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Abstract

Benefiting from the impressive diffusion models, conditional generative models1

have exhibited exceptional capabilities in various generation tasks, for example,2

image or short video generation based on text description. In this work, we3

focus on the task of generating a series of coherent images based on a given4

storyline, denoted as open-ended visual storytelling. We make the following three5

contributions: (i) to fulfill the task of visual storytelling, we introduce two modules6

into a pre-trained stable diffusion model, and construct an auto-regressive image7

generator, termed as StoryGen, that enables to generate the current frame by8

conditioning on a text prompt and preceding frame; (ii) to train our proposed9

model, we collect paired image and text samples by sourcing from various online10

sources, such as videos, E-books, and establish a data processing pipeline for11

constructing a diverse dataset, named StorySalon, with a far larger vocabulary12

than existing animation-specific datasets; (iii) we adopt a three-stage curriculum13

training strategy, that enables style transfer, visual context conditioning, and human14

feedback alignment, respectively. Quantitative experiments and human evaluation15

have validated the superiority of our proposed model, in terms of image quality,16

style consistency, content consistency, and visual-language alignment. We will17

make the code, model, and dataset publicly available to the research community.18

1 Introduction19

"Mirror, mirror, here I stand! Who is the fairest in the land?"20

—- Grimms’ Fairy Tales21

This paper explores an exciting yet challenging task of visual storytelling, with the goal of training22

a model that can effectively capture the relationship between visual elements in images and their23

corresponding language descriptions, to generate a sequence of images that tell a visual coherent24

story. The ultimate goal is to generate a sequence of images that tell a coherent story, provided25

in the form of natural language. The outcome of this task has significant potential for education,26

providing children with an engaging and interactive way to learn complex visual concepts, and27

develop imagination, creativity, emotional intelligence, and language skills, as evidenced by the28

research in psychology [4, 41].29

In the recent literature, there has been significant progress in image generation, particularly with30

the guidance of text, such as stable diffusion [35], DALL·E [33] and Imagen [9]. However, these31

models are not sufficient for visual storytelling for two reasons: (i) existing models generate images32

independently without considering the context of previous frames or the overall narrative, resulting33

in visual inconsistencies and a lack of coherence in the visual story; (ii) generating images by only34

conditioning on text can lead to ambiguities or require unnecessarily long descriptions, particularly35
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StoryGen

(1) Once upon a time, 
there was a yellow dog, 

with ears that flopped and 
a tail that wagged…

(2) The yellow dog loved 
to run and play, jumping 
over fences and chasing 

after butterflies…

(3) Curious, he followed 
his nose and it led him to a 

hidden cave in the 
woods…

(4) Inside the cave, the 
yellow dog found a 

treasure chest filled with 
shiny gold coins and 
sparkling jewels...

(5) So, the yellow dog 
took a few coins and 
jewels and ran to the 

nearby town…

(6) The mayor rewarded 
the yellow dog with a 
medal of honor and a 

lifetime supply of bones…

(7) From that day on, the 
yellow dog became a hero 
in the town. People would 

come to visit him…

ChatGPT: OK. Here 
is a story: Once upon 
a time, there was a 
{yellow dog}…

User: Hey ChatGPT, 
please give me a story 
about a {yellow dog}.

Figure 1: An illustration of open-ended visual storytelling. In practise, one user can prompt a large
larnguage model, for example, ChatGPT, to generate a unique and engaging story, which is then fed
into our proposed StoryGen model, to generate a sequence of images that are not only aligning to
the given storyline, but also coherent. We recommend the reader to zoom in and read the story.

when dealing with subtle differences, for example, distinguishing between animals from the same36

category but different breeds. To address the limitations, we introduce a novel auto-regressive37

architecture, termed as StoryGen, that builds upon pre-trained stable diffusion model, with two extra38

modules serving for style transfer and visual context conditioning. At inference time, StoryGen takes39

the preceding frames and text prompts as conditions to synthesize the current frame, i.e., iteratively40

creating visual sequences that are not only aligning to language description, but also coherent.41

In practise, visual storytelling is faced with significant challenges due to the lack of high-quality42

image-text data. Most existing works are limited to train on a few specific animations, for example,43

StoryGAN [17], StoryDALL-E [22] and AR-LDM [28], resulting in a small and restricted vocabulary44

and characters. To overcome this limitation, we have created a dataset called StorySalon, that features45

a rich source of coherent images and stories, primarily comprising children’s storybooks collected46

from three different sources: videos, E-books, and synthesized sample data from our StoryGen47

model with human verification. As a result, our dataset includes a diverse vocabulary with different48

characters, storylines, and artistic styles.49

We follow a three-stage training procedure: Firstly, we insert a LoRA-like architecture into text50

conditioning module in stable diffusion model, i.e., on top of the image-to-text cross-attention, in51

order to adapt the pre-trained diffusion model on our collected dataset; Secondly, we introduce a52

visual context module that enables the generation process to condition on preceding image; Lastly,53

we finetune the model with data after human verification, i.e., leveraging the feedback to further align54

the model with human preference. As a result, the scale and diversity of our collected dataset enable55

the model to acquire the ability of open-vocabulary visual storytelling, by that we mean, our model56

can generate new image sequences that are not limited to pre-defined storylines, characters, or scenes.57

For example, we can prompt a large language model to create unique and engaging stories, then feed58

into StoryGen for generation, as shown in Figure 1.59

To summarise, we make the following contributions in this paper: (i) we propose the task of open-60

ended visual storytelling, that involves generating engaging image sequence that is aligning to a61

given storyline, for example, written by a large language model; (ii) we develop a novel architecture62

based on stable diffusion, termed as StoryGen, which can generate image sequences in an auto-63

regressive manner, taking both preceding image and text prompt of current frame as condition;64

(iii) we initiate a data collection pipeline and collect a large-scale, diverse datasets of storybooks,65

from online videos, E-books and synthesized samples, including paired image-text samples of a66

diverse vocabulary with different characters, storylines, and artistic styles; (iv) we adopt a three-stage67

curriculum training strategy, that enables style transfer, visual context conditioning, and human68

feedback alignment, respectively. Experimentally, we conduct both quantitative comparison and69

human evaluation, showing that the outputs from ou proposed model are more preferred, in terms of70

image quality, style consistency, and image coherence.71

2 Related Works72

Diffusion Models learn to model a data distribution via iterative denoising and are trained with73

denoising score matching. Drawing from the principles of Langevin dynamics and physical diffusion74

processes, diffusion models have undergone refinement through a multitude of works [39, 27, 45].75

Notably, DDPM [10] has demonstrated improved performance over other generative models, while76

DDIM [40] has significantly boosted generation efficiency. In view of their superior generative77
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capabilities, diffusion models have found extensive utility in various downstream applications besides78

image generation, such as video generation [46, 5, 12, 9, 38], image manipulation [2, 24, 14, 7],79

grounded generation [18], 3D texturing [34], and image inpainting [47, 26, 19, 1].80

Text-to-image Generation involves the creation of images from textual descriptions. The task has81

been tackled using various generative models, with Generative Adversarial Networks (GANs) [6]82

being the first widely-used model. Several GAN-based architectures such as StackGAN [50],83

StackGAN++ [51], and AttnGAN [48] have achieved notable success in this area. Additionally,84

pre-trained auto-regressive transformers [43] such as DALL·E [33] have demonstrated the ability85

to generate high-quality images in response to textual prompts. Recently, diffusion models have86

emerged as a popular approach to text-to-image generation. New images can be sampled under text87

guidance from the data distribution learned by diffusion models with iterative denoising process.88

DALL·E 2 [32] leverages CLIP [29] features to achieve well-aligned text-image latent space, while89

Imagen [37] relies on large language models like T5 [31] to encode text. Stable Diffusion (or Latent90

Diffusion) Model [35] performs diffusion process in latent space, and it can generate impressive91

images after pre-training on a large-scale text-image datasets.92

Story Synthesis is first introduced as the task of story visualization (SV) by StoryGAN [17],93

which presents a GAN-based framework and the inaugural dataset named Pororo, derived from94

cartoons. Subsequently, some other works also follow the GAN-based framework, such as DUCO-95

StoryGAN [21] and VLC-StoryGAN [20]. In the case of word-level SV [16], more emphasis is placed96

on the representation of text, whereas VP-CSV [3] employs VQ-VAE [42] and a transformer-based97

language model to conserve character appearance and enhance visual quality. StoryDALL-E [22]98

extends the story visualization task to story continuation with the initial image given and recommends99

using a pre-trained DALL·E generative model [33] to produce coherent images. AR-LDM [28]100

introduces an auto-regressive latent diffusion model that can generate highly realistic images, but with101

only a limited vocabulary. NUWA-XL [49] is a concurrent work that exploits hierarchical diffusion102

model to synthesize long videos, with the keyframes generated first, followed by frame interpolation.103

Existing models are mostly developed on specific scenes, which limits their ability for generating104

image sequences for diverse stories. In this paper, we target for more ambitious applications, to105

develop an open-ended visual storytelling model, that can digest stories of arbitrary length and diverse106

topics, and synthesize a sequence of coherent images in terms of both style and semantic.107

3 Method108

To be self-contained, we first present a brief overview to diffusion model in Section 3.1; then, we109

detail our proposed model for storybook generation in Section 3.2, starting from problem formulation,110

then architecture details, and lastly on training details.111

3.1 Preliminaries on Diffusion Models112

Diffusion models are a type of generative models that undergo a denoising process, converting input113

noise into meaningful data samples. Diffusion models comprise a forward diffusion process that114

incorporates Gaussian noise into an image sample x0, accomplished via a Markovian process over115

T steps. If we denote the noisy image at step t as xt, the transition function q(xt|xt−1) connecting116

xt−1 and xt can be expressed as follows:117

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

where βt ∈ (0, 1) is the variance schedule controlling the step size.118

Using Gaussian distribution property and reparametrization, if we define αt = 1 − βt and ᾱt =119 ∏t
i=1 αi, we can write equation 1 as follows:120

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

Diffusion models also comprise a reverse diffusion process that learns to restore the initial image121

sample from noise. A UNet-based model [36] is utilized in the diffusion model to learn the reverse122
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Figure 2: Architecture Overview. The left figure illustrates the complete procedure of visual
storytelling. Our StoryGen model utilizes contextual information from previous frame and the text
description at current step, to generate an image. The right figure displays the structure of our
proposed modules, (i) style transfer module that is inserted into the text-conditioning module, with
a LoRA-like achitecture; (ii) visual context module that enables the model to also condition on the
features from preceding image for generation.

diffusion process pθ. The process pθ can be expressed using the following equation.123

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

where µθ is the predicted Gaussian distribution mean value.124

As we compute the loss function by taking the mean absolute error of the noise term ϵθ into account,125

we can express the mean value µθ in terms of the noise term ϵθ as follows:126

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

(4)

Therefore, the objective can be written as:127

Lt = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
(5)

3.2 StoryGen Model128

In this section, we start by defining the problem for visual storytelling, then we introduce the core129

components in our proposed architecture, namely, Style Transfer Module and Visual Context Module,130

lastly, we present details for training the model with a curriculum learning regime.131

3.2.1 Problem Formulation132

In visual storytelling, our goal is to generate a sequence of coherent and consistent images that corre-133

spond to a given story in the form of natural language. To achieve this, we propose an auto-regressive134

image generation model, called StoryGen, that generates the current frame Ik by conditioning on135

both current text description Tk and the previous frame Ik−1, as illustrated in Figure 2. The model is136

formulated as follows:137

{Î1, Î2, . . . , ÎL} = ΦStoryGen({T1, T2, . . . , TL}; Θ),

= ψSDM(Î1|T1; θ) . . . ψSDM(Îk|Îk−1, Tk; θ) . . . ψSDM(ÎL|ÎL−1, TL; θ)

Here, {T1, T2, . . . , TL} represents the given story in text sentences, {Î1, Î2, . . . , ÎL|Îi ∈ RH×W×3}138

denotes the generated storybook, H,W refer to the width and height, respectively. ψSDM(·) refers139
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to a semi-frozen stable diffusion model (SDM), with a small number of newly-added trainable140

parameters (θ). It takes randomly sampled gaussian noise, text description and preceding image as141

input, and generate coherent image sequence that align with the story’s narrative. In the following142

sections, we present the architecture detail for one-step generation conditioned on text and image.143

3.2.2 Architecture Details144

Generally speaking, our model is built upon the foundation of a pre-trained stable diffusion145

model (SDM), that has been pre-trained on large number of paired image-caption samples, to146

gradually transform the noisy latent into an image. To tackle the problem of open-ended storytelling,147

we introduce two computational modules, namely, Style Transfer Module, and Visual Context Mod-148

ule, that enables the model to condition on not only text descriptions, but also the preceding RGB149

image, as shown in Figure 2. Formally, we can express the generation procedure as:150

Ik = ψSDM(Îk|Îk−1, Tk) = ψSDM(x, ϕtext(Tk), ϕvis(Îk−1))

where x, ϕtext(·) and ϕvis(·) denote the noisy latent, encoded text description and preceding image.151

Style Transfer Module. To steer a pre-trained stable diffusion model towards the style of children’s152

storybooks, we propose to insert a lightweight, LoRA-like [13] architecture into the text conditioning153

module, effectively acting as style transfer. This can be expressed as:154

Q =WQ · x+∆Q, K =WK · C text
k +∆K, V =WV · C text

k +∆V , where C text
k = ϕtext(Tk)

WQ,WK and WV denote the projection matrices, adopted from the text conditioning module in155

pre-trained stable diffusion model. ϕtext(·) and C text
k refer to the pre-trained CLIP text encoder and156

extracted text embedding respectively. ∆Q,∆K and ∆V are calculated by a learnable projection of157

x, C text
k and C text

k , respectively, resembling LoRA operations.158

Visual Context Module. In order to generate visually coherent images, we insert a visual context159

module after the text conditioning, specifically, it is a transformer decoder comprising a self-attention160

layer, a cross-attention layer, and a feed-forward network, where the cross-attention layer employs a161

casual attention mechanism by using the noisy latent as query and the visual features of the previous162

frame as key and value, which can be formally denoted as:163

Q =WQ · x, K =WK · Cvis
k , V =WV · Cvis

k , where Cvis
k = ϕvis(Ik−1)

WQ,WK and WV refer to three learnable projection matrices, ϕvis(·) denotes the visual feature164

extracted by a pre-trained CLIP visual encoder. It is worth noting that the visual context module can165

also extend to multiple condition frames by concatenating their CLIP features as visual contexts.166

Training Objective. At training stage, we randomly sample a triplet each time, i.e., {Ik, Ik−1, Tk},167

and the objective defined in Equation 5 can now be transformed into:168

Lt = Et∼[1,T ],x0,ϵt,Cvis
k ,Ctext

k

[
∥ϵt − ϵθ(xt, t, Cvis

k , C text
k )∥2

]
(6)

and as we adopt classifier-free guidance [11] in inference, the predicted noise can be expressed as:169

ϵ̄θ(xt, t, Cvis
k , C text

k ) = (w + 1)ϵθ(xt, t, Cvis
k , C text

k )− wϵθ(xt, t) (7)

where w is the guidance scale.170

3.2.3 Curriculum Learning171

In this section, we describe the three-stage training strategy, that includes single-frame pre-training,172

multiple-frame fine-tuning, and alignment with human feedback. This curriculum learning approach173

enables the model to gradually learn from simple to complex tasks, ultimately improving its ability174

to generate high-quality images that align with the given story narratives. Details for our proposed175

curriculum learning are presented below.176

Single-frame Pre-training. We start by training the style transfer module, which has been inserted177

into the text conditioning module of a pre-trained stable diffusion model, in a single-frame manner. At178

this pre-training stage, we do not introduce the visual context module, and freeze all other parameters179

except for the LoRA-like plug-in. This training approach allows us to quickly adjust to the desired180
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visual style and character appearance in storybooks, while also maintaining the generation ability of181

the pre-trained stable diffusion model.182

Multiple-frame Fine-tuning. Here, we fine-tune the visual context module while freezing other183

parameters of the model. Till this point, this allows the generation procedure to utilize information184

from either the text description or the preceding frame. To avoid over-fitting to the text descriptions,185

we adopt a technique inspired by BERT training [15], randomly dropping some words in the text with186

certain probability. The entire visual context module is fine-tuned during this stage.187

Fine-tuning with Human Feedback. After multiple-frame fine-tuning, the model has developed188

basic storybook generation capabilities, to avoid from generating, potentially scary, toxic or biased189

content, we also propose to align the model with human preference. Specifically, we prompt ChatGPT190

to generate approximately 200 stories and use our model to synthesize images. After manually191

filtering around 100 high-quality storybooks from this corpus, we add them to the training set for192

further fine-tuning. As future work, we aim to add more books into this human feedback step.193

Inference. With the three-stage training regime, we can streamline the entire inference process194

into a unified generation framework. As shown in the Figure 1, at inference time, we can prompt195

the ChatGPT to generate engaging, yet educational storylines, and synthesize the first image using a196

single-frame approach with only style transfer module involved; the previously synthesized frames,197

along with story description at current step, are treated as condition to generate image sequence in an198

auto-regressive manner. Experimentally, our proposed StoryGen is shown to generate images that199

align with the storyline, as well as maintaining consistency with previously generated frames.200

4 Dataset Preparation201

For training visual storytelling model, we collect a dataset called StorySalon, that contains approxi-202

mately 2K storybooks and more than 30K well-aligned text-image pairs. This dataset is comprised of203

storybooks with potentially aligned text and image pairs, sourced from three different sources: video204

data, E-book data, and additional data from human feedback.205

4.1 Image-text Data from Videos & E-books206

Here, we elaborate the procedure of extracting paired image-text samples from YouTube videos and207

E-books (pdf and corresponding audios available).208

Visual Frame Extraction. To begin with, we download a significant amount of videos and subtitles209

from YouTube, by querying keywords related to children story, for example, storytime. We then210

extract the keyframes from the videos, along with the corresponding subtitles and their timestamps.211

To remove duplicate frames, we extract ViT features for each frame using pre-trained DINO [23], for212

the image groups with high similarity score, we only keep one of them. Next, we use YOLOv7 [44]213

to segment and remove person frames and headshots, as they often correspond to the story-teller and214

are unrelated to the content of the storybook. Finally, we manually screen out frames that are entirely215

white or black. Similarly, we also acquire a number of electronic storybooks from the Internet,216

and extract images from E-book, except for those with extraneous information, for example, the217

authorship page. We acquire the corresponding text description with Whisper [30] from the audio218

file. For E-books that do not have corresponding audio files, we use OCR algorithms, to directly219

recognize the text on each page.220

Visual-Language Alignment. Here, for each image, we acquire two types of text description,221

namely, story-level description, and visual description. This is based on our observation that there222

actually exists semantic gap between story narrative and descriptive text, for example, the same image223

can be well described as "The cat is isolated by others, sitting alone in front of a village." in story, or224

"A black cat sits in front of a number of houses." as visual description, therefore, directly finetuning225

stable diffusion model with story narrative maybe detrimental to its pre-trained text-image alignment.226

In practise, to get story-level paired image-text samples, we align the subtitles with visual frames by227

using Dynamic Time Warping (DTW) algorithm [25]. To get visual descriptions, we use ChatCap-228

tioner [52] to generate captions for each image, as shown in Figure 3. s At training time, this allows229

us to substitute the original story with more accurate and descriptive captions.230
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Video E-book Synthetic Text

Caption 1

Caption 2

Caption 3

Unstructured
Metadada

Step 2
Visual-language 

Alignment

Aligned
Image-text Pairs

Step 1
Visual Frame 

Extraction

Step 3
Visual Frame

Post-processing

Text: Santa waved down 
with a cry of delight: 
merry Christmas, my dears, 
and good night. Let 
YouTube know you're 
interested in videos.

Story: Santa waved down 
with a cry of delight: 
merry Christmas, my 
dears, and good night. 
Caption: Two mice are 
sleeping in the bed…

Figure 3: Dataset Pipeline Overview. The left figure provides an overview of the complete dataset
collection pipeline. Unstructured metadata sourced from the Internet undergoes a series of steps
including frame extraction, visual-language alignment and image inpainting, resulting in properly
aligned image-text pairs. The right figure displays examples of video data, E-book data, and synthetic
samples. The accompanying texts represent their corresponding textual content, respectively.

Visual Frame Post-processing. In practice, we discovered that books in the frames can potentially231

interfere with our image generation model by having story texts printed on them. To address this, we232

use an OCR detector to identify the text regions in the frames and an image inpainting model to fill in233

the text and headshot regions. This process results in more precise image-text pairs that can be fed234

into the diffusion model.235

4.2 Additional Data from Human Feedback236

As outlined in Section 3.2.3, we use the model (trained after two stages) to generate a set of new237

storybooks, and incorporate human feedback into the fine-tuning process. Following a rigorous238

manual review, we carefully select the best pieces, and add them into the training dataset. This239

allows us to continually improve the quality of our model and ensure that it produces engaging, yet240

educational storybooks, that align with human’s preference.241

4.3 Discussion242

Given the diversity of our data sources and data types, the StorySalon dataset exhibits a significantly243

broader range of visual styles and character appearances over other animation-specific datasets.244

Moreover, our dataset surpasses others in terms of vocabulary coverage by a substantial margin.245

Notably, our texts seamlessly integrate narrative storylines and descriptive visual prompts, ensuring246

the preservation of text-image alignment while adapting to the art style of storybooks.247

5 Experiment248

In this section, we start by describing our experimental settings, then compare with other models249

from three different perspectives: style, quality and coherence with quantitative and subjective human250

evaluation. Additionally, we present the results of our ablation experiments to prove the effectiveness251

of our proposed training regime.252

5.1 Training Settings253

Our model is based on publicly released stable diffusion checkpoints, with a learning rate of 1×10−5254

and a batch size of 512. We begin with a single-frame pre-training stage, which involves 10,000255

iterations on 8 NVIDIA RTX3090. In the multiple-frame fine-tuning stage, we fine-tune the model for256

40,000 iterations using a single condition image. To improve the robustness of the training procedure,257

we apply a 10% ∼ 30% words dropout with a probability to the texts in the current frames. We also258

fine-tune the model with human feedback on the training set with 100 manually generated storybooks259

in addition for 5,000 iterations. During inference, we utilize DDIM sampling and classifier-free260

guidance with a weight of 6.0.261
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Model FID ↓ Alignment ↑ Style ↑ Content ↑ Quality ↑ Preference
GT - 4.22 4.68 4.34 4.32 -

StoryGen 120.01 4.02 3.82 3.67 3.53 70.42%
Prompt-SDM 167.21 3.45 2.25 2.64 3.21 16.11%

SDM 184.01 3.28 2.56 2.57 3.49 13.47%

Table 1: Comparison result of human evaluation and FID. GT stands
for the ground truth from the training set. SDM denotes Stable Diffusion
and Prompt-SDM denotes SDM with cartoon-style-directed prompts.

Model FID ↓
with HF 66.41

without HF 66.60
Prompt-SDM 101.23

SDM 115.43

Table 2: Ablation
study on human
feedback.

5.2 Quantitative Results262

To evaluate the quality of our generated image sequence, we adopt the widely-used Fréchet Inception263

Distance (FID) score [8]. However, as there is no standardized metric for evaluating the consistency264

of images, we include human evaluation for comparison.265

Fréchet Inception Distance (FID). We present a comparison of the FID scores between our model266

and other existing ones, including SDM and Propmt-SDM, which conditions on an additional cartoon-267

style-directed prompt "A cartoon style image". Specifically, we calculate the FID scores between268

the distribution of the generated results from these models and the distribution of the our proposed269

StorySalon testset. As shown in Table 1, we evaluate the generated image sequences from 100270

storylines, obtained by prompting ChatGPT. Our StoryGen model outperforms the original stable271

diffusion models (SDM) and Prompt-SDM by a large margin, demonstrating the effectiveness of our272

model in generating high-quality coherent images.273

Human Evaluation. We conduct two types of human evaluation experiments to assess the quality274

of our generated storybooks. In the first experiment, we randomly select an equal number of275

groundtruth storybooks, the results of our StoryGen and the generation results of SDM and Propmt276

SDM. Participants are then invited to rate these four categories of storybooks on a score ranging from277

1 to 5, taking into account text-image alignment, style consistency, content consistency, and image278

quality, higher scores indicate better samples. In the second experiment, we prompt ChatGPT to279

produce a number of storylines and use our StoryGen along with the two variations of stable diffusion280

to generate corresponding image sequences. Participants are asked to choose the preferred results of281

each storyline. To mitigate bias, participants are unaware of the type of storybooks they are evaluating282

during these two human evaluation experiments. In both experiments, we have invited approximately283

30 participants in total.284

Table 1 presents the results of our human evaluation. As can be seen, our model has shown significant285

performance improvement in its overall score compared to stable diffusion models, especially in286

terms of consistency and alignment, indicating that it can generate images that are highly consistent287

with the given text prompts and visual contexts, thus better exploiting the contextual information.288

Ablation Studies. Our study compares the performance of our model with and without fine-tuning289

using human feedback. We evaluate the FID score of between our generated image sequence and290

the test set of our StorySalon dataset. The results demonstrate that fine-tuning with human feedback291

slightly improves performance, we conjecture that this could be attributed to the fact that the number292

of human-verified samples are limited, due to a result of resource limitation. In future work, we293

intend to address this quantity constrain by continually augmenting the dataset with new samples and294

closely monitoring the progressive advancements.295

5.3 Qualitative Results296

In Figure 4, we present the visualization results, showing that our model can generate storybooks297

with a broad vocabulary, while maintaining coherence and consistency throughout the narrative. The298

generated images successfully maintain the consistency of the artistic style and character appearance,299

whereas the results from SDM and Prompt-SDM fail to do so. Moreover, style of the generated300

results from SDM’s are also incongruent with the requirements of visual storytelling for childrens.301

6 Conclusion302

In this paper, we consider the exciting yet challenging task known as open-ended visual storytelling,303

which involves generating a sequence of consistent images that tell a coherent visual story based304
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(a) A story of a {white dog}: (1) Once upon a time, in a small village, there lived a white dog. It had pure white fur that sparkled in the sunlight. (2) The white dog 
was loved by all the villagers. Children would play with it, and adults would often walk it around the village. (3) One day, while the white dog was taking a walk, it 
heard a cry for help. It followed the sound and found a young boy who had fallen into a deep pit. The white dog quickly sprang into action and started barking loudly 
to get the attention of the villagers. (4) Within minutes, a group of villagers gathered around the pit and lowered a rope to rescue the boy. (5) From that day onwards, 
the white dog was regarded as a hero in the village. (6) Eventually, the white dog became old. But even in its old age, the white dog would still wag its tail whenever 
it saw a child or heard someone call its name. (7) The white dog passed away peacefully, surrounded by the love and affection of the entire village.

(b) A story of a {boy with yellow hair}: (1) Once upon a time, there was a boy with yellow hair as bright as the sun. (2) The boy loved his yellow hair, even though 
other children teased him for looking different. (3) One day, as the boy was walking through the forest, he stumbled upon a magical vase. When he touched the vase, 
he suddenly shrunk down to the size of a bug. (4) Scared and confused, the boy tried to find his way back to his normal size. He wandered through the forest, until he 
came across a wise old rabbit.  (5) The rabbit taught him a special spell to grow back to his normal size. The boy was grateful for the rabbit’s kindness. (6) As the 
boy regained his size, he realized that his yellow hair had grown even brighter because of the magical vase. He ran back to his village, excited to show off his hair. 
(7) But when the children saw his hair, they no longer wanted to tease him. They were amazed by the boy‘s bold and beautiful yellow hair. From that day forward he 
had grown to understand that being different is what makes us special, and he embraced his uniqueness with pride.

1

1

1
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2 3 4 5 6 7

2 3 4 5 6 7
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1

1
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2 3 4 5 6 7
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Figure 4: Qualitative Comparison with other baselines. The images in green, orange and blue
boxes are generated SDM, Prompt-SDM and StoryGen respectively. Our results have superior style
and content consistency, text-image alignment, and image quality.

on the given storyline. Our proposed StoryGen architecture can take input from the preceding305

frame along with the text prompt to generate the current frame in an auto-regressive manner. A306

three-stage curriculum training strategy has been introduced for effective training and alignment with307

human preference. Due to the limitations of dataset in previous works, we have also collected a308

large-scale, diverse dataset named StorySalon that includes paired image-text samples sourced from309

storybook data from videos, e-books and synthesized samples. The StorySalon dataset possesses310

a diverse vocabulary of storyline, character appearances and artistic styles. While comparing with311

stable diffusion models with quantitative experiment and human evaluation, our proposed model312

substantially outperform existing models, from the perspective of image quality, style consistency,313

content consistency, and image-language alignment.314
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