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Abstract

Modern computer vision offers a great variety of
models to practitioners, and selecting a model
from multiple options for specific applications
can be challenging. Conventionally, competing
model architectures and training protocols are
compared by their classification accuracy on Ima-
geNet. However, this single metric does not fully
capture performance nuances critical for special-
ized tasks. In this work, we conduct an in-depth
comparative analysis of model behaviors beyond
ImageNet accuracy, for both ConvNet and Vision
Transformer architectures, each across supervised
and CLIP training paradigms. Although our se-
lected models have similar ImageNet accuracies
and compute requirements, we find that they differ
in many other aspects: types of mistakes, output
calibration, transferability, and feature invariance,
among others. This diversity in model characteris-
tics, not captured by traditional metrics, highlights
the need for more nuanced analysis when choos-
ing among different models. Code is available at
github.com/kirill-vish/Beyond-INet.

1. Introduction

The computer vision model landscape has become increas-
ingly complex. From early ConvNets (LeCun et al., 1998) to
advances in Vision Transformers (Dosovitskiy et al., 2020),
the variety of models available has expanded significantly.
Similarly, training paradigms have evolved from supervised
training on ImageNet (Deng et al., 2009) to self-supervised
learning (Chen et al., 2020; He et al., 2020) and image-text
pair training like CLIP (Radford et al., 2021). While signal-
ing progress, this explosion of choices poses a significant
challenge for practitioners: how to select a model that suits
their purposes?

Conventionally, ImageNet accuracy has served as the pri-
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Figure 1. Models are often compared only by their ImageNet accu-
racy, without looking at many other important behaviors. In our
work, we analyze models with similar ImageNet accuracies and
find that they have vastly different properties.

mary metric for evaluating model performance. It has driven
remarkable progress since it ignited the deep learning rev-
olution (Krizhevsky et al., 2012). However, this metric
is becoming increasingly insufficient. While ImageNet is
useful to measure a model’s general capability, it does not
capture the nuanced differences arising from varying archi-
tectures, training paradigms, and data — models with differ-
ent properties may appear similar if judged solely based on
ImageNet accuracy (Fig. 1). This limitation becomes more
pronounced as models start to overfit the idiosyncrasies of
ImageNet with saturated accuracies (Beyer et al., 2020).

A particularly noteworthy example is CLIP. Despite having
a similar ImageNet accuracy as a ResNet (He et al., 2016),
CLIP’s vision encoder exhibits much better robustness and
transferability. This has sparked research that explores and
builds upon the unique strengths of CLIP (Ramesh et al.,
2022; Luo et al., 2022; Wortsman et al., 2022; Vinker et al.,
2023), which were not evident from the ImageNet metric
alone. This demonstrates that analyzing alternative proper-
ties could help discover useful models.

In addition to fundamental research, the growing integration
of vision models into production systems also calls for a
deep understanding of their behaviors. Conventional metrics
do not fully capture models’ ability to handle real-world
vision challenges like varying camera poses, lighting condi-
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Model Architecture Pretraining Finetuning Paradigm FLOPs  #Param  INet-1K val%
ViT-sup ViT-B/16 ImageNet-21K  ImageNet-1K  supervised 17.5G 8T™M 85.5
ConvNeXt-sup ConvNeXt-B ~ ImageNet-21K ~ ImageNet-1K  supervised 154G 8OM 85.5
ViT-clip ViT-B/16 LAION-400M — CLIP 17.5G 87TM 67.0
ConvNeXt-clip  ConvNeXt-B LAION-400M — CLIP 154G 8OM 66.3

Table 1. Model summary in our analysis. We select ConvNeXt and ViT with similar ImageNet accuracies within each training paradigm.

tions, or occlusions. For instance, models trained on datasets
such as ImageNet often struggle (Yamada & Otani, 2022) to
transfer their performance to real-world applications where
conditions and scenarios are more diverse.

To bridge this gap, we conduct an in-depth exploration fo-
cusing on model behaviors beyond ImageNet accuracy. We
analyze four leading models in the computer vision: Con-
vNeXt (Liu et al., 2022), as a representative ConvNet, and
Vision Transformer (ViT) (Dosovitskiy et al., 2020), each
under supervised and CLIP training. The selected models
are similar in parameter counts and show nearly identical
accuracy on ImageNet-1K within each training paradigm,
ensuring a fair comparison. Our study delves into a wide
array of model characteristics, such as types of prediction
errors, generalization capabilities, invariances of the learned
representations, calibration, and many others. Importantly,
our focus is on properties exhibited by the model without
additional training or finetuning, providing insights for prac-
titioners interested in using pretrained models directly.

In our analysis, we discover substantial variations in
model behaviors among different architectures and train-
ing paradigms. For example, CLIP models make fewer
classification errors relative to their ImageNet performance.
However, supervised models are better calibrated and supe-
rior on ImageNet robustness benchmarks. ConvNeXt has
an advantage on synthetic data but is more texture-biased
than ViT. We also find that supervised ConvNeXt excels on
many benchmarks and achieves transferability comparable
to that of CLIP models. Based on these findings, it becomes
evident that various models demonstrate their strengths in
unique ways that are not captured by a single metric. Our
research emphasizes the need for more detailed evaluation
metrics for accurate, context-specific model selection and
the creation of new benchmarks unrelated to ImageNet.

2. Models

For analyzing ConvNets and Transformers, many previous
works (Naseer et al., 2021; Minderer et al., 2021; Zhou et al.,
2021; Bai et al., 2021) compare ResNet and ViT. This com-
parison is often disadvantageous for ConvNet since ViTs
are typically trained with more advanced recipes, achieving
higher ImageNet accuracy. ViT also has architecture design
elements, e.g., LayerNorm (Ba et al., 2016), that were not
incorporated in ResNet when it was invented years ago. For
a more balanced evaluation, we compare ViT with Con-

vNeXt (Liu et al., 2022), a modern of ConvNet that matches
Transformers’ performance.

As for the training paradigms, we compare supervised and
CLIP. Supervised models continue to show state-of-the-art
performance in computer vision (Dehghani et al., 2023).
CLIP models, on the other hand, excel in generalization and
transferability, and offer intriguing representational prop-
erties that connect vision and language. Self-supervised
models (He et al., 2022; Woo et al., 2023) are not included
in the results as they showed behaviors similar to supervised
models in our preliminary tests. This could be due to their fi-
nal ImageNet-1K supervised finetuning, which is necessary
for studying many properties.

The selected models have similar ImageNet-1K validation
accuracies within their respective training paradigms, ensur-
ing a fair comparison. For CLIP models, these indicate their
zero-shot accuracies. The models also have similar sizes
and computational requirements, and are publicly available.
Since we are using pretrained models, we cannot control for
the number and quality of data samples seen during training.

For supervised models, we use a pretrained DeiT3-
Base/16 (Touvron et al., 2022) for ViT, which shares the
same architecture as ViT-Base/16 with an improved train-
ing recipe, and ConvNeXt-Base (Liu et al., 2022). For
CLIP models, we use vision encoders of ViT-Base/16 and
ConvNeXt-Base from OpenCLIP (Ilharco et al., 2021). Note
that these models have a slightly different performance from
the original OpenAl models (Radford et al., 2021). A de-
tailed model comparison is given in Table 1.

We recognize there are other ViT CLIP models pretrained
on larger datasets such as LAION-2B, DataComp (Gadre
et al., 2023), DFN (Fang et al., 2023a), which show a bet-
ter performance. However, OpenCLIP offers only a few
pretrained ConvNeXt models and for most of them there
is no matching ViT counterpart in terms of ImageNet accu-
racy, pretraining dataset and parameter count. Therefore, we
chose CLIP models pretrained on LAION-400M, offering
the most fair comparison between ConvNet and ViT.

Additional models of different sizes. In the Appendix A,
we present the performance results for models of different
sizes to evaluate the impact of model size on performance.
These models are assessed across several benchmarks, in-
cluding ImageNet-X, PUG-ImageNet, calibration, invari-
ance, and shape/texture bias.
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Figure 2. Model mistakes on ImageNet-X. Lower is better. ConvNeXt and ViT perform similarly within each training category. CLIP

models achieve lower error ratios compared to supervised.

3. Property Analysis

Our analysis is designed to investigate model behaviors that
can be evaluated without the need for further training or
finetuning. This approach is particularly relevant for practi-
tioners with limited compute resources, who often rely on
pretrained models. While we recognize the value of down-
stream tasks like object detection, our focus is on properties
that offer insights with minimal computational demands and
reflect behaviors important for real-world applications.

3.1. Model Mistakes

In image classification, a model mistake is an incorrect
label assignment, such as misclassifying a cat as a dog.
Simply identifying mistaken object classes might not of-
fer actionable insights for model improvement. The key
aspect, therefore, is finding the specific reasons for these
mistakes. For instance, some models may be particularly
sensitive to certain aspects of the data distribution, like tex-
ture variations. In this case, a model might consistently
make mistakes when the texture of the object differs from
what it has been trained on. Identifying mistake types allows
for targeted data collection and retraining, improving over a
black-box approach.

The ImageNet-X dataset (Idrissi et al., 2022) offers de-
tailed human annotations for 16 factors of variation, such
as pose, style, and others. This allows a focused anal-
ysis of models’ mistake types. The annotations en-
able measuring model error ratios for each factor inde-
pendently: error ratio(factor) = %m, where
accuracy(overall) is the overall ImageNet-1K validation
accuracy, and accuracy(factor) is the accuracy on all the

images where the factor was highlighted. This metric mea-
sures the model performance on a given factor relative to its
overall performance. Lower error ratios indicate better per-
formance, implying higher accuracy for the specific factor.
Our results on ImageNet-X are presented in Fig. 2.

CLIP models make fewer mistakes relative to their Im-
ageNet accuracy than supervised. The diagram in Fig. 2
shows that CLIP models have a smaller error ratio, indicat-
ing a significant advantage over supervised models. How-
ever, it is important to note that the error ratio is relative to
overall ImageNet accuracy, where a significant 18% gap ex-
ists between supervised and CLIP zero-shot models. In par-
ticular, CLIP models are much more robust towards shape,
subcategory, texture, object blocking, and darker factors.
The key reason for the success of CLIP models is likely the
more diverse data used for training.

All models suffer mostly from complex factors like oc-
clusion. For CLIP models, there are three factors with dis-
similar performance between ConvNeXt and ViT: multiple
objects, style, and darker. For the first two, the ConvNeXt
has a higher error ratio, while for the latter, it has an advan-
tage over ViT. For supervised models, the performance only
diverges for style and person blocking. Except for these
factors, models largely have similar error ratios. The six
factors for which all the models have a high error ratio are
smaller, object blocking, person blocking, shape, subcate-
gory, and texture. High error ratio factors usually involve
complex visual scenarios, which helps to explain why mod-
els often make mistakes in these situations. For example, in
occlusion, the model often misclassifies due to focusing on
the visible, obscuring object.
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Figure 3. Fraction of shape vs texture decisions on cue-conflict dataset. ViT models
show a higher shape bias. CLIP models are less texture-biased than their supervised
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Figure 4. A cue-conflict image (Geirhos
etal., 2018).

counterparts. All models still have a significant fraction of texture decisions.

Texture is the most challenging factor for all models.
Interestingly, all models in our analysis have the largest
error ratio on the texture factor. It refers to images where
the texture of the object differs from its standard appearance.
This suggests that models of the current generation largely
suffer because of texture bias.

3.2. Shape / Texture Bias

In contrast to humans, who generally use high-level visual
cues for recognition, neural networks often rely on more
brittle shortcut features (Geirhos et al., 2020). The study
of shape-texture bias (Geirhos et al., 2018) serves to high-
light this phenomenon by examining model behavior on
cue-conflict images, which contain a shape from one class
superimposed with the texture from another (Fig. 4). Two
key metrics are introduced to quantify this bias: the shape
and the texture fractions. The shape fraction calculates
the proportion of decisions leaning towards the class rep-
resented by the shape, while the texture fraction measures
those for the texture class. These metrics reveal whether the
classifier favors shape or texture when they conflict.

The study in (Geirhos et al., 2018) showed that ConvNets
have a strong bias towards texture, as opposed to shape,
which differs from humans. Subsequent work (Naseer et al.,
2021) concluded that ViT is less biased towards the tex-
ture than ConvNet by comparing the first generation of
DeiT-S (Touvron et al., 2021) and ResNet-50. Remarkably,
scaling large Transformer models has led to shape biases
comparable to human level (Dehghani et al., 2023).

We evaluate shape-texture bias in our models using cue-
conflict images and display the findings in Fig. 3. Dashed
lines represent average shape bias aggregated over all the
categories. Individual markers on horizontal lines depict
shape bias for the particular class, which is identified by

a corresponding logo on the y-axis. The shape fraction is
represented on the top x-axis of the diagrams, while the
bottom x-axis indicates the texture fraction.

CLIP models have smaller texture bias than supervised.
In Fig. 3, we can observe that ViTs exhibit stronger shape
bias than ConvNeXts for both supervised and CLIP models.
This is possibly because ConvNeXt is more inclined to learn
local features related to textures due to the local nature
of convolution operation. However, the gap between ViT
and ConvNeXt is much smaller for CLIP-based models.
Notably, the shape bias in CLIP models improved by 7%
and 12% for both architectures, prompting questions about
the benefits of further scaling the training data. ConvNets
typically exhibit lower shape bias compared to ViT, however,
the gap for CLIP models is marginal. In (Dehghani et al.,
2023), it has been shown that a 22B parameter ViT model
can achieve 87% shape bias. In our analysis, the ViT CLIP
model achieved a maximum shape bias of 46.4%, suggesting
that the model size might also play an important role.

3.3. Model Calibration

Besides vulnerability to shortcut features, poor model per-
formance can often be attributed to miscalibration, where
a model’s confidence in its predictions does not align with
actual accuracy. Model calibration is a metric that quantifies
the reliability of a model’s predicted confidence levels (Guo
et al., 2017). A model’s confidence for a prediction is de-
fined as the max probability among all classes in its output
distribution. We are interested in determining whether the
model is overly confident or too uncertain in its predictions.
For instance, if the network deems a set of predictions to be
80% confident, does the actual accuracy hover around 80%?

The calibration rate can be quantified by Expected Calibra-
tion Error (ECE). To calculate ECE, predictions first need
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Figure 5. Calibration results: confidence histograms (1 and 3 row), reliability diagrams (2 and 4 row), and ECE on ImageNet-1K (top)
and ImageNet-R (bottom). Supervised models have lower ECE in both cases. CLIP models have bars under diagonal and many high

confidence predictions, indicating overconfidence. ConvNeXt is better (ImageNet-1K) or competitive (ImageNet-R) to ViT.

to be separated into the M bins By, ... , By based on their
confidence. For instance, one bin can include all the pre-
dictions with confidence between 50% and 60% and so on.
Each bin’s confidence and accuracy are calculated as the
average confidence and accuracy of predictions in B;, repre-
sented as conf(B;) and acc(B;). Then, ECE can be defined
as: ECE = Ziw @ lacc(B;) — conf(B;)|, where | B;| is
the size of the ¢-th bin.

Model calibration is also often assessed through visualiza-
tions, including reliability diagrams and confidence his-
tograms. Reliability diagrams plot the predicted confidence
against accuracy; a well-calibrated model would show a
graph where points closely align with the diagonal. Con-
fidence histograms display how often different confidence
levels occur in the model’s predictions.

For a balanced evaluation, we present calibration metrics
on two different datasets: ImageNet-1K for in-distribution
data and ImageNet-R (Hendrycks et al., 2021a) for out-
of-distribution data. We select ImageNet-R as the out-of-
distribution because CLIP models show higher accuracy on
it than supervised. In all experiments, we use M = 15 bins.
We plot confidence histograms (1 and 3 rows), reliability

diagrams (2 and 4 rows), and ECE in Fig. 5.

CLIP models are overconfident and supervised mod-
els are slightly underconfident. In Fig. 5, we observe
that CLIP models have bars consistently below the diag-
onal in reliability diagrams and a notably high last bar
in the confidence histogram, signaling overconfidence in
both in-distribution and out-of-distribution data. Although
(Minderer et al., 2021) attributes calibration performance
mainly to architecture, our results suggest otherwise: higher
ECE scores in CLIP models, despite superior accuracy on
ImageNet-R, indicate that training data and objectives could
be more influential factors. We also highlight that our re-
sults are different from (Minderer et al., 2021) for CLIP
models presumably because they use checkpoints from Ope-
nAl (Radford et al., 2021) and we use from OpenCLIP (II-
harco et al., 2021). In the lower part of Fig. 5 related
to ImageNet-R, we note that supervised models exhibit a
higher density in the lower confidence intervals of the confi-
dence histograms (3 row). Additionally, these models show
elevated accuracy levels in the initial bins of the reliability
diagrams (4 row). These findings suggest that supervised
models tend to be slightly underconfident on ImageNet-R.
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Figure 6. Robustness (top) and transferability (bottom) results. CLIP models excel in transferability, while supervised models are
better on robustness benchmarks. In transferability, supervised ConvNeXt outperforms supervised ViT and is close to CLIP models.

Supervised ConvNeXt is better calibrated than super-
vised ViT. Our experiments reveal that supervised Con-
vNeXt outperforms Transformer in calibration, contrary
to (Minderer et al., 2021)’s findings on ViTs and ConvNets.
This discrepancy is because (Minderer et al., 2021) focused
on older ConvNet architectures, such as ResNet, while we
use a more modern one. For CLIP models, we find that ViT
is only slightly better than ConvNeXt.

3.4. Robustness

A model may excel on data from its training distribution
but struggle to generalize to a distribution shift (Recht et al.,
2019). These shifts can arise from natural perturbations such
as atmospheric conditions (e.g., fog, rain), camera noise,
or variations in object location and orientation. Model ro-
bustness quantifies a model’s capability to adapt to changes
in data distributions. A robust model should maintain high
accuracy with these perturbations. This is particularly impor-
tant for applications where reliability is a primary concern.

We evaluate the robustness on several ImageNet variants
that feature many types of natural variations and corrup-
tions: V2 (Recht et al., 2019), A (Hendrycks et al., 2021b),
C (Hendrycks & Dietterich, 2019), R (Hendrycks et al.,
2021a), Sketch (Wang et al., 2019), Real (Beyer et al., 2020),
and Hard (Taesiri et al.). We also provide ImageNet-1K val-
idation accuracy for reference (INet-Val). The results are
shown in Fig. 6 (top).

Supervised models are better than CLIP on most of the
robustness benchmarks. In Fig. 6, we can see that super-
vised models perform better than CLIP on most datasets
except ImageNet-R and ImageNet-Sketch. CLIP models’
success on ImageNet-R and ImageNet-Sketch suggests they
handle abstract or creative visuals better than supervised
models. The advantage of supervised models is likely re-
lated to the fact that all robustness datasets share the same set
of classes as the original ImageNet-1K, on which they were
finetuned. This underscores the need for the development of
new robustness benchmarks that are not directly related to
ImageNet. Additionally, CLIP models may achieve higher
performance when pretrained on larger datasets (Fang et al.,
2023a; Gadre et al., 2023). ViT and ConvNeXt, on average,
have similar performance across both supervised and CLIP.

3.5. Transferability

The transfer learning performance of a model indicates its
ability to adapt to new tasks and datasets beyond its original
training domain (Kolesnikov et al., 2020). Good transfer-
ability allows for rapid finetuning with minimal additional
effort, making it easier to scale the model to a wide range of
real-world applications. The ability of a model to adapt to
these shifts without significant degradation in performance
serves as a valuable metric for its utility and generalization
capabilities. For instance, consider a model that has been
originally trained on ImageNet, which primarily consists
of natural images. A test of its transferability would be to
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Figure 7. Results on synthetic data from PUG-ImageNet. ConvNeXt is superior on almost every factor for both supervised and CLIP.

evaluate how well this model performs when applied to a
vastly different domain, such as medical imaging.

To assess the transferability, we adopted a VTAB bench-
mark (Zhai et al., 2019). It comprises 19 diverse datasets
grouped into three subcategories: natural, specialized, and
structured. We conduct a linear probing evaluation on frozen
features, following the protocol from (Ilharco et al., 2021).
The results are shown in Fig. 6 (bottom) and Table 2.

Model Natural  Specialized  Structured  Overall
ViT-sup 84.2 84.2 45.4 67.8
ConvNeXt-sup 87.1 85.0 50.0 71.0
ViT-clip 87.6 87.8 50.9 72.2
ConvNeXt-clip 87.8 86.9 512 722

Table 2. Transferability results on VTAB in subgroups. CLIP
models are better on each of the dataset subgroups. For supervised
models, ConvNeXt outperforms ViT by a large margin.

Supervised ConvNeXt has great transferability, almost
matching the performance of CLIP models. We find that
ConvNeXt strongly outperforms ViT for supervised. Inter-
estingly the performance of supervised ConvNeXt is not
very far from CLIP models, both of which have the same av-
erage accuracy. For CLIP, ViT and ConvNeXt demonstrate
similar average accuracy, with many datasets showing a per-
formance gap of less than 1%. CLIP models generally show
better transferability on all three subgroups of VTAB (Table
2), which is different from the robustness experiments. The
superiority of CLIP can be attributed to the larger and more
diverse volume of pretraining data (Ramanujan et al., 2023).

3.6. Synthetic Data

While two previous sections focused on robustness and
transferability, they did not cover the new and promising
area of training models with synthetic data (Tian et al.,
2023). Unlike human-annotated data, synthetic datasets
allow precise control over the content and quality of data.

PUG-ImageNet (Bordes et al., 2023) is a synthetic dataset
of photorealistic images of ImageNet classes that provides
labels for a set of factors. The images are generated using a
software that allows systematically varying factors like pose,
size, texture, and others for each object. In our experiments,
we provide top-1 accuracy results for ten different factors in
PUG-ImageNet and their average in Fig. 7.

ConvNeXt is better than ViT on synthetic data. Intrigu-
ingly, ConvNeXt outperforms ViT on PUG-ImageNet for
nearly all factors. This suggests: ConvNeXt is better than
ViT on synthetic data. CLIP models have lower accuracy
compared to supervised, which is likely related to their infe-
rior performance on the original ImageNet.

3.7. Transformation Invariance

In real-world scenarios, data often undergo transformations
that preserve its semantic meaning or class. We aim to
ensure that the model’s representations are invariant to these
transformations. Achieving various types of invariance is
desirable because it enables the network to generalize well
across different but semantically similar inputs, thereby
enhancing its robustness and predictive power. In previous
literature (Azulay & Weiss, 2018; Zhang, 2019), it has been
shown that the performance of neural networks can be highly
unstable even under simple input data transformations, such
as shifting an input image by a few pixels.

We conduct experiments to assess three types of invariance:
scale, shift, and resolution. We analyze the model’s accuracy
trends on the ImageNet-1K validation set as a function of
varying scale / shift magnitude and image resolution. In
scale invariance analysis, the image is first resized according
to a given scale factor, and then a central crop is taken.
In shift experiments, we adjust the crop location in the
original image space and then take a crop, shifting along
the longer side of the image. In resolution experiments with
ViT model, we interpolate positional embeddings to match
the new applied resolution.
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Figure 8. Scale, shift, and resolution invariance experiments. ConvNeXt is better than ViT under supervised training on all transforma-
tion types. All models are robust to shift transformation but experience degradation when the image scale is altered.

Supervised ConvNeXt is the most invariant model to the
data transformations. We display our results in Fig. 8,
observing a consistent trend of ConvNeXt outperforming
ViT under supervised training. Interestingly, supervised
ConvNeXt has better performance on 336 pixel resolution
than on the original resolution of 224 pixels. Overall, all
models are robust to shifting and less robust to scaling and
resolution transforms. For practical use cases requiring high
transform invariance, our results indicate that supervised
ConvNeXt will be the best choice among analyzed models.

4. Related Work

Architecture analysis. Several works compared ViTs
and ConvNeXt from the perspective of internal representa-
tions (Raghu et al., 2021), synthetic data (Ruiz et al., 2022),
transferability (Zhou et al., 2021), and robustness (Wang
et al., 2022; Bai et al., 2021; Pinto et al., 2022; Djolonga
et al., 2021). Other studies included analysis of Transformer
properties (Naseer et al., 2021) and impact of neural net-
work width and depth on learned representations (Nguyen
et al., 2020). ViTs and ConvNets were also evaluated on Im-
ageNet, showing that Transformers are more aligned with
human error patterns (Tuli et al., 2021). A large variety
of backbones, trained with various methods, were bench-
marked in (Goldblum et al., 2024) across a diverse set of
computer vision tasks, including classification, detection,
and retrieval. In contrast to studies that analyze a single
property, our work extensively compares models across
many, maintaining a fair comparison by evaluating models
with similar ImageNet accuracies.

Training objective analysis. A comprehensive analysis was
conducted in (Walmer et al., 2023), comparing ViTs trained
with supervised, self-supervised, and CLIP objectives. Anal-

ysis of the representations of models trained with supervised
and self-supervised objectives was presented in (Grigg et al.,
2021; Gwilliam & Shrivastava, 2022). Two works (Park
et al., 2023; Shekhar et al., 2023) focused on investigating
the effect of training objective in self-supervised learning.
Unlike studies emphasizing self-supervised models, our
work compares supervised and CLIP models.

Limitations of ImageNet. Recent research (Beyer et al.,
2020; Recht et al., 2019; Tsipras et al., 2020; Yun et al.,
2021) highlighted issues with the reliability and quality of
ImageNet labels. Two studies (Kornblith et al., 2019; Miller
et al., 2021) showed a strong relationship between perfor-
mance on ImageNet and other datasets, although this can
depend on the model’s architecture and training methods.
Other studies (Richards et al., 2023; Fang et al., 2023b)
showed that high ImageNet accuracy does not ensure good
performance on diverse datasets. Current robustification
training techniques were found to overfit (Yamada & Otani,
2022) to ImageNet evaluations. In addition, ImageNet suf-
fers from dichotomous data difficulty (Meding et al., 2021),
obscuring differences between models. Our analysis does
not directly address data-related problems of ImageNet but
instead studies alternative properties.

5. Conclusion

Our study examined ConvNets and Transformers with super-
vised and CLIP training from multiple perspectives beyond
the standard ImageNet accuracy. We found that models with
similar ImageNet accuracies have vastly different proper-
ties. This suggests that model selection should depend on
the target use cases, as standard metrics may overlook key
nuances. In addition, it is crucial to develop new bench-
marks with data distributions that closely mirror real-world
scenarios. This will help both in training models for better
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real-world performance and in more accurately evaluating
their effectiveness in such environments.

ConvNet vs Transformer. (1) Supervised ConvNeXt is
superior to supervised ViT: it is more invariant to data trans-
formations, and demonstrates better transferability, robust-
ness and calibration. (2) ConvNeXt outperforms ViT on
synthetic data. (3) ViT has a higher shape bias.

Supervised vs CLIP. (1) Supervised ConvNeXt competes
well with CLIP in transferability, showing potential of super-
vised models. (2) Supervised models are better at robustness
benchmarks, likely because these are ImageNet variants. (3)
CLIP models have a higher shape bias and make less classi-
fication errors relative to their ImageNet accuracy.

As a result of our analysis, we suggest using supervised
ConvNeXt when the target task distribution is not very dif-
ferent from ImageNet as this model provides competitive
performance among many benchmarks. In case of a serious
domain shift, we recommend using CLIP models.
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Appendix

A. Results for Models of Different Sizes

Besides having the base sized models in the main part of our analysis, we additionally include the following models to see
the effect of the model size on the performance:

e Supervised ConvNeXt: Tiny, Small, Large, Huge (XLarge).

e Supervised ViT (DeiT 3): Small, Large, Huge (XLarge). Note that no Tiny version is provided for DeiT 3 by the
original authors (Touvron et al., 2022).

e CLIP ConvNeXt: Large, Huge (XLarge).
e CLIP ViT: Large, Huge.

All new additional CLIP models are pretrained on the LAION-2B dataset, while the CLIP models from the main part of the
manuscript (Table 1) are pretrained on LAION-400M. All CLIP models are taken from OpenCLIP, and supervised models
are taken from the respective original works (Liu et al., 2022; Touvron et al., 2022).

Architecture Pretraining Finetuning Paradigm FLOPs #Params INet-1K val%
ConvNeXt-Tiny ImageNet-21K  ImageNet-1K  Supervised 4.5G 29M 82.9
ConvNeXt-Small ImageNet-21K  ImageNet-1K  Supervised 8.7G 50M 84.6
ConvNeXt-Large ImageNet-21K  ImageNet-1K  Supervised  34.4G 198M 86.6
ConvNeXt-Huge ImageNet-21K  ImageNet-1K  Supervised  60.9G 350M 87.0
ViT-S/16 ImageNet-21K  ImageNet-1K  Supervised 4.6G 22M 83.1
ViT-L/16 ImageNet-21K  ImageNet-1K  Supervised  61.6G 304M 87.0
ViT-H/14 ImageNet-21K  ImageNet-1K  Supervised 167.4G 632M 87.2
ConvNeXt-Large LAION-2B — CLIP 34.4G 198M 75.2
ConvNeXt-Huge LAION-2B — CLIP 60.9G 350M 78.6
ViT-L/14 LAION-2B — CLIP 61.6G 304M 74.8
ViT-H/14 LAION-2B — CLIP 167.4G 632M 77.3

Table 3. Additional models configurations. We perform partial analysis for the additional models of different sizes to see the effect of
the model size on the performance.

Additional models are evaluated on PUG-ImageNet (Table 4), ImageNet-X (Table 5), calibration (Table 6 and 7), transfor-
mation invariance (Table 8), and shape / texture bias (Table 9). Based on the results from new models we make the following
observations:

* On PUG-ImageNet (Table 4) ConvNeXt is better than ViT in 6 out of 7 comparison, suggesting its clear advantage
over ViT on synthetic data.

* ImageNet-X performance is largely determined by the training method (Table 5). CLIP models are clearly better than
supervised.

* On calibration (Table 6 and 7) ConvNeXt has lower ECE value compared to its ViT counterpart in most cases. This
solidifies our initial conclusion in the main part that ConvNeXt is better calibrated than ViT.

 Shape bias greatly improves with scale (Table 9). Interestingly, the ConvNeXct is better than ViT on large-scale CLIP
models (Large and Huge). For Huge CLIP models ConvNeXt has an advantage of almost 10% over ViT. This suggests
that training method and model size has a noticeable influence on the shape bias of the model. Moreover, this result
also highlights that ConvNeXt has the potential to exceed a ViT on this benchmark.

* Even small supervised models are robust to shift transformation (Table 8 middle part). For example, the smallest
supervised model ConvNeXt-Tiny has a tiny degradation of < 3% which is comparable to the huge CLIP models.

* Huge supervised models are quite reliable to the resolution change (Table 8 right part).

* In general, large models provide a decent improvement over the base models. However, huge models provide only
marginal improvement over the large models.
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Model Tiny Small Base Large Huge Model Tiny Small Base Large Huge
ConvNeXt-sup  27.0 294 322 34.6 35.6 ConvNeXt-sup  1.48 1.50 1.43 1.47 1.50
ViT-sup — 247 29.4 343 36.9 ViT-sup — 1.46 1.45 1.49 1.50
ConvNeXt-clip — — 27.0 354 43.2 ConvNeXt-clip — — 1.23 1.26 1.32
ViT-clip — — 25.2 329 38.8 ViT-clip — — 1.19 1.33 1.31

Table 4. PUG-ImageNet results. ConvNeXt is better in 6 out of 7 Table 5. ImageNet-X results. CLIP models have an advantage.
comparisons.

Model Tiny Small Base Large Huge Model Tiny Small Base Large Huge
ConvNeXt-sup  0.021  0.022 0.025 0.029 0.031 ConvNeXt-sup  0.073  0.035 0.028 0.022 0.023
ViT-sup — 0.034 0.043 0.047 0.041 ViT-sup — 0.056 0.041 0.037 0.037
ConvNeXt-clip — — 0.085 0.017 0.019 ConvNeXt-clip — — 0.141  0.080  0.090
ViT-clip — — 0.073  0.030 0.031 ViT-clip — — 0.133  0.094 0.098
Table 6. Calibration on ImageNet-1K. ConvNeXt has lower ECE Table 7. Calibration on ImageNet-R. ConvNeXt is better cali-
in most cases. brated than ViT.
Model Scale Invariance Shift Invariance Resolution Invariance
1x 1.25x 1.5x 2x 3x Opx Spx 30px  75px  100px 112px  224px  336px 512px  640px
ConvNeXt-sup Tiny 82.9 81.8 79.5 74.6 63.2 82.9 82.9 82.6 81.4 80.1 67.2 82.9 77.2 42.8 21.1
ConvNeXt-sup Small 84.6 83.3 81.4 76.8 66.4 84.6 84.5 84.5 83.3 82.1 74.8 84.6 84.7 82.5 80.6

ConvNeXt-sup Base 85.5 84.5 827 783 685 | 855 857 85.6 84.5 83.2 78.1 85.5 85.8 83.7 81.5
ConvNeXt-sup Large 86.6 85.4 849 799 70.7 | 86.6 86.6 86.5 85.4 84.5 80.2 86.6 86.2 84.6 82.9
ConvNeXt-sup Huge 87.0 85.8 843 804 715 | 87.0 86.8 86.7 85.7 84.7 81.0 87.0 86.7 84.8 82.9

ViT-sup Small 82.7 80.5 764 657 482 | 827 828 82.5 81.1 79.2 65.5 82.7 81.7 754 70.9
ViT-sup Base 85.5 83.3 797  70.6 548 | 8.5 855 85.2 84.1 82.6 69.5 85.5 84.2 78.1 74.5
ViT-sup Large 86.8 85.0 819 742 60.1 86.8  86.8 86.6 85.5 84.3 76.7 86.8 85.9 81.7 79.1
ViT-sup Huge 86.9 85.2 81.8 739 59.6 | 869 86.8 86.7 85.7 84.5 73.1 86.9 85.9 81.7 79.4
ConvNeXt-clip Base 66.3 64.0 60.0 504 333 | 663 662 65.7 63.6 61.8 51.5 66.3 59.7 322 18.9
ConvNeXt-clip Large ~ 75.2 73.5 713 649 506 | 752 751 74.8 73.5 72.1 62.1 75.2 76.1 70.3 64.3
ConvNeXt-clip Huge 78.6 71.3 752  69.6 563 | 78.6 78.6 78.2 77.1 75.8 68.0 78.6 78.8 71.0 61.9
ViT-clip Base 67.0 65.0 613 525 36.1 67.0  66.9 66.6 64.2 62.2 39.1 67.0 65.4 58.5 51.9
ViT-clip Large 74.8 72.1 68.1 587 414 | 748 747 74.3 72.0 69.6 48.0 74.8 74.4 69.5 64.9
ViT-clip Huge 71.3 74.9 714 627 455 | 773 774 76.9 74.7 72.7 51.1 77.3 76.9 72.7 68.4

Table 8. Scale, shift, and resolution invariance experiments.

Model Tiny Small Base Large Huge
ConvNeXt-sup  28.1 31.6 333 39.8 41.3
ViT-sup — 35.0 39.8 51.3 57.1
ConvNeXt-clip — — 459 56.9 67.0
ViT-clip — — 46.4 53.9 58.5

Table 9. Shape-texture bias results. Shape bias noticeably improves with model size.
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