
A deeper look at depth pruning of LLMs

Shoaib Ahmed Siddiqui 1 Xin Dong 2 Greg Heinrich 2 Thomas Breuel 2 Jan Kautz 2 David Krueger 1

Pavlo Molchanov 2

Abstract
Large Language Models (LLMs) are not only
resource-intensive to train but even more costly
to deploy in production. Therefore, recent work
has attempted to prune blocks of LLMs based on
cheap proxies for estimating block importance, ef-
fectively removing 10% of blocks in well-trained
LLaMa-2 and Mistral 7b models without any sig-
nificant degradation in downstream metrics. This
work explores different block importance metrics
by considering adaptive metrics such as Shap-
ley value in addition to static ones explored in
prior work. We show that adaptive metrics ex-
hibit a trade-off in performance between tasks
i.e., improvement on one task may degrade per-
formance on the other due to differences in the
computed block influences. Furthermore, we ex-
tend this analysis from a complete block to in-
dividual self-attention and feed-forward layers,
highlighting the propensity of the self-attention
layers to be more amenable to pruning, even al-
lowing removal of up to 33% of the self-attention
layers without incurring any performance degra-
dation on MMLU for Mistral 7b (significant re-
duction in costly maintenance of KV-cache). Fi-
nally, we look at simple performance recovery
techniques to emulate the pruned layers by train-
ing lightweight additive bias or low-rank linear
adapters. Performance recovery using emulated
updates avoids performance degradation for the
initial blocks (up to 5% absolute improvement on
MMLU), which is either competitive or superior
to the learning-based technique1.

1. Introduction
The utility of training language models with an increasing
number of parameters is currently undisputed [19; 6; 31; 18].

1University of Cambridge, UK 2NVIDIA Research, USA. Cor-
respondence to: Shoaib Ahmed Siddiqui <msas3@cam.ac.uk>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

1Code to reproduce experiments is publicly available: https:
//github.com/shoaibahmed/llm_depth_pruning.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
compression ratio

20

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

Cosine metric (ShortGPT; Gromov et al.)
Cosine + emulated update (ours)
Iterative MMLU Shapley (ours)
Attention only (ours)

Figure 1: Our self-attention pruning, adaptive metrics, as
well as emulated updates in comparison to cosine block
pruning visualized w.r.t. compression ratios on Mistral 7b
(see Fig. 5 for results on LLaMa-2 7b).

This has led to tremendous gains in performance, including
the emergence of in-context learning [6]. However, aside
from training, which is a one-time cost, deploying these
models in production presents unique challenges, particu-
larly high inference costs. Therefore, efficiency research
for language models has gained significant popularity in the
recent past [10; 2; 32; 22].

An extreme form of (structured) pruning is full-block prun-
ing from a pretrained model. Men et al. [22]; Gromov et al.
[12] recently showed that it is possible to completely drop
blocks from a range of pretrained language models based
on cheap proxies for block importance/influence such as
computing the cosine distance between the input and the
output representations for each block in a transformer.

This paper explores this direction further by analyzing the
impact of different metrics on block identification, specifi-
cally focusing on adaptive metrics such as the one based on
Shapley-value [29] in addition to static ones such as cosine
block influence mainly used in prior work [22; 12]. We
further look at the impact of individual self-attention and
the feed-forward layers, which together form a block as an-
alyzed by prior work. Finally, we evaluate the effectiveness
of simple strategies for performance recovery, including a
simple baseline of an additive bias (called ‘emulated up-
date‘) which is based on the empirical mean of the update
applied by the block, as well as learning-based techniques

1

https://github.com/shoaibahmed/llm_depth_pruning
https://github.com/shoaibahmed/llm_depth_pruning


such as the training of a low-rank adapter, following prior
literature on layer-stitching [3].

We visualize our main findings in Fig. 1 where ‘block co-
sine‘ represents the method employed in prior work [22; 12].
Note that the x-axis represents the compression ratio com-
puted based on the total number of layers. Therefore, it
does not represent an equal number of parameters being
pruned as a block comprises both a self-attention and a
feed-forward layer. The figure highlights that the model can
tolerate a higher fraction of pruning for self-attention layers
in comparison to feed-forward layers or complete model
blocks (computed using loss-shapley block influence – see
Fig. 3 for a direct comparison). Pruning self-attention layers
can provide a significant boost in model efficiency due to
the costly maintenance of KV-cache at inference time. We
further include an upper bound on MMLU performance by
iteratively computing Shapley-value-based block influence
directly on the MMLU test set to understand the possible im-
provements achievable when leveraging information about
the task. Our main findings can be summarized as:

Finding 1. We highlight the impact of different block
influence metrics on downstream model performance
(Fig. 2). Our analysis reveals a trade-off in perfor-
mance between tasks when evaluating adaptive metrics
e.g., Shapley-value [29] (Fig. 8). Furthermore, we find
that performance on some tasks degrades significantly,
such as GSM-8k [9] even after pruning a single block
from the model (Fig. 6 and Fig. 7).

Finding 2. We further dissect a block into attention
and feed-forward layers to separately evaluate their in-
fluence, and highlight a higher propensity to prune at-
tention layers in contrast to feed-forward layers while
preserving MMLU accuracy (Fig. 3).

Finding 3. We evaluate two simple performance recov-
ery techniques: (i) simple empirical mean of the block
update, and (ii) training of a low-rank linear adapter in
place of the missing block (Fig. 4). Surprisingly, our
results show that applying a simple average block up-
date is either competitive or superior in performance as
compared to the learning-based approach potentially
due to overfitting and catastrophic forgetting.

2. Related work
He et al. [14] popularized residual layers for training deep
models. Veit et al. [35] hypothesized residual networks
to be ensembles of smaller sub-networks, exhibiting layer
dropping at inference time with minimal performance degra-
dation. Veit & Belongie [34] extended this to dynamic
input-conditioned layer-skipping. Vaswani et al. [33] intro-
duced the famous transformer architecture by combining
ideas of attention and residual networks to develop highly

performant architectures. While there is a large body of
work on pruning for efficient inference, we focus on depth
pruning and refer the readers to Wan et al. [36] for a more
comprehensive treatment of the literature.

Samragh et al. [28] initialized a subnetwork using blocks
from a pretrained GPT-2 [25]. Sheared LLaMa [37] pro-
posed an optimization-based view for simultaneous depth
and width pruning of LLaMa-2 7b model [31]. Short-
ened LLaMa [20] showed that depth pruning is competitive
against width-only pruning, or a sophisticated combination
of both, while exploring several different metrics for esti-
mating block influence. Men et al. [22] focused on LLaMa-
2 [31] by using cosine distance (between activations before
and after a block) as a proxy of block importance. Gromov
et al. [12] also showed similar results on both LLaMa-2 [31]
and Mistral [18], while also proposing a healing method by
optimizing low-rank adapters [16] for the remaining blocks.
This healing process is aimed at minimizing performance
degradation with block pruning.

Jaiswal et al. [17] extended this by computing the cosine sim-
ilarity of the representations at inference time and skipping
only the feed-forward layers in the less important regions of
the network (particularly in the middle of the network). In a
similar spirit, Raposo et al. [26] trained a router to decide
which blocks to skip i.e., reduce network depth (similar to
the expert router in MoE [30]).

This paper attempts to take a deeper look at depth pruning
of LLMs by looking at multiple metrics, datasets, block
granularities (going to individual feed-forward and self-
attention layers), and recovery techniques to establish the
utility of each of these decisions on the resulting model.

3. Methods
3.1. Block influence metrics

We consider different block influence metrics including
cosine that computes the angular distance between the in-
put and output representations to a block [22; 12], relative
L1/L2 that computes the norm of the update with respect to
the norm of the input representation [28; 22], and Shapley-
value-based [29] estimate which computes the marginal
contribution of a block by computing the difference in per-
formance between all subsets where a particular block is
present and the block is absent. We focus on computing
Shapley-value for the distance to the full model logits or the
language modeling loss, except Fig. 1 where we compute it
directly for the 0-1 loss on the MMLU test set. In this case,
the Shapley computation is:

SHAPl = Ex,s⊆S\{l}

[
L(Os∪{l}(x))− L(Os(x))

]
where S represents the full set of blocks, s represents a
subset of the blocks, and Os(x) represents the output of the

2



model on input x when using a subset of the blocks s.

3.2. Performance recovery techniques

As dropping blocks can induce a distribution shift in the rep-
resentation, we consider two simple performance recovery
techniques.

3.2.1. EMULATED UPDATE

Emulated update is a particularly simple strategy that com-
putes the average update applied by each block on a small
calibration set, and applies that average additive update at
inference time when a particular block is dropped. This can
be viewed as having a ‘bias‘ term instead of the full block.

3.2.2. LOW-RANK LINEAR ADAPTERS

Following ideas from layer-stitching literature [3], we eval-
uate the efficacy of training low-rank linear adapters as a
performance recovery measure. More precisely, we intro-
duce two low-rank matrices per block to be learned (aside
from the per-channel weightings learned as part of the nor-
malization layer): This is similar in spirit to the healing
process based on LoRA adapters by Gromov et al. [12],
but we apply it in place of the missing blocks instead of
applying it on the remaining blocks.

We consider three different ways of training these linear
adapters: (i) minimize MSE between the output of the block
and the low-rank adapter, (ii) use supervised fine-tuning
(SFT) on the final output, and (iii) use logit-distillation on
the final model output. We use the calibration set to train
this low-rank adapter independently one block at a time.

4. Experiments
We use a subset of 150k sequences (context window of 2048
tokens) with cross-document concatenation from OpenWeb-
Text [1] as our full calibration set, and another 15k se-
quences as our validation set. We report 5-shot MMLU [15]
accuracy as commonly reported in the literature [22; 12].
We use LLaMa-2 7b [31] and Mistral 7b [18] for our evalua-
tions. We focus on 7b models primarily due to them being a
sweet spot between compute cost and model quality. Larger
models are more amenable to block pruning, as already es-
tablished in prior work [22; 12]. Therefore, we expect our
findings to be equally applicable to larger models.

4.1. Block influence metrics

We compare different block influence metrics in Fig. 2 (see
Fig. 8 for more detailed results), where we apply min-max
normalization on the block influences for visualization. As
cosine distance-based block influence matches the proposed
approach in [22; 12], our results also closely match theirs

0.0 0.1 0.2 0.3 0.4
compression ratio

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
layer index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
la

ye
r i

nf
lu

en
ce

Cosine
Relative L1
Relative L2
Logit Shapley
Loss Shapley

0.0 0.1 0.2 0.3 0.4
compression ratio

20

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
layer index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
la

ye
r i

nf
lu

en
ce

Cosine
Relative L1
Relative L2
Logit Shapley
Loss Shapley

Figure 2: Comparison of different block influence met-
rics used for block pruning and their impact on downstream
performance in terms of MMLU accuracy on LLaMa-2 7b
(top) and Mistral 7b (bottom).

in terms of robustness against block pruning. Furthermore,
the blocks that are assigned the least importance are located
towards the end of the network i.e., the second half. Relative
Lp norm metrics also closely follow this trend, and hence,
achieve robustness comparable to that of cosine distance.

A significant deviation however is shown by the Shapley-
value-based estimation, which is an adaptive metric, provid-
ing significant gains in terms of reduction of the average
loss (visualized in Fig. 8) as it is specifically computed to
reduce the model’s language modeling loss. However, this
results in a drastic reduction in accuracy when evaluating
MMLU. Block influence plots show that in contrast to all
other metrics that primarily focus on the second half of the
network for removal, Shapley instead focuses on removing
blocks from the first half of the network. When comput-
ing loss-based Shapley-value directly on the MMLU test
set, we see that performance is significantly better than the
cosine baseline (see Fig. 1), highlighting that task-specific
(Shapley-based) block dropping might retain higher perfor-
mance at the same number of dropped blocks as compared
to task-agnostic techniques but at the expense of sacrificing
more performance on tasks not directly considered.

We also visualize the results on other tasks from OpenLLM
leaderboard [4] using lm-eval-harness [11] in Fig. 6 and
Fig. 7. These results highlight that despite just a relatively
minor impact on performance for MMLU, some metrics are
significantly more impeded (such as GSM-8k). The proxy
used in this case i.e., ‘cosine‘, matches closely the right
influence values to optimize MMLU, which is not aligned

3



0.0 0.1 0.2 0.3 0.4
compression ratio

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
block index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
la

ye
r i

nf
lu

en
ce

MHSA
MLP

0.0 0.1 0.2 0.3 0.4
compression ratio

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
block index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
la

ye
r i

nf
lu

en
ce

MHSA
MLP

Figure 3: Comparison of pruning the self-attention and
feed-forward layers of a network using cosine metric on
LLaMa-2 7b (top) and Mistral 7b (bottom), highlighting a
higher propensity for the self-attention layers to be pruned.

with the importance ideal for other datasets. On the other
hand, adaptive metrics can be optimized individually for
each task at hand.

4.2. Disentangling the impact of individual layers

As each block in a transformer is composed of self-attention
as well as a feed-forward network, one can apply the same
influence techniques to understand the impact of perfor-
mance when pruning individual layers rather than complete
blocks. The results are highlighted in Fig. 3 (see Fig. 9 and
Fig. 10 for complete results where we also visualize the
results with joint layer ranking).

We see that models exhibit higher resilience against the
dropping of self-attention layers in contrast to feed-forward
layers. In contrast to all other experiments, loss shapley in
the case of self-attention layers achieves competitive influ-
ence as compared to other approaches, highlighting that it
might be easier to estimate in contrast to feed-forward lay-
ers (Fig. 9 and Fig. 10). Furthermore, Mistral 7b exhibits a
higher propensity for self-attention layer removal compared
to LLaMa-2 7b.

Although most transformer parameters are in the feed-
forward layers, pruning the self-attention layer is equally
useful due to its quadratic dependency on sequence length
and the complex management of key-value caches, which
introduces significant latency [38; 23]. Developing tech-
niques that combine block and layer pruning, potentially
pruning only a single layer in some blocks, is an exciting

0.0 0.1 0.2 0.3 0.4
compression ratio

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

Default cosine
Linear adapter (r=8)
Emulated update

0.0 0.1 0.2 0.3 0.4
compression ratio

20

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

Default cosine
Linear adapter (r=8)
Emulated update

Figure 4: Impact on using performance recovery tech-
niques with cosine block influence on LLaMa-2 7b (left)
and Mistral 7b (right). The linear adapter was trained using
logit-distillation with a rank of 8.

direction for future research.

4.3. Performance recovery techniques

We trained all our adapters for 800 steps with an effective
batch size of 8, where the training loss plateaued. The re-
sults for emulated update and linear adapter with a rank of
8 trained using logit-distillation are shown in Fig. 4 (see
Appendix B for full results with different ranks and train-
ing strategies). We observe a clear improvement for both
LLaMa-2 and Mistral when using emulated update where
performance improves significantly at some stages (≥ 5%
on MMLU). However, performance with a linear adapter
is either comparable (LLaMa-2 7b) or worse (Mistral 7b)
than the performance improvement observed by the simple
emulated block update. This can be partially attributed to
the overfitting of the adapter on the training corpus, which
is not reflective of the true pertaining distribution. Gromov
et al. [12] observed a similar performance degradation when
trying to do parameter-efficient fine-tuning after dropping
blocks from Mistral as compared to LLaMa-2.

These results indicate minor differences introduced by later
blocks can be recovered using simple techniques. However,
this mitigation technique is unable to change the tipping
point in performance.

5. Conclusion
This paper explores depth pruning of LLMs, highlighting
performance differences with various influence techniques,
including adaptive ones. Block-sensitivity metrics like Shap-
ley improve perplexity but degrade performance on tasks
like MMLU, showing block relevance tension. Our results
indicate self-attention layers are more amenable to prun-
ing than feed-forward layers, with performance unaffected
by pruning many self-attention layers. We also address
misalignment from block pruning using basic performance
recovery techniques. Our simplest baseline, using an aver-
age update, matches or outperforms low-rank adapters with
different training formulations.

4



References
[1] OpenWebText corpus. https://github.com/

jcpeterson/openwebtext, 2019. Accessed:
2024-04-16.

[2] Ashkboos, S., Croci, M. L., Nascimento, M. G. d.,
Hoefler, T., and Hensman, J. Slicegpt: Compress large
language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

[3] Bansal, Y., Nakkiran, P., and Barak, B. Revisiting
model stitching to compare neural representations. Ad-
vances in neural information processing systems, 34:
225–236, 2021.

[4] Beeching, E., Fourrier, C., Habib, N., Han,
S., Lambert, N., Rajani, N., Sanseviero, O.,
Tunstall, L., and Wolf, T. Open llm leader-
board. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard,
2023.

[5] Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi,
Y. Piqa: Reasoning about physical commonsense in
natural language. In Thirty-Fourth AAAI Conference
on Artificial Intelligence, 2020.

[6] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., et al. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[7] Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T.,
Collins, M., and Toutanova, K. Boolq: Exploring the
surprising difficulty of natural yes/no questions. In
NAACL, 2019.

[8] Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,
A., Schoenick, C., and Tafjord, O. Think you have
solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018.

[9] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun,
H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J.,
Nakano, R., Hesse, C., and Schulman, J. Training
verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[10] Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

[11] Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,
DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,
A., Li, H., McDonell, K., Muennighoff, N., Ociepa,

C., Phang, J., Reynolds, L., Schoelkopf, H., Skowron,
A., Sutawika, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot
language model evaluation, 12 2023. URL https:
//zenodo.org/records/10256836.

[12] Gromov, A., Tirumala, K., Shapourian, H., Glo-
rioso, P., and Roberts, D. A. The unreasonable in-
effectiveness of the deeper layers. arXiv preprint
arXiv:2403.17887, 2024.

[13] Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray,
D., and Kamar, E. Toxigen: A large-scale machine-
generated dataset for implicit and adversarial hate
speech detection. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics, 2022.

[14] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[15] Hendrycks, D., Burns, C., Basart, S., Zou, A.,
Mazeika, M., Song, D., and Steinhardt, J. Measur-
ing massive multitask language understanding. arXiv
preprint arXiv:2009.03300, 2020.

[16] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

[17] Jaiswal, A., Hu, B., Yin, L., Ro, Y., Liu, S., Chen,
T., and Akella, A. Ffn-skipllm: A hidden gem for
autoregressive decoding with adaptive feed forward
skipping. arXiv preprint arXiv:2404.03865, 2024.

[18] Jiang, A. Q., Sablayrolles, A., Mensch, A., Bam-
ford, C., Chaplot, D. S., Casas, D. d. l., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., et al. Mistral
7b. arXiv preprint arXiv:2310.06825, 2023.

[19] Kaplan, J., McCandlish, S., Henighan, T., Brown,
T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., and Amodei, D. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[20] Kim, B.-K., Kim, G., Kim, T.-H., Castells, T., Choi,
S., Shin, J., and Song, H.-K. Shortened llama: A
simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024.

[21] Lin, S., Hilton, J., and Evans, O. TruthfulQA: Mea-
suring how models mimic human falsehoods. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pp. 3214–3252, Dublin, Ireland, May

5

https://github.com/jcpeterson/openwebtext
https://github.com/jcpeterson/openwebtext
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836


2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.229. URL https://
aclanthology.org/2022.acl-long.229.

[22] Men, X., Xu, M., Zhang, Q., Wang, B., Lin, H., Lu,
Y., Han, X., and Chen, W. Shortgpt: Layers in large
language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

[23] Nawrot, P., Łańcucki, A., Chochowski, M., Tarjan,
D., and Ponti, E. M. Dynamic memory compres-
sion: Retrofitting llms for accelerated inference. arXiv
preprint arXiv:2403.09636, 2024.

[24] Paperno, D., Kruszewski, G., Lazaridou, A., Pham,
Q. N., Bernardi, R., Pezzelle, S., Baroni, M., Boleda,
G., and Fernández, R. The lambada dataset: Word
prediction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031, 2016.

[25] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

[26] Raposo, D., Ritter, S., Richards, B., Lillicrap, T.,
Humphreys, P. C., and Santoro, A. Mixture-of-depths:
Dynamically allocating compute in transformer-based
language models. arXiv preprint arXiv:2404.02258,
2024.

[27] Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi,
Y. Winogrande: An adversarial winograd schema
challenge at scale. arXiv preprint arXiv:1907.10641,
2019.

[28] Samragh, M., Farajtabar, M., Mehta, S., Vemulapalli,
R., Faghri, F., Naik, D., Tuzel, O., and Rastegari,
M. Weight subcloning: direct initialization of trans-
formers using larger pretrained ones. arXiv preprint
arXiv:2312.09299, 2023.

[29] Shapley, L. S. et al. A value for n-person games. 1953.

[30] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis,
A., Le, Q., Hinton, G., and Dean, J. Outrageously
large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538,
2017.

[31] Touvron, H., Martin, L., Stone, K., Albert, P., Alma-
hairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[32] van der Ouderaa, T. F., Nagel, M., Van Baalen, M.,
Asano, Y. M., and Blankevoort, T. The llm surgeon.
arXiv preprint arXiv:2312.17244, 2023.

[33] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

[34] Veit, A. and Belongie, S. Convolutional networks
with adaptive inference graphs. In Proceedings of the
European conference on computer vision (ECCV), pp.
3–18, 2018.

[35] Veit, A., Wilber, M. J., and Belongie, S. Residual
networks behave like ensembles of relatively shallow
networks. Advances in neural information processing
systems, 29, 2016.

[36] Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Qu,
Z., Yan, S., Zhu, Y., Zhang, Q., Chowdhury, M., et al.
Efficient large language models: A survey. arXiv
preprint arXiv:2312.03863, 1, 2023.

[37] Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared
llama: Accelerating language model pre-training via
structured pruning. arXiv preprint arXiv:2310.06694,
2023.

[38] Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M.
Efficient streaming language models with attention
sinks. arXiv preprint arXiv:2309.17453, 2023.

[39] Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and
Choi, Y. Hellaswag: Can a machine really finish your
sentence? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
2019.

6

https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229


0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
compression ratio

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

Cosine metric (ShortGPT; Gromov et al.)
Cosine + emulated update (ours)
Iterative MMLU Shapley (ours)
Attention only (ours)

Figure 5: Our self-attention pruning, adaptive metrics, as well as emulated updates in comparison to cosine block
pruning visualized w.r.t. compression ratios on LLaMa-2 7b (see Fig. 1 for results on Mistral 7b).

A. Results on other datasets
We include tasks from OpenLLM leaderboard [4] evaluated using lm-eval-harness package for reproducibility [11]. In
particular, we evaluate performance on MMLU [15], GSM-8k [9], ARC (easy as well as challenging) [8], BoolQ [7],
HellaSwag [39], Lambada [24], PiQA [5], Toxigen [13], TruthfulQA (MC2) [21], and Winogrande [27].

Fig. 6 presents our results on LLaMa-2 7b [31] while Fig. 7 presents the results on Mistral 7b [18]. We only plot the results
for cosine block influence and loss shapley (computed on OpenWebText language modeling task). The results highlight
that the model suffers from performance degradation on some tasks such as GSM-8k [9] and ARC challenge [8] even after
pruning just a single block from the model. This indicates that just looking at MMLU provides only a partial picture of the
true impact of depth pruning on model performance.

B. Low-rank linear adapters.
Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 8 on a relative scale are visualized in Fig. 13 and Fig. 14
respectively. Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 8 on the original scale are visualized in Fig. 15
and Fig. 16 respectively.

Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 32 on a relative scale are visualized in Fig. 17 and Fig. 18
respectively. Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 32 on the original scale are visualized in Fig. 19
and Fig. 20 respectively.

Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 256 on a relative scale are visualized in Fig. 21 and Fig. 22
respectively. Results for LLaMa-2 7b and Mistral 7b with an adapter rank of 256 on the original scale are visualized in
Fig. 23 and Fig. 24 respectively.

7



0 5 10 15 20 25 30

0.3

0.4

0.5

ar
c_

ch
al

le
ng

e 
ac

c_
no

rm cosine
loss_shapley

0 5 10 15 20 25 30

0.4

0.6

0.8

ar
c_

ea
sy

 a
cc

_n
or

m

cosine
loss_shapley

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

bo
ol

q 
ac

c

cosine
loss_shapley

0 5 10 15 20 25 30
0.000

0.025

0.050

0.075

0.100

0.125

gs
m

8k
 e

xa
ct

_m
at

ch

cosine
loss_shapley

0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

he
lla

sw
ag

 a
cc

_n
or

m

cosine
loss_shapley

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

la
m

ba
da

 a
cc

cosine
loss_shapley

0 5 10 15 20 25 30

25

30

35

40

45

m
m

lu
 a

cc

cosine
loss_shapley

0 5 10 15 20 25 30
2

4

6

8

10

op
en

we
bt

ex
t a

vg
_lo

ss cosine
loss_shapley

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

pi
qa

 a
cc

_n
or

m
cosine
loss_shapley

0 5 10 15 20 25 30

0.420

0.425

0.430

0.435

to
xi

ge
n 

ac
c_

no
rm

cosine
loss_shapley

0 5 10 15 20 25 30
0.35

0.40

0.45

0.50

tru
th

fu
lq

a_
m

c2
 a

cc

cosine
loss_shapley

0 5 10 15 20 25 30

0.5

0.6

0.7

wi
no

gr
an

de
 a

cc

cosine
loss_shapley

Number of blocks removed (starting from lowest to highest importance)

Figure 6: LLaMa-2 7b evaluation on multiple datasets from eval-harness [11], highlighting the impact of pruning on
some tasks is more significant (such as GSM-8k [9]) as compared to others.

8



0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

ar
c_

ch
al

le
ng

e 
ac

c_
no

rm cosine
loss_shapley

0 5 10 15 20 25 300.2

0.4

0.6

0.8

ar
c_

ea
sy

 a
cc

_n
or

m

cosine
loss_shapley

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

bo
ol

q 
ac

c

cosine
loss_shapley

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

gs
m

8k
 e

xa
ct

_m
at

ch

cosine
loss_shapley

0 5 10 15 20 25 30

0.4

0.6

0.8

he
lla

sw
ag

 a
cc

_n
or

m

cosine
loss_shapley

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

la
m

ba
da

 a
cc

cosine
loss_shapley

0 5 10 15 20 25 30
20

30

40

50

60

m
m

lu
 a

cc

cosine
loss_shapley

0 5 10 15 20 25 30
2

4

6

8

10

op
en

we
bt

ex
t a

vg
_lo

ss cosine
loss_shapley

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8
pi

qa
 a

cc
_n

or
m

cosine
loss_shapley

0 5 10 15 20 25 30

0.43

0.44

0.45

to
xi

ge
n 

ac
c_

no
rm

cosine
loss_shapley

0 5 10 15 20 25 30
0.35

0.40

0.45

0.50

tru
th

fu
lq

a_
m

c2
 a

cc

cosine
loss_shapley

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

wi
no

gr
an

de
 a

cc

cosine
loss_shapley

Number of blocks removed (starting from lowest to highest importance)

Figure 7: Mistral-7b evaluation on multiple datasets from eval-harness [11], highlighting the impact of pruning on some
tasks is more significant (such as GSM-8k [9]) as compared to others.

9



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45
M

M
LU

 a
cc

ur
ac

y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

Figure 8: Comparison of different block influence metrics (detailed in Section 3.1) used for block pruning and their
impact on downstream performance on LLaMa-2 7b (top) and Mistral 7b (bottom) in terms of average loss on a small
curated validation set from OpenWebText and accuracy on MMLU.

10



0 20 40 60
2

4

6

8

10

12

av
g.

 lo
ss

0 20 40 6020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

HS
A 

la
ye

r i
nf

lu
en

ce

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

LP
 la

ye
r i

nf
lu

en
ce

Model: llama-2 / Pruning type: both

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

HS
A 

la
ye

r i
nf

lu
en

ce

Model: llama-2 / Pruning type: MHSA

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

LP
 la

ye
r i

nf
lu

en
ce

Model: llama-2 / Pruning type: MLP

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

Figure 9: Comparison of different layer influence metrics on LLaMa-2 7b (detailed in Section 3.1) and their impact on
downstream performance in terms of average loss on a small curated validation set from OpenWebText and accuracy on
MMLU. The first row highlights joint pruning, while the second and third row highlights pruning of just self-attention or
feed-forward layer respectively.

11



0 20 40 60
2

4

6

8

10

12

av
g.

 lo
ss

0 20 40 6020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

HS
A 

la
ye

r i
nf

lu
en

ce

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

LP
 la

ye
r i

nf
lu

en
ce

Model: mistral / Pruning type: both

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

HS
A 

la
ye

r i
nf

lu
en

ce

Model: mistral / Pruning type: MHSA

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
M

LP
 la

ye
r i

nf
lu

en
ce

Model: mistral / Pruning type: MLP

Number of layers removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley loss_shapley pretrained

Figure 10: Comparison of different layer influence metrics on Mistral 7b (detailed in Section 3.1) and their impact on
downstream performance in terms of average loss on a small curated validation set from OpenWebText and accuracy on
MMLU. The first row highlights joint pruning, while the second and third row highlights pruning of just self-attention or
feed-forward layer respectively.

12



0 10 20 30

0

2

4

6

8

10

12

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Emulated update

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley

0 10 20 30

0

5

10

15

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

30

20

10

0

10

20

30

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Emulated update

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley

Figure 11: Relative impact on performance with emulated update as a performance recovery method. The plot with
the original values is presented in Fig. 12.

13



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45
M

M
LU

 a
cc

ur
ac

y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Emulated update

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Emulated update

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley pretrained

Figure 12: Impact on performance with emulated update as a performance recovery method.

14



0 10 20 30

0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

20

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

1

2

3

4

5

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

1

2

3

4

5

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 13: Evaluating the relative impact of linear adapters for LLaMa-2 7b with a rank of 8 trained using three
different metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit
distillation where logits are distilled from the full model. The plot with the original values is presented in Fig. 15.

15



0 10 20 30
0

2

4

6

8

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
40

30

20

10

0

10

20

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

1

2

3

4

5

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
30

20

10

0

10

20

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30

0

1

2

3

4

5

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

30

20

10

0

10

20

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 14: Evaluating the relative impact of linear adapters for Mistral 7b with a rank of 8 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model. The plot with the original values is presented in Fig. 16.

16



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 8 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 15: Evaluating the impact of linear adapters for LLaMa-2 7b with a rank of 8 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model.

17



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 8 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 16: Evaluating the impact of linear adapters for Mistral 7b with a rank of 8 trained using three different metrics
including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation where logits
are distilled from the full model.

18



0 10 20 30

0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

20

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

1

2

3

4

5

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

2

4

6

8

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 3015

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 17: Evaluating the relative impact of linear adapters for LLaMa-2 7b with a rank of 32 trained using three
different metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit
distillation where logits are distilled from the full model. The plot with the original values is presented in Fig. 19.

19



0 10 20 30

0

2

4

6

8

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
40

30

20

10

0

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
1

0

1

2

3

4

5

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

20

10

0

10

20

30

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30

1

0

1

2

3

4

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

25

20

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 18: Evaluating the relative impact of linear adapters for Mistral 7b with a rank of 32 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model. The plot with the original values is presented in Fig. 20.

20



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 32 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 19: Evaluating the impact of linear adapters for LLaMa-2 7b with a rank of 32 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model.

21



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 32 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 20: Evaluating the impact of linear adapters for Mistral 7b with a rank of 32 trained using three different metrics
including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation where logits
are distilled from the full model.

22



0 10 20 30

0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

20

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
0

1

2

3

4

5

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

15

10

5

0

5

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 21: Evaluating the relative impact of linear adapters for LLaMa-2 7b with a rank of 256 trained using three
different metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit
distillation where logits are distilled from the full model. The plot with the original values is presented in Fig. 23.

23



0 10 20 302

0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
40

30

20

10

0

10

20

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30

0

1

2

3

4

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30

20

10

0

10

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

0 10 20 30
2

0

2

4

6

Ch
an

ge
 in

 a
vg

. l
os

s

0 10 20 30
30

20

10

0

10

Ch
an

ge
 in

 M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss

Figure 22: Evaluating the relative impact of linear adapters for Mistral 7b with a rank of 256 trained using three
different metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit
distillation where logits are distilled from the full model. The plot with the original values is presented in Fig. 24.

24



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

25

30

35

40

45

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: llama-2 / Linear adapter (rank: 256 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 23: Evaluating the impact of linear adapters for LLaMa-2 7b with a rank of 256 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model.

25



0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: representation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: sft)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

0 10 20 30
2

4

6

8

10

12

av
g.

 lo
ss

0 10 20 3020

30

40

50

60

M
M

LU
 a

cc
ur

ac
y

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
bl

oc
k 

in
flu

en
ce

Model: mistral / Linear adapter (rank: 256 / training: logit distillation)

Number of blocks removed (starting from lowest to highest importance)

cosine relative_l1 relative_l2 logit_shapley block_adapter_loss pretrained

Figure 24: Evaluating the impact of linear adapters for Mistral 7b with a rank of 256 trained using three different
metrics including (a) MSE loss defined on the representation, (b) supervised fine-tuning (SFT), and (c) logit distillation
where logits are distilled from the full model.

26


