
Towards Predicting Future Time Intervals on
Temporal Knowledge Graphs

Roxana Pop
University of Oslo
roxanap@uio.no

Egor V. Kostylev
University of Oslo
egork@uio.no

Abstract

Temporal Knowledge Graphs (TKGs), a temporal extension of Knowledge Graphs
where facts are contextualized by time information, have received increasing
attention in the temporal graph learning community. In this short paper we focus
on TKGs where the temporal contexts are time intervals, and address the time
prediction problem in the forecasting setting. We propose both a system architecture
for addressing the task and a benchmarking methodology.

1 Introduction

Temporal Knowledge Graphs (TKGs) are a means of representing temporally contextualized knowl-
edge. While (static) Knowledge Graphs are a set of facts showing relations between entities, e.g.
(Alice, Employed, CompanyA), TKGs are a set of facts associated with the time context in which
they are true, e.g. (Alice, Employed, CompanyA)@[2018, 2023]. The time context can be time
points (Point-based TKGs) or time intervals (Interval-based TKGs, ITKGs in short) [1].

One of the main machine learning tasks on TKGs is time prediction, where the goal is to predict
the temporal context for a given triple (a time interval in the case of ITKGs). A setting commonly
considered in TKG prediction tasks is the forecasting setting [2], where the model takes as input
historical data and makes predictions about the future. As we will highlight in the next section,
systems have been developed for time prediction on ITKGs, but to the best of our knowledge not in
the forecasting setting. Our main contributions are as follows.

• We propose a system architecture, TKGMixer, for addressing the time prediction task on
ITKGs in the forecasting setting. Our architecture is inspired by GraphMixer [3]—a simple
yet effective architecture introduced for graph learning.

• We describe a methodology for constructing relevant benchmarks, by specifying the evalua-
tion metric and how to construct a training ITKG and test examples from a given ITKG.

This paper discusses work in progress and does not cover experimental results.

2 Related Work

Many systems have been introduced for prediction tasks on TKGs as well as temporal graphs in
general, addressing a series of tasks and settings[4]. Most of the TKG learning systems operate on
point-based TKGs[1], with notable exeptions being TA-DISTMULT [5], HyTE [6], TIMEPLEX [7],
TIME2BOX [8], and TILP [9]. Of these methods, TIMEPLEX [7] and TIME2BOX [8] are the most
relevant systems to our current work, as they address the time prediction task on ITKGs, i.e. they can
predict time intervals for given facts. Yet, they do not do so in the forecasting setting[2]. They are
designed to output time intervals, and they both use the greedy coalescing method [7] to construct
such intervals. This method works as follows. First, assuming the model can provide a score for

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.

a temporal fact (s, r, o)@t, the probability P (t | s, r, o) is computed from the scores across the set
of candidate timepoints by using softmax. Then, the predicted interval is constructed iteratively
starting from the timepoint with the highest probability and greedily adding timepoints to the left or
to the right until the total probability of the interval exceeds a given treshold.

While not introduced for TKGs but for other types of temporal graphs, GraphMixer[3] is a relevant
architecture to this work as we draw inspiration from some of its components. GraphMixer is a
conceptually simple yet effective architecture which consists of mainly three modules: a link encoder
that creates node representations based on the nodes’ recent history of interactions, a node encoder
which aggregates neighborhood information, and a link classifier which uses the output from the
encoders. It also employs a simple time encoding function which was shown empirically[3] to lead to
more stability in training as opposed to trainable time encoding alternatives.

3 Problem Formalisation

In this section, we formalise the problem we want to address: prediction of the next time interval
for a given triple. We generally adopt the formalisation of this prediction function fnext-int from Pop
and Kostylev [1], and simplify it by concentrating on the setting with integer timeline Z and no type
triples. Additionally to the existing formalisation[1] we also to deal with unbounded intervals.

Let R be a finite set of relations, and let E be an infinite set of entities, also known as constants.
We are interested in (non-empty and possibly unbounded) intervals over timepoints Z of one of the
following forms, for timepoints t1, t2: [t1, t2] with t1 ≤ t2, [t1,∞), (−∞, t2], and (−∞,∞). When
the exact form is not important, we may write ‘⟨s1’ instead of ‘[t1’ and ‘(−∞’ and ‘s2⟩’ instead of
‘t2]’ and ‘∞)’. A fact is a triple of the form (e1, r, e2), where e1, e2 ∈ E and r ∈ R, and a temporal
fact is λ@ρ, where λ is a fact and ρ is an interval. An interval-based temporal knowledge graph
(ITKG) is a set of temporal facts. An ITKG G is in normal form if there are no λ@ρ1 and λ@ρ2 in G
with ρ1 ∩ ρ2 ̸= ∅; in what follows, we silently concentrate on ITKGs in normal form. For an ITKG
G, let Rels(G) and Consts(G) denote the relations and entities appearing in G, respectively, and let
Sig(G) = Rels(G) ∪ Const(G). The past subgraph G≤t of an ITKG G for a timepoint t contains
every fact of the form λ@⟨s1,min(t, s2)] for which there is a fact λ@⟨s1, s2⟩ ∈ G. In this case, we
call G a temporal completion of G≤t.

Given an ITKG G≤t and a triple λ over Sig(G≤t), and assuming existence of the most probable
temporal completion G of G≤t, the next interval function fnext-int(G≤t, λ) returns

– λ@[t+ 1, s2⟩ if there is λ@⟨s1, s2⟩ ∈ G with s1 ≤ t < s2,
– λ@[t1, s2⟩ if λ@[t1, s2⟩ ∈ G, t1 > t, and t1 is the smallest timepoint with this property,
– ∅ otherwise.

4 Method

We want to learn an approximation of function fnext-int(G≤t, λ). To do so, we first model the
probability P (t+ | G≤t, λ, t) for each future time point t+ > t, given the graph up to the current
time point t and a triple of interest λ, as a soft boolean classifier trained on appropriately prepared
examples extracted from a training ITKG, and then use this probability to construct the intervals.

4.1 Classifier Architecture

Our goal is to design a simple architecture. In order to model the probability P (t+ | G≤t, λ, t),
we construct representations for the fact λ (entities and relation) and for the time of interest t+,
concatenate these representations and pass them as input to an MLP g with sigmoid activation.
We do this for both (e1, r, e2) and the fact with the inverse role r−, i.e. (e2, r−, e1), and compute
the average. Thus, assuming that we have ve1,t, ve2,t, vr and ve1,t be vectorial representations
of e1, e2, r and r−, and that z is a function which encodes time points into vectors, we have
P (t+|G≤t, (e1, r, e2), t) = (g([ve1,t||vr||ve2,t||z(t− t+)]) + g([ve2,t||vr− ||ve1,t||z(t− t+)]))/2.

For the time encoding function z : R → Rdtime we use z(t) = cos(tω) for the vector ω =

[α−(i−1)/α]dtime
i=1 with α =

√
dtime. The definition of the time encoding function z follows from

2

(a) History-based entity representation

(b) Time interval
construction

Figure 1: a) The representation ve1,t is constructed based on the history of interactions of e1 formed
of the most recent 3 facts (assume t1 ≤ t2 < t3 ≤ ...t10 ≤ t, hence why (e1, r1, e2)@[t1, t2] is
not considered). b) The time interval [t+ 3, t+ 8] is constructed when M = 12 (the probabilities
P (t+|G≤t, λ, t) are considered for t+ ∈ [t, t+ 12]). The dashed line symbolizes the thresholding.

GraphMixer[3] which we chose due to its empirical training stability[3]. Our entity representation
computation is also based on GraphMixer[3], on the link-encoder module to be more exact, which
we chose due to its simplicity. In order to adapt it for ITKGs we encoded two time points instead of
one and also encoded the relations. We cover the details of our adaptation in the next paragraphs.
For relations, since we consider the set of relations fixed, we simply learn embeddings, that is, for
relation r, vr is a learnable (for the whole ITKG) embedding of a fixed size drel.

For a given entity e and time point t, we construct their vector representation ve,t using the history of
interactions, as shown in Figure 1a. We concentrate on the temporal facts that e has been recently part
of, as the facts most relevant for predictions about e after t. Let, for a hyper-parameter k ∈ N, Gk

e,t
be the maximal set of at most k most recent temporal facts in G≤t that mention e; here, a temporal
fact λ@⟨s1, t2] ∈ G is more recent than a fact λ′@⟨s′1, t′2] if t2 > t′2. Then, let k-bounded history
Historyk(e, t) of e relative to t be the set

{(r, s∗1, t2) | (e, r, e′)@⟨s1, t2] ∈ Gk
e,t} ∪ {(r−, s∗1, t2) | (e′, r, e)@⟨s1, t2] ∈ Gk

e,t},

where r− is the inverse of a role r, and s∗1 is s1 if s1 ∈ Z and the smallest integer mentioned in G≤t

otherwise. Then, we encode each (r, t1, t2) ∈ Historyk(e, t) by first encoding relation or inverse r,
and timepoints t1 and t2 into vectors vr, vt1 and vt2 of fixed sizes, and then concatenating them
to a vector hr,t1,t2 = [vr||vt1 ||vt2], where vt1 = z(t − t1) and vt2 = z(t − t2). We then stack
the representations hr,t1,t2 together, in the descending order of t2, t1, r (using an arbitrary but fixed
order for r), to obtain a matrix He,t ∈ Rd×k, where d = drel + 2dtime; if |Historyk(e, t)| < k then
the missing values in He,t are set to 0. Once we have He,t, we process it with an MLPMixer [10]
transformation (as in GraphMixer [3]) to obtain matrix H′

e,t of the same dimensions.1 More con-
cretely, for layer normalisation function LayerNorm [11] and activation function GELU [12], we
first apply applying a 2-layer MLP to each column of X = LayerNorm(He,t) to obtain matrix U
by setting U∗,j = X∗,j + W2GELU(W1X∗,j) for each j = 1, . . . , k. Then we apply a 2-layer
MLP to each row of Y = LayerNorm(U) by setting (H′

e,t)i,∗ = Yi,∗ +W4GELU(W3Yi,∗) for
each i = 1, . . . , d. Matrices W1 ∈ Rdcol×d, W2 ∈ R1×dcol , W3 ∈ Rdrow×d and W4 ∈ R1×drow are
learnable matrices with fixed dcol and drow. Finally, we compute the representation ve,t of e at time t
by averaging H′

e,t along the rows.

4.2 Classifier Training

To train our classifier, we assume that it receives a training ITKG Gtrain as input, from which we
generate n positive and n negative examples ((G≤ti , λi, ti, t

+
i), yi), for i = 1, . . . 2n, where G≤ti

is the past subgraph of Gtrain for a timepoint ti, λi and t+i > ti are a fact and a timepoint to predict
for, and yi ∈ {0, 1} is the golden truth. We propose to sample positive and negative examples in the
following way.

To generate positive examples, we first sample several timepoints between the minimal and maximal
integer timepoints mentioned in Gtrain. Then, for each such t, we construct the past graph G≤t and
sample several facts λ such that fnext-int(G≤t, λ) ̸= ∅. Finally, we sample several timepoints t+

from fnext-int(G≤t, λ), thus arriving to a set of positive examples ((G≤t, λ, t, t
+), 1). We select the

numbers of samples to ensure that the overall number of generated examples is n.
1We also plan to experiment with other ways to get H′

e,t, such as using He,t directly or applying an MLP to it.

3

As for negative examples, we generate two types of such examples: examples with facts that are
represented among positive ones, and examples with facts not mentioned in Gtrain. For the first type,
we sample n/2 positive examples from the constructed set and, for each ((G≤t, λ, t, t

+), 1) of these
samples, take ((G≤t, λ, t, t

−), 0), where t− > t is sampled from the outside of all ρ with λ@ρ ∈
Gtrain, with higher probability closer to the endpoints of fnext-int(G≤t, λ); if fnext-int(G≤t, λ) =
[t+ 1,∞) (i.e., when such a t− does not exist) we repeat with another sample of a positive example.
For the second type, we again sample n/2 positive examples. We sample triples λ over Sig(G) but
which do not appear in G, and we sample time points t+ between the minimal and maximal time
points in the training set.

Having these examples, we can train our classifier in a standard supervised manner using the log loss
1
n

∑n
i=1

[
yi log(P (t+i | G≤ti , λi, ti)) + (1− yi) log(1− P (t+i | G≤ti , λi, ti))

]
.

4.3 Time Interval Construction

Our approach to construct our model of fnext-int(G≤t, λ) from the predicted probabilities
P̄ (t+ | G≤t, λ, t) with t+ > t is inspired by the greedy coalescing method [7]. However, con-
trary to this method, we do not use softmax for candidate timepoints, thus avoiding an assumption
that the timepoints are mutually exclusive; moreover, our method is able to output ∅.

Formally, we proceed as follows. First, we convert the soft binary classification P̄ (t+ | G≤t, λ, t)
for each individual t+ to a hard binary classification using a threshold, which is a hyperparameter.
Then we compute the prediction of the resulting classifier for each t+ ∈ [t+ 1,M], where M ∈ N is
deduced from the training data. Finally, we set the prediction as ∅ if all the predictions are negative;
otherwise as the interval [t+1 , s

+
2 ⟩, where t+1 is the smallest t+ with positive prediction, and s+2 is

either the largest timepoint t′ in [t+1 , t+ tmax] such that the prediction for all timepoints in [t+1 , t
′] is

positive if t′ < tmax, or ∞ otherwise. Figure 1b exemplifies our method for M = 12.

5 Benchmarking

To the best of our knowledge, there are no benchmarks addressing our problem. Hence, in this section
we describe a method how to construct such a benchmark from a given ITKG G (eg. YAGO11k,
Wikidata12k[6]). Such a benchmark is a triple (Gtrain, Dtest, feval) that consists of a training ITKG
Gtrain (which can be processed by a model as desired for training), a test dataset Dtest of examples
of the form (x, y) with input x and golden-truth output y, and an evaluation metric feval which
computes a single score for the benchmark by comparing the golden-truth outputs y from Dtest with
the predicted outputs ȳ when the model of interest is applied on the corresponding inputs x.

We construct Gtrain, Dtest, and feval from G as follows. First, we pick a time point tsplit so that
|G≤tsplit | is roughly 70% of |G| and let Gtrain be G≤tsplit . Then, we let Dtest consist of two types of
examples, both based on the ITKG G′ = G \Gtrain (such split is in spirit of other benchmarks for the
forecasting setting [13]). First, it has a larger proportion of examples of the form of an input-output
pair (G′

≤t, λ), fnext-int(G
′
≤t, λ)), where t is random timepoint sampled between tsplit and the maximal

integer mentioned in G′, and λ is a random fact mentioned in G′. Second, a smaller proportion of
examples are of the form (G′

≤t, λ
′), ∅), where t is taken from a random example of the first type, and

λ′ is a random fact not mentioned in G′ over Sig(G).

Finally, as feval we average gaeIOU [8] scores for the golden-truth y and predicted ȳ intervals for
input x across all examples (x, y) in Dtest. Before applying this metric we assume a transformation
such that +∞ is replaced with a very large timepoint (ensuring the metric is always defined).

6 Conclusion and Future Work

In this paper we introduced a system for future time interval prediction on ITKGs by extensively
adapting the GraphMixer[3] architecture and providing an alternative method to the greedy coalescing
methodology for the addressed task. Yet, we mainly discussed the transductive setting. We believe
the introduced model should have inductive capabilities (as the representation does not depend on the
constants, only on their interractions). We therefore plan to also design an inductive benchmark for
this task. We will then empirically evaluate our system in both the transductive and inductive setting.

4

References
[1] Roxana Pop and Egor V. Kostylev. Inductive future time prediction on temporal knowledge graphs with

interval time. In The International Workshop on Neural-Symbolic Learning and Reasoning, volume 3432,
pages 233–240. CEUR-WS.org, 2023.

[2] Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett Schuelke, and Heiner Stuckenschmidt. Comparing
apples and oranges? on the evaluation of methods for temporal knowledge graph forecasting. In Danai
Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi, editors, Machine
Learning and Knowledge Discovery in Databases: Research Track, pages 533–549, Cham, 2023. Springer
Nature Switzerland.

[3] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and Mehrdad
Mahdavi. Do we really need complicated model architectures for temporal networks? In The International
Conference on Learning Representations (ICLR), 2023.

[4] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21(1), jan 2020.

[5] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. Learning sequence encoders for
temporal knowledge graph completion. In The 2018 Conference on Empirical Methods in Natural
Language Processing, pages 4816–4821. Association for Computational Linguistics, 2018.

[6] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. HyTE: Hyperplane-based temporally
aware knowledge graph embedding. In The 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2001–2011. Association for Computational Linguistics, 2018.

[7] Prachi Jain, Sushant Rathi, Mausam, and Soumen Chakrabarti. Temporal Knowledge Base completion:
New algorithms and evaluation protocols. In The Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3733–3747, 2020.

[8] Ling Cai, Krzysztof Janowicz, Bo Yan, Rui Zhu, and Gengchen Mai. Time in a Box: Advancing Knowledge
Graph Completion with Temporal Scopes. K-CAP ’21, pages 121–128, New York, NY, USA, December
2021. Association for Computing Machinery.

[9] Siheng Xiong, Yuan Yang, Faramarz Fekri, and James Clayton Kerce. TILP: Differentiable learning
of temporal logical rules on knowledge graphs. In The Eleventh International Conference on Learning
Representations, 2023.

[10] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
MLP-Mixer: An all-MLP Architecture for Vision. In The Advances in Neural Information Processing
Systems (NeurIPS), pages 24261–24272, 2021.

[11] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016.

[12] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[13] Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos Faloutsos, and Yuxiao Dong.
Evokg: Jointly modeling event time and network structure for reasoning over temporal knowledge graphs.
In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, WSDM
’22, page 794–803, New York, NY, USA, 2022. Association for Computing Machinery.

5

	Introduction
	Related Work
	Problem Formalisation
	Method
	Classifier Architecture
	Classifier Training
	Time Interval Construction

	Benchmarking
	Conclusion and Future Work

