J)]. Since the
signaling scheme is deterministic, we have µσ+ = Unif(ΩJ) and µσ− = Unif(Ω[n]\J).

To compute the robust utility of φ⋆, we first compute the δ-BR set BRδ(µσ+
). For the sign-matching

actions c ∈ C, we have

r(µσ+
, c) = 1± δ

4M
· 2
n

∑
j∈J

xj = 1.

because the subset XJ is of sum 0. For malicious guesses ai ∈ A, note that µσ+
(ωj) ≤ 2/n for any

ωj ∈ Ω, thus we have

r(µσ+
, ai) ≤

2

n
+

(
1− 2

n

)
·
(
1− δ

1− 2
n

)
= 1− δ.

For any benign guesses bi ∈ B, we have

r(µσ+ , bi) = 1 · µσ+(ωi) + (1− δ)(1− µσ+(ωi)) = 1− δ(1− µσ+(ωi)),

which implies that r(µσ+
, bi) > 1− δ if and only if µσ+

(ωi) > 0. Therefore, we have BRδ(µσ+
) =

BJ ∪ C.

As for the sender’s robust utility, we have

s(µσ+
, bi) =1 · 2

n
+

(
1− 2

n

)
·

1
2 −

2
n

1− 2
n

=
1

2
, ∀bi ∈ BJ ;

s(µσ+
, c) =

1

2
∓ δ

4M
· 2
n

∑
j∈J

xj =
1

2
∓ δ

4M
· 2
n
sum(XJ) =

1

2
, ∀c ∈ C.

Therefore, we have mina∈BRδ(σ+) s(µσ+ , a) =
1
2 .

A similar analysis show that BRδ(µσ−) = B[n]\J ∪ C and mina∈BRδ(σ−) s(µσ− , a) =
1
2 . Therefore,

Ŝ⋆
δ ≥ Ŝδ(φ

⋆) = φ⋆(σ+) min
a∈BRδ(σ+)

s(µσ+
, a) + φ⋆(σ−) min

a∈BRδ(σ−)
s(µσ− , a) =

1

2
.

Claim E.2. If the optimal sender’s utility satisfies Ŝ⋆
δ ≥ 1

2 , then X must be a YES instance.
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Proof of Claim E.2. For every posterior distribution µσ , we show that the worst-case expected sender
utitiliy fδ(µσ) ≜ mina∈BRδ(µσ) s(µσ, a) ≤ 1

2 , and the equality holds only when µσ = Unif(XJ)

where |J | = n
2 and sum(XJ) = 0. Therefore, if Ŝ⋆

δ ≥ 1
2 , then fδ(µσ) ≤ 1

2 must hold with equality
for all σ ∈ Σ, which implies the existence of a subset with size n

2 and sum 0, i.e., X is a YES
instance.

Consider the following cases:

Case 1. If ai ∈ BRδ(µσ) ∩A for some i ∈ [n], then fδ(µσ) ≤ s(µσ, ai) = 0 < 1
2 .

Case 2. IF BRδ(µσ) ∩A = ∅. Consider two subcases based on whether or not r(µσ, a
⋆(µσ)) > 1.

In the case of r(µσ, a
⋆(µσ)) > 1, it must be that a⋆(µσ) ∈ C because other actions all have receiver

utility ≤ 1. From the design of sign-matching utilities, the sender’s utility exceeds 1
2 if and only if the

receiver’s utility is strictly lower than 1, so we must have fδ(µσ) ≤ s(µσ, a
⋆(µσ)) <

1
2 . Therefore,

it remains to consider the case of r(µσ, a
⋆(µσ)) ≤ 1.

On the one hand, combining with the fact that BRδ(µσ) ∩A = ∅, this gives

max
ai∈A

r(µσ, ai) ≤ r(µσ, a
⋆(µσ))− δ ≤ 1− δ ⇒ max

i∈[n]
µσ(ωi) ≤

2

n
, (9)

Which implies that all posterior probabilities should be no larger than 2
n . On the other hand, let

J = supp(µσ), then for all i ∈ J , we have

r(µσ, bi) > 1− δ ≥ r(µσ, a
⋆(µσ))− δ,

which implies BJ ⊆ BRδ(µσ). We further consider the following two subcases:

• If ∃i ∈ J , s.t. µσ(ωi) <
2
n , then we have fδ(µσ) ≤ s(µσ, bi) < 1 · 2n +

(
1− 2

n

)
·

1
2−

2
n

1− 2
n

= 1
2 .

• Otherwise, we have minj∈J µσ(ωj) ≥ 2
n , i.e., all non-zero posterior probabilities should be

no smaller than 2
n . Since Equation (9) implies that all posterior probabilities should also be

no larger than 2
n , it must be the case that they are exactly 2

n , i.e., µσ is a uniform distribution
supported on exactly |J | = n

2 elements. Therefore,

fδ(µσ) ≤ min
i∈J

s(µσ, bi) = 1 · 2
n
+ (1− 2/n) ·

1
2 −

2
n

1− 2
n

=
1

2
.

Moreover, the uniform distribution also implies r(µσ, c±) = 1 + δ
4M ·

2
n ·

(
sum(XJ)

)
±.

Together with the fact that r(µσ, a
⋆(µσ)) ≤ 1, we have

r(µσ, csgn(sum(XJ ))) = 1 +
δ

2Mn
|sum(XJ)| ≤ r(µσ, a

⋆(µσ)) ≤ 1 ⇒ sum(XJ) = 0.

(10)

Therefore, J ⊂ [n] is a subset of size n
2 that satisfies sum(XJ) = 0, and thus X is a YES

instance. In this case, we have BR(µσ) = BJ ∪ C and fδ(µσ) =
1
2 .

In conclusion, we have shown that all but the last case have fδ(µσ) <
1
2 , whereas the last case has

both fδ(µσ) =
1
2 and that the subset sum problem is a YES instance. This finishes the proof of the

claim.

Combining Claim E.1 and Claim E.2 implies that Ŝ⋆
δ ≥ 1

2 if and only if the subset sum problem
X is a YES instance. We have thus established a reduction from the subset sum problem to that
of computing the optimal δ-robust signaling scheme, which proves the NP-hardness of the later
problem.

F Proof of Theorem 5.2

Proof of Theorem 5.2. Let OPT be the optimal objective value and let φ̂ be the signaling scheme
induced by the optimal solution φ⋆. We divide the proof into two parts: the first part proves
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OPT ≥ Ŝ⋆
δ − ε′, and the second part proves Ŝδ(φ̂) ≥ OPT− 4ε′. Putting both together establishes

the claim because

Ŝδ(φ̂) ≥ OPT− 4ε′ ≥ Ŝ⋆
δ − 4ε′ − ε′ = Ŝ⋆

δ − 5ε′ = Ŝ⋆
δ − ε,

where the last step follows from setting ε′ = ε
5 in Fig. 3.

To prove the first inequality of OPT ≥ Ŝ⋆
δ −ε′, we show that the optimal robust signaling scheme can

be discretized to fit in our LP with no more than ε′ discretization error. Specifically, let φ : Ω→ Σ be
an optimal signaling scheme that has Ŝ(φ⋆

1) = Ŝ⋆
δ . We will construct LP variables φ that are feasible

in Fig. 3.

For each σ ∈ Σ. there exists µσ ∈ Gk such that ∀a ∈ A, |s(µσ, a)− s(µσ, a)| ≤ ε. let Σ(µ,ã,ȧ) ⊆ Σ
be the subset of signals σ ∈ Σ with µ = µσ , a⋆(µσ) = ã, and

ȧ ∈ argmin
a:r(µσ,a)>r(µσ,ã)−δ

s(µσ, a) (11)

We define φ as merging the signals in Σ(µ,ã,ȧ). Formally,

φ(ω, µ, ã, ȧ) ≜
∑

σ∈Σ(µ,ã,ȧ)

φ(ω, σ). (12)

Such a construction immediately satisfy the last two constraints the LP, because all the subsets
Σ(µ,ã,ȧ) ⊆ Σ where (µ, ã, ȧ) ∈ Σ̂ form a partition of the original signal space Σ. The first two
constraints are also satisfied because for each µ ∈ Gk,∑

ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) · (s(ω, a′)− s(µ, a) + ε)

=
∑
ω∈Ω

µ0(ω)
∑

σ∈Σ(µ,ã,ȧ)

φ(ω, σ) · (s(ω, a′)− s(µσ, a) + ε) (definition of φ in eq. (12))

≥
∑
ω∈Ω

µ0(ω)
∑

σ∈Σ(µ,ã,ȧ)

φ(ω, σ) · (s(ω, a′)− s(µσ, a)) (|s(µσ, a)− s(µσ, a)| ≤ ε)

=
∑

σ∈Σ(µ,ã,ȧ)

∑
ω∈Ω

µ0(ω)φ(ω, σ) (s(ω, a
′)− s(µσ, a)) = 0, (Bayes’ rule)

and a similar analysis verifies
∑

ω∈Ω µ0(ω)φ(ω, µ, ã, ȧ) · (s(ω, a′)− s(µ, a)− ε) ≤ 0. For the third
constraint, since ã is the best response to every σ ∈ Σ(µ,ã,ȧ), it should also be the best response to
the combined signal (µ, ã, ȧ). For the fourth constraint, for a tuple (µ, ã, ȧ) ∈ Σ̂ and an action a such
that s(µ, a) < s(µ, ȧ)− 2ε′, we have

∀σ ∈ Σ(µ,ã,ȧ), s(µσ, a) ≤ s(µ, a) + ε′ < s(µ, ȧ)− ε′ ≤ s(µσ, ȧ)

Together with the choice of ȧ in Equation (11) that ȧ minimizes s(µσ, a) for all a ∈ BRδ(µσ), we
have r(µσ, a) ≤ r(µσ, ȧ) for every σ ∈ Σ(µ,ã,ȧ). Therefore, the fourth constraint is satisfied as∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) (r(ω, ã)− r(ω, a)− δ) =
∑

σ∈Σ(µ,ã,ȧ)

φ(σ) (r(µσ, ã)− r(µσ, a)− δ) ≥ 0.

Finally, for the LP’s objective value, we have

OPT ≥
∑
ω∈Ω

µ0(ω)
∑

(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ)s(ω, ȧ)

≥
∑
ω∈Ω

µ0(ω)
∑

(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ) (s(µ, ȧ)− ε′) (the first constraint)

≥
∑
ω∈Ω

µ0(ω)
∑
σ∈Σ

φ(ω, σ) (s(µσ, ȧ)− ε′) (µσ = µ for all σ ∈ Σ(µ,ã,ȧ))

=
∑
σ∈Σ

min
a∈BRδ(µσ)

∑
ω∈Ω

µ0(ω)φ(ω, σ)s(µσ, a)− ε′ (definition of ȧ in eq. (11))
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=Ŝ(φ⋆)− ε′ = Ŝ⋆
δ − ε′.

We proceed to prove the second part of the theorem, namely the signaling scheme φ̂ induced by
optimal LP solution φ⋆ satisfies Ŝδ(φ̂) ≥ OPT− 4ε′. The key step to establishing this claim is to
show that, ∀(µ, ã, ȧ) ∈ Σ̂, the sender’s utility under the worst-case δ-BR strategy ρδ((µ, ã, ȧ)) is
not much worse than that under action ȧ. We establish this using proof by contradiction. Suppose
an action a = ρδ((µ, ã, ȧ)) ∈ BRδ(µµ,ã,ȧ) satisfies s(µ(µ,ã,ȧ), a) < s(µ(µ,ã,ȧ), ȧ) − 4ε′, then we
should have s(µ, a) < s(µ, a) − 2ε′ because the first and second constraints of the LP in Fig. 3
ensures

s(µ, a) ≤ s(µ(µ,ã,ȧ), a) + ε′ < s(µ(µ,ã,ȧ), ȧ)− 3ε′ ≤ s(µ, ȧ)− 2ε′.

However, from the fourth constraint, in the case of s(µ, a) < s(µ, a)− 2ε′, we have∑
ω∈Ω

µ0(ω)φ(ω, µ, ã, ȧ) (r(ω, ã)− r(ω, a)− δ) ≥ 0

⇐⇒ r(µ(µ,ã,ȧ), a) ≤ r(µ(µ,ã,ȧ), ȧ)− δ,

which contradicts the assumption of a ∈ BRδ(µ(µ,ã,ȧ)). Therefore, we must have

s(µ(µ,ã,ȧ), a) ≥ s(µ(µ,ã,ȧ), ȧ)− 4ε′. (13)

Finally, for the sender’s robust utility, we have

Ŝδ(φ̂) =
∑
ω∈Ω

µ0(ω)
∑

(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ) · s(ω, ρδ((µ, ã, ȧ)))

=
∑

(µ,ã,ȧ)∈Σ̂

φ̂((µ, ã, ȧ)) · s(µ(µ,ã,ȧ), ρδ((µ, ã, ȧ))) (Bayes’ rule)

≥
∑

(µ,ã,ȧ)∈Σ̂

φ̂((µ, ã, ȧ)) ·
(
s(µ(µ,ã,ȧ), ȧ)− 4ε′

)
(From Equation (13))

=
∑
ω∈Ω

µ0(ω)
∑

(µ,ã,ȧ)∈Σ̂

φ(ω, µ, ã, ȧ) · s(ω, ȧ)− 4ε′ (Bayes’ rule)

=OPT− 4ε′.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
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Answer: [NA]
Justification: No data or code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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results?
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experimental results.
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is purely theoretical without immediate societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models used.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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Guidelines:

• The answer NA means that the paper does not release new assets.
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