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ABSTRACT

Properly estimating correlations between objects at different spatial scales necessitates O(n?) dis-
tance calculations. For this reason, most widely adopted packages for estimating correlations use
clustering algorithms to approximate local trends. However, methods for quantifying the error intro-
duced by this clustering have been understudied. In response, we present an algorithm for estimating
correlations that is probabilistic in the way that it clusters objects, enabling us to quantify the un-
certainty caused by clustering simply through model inference. These soft clustering assignments
enable correlation estimators that are theoretically differentiable with respect to their input catalogs.
Thus, we also build a theoretical framework for differentiable correlation functions and describe their
utility in comparison to existing surrogate models. Notably, we find that repeated normalization
and distance function calls slow gradient calculations and that sparse Jacobians destabilize precision,
pointing towards either approximate or surrogate methods as a necessary solution to exact gradients
from correlation functions. To that end, we close with a discussion of surrogate models as proxies
for correlation functions. We provide an example that demonstrates the efficacy of surrogate models
to enable gradient-based optimization of astrophysical model parameters, successfully minimizing a
correlation function output. Our numerical experiments cover science cases across cosmology, from
point spread function (PSF) modeling efforts to gravitational simulations to galaxy intrinsic alignment
(1A). ©
Subject headings: Cosmology, Instrumentation and Methods, Weak Gravitational Lensing, Uncertainty

Quantification, Differentiable Programming
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(a) An overview of our model uncertainty experiment.
standard deviation of the resulting correlations.

We repeatedly cluster using a probabilistic algorithm and look at the resulting
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(b) An overview of our differentiability experiment. We forward model a gravitational simulation and
the estimator even with the clustering approximation.
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(¢) An overview of our surrogates experiment. We exploit the differentiability of neural networks to enable Hamiltonian Monte Carlo for

fast posterior sampling of the IA parameters most likely to minimize a correlation function.

Fia. 1.

Outline of the three experiments conducted in this paper. The top outlines our model uncertainty experiment (§5), the middle

outlines our differentiability experiment (§6), and the bottom outlines our surrogate experiment (§7).
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1. INTRODUCTION

Two- and three-point correlation functions (2/3PCF) are widely used in cosmology. Algorithms to compute these
correlation functions first cluster their objects into representative points to ease the computational load of computing
O(n?) pairwise distances. To numerically compute the correlation function, the pairwise distance between all of the
points is then computed, and an estimator is computed on all of the points in each distance bin.

A long-standing goal in the computational sciences is to reconcile epistemic (model) uncertainties from aleatoric
(data) uncertainties (Hiillermeier & Waegeman 2021; Osband et al. 2023). Aleatoric uncertainties describe uncertainty
that is inherent to a statistic. This can be due to data quality limitations or inherent stochasticity of the quantity
one is trying to model. On the other hand, epistemic uncertainties reflect the inability to generalize from a finite data
set due to inherent limitations of the model. In the case of 2PCFs and 3PCFs, the epistemic uncertainty is often
overlooked: the best assignment of an object to a given cluster is often unclear, as data points that are “in-between”
two or more learned cluster centers can reasonably be chosen to fall in any of the clusters. This ambiguity introduces
an epistemic uncertainty, as the model will struggle to appropriately assign objects to representative clusters without
enough data. With more data points, it is easier to identify the most appropriate way to cluster the objects and
thus epistemic uncertainty should decrease in the main, though individual data points will still face ambiguity. Prior
works usually assume this clustering uncertainty to be trivial, arguing that for a significantly large sample, the number
of overestimated and underestimated distances are roughly equal, and so the errors tend to cancel out (Jarvis et al.
2004). For example, this was assumed for the Dark Energy Survey (DES) point spread function (PSF) modeling efforts
(Jarvis et al. 2021). A PSF is an impulse response of an optical system to light, and the quality of a PSF model is often
assessed with p statistics (Rowe 2010; Vogelsberger et al. 2016), which describe correlations in size and shape residuals
of a PSF model relative to observed stars. These empirical PSF models are often trained using point source catalogs
that are generated by SourceExtractor++ (Bertin & Arnouts 1996) and filtered to be within a given size/magnitude
range. DES covered a vast survey area and included millions of objects which were used to be fit and evaluate PSF
models (Dark Energy Survey Collaboration 2024; Jarvis et al. 2021). With so much data at hand, it was fair to assume
that the number of overestimated and underestimated distances were roughly equal, and that downstream modeling
errors from clustering were negligible. Surveys such as DES therefore look exclusively at uncertainties quantified via
bootstrapping or jackknife (Jarvis et al. 2021; Jarvis & collaborators 2024), which captures only the model’s robustness
to individual data points. This is closer in nature to being an aleatoric uncertainty, and we will refer to it as aleatoric
uncertainty throughout.

This work presents a method to quantify epistemic uncertainty in regimes where one cannot make the same assump-
tions as Jarvis et al. (2004) due to the small number of data points available. For instance, clustering errors cannot
be assumed to be negligible for the NIRCam PSF modeling efforts with COSMOS-Web (Casey et al. 2023), where
the number of point sources is on the order of a few 100 across the entire field of view (Berman et al. 2024). Even
through the TreeCorr algorithm (Jarvis et al. 2004) makes sure distance offsets are less than a bin width, results can
still be heavily biased. A toy example of this with the position-position autocorrelation is presented in Figure 2. The
unbiased estimator for this correlation is the Landy-Szalay estimator (Landy & Szalay 1993) shown in Equation 1.

DD(6) — 2DR(8) + RR(6)
RR(6)

w(f) = (1)
Equation 1 assumes access to one real observation of galaxies as well as an additional catalog of galaxies randomly
distributed on the sky. The terms in Equation 1 are DD(#), the number of real galaxy pairs separated by an angular
distance 6, RR(#), the number of random galaxy pairs separated by a distance 6, and DR(), the number of pairs
between one real galaxy and one random galaxy separated by a distance 8. Since the estimator is directly proportional
to the number of galaxies that are measured to be § arcmins apart through DD(0), even a single bin offset can heavily
skew a measurement. While p statistics themselves are not directly related to the number of objects in a single distance
bin, the example indicates that binning offsets can constructively bias the result in a given bin.

The core method of this work is to recast object-cluster assignment probabilistically. In this way, we study how the
uncertainty related to the clustering of objects can propagate through to the output. Our findings suggest that there
are equal amounts of data and model uncertainty in the case of computing p statistics. This further implies that one
should skip the clustering step to mitigate the clustering uncertainty.

We also observe that the soft or probabilistic assignment of galaxies to cluster centers makes our estimator theoret-
ically differentiable with respect to its input catalog, and by extension the parameters of any differentiable forward
model that produces an input catalog. Differentiability in this context is highly desirable, as it allows one to relate
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F1Gc. 2.— A toy example of a clustering approximation causing a downstream error in the estimation of the w(f) position-position auto-
correlation function.

correlations to astrophysical model parameters through gradient-based optimization (for related work, see Lanzieri
et al. 2023; Cuesta-Lazaro & Mishra-Sharma 2024; Lanusse et al. 2023; Campagne et al. 2023; Jagvaral et al. 2024;
Berman & McCleary 2025; Chantada et al. 2023; Halverson & Pandya 2024). Halverson & Pandya (2024) in particular
describes a pipeline analogous to what we would like to achieve. They optimize cosmological model parameters to
maximize the number of extended cosmological epochs where the relative abundances of different €2; remain unchanged,
referred to as periods of cosmological stasis (Dienes et al. 2022). In our case, we are interested in what kind of implicit
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cosmological parameters maximize or minimize different types of two and three-point correlations (cf. Figure 1). Mo-
tivated by this desire to maximize or minimize correlation functions, we provide a discussion of the gradient related
properties of our algorithm. In contrast to our method, clustering schemes that use hard assignments (i.e. every
object has one assignment with unit probability) often depend on functions like MEDIAN or ARGMIN, which results
in derivatives that are either identically zero or ill-defined. We further explore the differentiability of our clustering
scheme with an experiment. In our experiment, we use a gravitational simulation as a forward model with the goal of
differentiating a correlation function with respect to the gravitational constant, G. Our findings motivate the use of
surrogate models: learned functions that approximate the relationship between astrophysical model parameters and
observable data. Recent studies demonstrate their ability to directly model two-point statistics from astrophysical
model parameters (Pandya et al. 2024, 2025), making them ideal for our purpose. Accordingly, we extend the work
of Pandya et al. (2024, 2025), using the Intrinsic Alignment Emulator (TAEmu) surrogate model to optimize seven
halo-based modeling parameters to minimize a correlation function. In doing so, we illustrate the effectiveness of
surrogate models to enable gradient-based optimization of astrophysical model parameters, which in turn allows us to
study what physical circumstances cause correlations to be maximized or minimized.

Our paper executes three experiments that are designed to explore three themes: model uncertainty, differentiability
through an estimator, and differentiability though a surrogate.

1. Model Uncertainty and PSFs (§5): For this experiment, we use ShOpt.jl (Berman et al. 2024; Berman &
McCleary 2024) to produce PSF models for the COSMOS-Web NIRCam images (Casey et al. 2023). Using our
proposed algorithm, we then compute p statistics. Finally, we assess the epistemic uncertainty associated with
our model and compare it to the uncertainty we would get with traditional bootstrapping techniques. Our PSF

modeling experiment is geared towards observers, who do not have access to differentiable forward models of
PSF residuals.

2. Differentiability and Gravity Simulations (§6): For this experiment, we forward model gravitational inter-
actions using a series of ordinary differential equations. We then compute correlation functions on the resulting
catalog and test different techniques for differentiating the correlation function outputs with respect to the cos-
mological parameters that determined the simulation. Our gravitational simulation experiment is designed with
theorists in mind. Theorists can produce multiple realizations of their model through simulations that are derived
from different cosmological parameters. Here, we assess the feasibility of differentiating a correlation function
with respect to G.

3. Surrogates and Galaxy Intrinsic Alignment (§7): For this experiment, we use an existing surrogate
model to relate astrophysical model parameters to IA (Pandya et al. 2024, 2025). Using this surrogate, we use
Hamiltonian Monte Carlo (HMC) to find posterior distributions over astrophysical model parameters that are
likely to correspond to correlations of zero. Our TA experiment shows how to compensate for forward models and
estimators that are not easily differentiated, and are again geared towards theorists who are able to realize many
instances of their forward model through inference in order to train a surrogate. Our usage of HMC leverages the
differentiability of neural networks to accelerate the sampling procedure in comparison to traditional algorithms
like Metropolis—Hastings (Betancourt 2017; Robert et al. 2004).

The remainder of the paper is organized as follows: §2 discusses the relevant notation and theory for p statistics and
IA, §3 follows with an outline of the data products used in our study, §4 lays out additional notation as well as details
for the algorithm used in this paper, and §5 -7 presents the results of the experiments described above followed by our
conclusions in §8.

2. NOTATION AND THEORY

In this section we discuss the relevant theory and notation for correlations of PSF size and shape residuals and of
IA. We also expand on the theory we use to compute oepistemic and Taleatoric-

2.1. PSF Modeling

A PSF describes the impulse response of an optical system to light. Effects like diffraction, optical aberrations,
atmospheric turbulence (if applicable), and telescope jitter are summarized in the telescope’s PSF. For the James
Webb Space Telescope (JWST), the PSF provides an obstacle for science goals including the highest resolution dark
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matter mass maps (Scognamiglio 2024, Scognamiglio et al., in prep) and the characterization of over 100 strong lens

systems (Nightingale et al., in prep). p statistics are a suite of 2PCFs introduced in Rowe (2010) and expanded upon

in Vogelsberger et al. (2016) for characterizing biases in size and shape measurement that arise from PSF modeling.
We adopt the same notation for describing p statistics as Jarvis et al. (2021) and McCleary et al. (2023):

p1(0) = (ebr (@)depse (@ + 0)) @
p2(0) = (ehap(@)depsr (x + 0)) (3)
ﬁmws<e%£§§)<>(m3§§)<+0» (1)
pd@z<&%ﬂ@(WW ff)m+oﬁ (5)

where epgr is the ellipticity of the real PSF, i.e., the star ellipticity, Tpsr is the size of the real PSF, depgp is the
difference between the ellipticity of the real and model PSFs at position x, and §Tpgp is the difference between the
sizes of the real and model PSFs at position x. Brackets denote averages over all pairs within a separation 8, and
asterisks denote complex conjugates. Tpgr is nominally defined as 202, where o2 is the variance of the best fit elliptical
Gaussian to the PSF.

p statistics specify the £, weak lensing shear correlations, which are given by

§4(0) = (er(2 + O)er()) + (ex (2 + O)ex () (7)

and estimated by

Zi,j ww;(€r,i€,5 + €x,i€x ;)

ZiJ wiwj

£(0) = (®)

where w;/; represents the weight uncertainties of object (i/j), € ;/; represents tangential shear of object (i/j) and
€x,i/; represents the cross shear of object (i/j) (Kilbinger 2015; Schneider et al. 2002). The complex components of
the products in Equations 2 - 6 are known to average out to zero due to parity symmetry (Rowe 2010; Schneider et al.
2006), and are thus ignored in the estimator.

2.2. Galazxy Intrinsic Alignment

Intrinsic alignment describe correlations between galaxy orientations and the underlying distribution of dark matter
where they are embedded; see Lamman et al. (2023) for a review. The three relevant IA correlation functions are the
galaxy position-position £(r), position-orientation w(r), and orientation-orientation 7(r) correlation functions, and are
estimated according to Equations 9-11.

> (9)
)~ (10)
n(r) = (Je(x) - e(x + 1)) — (1)

where n(r) is the number of galaxies separated by distance r, 7i(r) is the expected number of galaxies separated by
distance r for a random distribution, z is the position vector of a galaxy, and é(x) is a 3D orientation unit vector of a
galaxy.

2.3. Uncertainty Quantification

Given a probabilistic clustering algorithm for estimating correlations, oepistemic is computed by estimating the corre-
lation value in each distance bin n times and then computing the standard deviation of the distribution. For computing
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Oaleatoric Via bootstrapping or jackknife, one must first make the probabilistic clustering algorithm deterministic. In
this work, we use greedy sampling to accomplish this; that is, each object is always assigned to the cluster with its
highest membership probability. In this way, the model uncertainty is isolated from the data uncertainty. To perform
bootstrapping, random subsets of the input data is removed over n iterations and the correlation value is estimated
in each distance bin. aeatoric 18 then computed via the standard deviation of the output in each distance bin. We
choose n = 10 samples to obtain the error bars.

Our definitions of aleatoric and epistemic are consistent with what is used in the machine learning literature
(Hiillermeier & Waegeman 2021). It is worth noting that in the cosmology literature, these uncertainties are sometimes
described as statistical and systematics, e.g. in Freedman et al. (2024). Following Freedman et al. (2024), we take
our uncertainties to be additive. That is, correlation functions will have some value pt £ Gajcatoric = Tepistemic i €ach
distance bin. p can be obtained from the average of the either the probabilistic or deterministic algorithm samples.

3. DATA
3.1. Point Source Catalog

Median Star F115W Median ShOpt PSF
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25 50

25 50

F1a. 3.— ShOpt PSF fit used in this work. The left panel shows the median of the vignettes. The center panel show the median PSF
cutout. The right panel show the average relative error between the vignette cutouts and the PSF cutouts. More on these plots can be
found in Berman et al. (2024).

The point sources used for generating our PSF models come from the SE++ (Bertin & Arnouts 1996) COSMOS-
Web catalog (Casey et al. 2023, Shuntov et al. in prep). We restrict ourselves to imaging from the F115W NIRCam
(Rieke et al. 2003, 2005; Beichman et al. 2012) wavelength filter, as the PSFs in this wavelength are the closest to
being well-approximated by a Gaussian (Berman et al. 2024). p statistics and the related Hirata—Seljak—-Mandelbaum
(HSM) adaptive moments (Hirata & Seljak 2003; Mandelbaum et al. 2005) are based off of the Gaussian approximation
of the PSF, and so the use of p statistics in our experiments is most appropriate in this wavelength. PSF models are
obtained using ShOpt.jl (Berman et al. 2024; Berman & McCleary 2024). Our choice of PSF fitter is discussed in more
detail in Appendix A. Our ShOpt fits can be seen in Figure 3. The ellipticites of the objects in our data set are also
visualized in Figure 4. We use the same configuration file as found in the appendix of Berman et al. (2024). Our data
set statistics for PSF modeling are summarized in Table 1.

Training Stars Validation Stars  Filter ~ Survey Area (deg?)
6333 610 F115W 0.59

TABLE 1
DATA SET STATISTICS FOR PSF CATALOG

3.2. Simulated Galazy Catalog

There are plenty of widely-used physically realistic N-body simulations, using publically available codes such as
Gadget-2/3 (Springel 2005), ART (Kravtsov et al. 1997), RAMSES (Teyssier 2002), and Enzo (Brummel-Smith et al.
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F1G. 4.— A quiverplot indicating the sizes and shape of the point sources computed via HSM adaptive moments in a single tile of the
COSMOS-Web survey. The color bar at the bottom denotes the size of the source, the length of the quiver describes the magnitude of
ellipticity, and the orientation and position describes its measured orientation and position on the image plane. The median size and
ellipticity of point sources in terms of HSM moments is given at the top of the figure.

2019; Bryan et al. 2014), see Vogelsberger et al. (2020) for a review. However, this work aims only to have a simple
differentiable forward model. Instead of using Gadget-2 or similar tools, we write our simulations from scratch in
Julia and Python and time evolve objects according to ordinary differential equations from Newtonian mechanics.
Our main implementation uses Jax (Bradbury et al. 2018) with Diffrax (Kidger 2021). We specify starting positions
and velocities for objects [#, 7], which are then evolved via % = 7, ‘Cil—’tj =d, and d = —%‘g{f. We begin by randomly
initializing galaxies with some mass M, velocity ¥, and initial position . These galaxies exist in a gravitational field
where the galaxy-galaxy gravitational attraction is assumed to be negligible compared to the attraction toward the
center of the field. Thus, we can solve each ODE system in Diffrax independently and use the vmap function to
efficiently time evolve each object. While our toy simulation is not very physically meaningful, this approach outputs
catalogs that are differentiable with respect to the input cosmology, which in this case is just the gravitational constant
G. The number of galaxies in the simulation can vary, allowing us to study the efficacy of our algorithm as a function

of catalog sizes.

3.3. Intrinsic Alignment Catalog

This work uses an extensive galaxy catalog that was generated according to seven halo-based modeling parameters
using the procedure of Pandya et al. (2024, 2025). The halo occupation distribution (HOD) model is used to populate
existing catalogs of dark matter-only halos with galaxies (Hearin et al. 2017). The model is parameterized by five
occupation components, log M, Olog 1, 10g Mo, log My, and «, described in detail in (Zheng et al. 2007). Briefly,
the occupation components parameterize the mean occupation functions given by

(Neen(M)) = & [1 +erf<10gM — longi“ﬂ (12)
2 Olog M
and log M — log M, M — M\ *“
_ 1 0og — 108 Mmin — Vo
(N () = 3 [Herf( .y )] ( i ) (13)
where

erf(x) = % /Of e dt. (14)

The contributions of Van Alfen et al. (2024) introduce a model of TA within a HOD-based framework. Specifically,
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the TA implementation includes a two-parameter family governing central and satellite alignment strengths (fcen and
Usat). The work explores different forms of alignment strength (e.g., constant, radially dependent), and demonstrates
that this parameterization can effectively model IA in both dark-matter only simulations which include galaxies via
HOD modeling, and within the TNG300 suite of hydrodynamic simulations.

For each of the seven input parameters, ten realizations of the model were produced. Once the catalogs were
generated, the three TA correlation functions were estimated according to Equations 9 - 11. This led to a data matrix
of the shape (110,526;7;100; 3;20). In other words, we have 110,526 tuples of seven input values that produced ten
realizations of three correlation functions that each occupy twenty radial bins. This catalog is used to train the IA
emulator (IAEmu) surrogate model introduced in Pandya et al. (2024). TAEmu is a neural network based emulator
designed to predict galaxy IA statistics from a given HOD, with the alignments parameterized according to the two
parameter family ficen, and pgqr (Van Alfen et al. 2024). These 110,526 tuples are broken down in training, validation,
and testing sets for TAEmu. This is summarized in Table 2.

Training Set  Validation Set  Testing Set  Input Parameters Output Bins Realizations
77,368 (70%) 11,052 (10%) 22,105 (20%) 7 20 10

TABLE 2
DATA SET STATISTICS FOR THE IA CATALOGS

4. ALGORITHM OVERVIEW

In this section, we outline our algorithms used to estimate correlations. Our algorithm has three variants, one geared
toward estimating clustering uncertainties and the other two towards differentiability. Variations on the algorithm
geared toward estimating clustering uncertainties are needed because estimating uncertainty requires sampling, which
is incompatible with differentiation. There are a variety of ways to adapt sampling to be a differentiable process, which
we explore in depth in §6. Throughout this work, we use most of the formalism laid out in Bezdek et al. (1984). Our
formalism differs in that it uses a distance function to compute angular distances on the sky rather than using a matrix
to define a norm. We also define the quantity matrix, which allows us incorporate the quantities we wish to correlate
into the original formalism. For details on the fuzzy sets formalism, see Zadeh (1965) and (page 38, Aluffi 2021).
Algorithm 1 first uses K-means++ (Kapoor & Singhal 2017) to initialize a series of cluster centers. This algorithm
adds initial cluster centers sequentially by considering the distances to centers that have already been determined.
This initialization has been shown to help clustering algorithms and is better than choosing initial cluster centers at
random (Kapoor & Singhal 2017). We next use the fuzzy-c-means algorithm (Bezdek et al. 1984) to obtain final cluster
centers and weight assignments that minimize the functional

N ¢

Tm(U0) =D (Uik)™ llye — vil)? (15)

k=1 1i=1

where
oY ={y1,...,yn} are the object positions,

e ¢ is the number of clusters in Y; 2 < ¢ < n,

m is the weighting exponent (or fuzziness); 1 < m < oo,

U is the fuzzy c-partition of Y; U € Re*N

e v =(v1,...0.) is a vector of centers,
o v; = (Vi1,...,Vn), is the center of cluster i.

We also define ¢;; with 1 < ¢ < M and 1 < j < N as the quantity matrix. Each row represents a quantity of
interest that we wish to correlate and each column represents a different object. In this work, there will be two rows
corresponding to two shears. Our formalism differs from Bezdek et al. (1984) in that the norm on ||yx — v;]|? is not
induced by a matrix. Instead, we use the Vincenty formula given by Equation 16 to compute angular separations on
the sky between two angular coordinates (¢1, A1), (d2, A2):
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Ao = arctan (\/(cos ¢ - sin A/\)2 + (cos ¢ - sin ¢a — sin ¢y - cos @y - COS A)\)Q, sin ¢ - sin ¢g + €os ¢1 - €oOS Pa - COS A)\)

(16)
While this does not have a compact matrix representation, it is stable at all numerical scales (Vincenty 1975). In
this way, we are sacrificing speed for stability. This design choice is discussed more in §6. The two argument arctan
function is used to constrain the solution to the correct quadrant. Our usage of the Vincenty formula also assures that
our distance estimates are consistent with Astropy (Robitaille et al. 2013), which also uses the Vincenty formula for
this task.

Our implementation of fuzzy-c-means works as follows:
1. Initialize centers via K-means++ and weights via random initialization.

2. Update centers via
. Zgzl (Um> Yk
v; = m
N -
Ek:l (Uzk>

. c di m—1
Ur=|> ( 5 k) (18)
j=1 ik

where the distances d are given by Equation 16.

1<i<c (17)

3. Update weights via

4. Repeat steps 2 and 3 until either the maximum number of iterations is reached or the difference in weights
between iterations is less than a user-provided tolerance and matrix norm.

After obtaining final centers v and weights U, we can assign each galaxy to a cluster center via sampling. Each row
in UT represents the normalized probability distribution that an object belongs to a cluster with center v;. Thus, each
object is assigned to a cluster via

M; ~ Categorical(U]). (19)

We define the quantities of each cluster as the average of all the quantities of the objects assigned to it. Note that
this is unnecessary if there are no quantities. This may arise if one is computing a position-position autocorrelation or
similar. From here, we can proceed by computing all of the pairwise distances between clusters and then use a known

estimator to compute the correlation in each distance bin. The whole of Algorithm 1 is recapitulated in the algorithm
block below.

Algorithm 1 Probabilistic Estimation
1: Initialize centers v using K-Means++

2. Compute new centers v and weights U using fuzzy-c-means
3: Assign objects to clusters via M; ~ Categorical(U;)
4: Define new objects with centers v and quantities given by the average of all objects in the cluster

5. Compute all pairwise distances d between objects using Equation 16
6: Bin the pairwise distances by spatial separation

7. for each bin b, do

8:  Evaluate correlation estimator on binned object distance pairs

9: end for

Algorithm 2 is a differentiable analog to Algorithm 1. Algorithm 1 goes from soft bin assignments to hard assignments
by sampling the rows of U. By soft assignments, we mean that for each object the assignment probabilities are spread
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across the different clusters. This is in contrast to our definition of a hard assignment in §1. This transition from hard
assignment to soft assignments is the first obstacle to be amended in Algorithm 2, since sampling is not a differentiable

COSMOS Field Point Scurces and the Cluster Centers
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F1a. 5.— The cluster centroids found via fuzzy-c-means overlayed on the point sources of the underlying COSMOS field
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F1G. 6.— An example weight matrix U produced via fuzzy-c-means for 610 point sources in the COSMOS field and 100 cluster centers.
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process. There are at least three ways to adapt this step in Algorithm 1 to become differentiable, which we will
hereafter refer to as approaches a, b, and c:

(a) Use the Gumbel Max reparameterization trick to enable differentiation through the sampling process (Maddison
et al. 2016; Jang et al. 2016) .

(b) Avoid sampling entirely and instead compute weighted averages to get the quantities for each cluster. The
quantities are weighted by how likely they are to belong to an object in a given cluster and then averaged. This
is done for each cluster.

(c) Assign each object to a cluster with the highest membership probability via ARGMAX (effectively proceeding
with hard assignments). Adapt the membership matrix such that there is a 1 in the entries U;; where object
j most likely belongs to cluster ¢. Then, make new objects by averaging the quantities in each cluster. During
the gradient calculation, approximate the gradients for each object as the gradient of the new cluster object it
belongs to. In other words, if object ¢ is in cluster j, approximate the gradient of a correlation function with
respect to object ¢ as the gradient of the correlation function with respect to the new object generated from
cluster j.

We explore approaches b and ¢ because they are simple to compute via matrix multiplication. For these approaches
to work, we must also normalize the rows of U. We define

. UL
Uij = =2 (20)
YNRLUG
Now we can express our weighted average with the matrix product
j=qU. (21)

We see that § € RM*¢, representing the M quantities for each cluster ¢. Typical correlations choose M to be 2 or
3. For example, if we were computing the £, shear-shear correlation, we would have two quantities e and e* for each
cluster.

Another adaptation we need to make from algorithm 1 is the hard assignment of distance pairs to bins. Algorithm
1 takes all of the distance pairs that fall into a distance bin and runs an estimator to get the correlation value for
that bin. The differentiable analog is to compute the estimator over all distance pairs, where the contribution of
each distance pair is weighted by how likely it is to fall into a given bin with bin edges a and b. In the case of the
shear-shear correlation, this extends naturally the known estimator in Equation 8. We determine the weights w;w;
using the product of two sigmoid functions, which gives high importance to distances within the bin and almost no
importance to objects that are outside of it. We explore two weighting functions. The first is given by

1 1
1+ e—alz—a) 1] + ec(z—b)

W(a,x,b) = (22)

and the second by

W(a,a,b) = e—(==*3%)", (23)

Both weighting functions exploit the sharp decline of the exponential function to quickly decrease the weights. An
example of this for the first weighting function is shown in Figure 7 for distances between 1 and 2. Algorithm 2 is
summarized in the algorithm block below. Given that both weighting functions can have their decay controlled by
the a parameter, we found that both weighting functions can be tuned to produce correlation outputs consistent with
other packages used for estimating correlation functions.

L An example implementation of this can be found here: https://github.com/cassanof/gumbel-bucket-rs.
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Sigmoid Filter for Different Sharpness
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F1G. 7.— An example weighting for estimates for a distance bin bounded below by 1 and above by 2 for various sharpnesses.

Algorithm 2 Differentiable Estimation
1: Initialize centers v using K-Means—++

2. Compute new centers v and weights U using fuzzy-c-means

3. Define new objects with centers v and quantities qU

4: Compute all pairwise distances d between objects using Equation 16

5. Compute the probability that each object pair falls in distance bin b; by weighting by the sigmoid
function in Equation 22 or the Gaussian function in Equation 23

6: for each bin b; do

7. Evaluate correlation estimator on galaxy pairs weighted by their probability of being in bin b;

s8: end for

As we will see, there are some computational hurdles that any differentiable estimator will inevitably face that can
make differentiability intractable in practice. These can be circumnavigated using a surrogate model, as outlined in
Algorithm 3.

Algorithm 3 Surrogate Differentiable Estimation
1: Simulate realizations of a correlation function with astrophysical model parameters ¢

2. Divide correlation function outputs into training, validation, and testing sets
3: Train a model with learnable parameters 6 to learn the relationship between astrophysical model

parameters and correlation functions from a (not necessarily differentiable) forward model, & (¢)

4: Once trained, perform inference on parameters of choice

5. Optionally optimize via gradient descent the parameters ¢ that minimize some loss function

L(&o(0))
6: Optionally retrieve via HMC the parameter posteriors p(¢|data) with priors p(¢) and a likelihood

p(data|¢)
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5. MODEL UNCERTAINTY

In this section, we discuss the results of Algorithm 1 on our point source catalog dataset, which we compare with a
bootstrapping baseline to obtain epistemic and aleatoric uncertainties.

Figure 5 shows the cluster centers overlayed with the objects on the sky. The result indicates that the cluster centers
reasonably approximate the spatial variation of the sources in the underlying COSMOS field. Figure 6 shows the
weight matrix after the objects are clustered with fuzzy-c-means.

Figure 9 shows the Shannon information entropy and maximum probability of each row in the weight matrix. While
the majority of objects have a clear preference toward being assigned to a specific cluster, there is a non-trivial number
of objects that could be reasonably assigned to multiple clusters. This indicates that the model is often not sure where
the best assignment of an object to a cluster is. For this reason, we should expect the error bar associated with model
uncertainty to be comparable to data uncertainty. This bears out in Figure 8 and Figures 14 - 17.

p1 Bootstrap pP1 Sample
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F1G. 8.— p1 correlation function with data taken from the COSMOS-Web point source catalogs. Error bars drawn from bootstrap (left)
and sampling (right) approaches. Negative correlations are shown in absolute value, and correlations are plotted in logarithmic scale.

We note that increasing or decreasing the number of clusters did not significantly reduce the size of the model
uncertainty. This indicates that the source density in our COSMOS-Web data set is not large enough to beat down
the errors associated with clustering. Recall that in §2 we said that we are treating uncertainties as additive. Figures
8 and 14 - 17 therefore indicate that in many cases the epistemic uncertainties doubles the uncertainty compared to
bootstrapping alone. This is especially true for the pi, p2, and p, statistics. For this reason, we suggest a “naive”?
approach to computing p statistics, wherein no clusters are used and the correlation estimators are used directly on
the catalogs. Given that we have on the order of ~ 500 objects, the number of pairwise distances is not too large to

store and the number of distance calculations to compute is not prohibitively expensive.

6. DIFFERENTIABLE FORWARD MODEL

In this section we outline the utility of algorithm 2 for gradient-based optimization. To do this, we create a
simulated catalog of galaxies moving in a gravitational field. We time evolve the objects until some terminus Ty, ax,
which was found by considering an object undergoing uniform circular motion and calculating how long it would take
to complete one orbit. For simplicity, we analyze correlations across three linearly spaced angular separation bins. A
max separation of 160 arcmins is chosen to ensure each of the three bins have enough samples. We seek to differentiate
the shear-shear correlation £, (#) with respect to the gravitational constant G at each angular separation bin 6;,
illustrating an example of enabling differentiability of a correlation with respect to an astrophysical model parameter.

2 The use of the word naive is in reference to its usage in Jarvis et al. (2004).
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F1c. 9.— The maximum probability and entropy of the source assignment distributions. Each column in U corresponds to a probability
distribution. For each of those distributions, we compute the maximum probability and Shannon entropy.
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The ellipticities are predetermined, but the final positions are naturally dependent on the underlying physics. Since
the catalog is produced by solving a series of ordinary differential equations (ODESs), computing the derivative just
amounts to using the chain rule g—é = Zi\il %% + g—i%. Here, o denotes the right ascension and ¢ denotes the
declination coordinates. We use the ODE solvers and automatic differentiation tools implemented in Julia (Bezanson
et al. 2017). Specifically, we use the OrdinaryDifferentialEquations.jl (Rackauckas & Nie 2017) library for working
with differential equations. We also tested both reverse mode automatic differentiation with Zygote.jl (Innes et al.
2019) and forward mode automatic differentiation with ForwardDiff.jl (Revels et al. 2016). The latter proved to be
more effective. We also built an implementation with Jax (Bradbury et al. 2018) and Diffrax (Kidger 2021), which is
available on our GitHub repository. Our adoption of these tools is motivated by the discussion of Berman & Ginesin
(2024).

=1

d§
|dG|G

AGE(D,53.3) NG E(53.3,106.6) NG € (106.6, 160)

A6 [arcmin]

F1G. 10.— The gradient of the shear-shear correlation function £ with respect to the input model parameter G at G = 1.

For both approaches b and ¢ (as defined in §4), the naive approach to computing the gradient %; or %{ would
involve tracking the computation graph through the entire fuzzy-c-means algorithm, which can sometimes take over
100 iterations. Another complication is that the distance calculations and normalization computations cannot be
expressed through matrix multiplication, making it difficult to accelerate the gradient calculations with a GPU. For
approach b, taking the gradients in this manner proved to be prohibitively expensive via reverse mode automatic
differentiation, for the reasons outlined above. With forward mode differentiation, the gradient calculation was on the
order of a minute. This is expected, since we are differentiating several output bins with respect to 1 input (gravity).

One workaround to the computation time bottleneck is to pre-compute the final centers and weights with fuzzy-c-
means, then update the weights and centers for only a single iteration. This makes the final clustering a function of
the data without keeping the entire history of the clustering procedure in the computation graph. Using this “trick”
to approximate the true gradient, we can roughly halve the computation time needed to solve for the derivative %.
However, when using approach b, issues related to precision still exist. When using a large number of clusters, we found
that the Jacobian relating the dependence of weights on the input data was sparse. The sparsity result is expected, as
local perturbations of input positions, by design, preferentially impact the assignment probabilities of nearby cluster
centers. As a result, we are left with vanishing gradients, and the algorithm becomes unstable as we scale the number
of clusters, producing NaN outputs. We note that these NaN issues did not occur on randomly computed inputs used
for testing the differentiability of each individual function, indicating that the reliability of this method will vary for
problems of different conditioning. This also confirms that while each individual step in the algorithm is differentiable,
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instabilities can still occur from gradient multiplication. It is worth noting that multiplying a matrix with another
matrix that is sparse does not mean the resulting matrix is necessarily sparse. Thus, one Jacobian alone being sparse
is not the problem, rather, its the effect of a sparse Jacobian when propagated through the chain rule. Because we are
reasoning about gradients, we want to ensure our representations are dense. We note that this is in contrast to other
numerical problems where sparsity is necessary to maintain computational efficiency when dealing with large matrices
(chapter 10 of Saad 2003; Rosen 2022).

Approach c is able to circumnavigate some of these issues. As evidenced by Figure 10, we are successfully able
to differentiate the outputs of our correlation function in each distance bin with respect to the input astrophysical
model parameter G at the point G = 1. However, issues with scaling the number of data points still persist, as the
computation becomes too large to run on a CPU well before 500 galaxies are simulated via the forward model.

The precision and computation time issues suggest that the simple solution is not always sufficient for enabling the
differentiability of correlation functions with respect to the underlying model inputs. Surrogate models, however, have
demonstrated the ability to succesfully emulate correlation function estimators (Van Alfen et al. 2024; Pandya et al.
2024, 2025). These surrogate models can be as simple as linear regression, or more involved functions such as those
represented by a neural network (NN). NNs, by definition, are differentiable models (i.e. trained with gradient descent)
and enjoy GPU accelerated computations.

7. DIFFERENTIABLE SURROGATES

In this section, we show how Algorithm 3 can be used to differentiate through a correlation function and present a
compelling science case that supports its utility. In particular, we utilize the surrogate model developed in Pandya
et al. (2024, 2025), TAEmu, which estimates galaxy TA correlations from an underlying set of HOD parameters. We
use TAEmu to optimize model parameters that minimize the IA correlations, to study regions of parameter space that
correspond to minimal IA contamination and are thus of physical interest. TAEmu serves as an emulator for Halotools-
IA, which extends traditional HOD modeling to include IA information through a two parameter family, ficen, and
sat, Which govern central and satellite alignment strengths, respectively. More specifically, ITAEmu outputs the galaxy
position-position (£), position-orientation (w), and orientation-orientation (1) correlations as well as estimates of the
aleatoric uncertainty (shape noise) of each correlation. This noise is not physical, and corresponds to variance across
realizations of the underlying HOD due to limited cosmological volumes when conducting the HOD simulations.

We pose this optimization problem because TA often act as a contaminant for weak lensing measurements, and
moreover, there are known regions of parameter space that lead to low correlations. Thus, with this experiment, we
are able to demonstrate that a differentiable forward model allows one to learn something about the underlying physics
of TA. In other words, we are able to recover a known parameter space even without hard-coding the physical laws
into the surrogate directly. This is distinct from Pandya et al. (2025), who use the emulator to find the TA parameters
that best explain a set of observations rather than the parameters that result in the minimized correlation function. 3

The surrogate model introduced in Pandya et al. (2024, 2025) is a deep neural network with a multilayer perceptron
encoder and three convolutional neural network decoder heads for each of the three IA correlation functions. The
model is also constructed to predict aleatoric uncertainties per-bin for each correlation, and epistemic uncertainties
via the Monte Carlo dropout technique (Hiillermeier & Waegeman 2021). For a single initialization of the seven
Halotools-IA parameters, Figure 11 shows all three IA correlation functions. Our study focuses exclusively on the
w(r) correlation. This is because £(r) is akin to galaxy clustering and therefore does not contain any IA information
itself. In addition, the galaxy shape noise that is present in n(r) significantly increases the difficulty of extracting
relevant signal for gradient-based optimization pipelines, as seen in Figure 11. This leaves us with w(r), as it contains
TA information but is significantly less obscured by shape noise when compared to n(r). This is seen quantitatively in
Figure 18, which shows the Jacobian of each correlation as a function of the model inputs. It is seen that the gradient
magnitudes of TAEmu are in general larger than that of . These gradients are also stable from bin-to-bin, and can
further be accessed in less than a second. While there may be some disagreement with the exact sensitivity that the
Halotools-IA* model presented in Van Alfen et al. (2024) would predict, we will see that the gradients information
from TAEmu further affirms that it is an accurate emulator for Halootols-TA.

To isolate regions of parameter space in ficen and pigat that minimize the IA correlation w(r), we utilize Hamiltonian
Monte Carlo (HMC). HMC is a gradient based Monte Carlo technique which leverages the differentiability of NNs
and uses gradient information to efficiently traverse the input parameter space towards regions that maximize the

3 The exact correlation that would be subtracted is the gravitationally lensed shape - intrinsic shape (GI) correlation (Lamman et al.

2023); however, the strength of that correlation is closely related to that of w.
4 https://github.com/astropy /halotools
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posterior probability. For a general review of HMC, see Betancourt (2017). Our HMC experiment mirrors Pandya
et al. (2025). We run our HMC with a No U-Turn Sampler (NUTS) (Hoffman et al. 2014) with 1000 warmup steps and
1000 samples. We fix the HOD parameters according to the fiducial values present in IlustrisTNG300-1 (Nelson et al.
2019) and Table C1 of Van Alfen et al. (2024). This gives us three sets of HOD parameters, which each correspond to
a different stellar mass cutoff in galaxies. We impose uniform priors of [—1,1] on ficen and pgay and use a multivariate
normal distribution centered at zero as our likelihood, with a covariance given by the IAEmu aleatoric uncertainty
prediction. In this way, we encourage HMC to arrive at regions of parameter space that minimize the w correlation,
while also incorporating the inherent shape noise into the likelihood.
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F1G. 11.— TAEmu predictions for a given initialization of the seven halo-based modeling parameters, including £(r) on the left, w(r)
in the middle, and 7n(r) on the right. For each of the twenty radial bins, the value of the correlation, as well as aleatoric and epistemic
uncertainties, are provided. Log-log scaling is used to better see the dynamic range of the correlations and radial dependence.

Figures 12 and 13 confirm that picen and psat values of zero minimize w, with some degeneracy as indicated by the
diagonal shape of the posterior. While values of pigenn, = 0 = pisq¢ are likely to minimize the correlation function,
regions where the signs of ficen, and psq; are opposite can also result in low correlations. Physically, this corresponds
to scenarios wherein the negative (i.e. perpendicular) alignments of satellite galaxies can oppose the positive (i.e.
parallel) alignment of centrals, resulting a overall small value of w(r).
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F1G. 12.— Posterior constraints on picen and psqt obtained via HMC for three different sets of HOD parameters. Each set roughly
corresponds to a different stellar mass cutoff in galaxies. We show results for log M, > 10.0 on the left, log M, > 9.5 in the middle, and
log M. > 9.0 on the right. Contours represent 1o, 20, and 30 confidence intervals.
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Fic. 13.— Correlation functions sampled from the posterior distributions presented in 12. The solid represents the average correlation
value in all bins from the 1000 samples of (tcen, ftsat) pairs obtained via HMC. The error bar represents the standard deviation of the
correlation value for that same sample.

8. SUMMARY AND CONCLUSIONS

In this work, we studied correlation functions along three axes: model uncertainty, differentiable forward models, and
differentiable surrogates. To better understand the model uncertainty caused by clustering approximations, we used
p statistics as a case study. We made our assignment of objects to clusters probabilistic, and computed the mean and
standard deviation of the resulting correlation estimates. Our analysis compared the uncertainty estimate to traditional
bootstrapping methods. Our next experiment adapted our main algorithm to be automatically differentiable and
applied this to the setting of gravitational simulations. Three different approaches of doing this were proposed, and
of those, approach ¢ proved to be the most stable. Still, the calculation of the gradient was slow and approximate,
motivating the use of surrogate methods. To that end, we ended by exploring surrogate solutions. We extended the
work of Pandya et al. (2024, 2025), showing how we can exploit the gradients of our surrogate model to optimize over
astrophysical model parameters. Specifically, we studied galaxy intrinsic alignment, and found which astrophysical
model parameters were most responsible for high / low correlations (Figures 12-13).

On uncertainty, it was found that the process of clustering objects before computing correlations can cause measurable
uncertainties in limited data settings, such as with the COSMOS-Web PSF modeling efforts. That is, the model
uncertainty was just as severe as the data uncertanties found via bootstrapping. In these circumstances, we conclude
that the naive approach, which considers all distance pairs without clustering to be most appropriate. Moreover, we
find that our method of probabilistic clustering allows us to address one of the fundamental concerns in uncertainty
quantification, that being the distinction between epistemic and aleatoric uncertainties. Again, this is quantified in
Figures 8-17, where the error bars for epistemic and aleatoric uncertainties are shown for each of the five p statistics.

On differentiability, we showed that the simplest differentiable algorithm has features that makes the computation
of the gradients slow and unstable. These findings were demonstrated through attempts to differentiate a correlation
function with respect to a single parameter G that determined the results of a gravitational simulation. Three
approaches, a-c, were outlined: Approach a relied on the Gumbel-Max trick, approach b used the weight matrix
to compute new quantities via weighted averages, and approach ¢ used an approximate method to calculate the
gradient. Of these, approach ¢ proved to be the most effective at circumnavigating these deficiencies. The features
that caused slowness and instability were the normalization and distance function calls and sparse Jacobians that
propagated through the chain rule. The normalization and distance function calls posed challenges for fast automatic
differentiation as they cannot be expressed simply with matrix multiplication; the normalization function calls in
particular are notorious bottlenecks for automatic differentiation pipelines. We also saw that many of our function
calls yielded sparse Jacobians. Since the chain rule amounts to multiplying successive Jacobians, this caused numerical
instabilities in computing the final derivative. It is worth noting that multiplying one matrix by a sparse matrix does
not necessarily imply that the resulting matrix is sparse. However, through testing the function calls individually,
we found that the numerical instabilities happened only once the gradients were multiplied together, indicating that
matrix sparsity patterns in any one Jacobians is the culprit for numerical instability. This also explained why approach
¢ was most successful, as approach ¢ avoided the function call that related weights to the input data when taking the
gradient. Approach ¢ was successfully able to capture the gradient of a correlation function with respect to an input
cosmology. While there remains future work in optimizing approach ¢ for GPU support and overall making it faster, it
proved to be the most effective way to write down correlation function estimators that are automatically differentiable.
In the main, the differentiability experiment suggested that a more judicious way to construct differentiable correlation
functions may be to use a surrogate model.
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On surrogates, we found that surrogate models are a simple and effective way to optimize astrophysical model
parameters that determine a correlation function. Using galaxy IA as an example, a correlation function was minimized
across 20 radial bins. Using HMC, we were able to recover a known posterior over the TA parameters that lead to low
correlation function outputs. A key caveat is that the true correlation functions that act as a contaminant are the GI
and gl correlations (as defined in Lamman et al. 2023), but the w(r) correlation is closely related in how it represents
the presence of TA.

Prior to our work, properties such as model uncertainty and differentiability have been understudied in the context
of correlation function estimators. This work is intended as a first step toward addressing these points. Our study
is intentionally generic — survey systematics can vary tremendously and the correlations being studied will also vary
by science case. Rather than focusing on a specific scientific inquiry, we propose general algorithms and analyze their
utility across different domains. Our GitHub artifact outlines and implements these algorithms, serving as a blueprint
for future large-scale surveys in each of the contexts laid out in this work — model uncertainty, differentiability, and
surrogates.
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APPENDIX
PSF MODELING

This analysis uses ShOpt.jl for PSF modeling because it was shown to be accurate and computationally fast in
Berman et al. (2024); Berman & McCleary (2024). Since we are expanding our input catalog to the entire survey area
of the COSMOS field instead of individual tiles as in Berman et al. (2024), we also expect astrometric distortions to
be more severe (cf. Figure 4 in Berman et al. (2024)). Since ShOpt works in astrometric coordinates and is compatible
with PSF cutout sizes needed for NIRCam, ShOpt is well-suited for this task. In contrast, PSFex exhibits bias over
large survey areas (Jarvis et al. 2021) and PIFF does not handle cutout sizes needed for characterizing the NIRCam
PSF gracefully (Berman et al. 2024). Tools like WebbPSF (Perrin et al. 2014) were not designed for the mosaiced
images we are working with, making their application to our data non trivial. Other tools like STARRED (Michalewicz
et al. 2023) or PSFr (Birrer et al. in prep, Birrer et al. 2021) have been applied to JWST data and could potentially
also be applied to this data set. See also Feng et al. (2025).
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FI1G. 14.— pg correlation function with data taken from the COSMOS-Web point source catalogs. Error bars drawn from bootstrap (left)
and sampling (right) approaches. Negative correlations are shown in absolute value, and correlations are plotted in logarithmic scale.
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F1G. 15.— p3 correlation function with data taken from the COSMOS-Web point source catalogs. Error bars drawn from bootstrap (left)
and sampling (right) approaches. Negative correlations are shown in absolute value, and correlations are plotted in logarithmic scale.
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FI1G. 16.— p4 correlation function with data taken from the COSMOS-Web point source catalogs. Error bars drawn from bootstrap (left)
and sampling (right) approaches. Negative correlations are shown in absolute value, and correlations are plotted in logarithmic scale.
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F1G. 17.— ps correlation function with data taken from the COSMOS-Web point source catalogs. Error bars drawn from bootstrap (left)
and sampling (right) approaches. Negative correlations are shown in absolute value, and correlations are plotted in logarithmic scale.
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Fia. 18.— Jacobians associated with each of the 7 IA parameters and 20 output bins from IA-Emu.
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