
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

K²-AGENT: CO-EVOLVING KNOW-WHAT AND KNOW-
HOW FOR HIERARCHICAL MOBILE DEVICE CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing mobile device control agents often perform poorly when solving com-
plex tasks requiring long-horizon planning and precise operations, typically due
to a lack of relevant task experience or unfamiliarity with skill execution. We
propose K²-Agent, a hierarchical framework that models human-like cogni-
tion by separating and co-evolving declarative (“knowing what”) and procedu-
ral (“knowing how”) knowledge for planning and execution. K²-Agent’s high
level reasoner is bootstrapped from a single demonstration per task and runs a
Summarize–Reflect–Locate–Revise (SRLR) loop to distill and iteratively refine
task-level declarative knowledge through self-evolution. The low-level executor
is trained with our curriculum-guided Group Relative Policy Optimization (C-
GRPO), which (i) constructs a balanced sample pool using decoupled reward sig-
nals and (ii) employs dynamic demonstration injection to guide the model in au-
tonomously generating successful trajectories for training. On the challenging
AndroidWorld benchmark, K2-Agent achieves a new state of the art with 76.1%
success rate, ranking 1st1 among all methods using only raw screenshots and
open-source backbones. Furthermore, K²-Agent shows powerful dual general-
ization: its high-level declarative knowledge transfers across diverse base models,
while its low-level procedural skills achieve competitive performance on unseen
tasks in ScreenSpot-v2 and Android-in-the-Wild (AitW).

Su
cc

es
s r

at
e

(%
)

Evolution round

Human level

UI-TARS

UI-Venus-7B

Agent S2

Seed1.5-VL

UI-Venus-72B

Mobile-Agent-v3

AutoGLM-Mobile K²-Agent

K²-Agent K²-Agent w/o hierarchy K²-Agent w/o SRLR loop & C-GRPO

= tasks solved / total tasks per app.

UI-TARS-2

Figure 1: K²-Agent’s co-evolutionary learning curve on AndroidWorld. The main curve shows
the agent’s success rate steadily improving. Ablations (lower curves) confirm the contribution of
key components, and subplots below illustrate the expanding mastery over new apps and tasks.

1Ranking as of August 2025; an anonymous snapshot of the leaderboard is provided in Appendix D.2.1

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Human intelligence relies on a fundamental distinction between two types of knowledge (Squire,
2009): declarative knowledge (knowing what) and procedural knowledge (knowing how). Declar-
ative knowledge is symbolic and explicit; it can be articulated, summarized from one or a few
demonstrations, and refined through recall. In contrast, procedural knowledge manifests as exe-
cutable skills (e.g., cycling, swimming). It is often implicit, difficult to verbalize, and acquired
through repeated practice to form “muscle memory”. These two knowledge systems, believed to
be supported by distinct cognitive circuits (Squire & Knowlton, 1995), are co-activated in complex
tasks—one to decide what to do, the other to determine how to do it.

This division of labor is especially critical for long-horizon mobile device control. Recall when you
performed a multi-step task in an unfamiliar app. You need declarative knowledge about the task to
guide the generation of operational intent. For example, you need to know in advance that clicking
the “trash icon” means delete. At the same time, you need procedural knowledge to accurately
translate that intent into atomic actions such as clicking, swiping, and text input.

Existing methods for mobile device control (Li et al., 2024) largely fall into two lines. (i) Training-
free agents (Zhang et al., 2025; Wang et al., 2024b; Agashe et al., 2024; 2025). These agents
carefully design workflows and encode task-related knowledge into prompts or in-context exam-
ples. Development is relatively cheap and edits are quick, but their performance is capped by the
foundation models, which are often closed-source and cannot be fine-tuned to fix domain-specific,
persistent errors. (ii) Learning-based agents (Hong et al., 2024; Pan et al., 2024; Zhang & Zhang,
2023; Bai et al., 2024; Wang et al., 2024c). These agents train parametric policies with supervised
fine-tuning (SFT) or reinforcement learning (RL) on large labeled datasets. While stable on in-
distribution actions, they struggle with long-horizon credit assignment and poor task generalization.

On the decision paradigm, recent work increasingly separates reasoning from action (Qin et al.,
2025; Gu et al., 2025), or adopts an explicit planner–executor hierarchy (Agashe et al., 2024; 2025).
In practice, this design often beats flat policies. However, most hierarchies remain only a structural
split. Either both layers are training-free or both are trained with SFT/RL. This results in systems re-
lying either on extensive manual design or on massive amounts of data and computational resources
(typically requiring 10k+ samples and hundreds of GPUs) (Qin et al., 2025; Gu et al., 2025). Our
key insight is that know-what and know-how naturally match the hierarchical design; they
should follow different update rules and co-evolve through continuous interaction.

To this end, we propose K²-Agent, a hierarchical planner–executor framework for mobile device
control. It explicitly decouples and co-evolves declarative (know-what) and procedural (know-how)
capabilities, while connecting high-level planning and low-level execution through clear single-step
sub-goals. The high-level planner starts from one demonstration per task and runs a Summa-
rize–Reflect–Locate–Revise (SRLR) loop that keeps an updatable task memory. Using execution
feedback collected in the loop, SRLR locates failure points and revises the knowledge so the plan
improves over time. The low-level executor is trained using our curriculum-guided Group Relative
Policy Optimization (C-GRPO). The method first decouples task execution rewards across action-
type and parameter dimensions, routing samples into different experience pools by error type for
proportional sampling. It then introduces a dynamic demonstration injection that prepends variable-
length expert prefixes to the model’s prompts, conditioned on sample difficulty and training stage.
This guides the model to autonomously generate successful trajectories for GRPO-style training,
thereby building a reusable skill library. These two evolutionary processes are mutually coupled,
forming a closed-loop system where “thinking” and “practice” reinforce each other.

On the challenging AndroidWorld benchmark (Rawles et al., 2024), K2-Agent sets a new SOTA
with a 76.1% success rate. This surpasses all leading learning-based models (Qin et al., 2025; Gu
et al., 2025; Ye et al., 2025) and rivals top closed-source models (FinalRun, 2025) that leverage
additional inputs from the accessibility (A11y) tree. More importantly, K2-Agent attains this with
high efficiency: the planner requires only one demonstration per task, and the executor is trained
on a single server equipped with 8× NVIDIA A100 80GB GPUs. Moreover, K²-Agent exhibits
dual generalization that supports our core hypothesis: (1) Declarative knowledge transfer—the high-
level planner’s learned knowledge transfers across backbone models; and (2) Procedural knowledge
transfer—the executor’s learned skills generalize to entirely novel tasks on Android-in-the-Wild
(AitW) (Rawles et al., 2023) and ScreenSpot-v2 (Wu et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Single Demonstration

Summarizer High-level
Reasoner

Low-level
Executor

Procedural
 Knowledge

Declarative
 Knowledge

High-level
Reasoner

Low-level
Executor

Procedural
 Knowledge

Bootstrapp

Declarative
 Knowledge

Task:
Create a new
contact for

{name}. Their
number is
{number}.

update by SRLR loop

update via C-GRPO

Figure 2: Overview of the K²-Agent. Top: The SRLR loop where declarative knowledge (knowing
what) is iteratively improved using feedback. Bottom: The skill acquisition process where proce-
dural knowledge (knowing how) is learned via C-GRPO, bootstrapped from a single demonstration.

To summarize, our contributions are as follows:

• We introduce K²-Agent, a hierarchical framework that enables closed-loop co-evolution of
declarative and procedural knowledge.

• We design a single-demonstration–initiated SRLR cycle that continuously incorporates execu-
tion feedback to refine a task knowledge base.

• We propose a curriculum-guided RL algorithm (C-GRPO) that efficiently acquires procedural
skills via error-decoupled experience-pool balancing and dynamic demonstration injection.

• We provide extensive evidence of dual generalization—declarative knowledge across back-
bones and procedural skills across benchmarks—highlighting the critical role of co-evolution
in enhancing generalization.

2 RELATED WORK

2.1 TRAINING-FREE AGENTS

Training-free agents leverage the in-context learning capabilities of large vision-language models
(VLMs) to solve mobile control tasks via carefully engineered prompts and reasoning loops (Zhang
et al., 2025; Wang et al., 2024b). Recent works have explored various mechanisms, such as building
explicit knowledge bases (Zhang et al., 2025), incorporating reflection steps (Wang et al., 2024b), or
adopting multi-agent (Wang et al., 2024a) and hierarchical architectures (Agashe et al., 2024; 2025;
Wang et al., 2025b). While these methods excel at leveraging the fixed knowledge of powerful
foundation models, their self-improvement mechanisms are typically non-parametric (e.g., memory
editing). In contrast, K²-Agent introduces a hybrid approach: it uses a non-parametric SRLR loop to
evolve declarative knowledge while simultaneously fine-tuning a dedicated executor with C-GRPO
to parametrically improve its procedural skills through interaction.

2.2 LEARNING-BASED AGENT

Learning-based agents fine-tune models on domain-specific data to adapt them for mobile control.
The field has rapidly progressed from initial SFT on GUI understanding (Hong et al., 2024; Zhang
& Zhang, 2023) to RL for interactive decision-making (Bai et al., 2024; Wang et al., 2024c). With
the advent of advanced policy optimization techniques like DPO (Rafailov et al., 2023) and GRPO
(Shao et al., 2024), recent models have achieved significant gains in grounding and task success by
post-training strong open-source VLMs (Qin et al., 2025; Lu et al., 2025; Luo et al., 2025; Liu et al.,
2025b; Gu et al., 2025). However, these methods typically train a single, monolithic policy, which
conflates the learning of high-level task strategy (“knowing what”) and low-level action execution
(“knowing how”). K²-Agent’s core distinction is the explicit decoupling of these two learning pro-
cesses. By using different, specialized update rules for declarative and procedural knowledge, our
framework enables more targeted, data-efficient, and effective learning for both.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

We model mobile device control as a finite-horizon Markov Decision Process (MDP) M =
(S,A,P,R, γ). A state st ∈ S is a multimodal representation st = (ot, g), where ot is the current
visual observation of the screen (we use only raw screenshots, without any extra UI metadata such
as the accessibility tree) and g is the task instruction. The action space A consists of parameterized
primitive UI operations, such as click, long-press, swipe, and type. The transition func-
tion P(st+1 | st, at) defines the probability of moving to st+1 after taking at in st. The reward
function R provides environmental feedback. This feedback can be sparse trajectory-level rewards,
indicating overall task success; or dense step-level rewards, guiding fine-grained action generation.
The discount factor is γ. The agent’s objective is to learn a policy π(at | st) that maximizes the
expected return: J(π) = Eτ∼π

[∑T
t=0 γ

trt

]
.

4 METHOD

We propose K²-Agent, a hierarchical framework that mirrors human cognition by separating and co-
evolving declarative (“knowing what”) and procedural (“knowing how”) knowledge. Section 4.1
outlines our design. Section 4.2 details the high-level planner that evolves declarative knowledge
through a SRLR self-improvement loop. Section 4.3 introduces C-GRPO for learning procedural
skills in the low-level executor. Section 4.4 provides implementation and training details.

4.1 OVERVIEW OF THE K²-AGENT FRAMEWORK

As shown in Figure 2, K²-Agent features a two-layer Planner-Executor architecture, where each
layer is initialized by a VLM. The high-level planner, πH , operates in a training-free mode to main-
tain a declarative knowledge base, KG, which is iteratively refined via our SRLR loop. Rather than
acting directly on the environment, πH consults KG to decompose the global task g into a sequence
of immediate sub-goals, zt. The low-level executor, πL, is a trainable policy that acquires procedural
skills via C-GRPO algorithm. It receives the current observation ot and the sub-goal zt from πH ,
making decisions in an augmented state s′t = (ot, g, zt) to produce atomic actions on the device.

The two modules form a closed-loop co-evolution system. Forward communication occurs via the
sub-goals zt. The feedback loop consists of execution outcomes—successes, failures, and error
patterns—from πL being used by πH to revise the knowledge base KG. A more accurate KG

allows πH to generate more feasible and executable sub-goals, in turn providing πL with a more
structured exploration problem and thus more effective learning signals. This creates a synergistic
cycle where improved planning and execution reinforce one another.

4.2 HIGH-LEVEL PLANNER: EVOLVING DECLARATIVE KNOWLEDGE VIA SRLR LOOP

The planner, πH , evolves its declarative knowledge base, KG, through a four-stage SRLR loop,
illustrated in Figure 3. This self-improvement cycle is initiated by a single expert demonstration and
performed by the VLM-based planner itself. We detail each stage below. Complete implementation
details and a case study of KG evolution are provided in Appendix B.1.

4.2.1 SUMMARIZE

Given a single demonstration trajectory T d = {(sdt , adt)}T
d

t=0 and a task goal g, πH performs a
one-pass distillation to produce a structured initial task knowledge base K0

G (Figure 3, top-left):

K0
G = Summarize

(
T d, g; θH

)
. (1)

The knowledge base is represented as a set of rules or a stepwise checklist that captures the core
logic for completing the task, key UI elements, and their functions. It serves as the starting point for
subsequent iterations in the SRLR loop.

4.2.2 REFLECT

During execution, the reflection module is activated upon completing a new trajectory T e. Reflec-
tion operates at two granularities:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: An illustration of the SRLR self-evolution loop. (1) Summarize: An initial knowledge
base is automatically distilled from a demonstration. (2) Reflect: The agent analyzes its execution
trace to identify deviations. (3) Locate: The failure’s root cause is pinpointed. (4) Revise: Atomic
operators repair the knowledge base for the next iteration.

Step-level. The planner continuously verifies whether each action’s outcome aligns with the ex-
pected result in KG. This allows for the immediate detection of deviations from the plan.

Task-level. If the episode fails, task-level reflection analyzes the entire trajectory to generate a
structured, root-cause explanation for the failure, such as “failed to identify the Rename button”:

M case = Reflecttask(T e, KG, g; θH) . (2)

4.2.3 LOCATE

To enable precise revision, the locate module aligns the executed trajectory T e with the task knowl-
edge encoded in KG and identifies the first decision point that yields an unexpected outcome:

t∗ = Locate(T e, KG; θH) = min
{
t
∣∣∣ Verify

(
set+1, a

e
t , KG, t; θH

)
= False

}
. (3)

Here, Verify(·) ∈ {True,False} checks whether executing aet in state set produces a next state set+1
that matches the expected outcome for critical step t specified by KG.

4.2.4 REVISE

Finally, given the failure explanation M case and the failure point
(
t∗, set∗

)
, the system performs local

surgeries on KG using four atomic operators: Add inserts missing steps; Delete removes erroneous
instructions; Update modifies parameters; and Highlight emphasizes critical constraints. These
operations yield a revised version K ′

G (see evolution example in Appendix B.1):
K ′

G = Revise
(
KG,

(
t∗, set∗

)
, M case; θH

)
. (4)

By iterating the SRLR loop, the KG improve over time, enabling higher-quality planning.

4.3 LOW-LEVEL EXECUTOR: LEARNING PROCEDURAL SKILLS WITH C-GRPO

Training the low-level executor, πL, faces two challenges: (i) Sample Imbalance: The training
data is often biased, with common operations (e.g., click) heavily more than rare ones (e.g.,
long-press, swipe). (ii) Inefficient Exploration: In long-horizon tasks, the huge action space
makes it difficult for agents to autonomously discover successful trajectories through trial and error.

To address these issues, we propose Curriculum-Guided Group Relative Policy Optimization (C-
GRPO), an algorithm that efficiently acquires procedural skills via a novel error-decoupled replay
balancing mechanism and a dynamic demonstration injection strategy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Procedural
 Knowledge

Policy
Model

Query-1

Query-2 Hint-1

Query-4 Hint-1 Hint-2 ...

Query-3 Hint-1 Hint-2
...

Query-1

Query-n

...

...Query-1

Query-n

...
Query-1

Query-n

...

...

...

...

...

...

Dynamic Demonstration Injection

Error-Decoupled Replay Balancing

Update via GRPO

Figure 4: Our C-GRPO framework, featuring its two main curriculum components: Error-
Decoupled Replay Balancing (left) to construct balanced mini-batches, and Dynamic Demonstration
Injection (center) to provide adaptive guidance for the GRPO update (right).

4.3.1 ERROR-DECOUPLED REPLAY BALANCING

We observe that execution errors at the action level can be decoupled into type errors (e.g., predicting
swipe instead of click) and parameter errors (e.g., a click with inaccurate coordinates). For
any training input i, the low-level model πL generates G candidate actions {a(g)i }Gg=1. Given an
expert action âi, we define a binary reward

r(a, â) = 1
[
type(a) = type(â) ∧

∥∥coord(a)− coord(â)
∥∥
2
< ϵ

]
, (5)

where type(·) denotes the primitive operator (click, long-press, swipe, type), and
coord(·) ∈ R2 denotes the action’s spatial parameters.

Using the G candidates, we estimate two error rates per input i:

ηtype(i) =
1

G

G∑
g=1

1
[
type

(
a
(g)
i

)
̸= type(âi)

]
, (6)

ηparam(i) =
1

G

G∑
g=1

1
[
type

(
a
(g)
i

)
= type(âi) ∧

∥∥coord(a(g)i

)
− coord(âi)

∥∥
2
≥ ϵ

]
. (7)

Based on ηtype(i) and ηparam(i), each input is dynamically assigned to one of three replay buffers:
the conventional pool Dcon, the type-exploration pool Dtype, and the precision-optimization pool
Dparam. During training, each mini-batch is formed by sampling from these buffers with preset ra-
tios {βcon, βtype, βparam}, ensuring balanced progress on the model’s different weaknesses, leading
to more efficient overall improvement.

4.3.2 DYNAMIC DEMONSTRATION INJECTION

For mobile control agents built on (V)LLMs, the action space effectively spans a vast textual space
grounded to the entire screen. Replay balancing alone cannot make the model reliably discover the
correct action sequence in such a large space, so rewards remain sparse on complex tasks. To guide
exploration, we introduce a dynamic demonstration injection mechanism that prepends a variable
number of atomic expert actions to the input. The injected length l (in steps) is scheduled by

l = Lh(k, di) = L · σ(k) · fgate(di), (8)
where L is the total number of steps in the full demonstration; σ(k) = max(0, 1−k/Kmax) is a lin-
ear annealing scheduler that decays with the training step k; fgate(di) = tanh(di/T) is a difficulty-
gating function controlled by a temperature T ; and the sample difficulty score di is the total error
rate, di = ηtype(i) + ηparam(i). The actual prefix consists of the first ⌊l⌋ complete actions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Intuitively, this mechanism provides more extensive guidance for samples the model currently finds
difficult, while gradually weaning the model off all demonstrations as training progresses. This
curriculum-based approach greatly increases the probability of generating successful trajectories,
thereby producing denser and higher-quality signals for policy optimization.

4.3.3 C-GRPO OBJECTIVE

Our final objective integrates these curriculum strategies with the GRPO framework. In each training
step, we construct a balanced mini-batch B and, for each sample q ∈ B, form an augmented context
c using dynamic demonstration injection. The policy is then updated by maximizing the GRPO
objective, where the advantage estimates Âi,t are derived from group-relative rewards based on the
dense, binary expert-matching signal defined in Equation 5. The objective is:

JC-GRPO(θ; c) = E{oi}G
i=1∼πθold (·|c)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

) ,

(9)
where the importance ratio ri,t(θ) =

πθ(oi,t|c,oi,<t)
πθold(oi,t|c,oi,<t)

. By optimizing this objective, C-GRPO learns
robust procedural skills with denser and more informative signals.

4.4 TRAINING AND IMPLEMENTATION DETAILS

We use Qwen-2.5-VL-72B as the high-level planner (πH) in the training-free SRLR loop, and the
parameter-efficient Qwen-2.5-VL-7B as the low-level executor (πL), which is post-trained with C-
GRPO. The planner’s knowledge base (KG) is bootstrapped from a single expert demonstration,
which we recorded for each task type through a dedicated data collection pipeline (data collection,
cleaning, and scale are reported in Appendix B.1.2). For the learning-based executor, the C-GRPO
training set is constructed from demonstration samples collected across all AndroidWorld tasks,
ensuring a strict separation between training and test sets. The executor’s training is guided by a
dense, step-level reward signal composed of a binary format reward (for syntactic correctness) and a
content reward (Equation 5, for semantic correctness). Further details on data format, dataset scale,
and reward computation are provided in Appendix B.2.

To conserve computational resources, the co-evolution of the planner and executor is implemented
via an efficient alternating update mechanism that follows the pattern (SRLRH)n → C-GRPOL.
We set n = 3 in our experiments, where the planner first refines its knowledge base KG over
several iterations before the executor undergoes a single, intensive training phase. All training was
conducted on a single server equipped with 8× NVIDIA A100 80GB GPUs. A complete list of
hyperparameters used during training is available in Appendix B.2.3.

5 EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate our K2-Agent. This section is organized as follows.
In Section 5.1, we evaluate on the AndroidWorld benchmark and achieve a new state-of-the-art
(SOTA). In Section 5.2, we study generalization along two axes: transfer of high-level declarative
knowledge across different backbones, and transfer of low-level procedural skills across bench-
marks. In Section 5.3, we present ablations that quantify the contribution of each core component.

5.1 PERFORMANCE AGAINST BASELINES

Environment. We evaluate on AndroidWorld(Rawles et al., 2024), a widely used benchmark with
116 tasks across 20 apps. Each task is instantiated with randomized parameters per episode, pre-
venting overlap between the training and test splits. Tasks are categorized by difficulty (easy/medi-
um/hard). Human experts achieve about 80% (Rawles et al., 2024) average success on this platform.

Baselines. We compare K2-Agent to two families of methods: (1) Training-free: agents that rely
on few-shot capabilities of (V)LLMs (e.g., GPT series (Achiam et al., 2023), Claude-3.7 Sonnet
(Anthropic, 2025a), Gemini 2.5 Pro (Comanici et al., 2025)). (2) Learning-based: agents that fine-
tune open-source backbones with domain data via SFT and/or RL.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of K2-Agent and baselines on AndroidWorld. Our method reports the mean ±
std over 3 independent runs.

Type Agent Base Model Input SR

Training
free

M3A (Rawles et al., 2024) GPT-4 Turbo Screenshot + A11y 30.6
AndroidGen (Lai et al., 2025) GPT-o A11y Tree 46.8
Agent S2 (Agashe et al., 2025) Claude-3.5-Sonnet Screenshot 54.3
MobileUse (Li et al., 2025) Qwen2.5-VL-72B Screenshot 62.9
DroidRun (DroidRun, 2025) Gemini-2.5-Pro Screenshot + A11y 63.0
FinalRun (FinalRun, 2025) GPT-5 Screenshot + A11y 76.7

Learning
based

InfiGUI Agent (Liu et al., 2025a) Qwen2-VL-2B Screenshot 9.0
GUI-critic-R1 (Wanyan et al., 2025) Qwen2.5-VL-2B Screenshot + A11y 27.6
UI-TARS (Qin et al., 2025) Qwen-2-VL-72B Screenshot 46.6
UI-Venus (Gu et al., 2025) Qwen2.5-VL-72B Screenshot 65.9
Seed1.5-VL (Guo et al., 2025) Seed1.5-VL-72B Screenshot + A11y 62.1
Mobile-Agent-v3 (Ye et al., 2025) Qwen-VL based Screenshot 73.3
UI-TARS-2 (Wang et al., 2025a) Seed-thinking-1.6 Screenshot 73.3
AutoGLM-Mobile (Liu et al., 2024) AutoGLM-Mobile Screenshot + A11y 75.8

Ours K2-Agent Qwen2.5-VL (72B+7B) Screenshot 76.1 ± 1.0

Results and analysis. Table 1 reports success rates on AndroidWorld. K2-Agent sets a new SOTA
with a 76.1% average success rate, surpassing the strongest open-source learning-based methods,
UI-TARS-v2 (73.3%) and Mobile-Agent-v3 (73.3%), and outperforming all closed-source
models restricted to screenshot inputs. Beyond accuracy, our method offers two key advantages:
(i) Screenshot-only input—unlike many high-ranked methods that exploit accessibility (A11y)
trees, K2-Agent operates solely from raw screenshots; (ii) Optimization Efficiency—the high-level
model is bootstrapped from a single demonstration per task category, while the low-level executor
builds on a 7B open-source backbone, requiring substantially fewer training resources.

5.2 MODEL GENERALIZATION

K2-Agent enables two forms of generalization by our design: (i) high-level declarative knowledge
transfers across planner backbones, and (ii) low-level procedural skills transfer across benchmarks.

Transfer of declarative knowledge. The SRLR-produced knowledge KG is language-based, and
explicit. We reuse the same KG (without extra tuning) across different VLMs and re-evaluate on
AndroidWorld. Figure 5 (a) reports task success rates. All backbones benefit from the injected KG,
indicating that the distilled declarative knowledge is model-agnostic and broadly reusable.

Transfer of procedural skills. We directly transfer the low-level executor, trained on Android-
World, to the ScreenSpot-v2 benchmark in a zero-shot setting. As shown in Table 3, K2-Agent’s
executor achieves a 91.3% overall accuracy, outperforming general-purpose closed-source models
like Claude 3.7 Sonnet and reaching a level competitive with specialized agents such as GUI-Owl-
32B, which were trained on massive-scale GUI datasets. We further validate transfer to Android-
in-the-Wild (AitW) across two subsets, where the high-level planner is bootstrapped from a single
demonstration per subset and the low-level executor is transferred directly. K2-Agent surpasses ex-
isting RL- and SFT-based approaches as well as closed-source models. Results are shown in Table 2
and Table 3. Additional analysis is provided in Appendix E.1.2.

Table 2: Zero-shot transfer to AitW using the low-level executor trained on AndroidWorld.
Agent AitW-General (SR %) AitW-WebShopping (SR %)
SoM (Zheng et al., 2024) 16.7 11.5
AppAgent (Zhang et al., 2025) 17.7 8.3
CogAgent (Hong et al., 2024) 25.0 38.5
AutoUI (Zhang & Zhang, 2023) 22.9 25.0
DigiRL (Bai et al., 2024) 71.9 67.2
K2-Agent 86.5 68.3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Zero-shot performance of the K²-Agent executor on the ScreenSpot-v2 benchmark.
Mobile Desktop Web

Agent Model Text Icon Text Icon Text Icon Overall
Operator (OpenAI, 2025) 47.3 41.5 90.2 80.3 92.8 84.3 70.5
Claude 3.7 Sonnet (Anthropic, 2025b) - - - - - - 87.6
UI-TARS-72B (Qin et al., 2025) 94.8 86.3 91.2 87.9 91.5 87.7 90.3
JEDI-7B (Xie et al., 2025) 96.9 87.2 95.9 87.9 94.4 84.2 91.7
GUI-Owl-32B (Ye et al., 2025) 98.6 90.0 97.9 87.8 94.4 86.7 93.2
UI-Venus-Ground-72B (Gu et al., 2025) 99.7 93.8 95.9 90.0 96.2 92.6 95.3
K²-Agent 96.9 80.6 95.9 83.6 95.3 90.6 91.3

0

10

20

30

40

50

60

70

80

90

Qwen-2.5-72B Qwen-2.5-32B GPT-4o Gemini-2.5-Pro

S
u

cc
es

s
ra

te
 (

%
)

w/o Declarative Knowledge

w/ Declarative Knowledge

35.0

76.7

22.0

34.5 34.5

58.6
55.2

72.4

+41.7

+12.5

+24.1

+17.2

Training Steps

R
ew

a
rd

s

（a）Transfer of declarative knowledge （b）Training curve of the low-level executor

C-GRPO

C-GRPO w/o replay balancing

C-GRPO w/o demo injection

Figure 5: Ablation and Component Analysis. (a): The declarative knowledge from our SRLR
loop provides a substantial performance boost across four different powerful VLM backbones. (b):
Training reward curves for the low-level executor comparing full C-GRPO (blue), C-GRPO without
replay balancing (red), and C-GRPO without demonstration injection (green).

5.3 ABLATION STUDIES

To assess the contribution of each component in K2-Agent, we conduct ablations on AndroidWorld
by removing or replacing specific modules. We compare five configurations: (1) No Hierarchy.
A flat, end-to-end model. (2) No Hierarchy + SRLR: A flat model that directly incorporates the
knowledge base KG from the SRLR loop. (3) Hierarchical (SRLR + SFT-Low). Our hierarchical
design with an SRLR planner, while the low-level executor is trained only with SFT. (4) Hierar-
chical (SRLR + GRPO-Low). The hierarchical design with a vanilla GRPO-trained executor. (5)
K2-Agent (Full). Our complete model with the SRLR planner and C-GRPO executor.

Table 4: Ablation study of K²-
Agent components on Android-
World benchmark.

Configuration SR (%)
No Hierarchy 35.3
No Hierarchy + SRLR 58.6
SRLR + SFT-Low 62.0
SRLR + GRPO-Low 68.9
K²-Agent (Full) 76.1

Results are summarized in Table 4 and Figure 1. The No
Hierarchy model performs poorly, confirming that a flat ar-
chitecture struggles to manage both planning and execution.
Simply adding the SRLR knowledge base (No Hierarchy +
SRLR) provides a notable boost, demonstrating the value of
explicit declarative knowledge. A significant leap occurs
when we introduce the hierarchy (SRLR + SFT-Low), iso-
lating the structural benefit of decoupling know-what from
know-how. Within the hierarchy, replacing SFT with vanilla
GRPO improves performance further by enabling interactive
learning, but progress is limited by inefficient exploration. Fi-
nally, our full K²-Agent with C-GRPO achieves the highest
success rate. The superiority of C-GRPO over vanilla GRPO
is not only reflected in the final success rate but also evident during training, as shown in Figure 5
(b), where C-GRPO consistently achieves higher and more stable rewards.

We further dissect the training dynamics of the low-level executor by isolating the contribution of the
two key components in C-GRPO. As shown in Figure 5(b), the full C-GRPO framework achieves the
highest rewards and the most stable convergence. Ablating Dynamic Demonstration Injection (green
curve) leads to the most severe degradation: the policy attains substantially lower rewards with pro-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Training Steps

R
ew

a
rd

s

（a） Impact of the replay buffer ratio 𝛽𝑐𝑜𝑛 （b）Impact of the demonstration injection temperature 𝑇

𝑇=0.05

𝑇=0.5

𝑇=5

Training Steps

R
ew

a
rd

s

𝛽𝑐𝑜𝑛=0.2

𝛽𝑐𝑜𝑛=0.5

𝛽𝑐𝑜𝑛=0.7

Figure 6: Parameter sensitivity of C-GRPO. (a): Varying the conventional pool ratio βcon. (b):
Effect of the injection temperature T in the difficulty-gating function.

nounced oscillations throughout training. This indicates that expert-prefixed trajectories are crucial
for bootstrapping exploration, enabling the agent to reliably discover successful behaviors early
and thereby stabilizing subsequent self-generated rollouts. Meanwhile, removing Error-Decoupled
Replay Balancing (red curve) results in a visibly slower convergence rate and slightly inferior fi-
nal performance, suggesting that without balancing experience across error types, the optimizer is
biased towards frequent, easier operations and struggles to acquire complex skills.

5.4 PARAMETER SENSITIVITY

We analyze the sensitivity of C-GRPO to two key hyperparameters: the conventional replay pool
ratio βcon and the demonstration injection temperature T . Full grid-search settings for all hyperpa-
rameters are reported in Appendix B.2.3.

Impact of Replay Balancing Ratios. The left panel of Figure 6 shows training dynamics under
different βcon, with the remaining probability split equally between Dtype and Dparam. All settings
exhibit a clear upward trend and eventually converge, indicating that C-GRPO is robust to replay
buffer composition. Among them, βcon = 0.5 strikes the best balance between preserving the natural
rollout distribution and emphasizing error-corrective samples, yielding the fastest convergence and
highest final reward. In contrast, assigning excessive weight to the conventional pool (e.g., βcon =
0.7) reduces exposure to hard examples and slightly slows learning.

Impact of Injection Temperature. The right panel of Figure 6 examines the injection temperature
T , which controls the difficulty-gating function fgate(di) = tanh(di/T). With a large temperature
(T = 5), fgate ≈ 0, leading to very short or absent expert prefixes and effectively reverting C-GRPO
to vanilla GRPO; the policy barely improves and fails to converge. In contrast, lower temperatures
(T = 0.05, 0.5) activate the curriculum effectively: T = 0.05 yields a slightly faster initial improve-
ment due to more aggressive intervention, while T = 0.5 provides smoother training and slightly
better stability and final performance. Overall, C-GRPO remains stable over a reasonable range of
hyperparameters, and we adopt βcon = 0.5 and T = 0.5 in all main experiments.

6 CONCLUSION

We propose K²-Agent, a hierarchical framework inspired by the cognitive separation of declara-
tive (“knowing what”) and procedural (“knowing how”) knowledge. Our agent synergistically co-
evolves these two capabilities distinctly: a high-level planner uses an SRLR loop to distill and
self-evolving task knowledge from a single demonstration, while a low-level executor masters pre-
cise actions via our highly-efficient C-GRPO post-training algorithm. K²-Agent not only achieves
SOTA performance on AndroidWorld but, more critically, exhibits powerful and robust dual gener-
alization—transferring declarative knowledge across backbones and procedural skills across bench-
marks. We believe that this knowledge decoupling and co-evolution framework offers a promising
new paradigm for building more general, efficient, and adaptable agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Anthropic. Claude’s extended thinking, 2025a. https://www.anthropic.com/research/
visible-extended-thinking.

Anthropic. Claude 3.7 sonnet and claude code, 2025b. https://www.anthropic.com/
news/claude-3-7-sonnet.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461–12495, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DroidRun. Droidrun: a powerful framework for controlling android and ios devices through llm
agents, 2025. https://github.com/droidrun/droidrun.

FinalRun. Finalrun ai agent achieves 76.7% success rate on android world benchmarks, 2025.
https://finalrun.app/benchmark/.

Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong
Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, et al. Ui-venus technical report: Building
high-performance ui agents with rft. arXiv preprint arXiv:2508.10833, 2025.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. arXiv preprint arXiv:2505.07062,
2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Hanyu Lai, Junjie Gao, Xiao Liu, Yifan Xu, Shudan Zhang, Yuxiao Dong, and Jie Tang. Androidgen:
Building an android language agent under data scarcity. arXiv preprint arXiv:2504.19298, 2025.

11

https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/research/visible-extended-thinking
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://github.com/droidrun/droidrun
https://finalrun.app/benchmark/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuy-
ing Peng, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous
mobile operation. arXiv preprint arXiv:2507.16853, 2025.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024.

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
Xiaotian Han, Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with
native reasoning and reflection. arXiv preprint arXiv:2501.04575, 2025a.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025b.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents
by reinforcement learning. arXiv preprint arXiv:2503.21620, 2025.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world, 2025. https://openai.com/index/computer-using-agent.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and
generalizable r1-style large vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Larry R Squire. Memory and brain systems: 1969–2009. Journal of Neuroscience, 29(41):12711–
12716, 2009.

Larry R Squire and Barbara J Knowlton. Memory, hippocampus, and brain systems. 1995.

12

https://openai.com/index/computer-using-agent

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025a.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. Advances in Neural Information Processing Systems, 37:2686–2710,
2024a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asyn-
chronous distributed reinforcement learning framework for on-device control agents. arXiv
preprint arXiv:2410.14803, 2024c.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025b.

Yuyang Wanyan, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Jiabo Ye, Yutong Kou, Ming
Yan, Fei Huang, Xiaoshan Yang, et al. Look before you leap: A gui-critic-r1 model for pre-
operative error diagnosis in gui automation. arXiv preprint arXiv:2506.04614, 2025.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for gener-
alist gui agents. arXiv preprint arXiv:2410.23218, 2024.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Wenwen Yu, Zhibo Yang, Jianqiang Wan, Sibo Song, Jun Tang, Wenqing Cheng, Yuliang Liu, and
Xiang Bai. Omniparser v2: Structured-points-of-thought for unified visual text parsing and its
generality to multimodal large language models. arXiv preprint arXiv:2502.16161, 2025.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp. 1–20, 2025.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

Statement on LLM Usage. In the preparation of this manuscript, Large Language Models (LLMs)
were utilized as auxiliary tools to enhance language quality and formatting. Specifically, we used
Gemini 2.5 Pro for grammar checking and polishing the prose. Additionally, GPT-series models
were employed to assist with optimizing LaTeX table formatting and to query for specific typesetting
commands (e.g., for pseudocode presentation and color highlighting). We affirm that all scientific
content, core ideas, and experimental results were conceived and articulated entirely by the human
authors. LLMs were not used to generate any substantive scientific content. All suggestions and
modifications from these models were implemented under the direct supervision and final approval
of the authors. All co–authors are aware of and consent to this usage.

A COGNITIVE SCIENCE FOUNDATIONS OF K²-AGENT

Figure 7: Cognitive inspiration for the K²-Agent framework. The design maps the human dis-
tinction between declarative (“knowing what”) and procedural (“knowing how”) knowledge onto a
hierarchical agent architecture.

Figure 7 illustrates the core cognitive science principle that inspires the design of K²-Agent: the
fundamental distinction between declarative (“knowing what”) and procedural (“knowing how”)
knowledge. Seminal work in cognitive neuroscience (Squire & Knowlton, 1995) has established
these as distinct memory systems. Declarative knowledge consists of explicit facts and concepts
that can be consciously recalled and articulated, much like how our high-level planner distills and
refines its task knowledge base (KG) from a single demonstration. In contrast, procedural knowl-
edge encompasses implicit skills acquired through repeated practice, such as riding a bicycle, which
are performed automatically and are difficult to verbalize. This mirrors how our low-level executor
is trained via C-GRPO to form robust “muscle memory” for precise UI operations. By explicitly
modeling this cognitive division, K²-Agent creates a synergistic architecture where planning and
execution can be evolved and optimized using distinct, more suitable mechanisms.

B FRAMEWORK AND ALGORITHM DETAILS

B.1 HIGH-LEVEL PLANNER: THE SRLR LOOP IMPLEMENTATION

B.1.1 PSEUDOCODE FOR THE SRLR ITERATION

The iterative self-evolution of the high-level planner is governed by the Summa-
rize–Reflect–Locate–Revise (SRLR) loop. Algorithm 1 provides a detailed algorithmic view
of this process, outlining how the knowledge base (KG) is initialized from a single demonstration
and then progressively refined through cycles of execution and feedback-driven revision.

The SRLR loop is guided by two primary hyperparameters that control its termination.
‘MAX ITER’ sets a hard limit on the number of revision cycles to prevent infinite loops, which
we set to 10 in our experiments. ‘SUCCESS THRESH’ defines a stopping criterion based on con-
sistent performance; the loop terminates if the agent successfully completes the task for this many
consecutive episodes. We set this value to 3, indicating that the knowledge base is considered stable
and robust after three successful runs in a row.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1: The SRLR Algorithm for Planner Self-Evolution

Input: Demonstration T d, task goal g, environment E , VLM backbone θH
Initialize: Evolved knowledge base KG

// Summarize: Distill initial knowledge from a single demonstration
1 KG ← Summarize(T d, g; θH)

// Iterative Refinement: The main SRLR loop
2 i← 0, sstreak ← 0
3 while i < MAX ITER and sstreak < SUCCESS THRESH do
4 i← i+ 1
5 (T e, success)← Execute(πH , πL, g,KG, E) // Execute with current KG

6 if success then
7 sstreak ← sstreak + 1
8 else
9 sstreak ← 0

// Reflect: Analyze the root cause of the failure
10 M case ← Reflect(T e,KG, g; θH)

// Locate: Pinpoint the first point of failure
11 t∗ ← null
12 for t = 0 to |T e| − 1 do
13 if Verify(set+1, a

e
t ,KG, t; θH) = False then

14 t∗ ← t; break

15 if t∗ = null then
16 t∗ ← FullTrajectoryAnalysis(T e, T d,KG; θH) // Fallback if loop fails

// Revise: Intelligently update the knowledge base
17 if t∗ ̸= null then
18 ∆KG ← GenerateRevision(M case, (T e, t∗), T d; θH)

19 Kdraft
G ← IntelligentFusion(KG,∆KG; θH)

20 KG ← ApplyAtomicEdits(Kdraft
G ,∆KG)

21 return KG

B.1.2 DEMONSTRATION DATA CONSTRUCTION

To initialize the SRLR self-evolution loop for the high-level planner πH , we constructed a high-
quality human expert demonstration trajectory, T d, for each task category. This demonstration data
was recorded by a human operator in a standard Android emulator environment. For each step,
the operator was instructed to first articulate their intent as a natural language instruction (e.g.,
“Swipe up the screen to locate the Audio Recorder app.”) while the system precisely recorded the
corresponding atomic action, including its type and exact coordinate parameters. We also captured
screenshots immediately before and after each action was executed. A complete demonstration
trajectory thus consists of a sequence of steps, where each step comprises a tuple: (pre-operation
screenshot, post-operation screenshot, natural language instruction, atomic action). For example, in
the “ContactsAddContact” task, the trajectory contains 10 steps; the natural language instruction for
the first step is “Swipe up on the screen to locate the Contacts app.”, and its corresponding atomic
action is [swipe, (546, 1806), (546, 800)].

For the 116 unique task categories in AndroidWorld, we collected a total of 103 expert demonstra-
tion trajectories to bootstrap the SRLR process. This number is less than the total task count for
two primary reasons. (i) some tasks are inherently difficult even for human experts to complete
reliably, and (ii) certain tasks share overlapping high-level knowledge, allowing one trajectory to
effectively cover multiple categories. In principle, this set could be further reduced by exploiting
such knowledge sharing across tasks.

We maintained a strict separation between the demonstration data used to bootstrap the SRLR loop
and the test data used for evaluation. To ensure this, we followed the design of the AndroidWorld

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

benchmark by setting different random seeds for each task instance to dynamically generate its
parameters. This mechanism guarantees that even for tasks of the same category, the specific pa-
rameters encountered during testing (e.g., contact names, filenames, or settings) differ from those in
the initial demonstration, thereby enabling a robust evaluation of the model’s generalization ability.

B.1.3 IMPLEMENTATION DETAILS OF SRLR MODULES

Each stage of the SRLR loop is implemented as a distinct prompt-based query to the high-level
VLM (πH). The specific prompts used for each module are shown below.

Summarize module prompt
Analyze the demonstration and extract the core operational strategy that
an AI agent can use to handle similar tasks.

Task: {task_goal}
Step: {instructions} -> {action_raws}

Output Requirements:
1.Logical Flow: Describe the steps in the exact original order using
First, Then, After that....
2.Critical Success Factors: Summarize 3 or 4 essential rules for success
3.UI Interaction Patterns: Highlight the main interaction methods

Notes:
Keep it concise, emphasize sequence and dependencies.
Generalize the technique rather than focusing on specific content.

Reflect module prompt
Compare and analyze the main error reason.

Error Trajectory: {error_trajectory}
Correct Demonstration: {demo_trajectory}

Analysis Requirements:
1.Compare the sequence step by step against the demonstration to identi-
fy where divergence occurs.
2.Locate the failure within the five information-handling levels:
(1) Source Location
(2) Target Selection
(3) Data Extraction
(4) Data Processing
(5) Answer Output
3.Distinguish between wrong target selection and failure in extraction
or processing within the correct target.
4.Provide evidence from the demonstration to show what information was
missing, incorrect, or not properly handled.

Output Format:
ERROR_REASON: State the exact failure point and specify the missing or
incorrect information.
EXPLANATION: Provide step-by-step comparison showing where the error tr-
ajectory diverged from the demonstration and support it with evidence.

Locate module prompt
Conduct a step-by-step process to pinpoint where the error occurred,
using error details and demonstration data as references.

Inputs:
Error Reason: {error_reason_72b}
Demonstration Steps: {demonstration}
Prompt with Line Numbers: {prompt_line}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Process:
Step 1 : Error Location
- Review the stated error reason: {error_reason_72b}
- Identify the exact line numbers in the prompt linked to this error
- Highlight the sections of content that contributed to the issue
Step 2 : Demonstration Reference
- Match the error against relevant demonstration steps
- Extract the instruction that address the error cause
- Specify which part of the demonstration resolves the issue

Output Format:
STEP1_ERROR_LOCATION: [Line number of the first failed step and related
content in the prompt connected to the error]
STEP2_DEMO_CONTENT_LOCATION: [Relevant demonstration steps (instruction
only) that address the error]

Revise module prompt
Modify the prompt based on error analysis and demonstration data.

Inputs
Demonstration Steps: {demonstration}
Prompt Used in Failed Execution: {prompt_line}
Error Location Analysis: {error_location_analysis}

Improvement Process
Step 1 : Direct Prompt Modification
- Emphasize key attention points and critical considerations rather than
adding examples.
- Highlight critical notices using markers such as "IMPORTANT:", "CRI-
TICAL:", "NOTE:", or "PAY ATTENTION TO:".
- Use demonstration reasoning to guide attention points without copying
specific results.
- Treat demonstration data as the source of truth; only include functio-
nality shown in the demonstration.
Step 2 : Semantic Alignment Check
- Review each line of the modified prompt for semantic consistency with
demonstration content.
- For each line, identify the corresponding demonstration instruction
and ensure it aligns in meaning.
- Remove any content not supported by demonstration data.

Focus on:
- Precision: Target exact locations and content.
- Demonstration-Based: All modifications must be grounded in demonstrat-
ion steps.
- Attention Emphasis: Highlight critical points.
- Semantic Consistency: Ensure meaning matches demonstration instruction
- Functionality Verification: Only include demonstrated features.

Output Format
FINAL_MODIFIED_PROMPT: [Complete modified prompt after both steps, with
every line supported by demonstration data]

B.1.4 ANALYSIS OF INDUCED DECLARATIVE KNOWLEDGE AND REFLECTION ROBUSTNESS

To further understand the behavior and limitations of the SRLR loop, we conducted a comprehen-
sive analysis of the induced knowledge bases (KG) and the corresponding reflection logs. This
subsection summarizes our observations, and the next section provides extended case studies and
visualizations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(1) Taxonomy of Induced Declarative Knowledge. Across AndroidWorld tasks, the Summarize
stage consistently induces four primary categories of declarative knowledge (distribution shown in
Figure 8):

• Step Ordering: Core logical dependencies between task steps, such as “Open the Audio
Recorder app before accessing the file list.”

• UI Layout & Invariants: Stable visual semantics of UI elements, e.g., “The record button is
the white circle at the bottom center.”

• Parameter Constraints: Format requirements and mandatory input rules, such as “The filename
must include the ‘.m4a’ extension.”

• Recovery Strategies: Conditional checks for resolving common execution anomalies, e.g., “If
the ‘Save’ button is disabled, ensure the text field is focused.”

These types capture task-level logic that is naturally expressible in language and form the planner’s
declarative backbone.

Figure 8: Distribution of the induced declarative knowledge

(2) Boundaries of Summarizable Knowledge. We also identified knowledge types that are in-
herently difficult to verbalize. These limitations highlight the need for the procedural low-level
executor:

• Ineffable Visual Grounding: Precise spatial relations or pixel-level cues that lack stable lin-
guistic descriptions (e.g., “Tap near the 3 o’clock position”).

• Visual Dynamics: Behaviors that require continuous perceptual feedback, such as iterative
swiping until a list terminus is reached.

• Massive Episodic Content: Tasks involving retrieval from large historical content, e.g., search-
ing through dozens of previously viewed images.

While our framework focuses on evolving task logic rather than maintaining long-range episodic
memory, each of these limitations points to directions for complementary improvements. First, in-
effable visual grounding could be mitigated by stronger backbone vision encoders or multimodal
pretraining that yields more precise spatial understanding. Second, visual dynamics may be ad-
dressed by integrating recurrent perceptual modules or short-horizon visual predictors capable of
modeling iterative feedback. Third, massive episodic content would require external memory sys-
tems or retrieval-augmented modules, which are orthogonal to the SRLR loop but could complement
it in future extensions.

(3) Self-Correction of Incorrect Declarative Knowledge. In some cases, the initial Summarize
stage induces overly specific or incorrect rules, especially when a demonstration contains instance-
specific details. The SRLR loop naturally corrects such issues: Reflect identifies the state mismatch,
Locate isolates the faulty rule, and Revise updates and generalizes it.

For example, in the AudioRecorder task (the next subsection), the initial knowledge incorrectly
memorized a fixed filename. After an execution failure, the rule was revised to “Type the filename
specified in the current instruction,” leading to consistent generalization across future episodes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(4) Scope and Limitations of Root-Cause Analysis. The reflection process effectively captures
failures that leave clear visual evidence, including:

• omitted or mis-ordered steps,

• incorrect UI navigation,

• wrong element selection or misclicks,

• invalid textual inputs or wrong parameter values.

However, reflection is fundamentally limited by visual observability. Certain execution failures do
not manifest in screenshots, such as: OS-level freezes or dropped touch events, network delays
preventing UI updates and invisible permission denials or background system interrupts.

These cases yield no visual divergence, and thus no reliable root-cause attribution. To maintain
robustness under such conditions, the system employs a strict max-retry fallback mechanism (Algo-
rithm 1, line [3]) to avoid infinite loops.

B.1.5 EVOLUTION OF THE KNOWLEDGE BASE (KG)

To concretely illustrate the self-evolution process of the declarative knowledge base (KG) via the
SRLR loop, we showcase its revision process for the ‘AudioRecorderRecordAudioWithFile-
Name’ task. The evolution from K0

G → K1
G → K2

G demonstrates a sophisticated learning pattern:
it begins with a literal summary, evolves to a generalized and logically structured plan, and finally
refines into a robust strategy that re-introduces critical, grounded details discovered through further
interaction.

Initial Knowledge (K0
G) from Summarize Phase. The process starts with the Summarize

module, which distills a single expert demonstration into an initial, structured knowledge base, K0
G.

This plan is a direct, flat list of actions observed in the demonstration.

K0
G: Initial Plan from Demonstration

• Swipe up on the screen to reveal more apps.
• Tap on the “Audio Recorder” app icon.
• Tap the white circular button at the bottom of the screen to start recording.
• Tap the white square button at the bottom right of the screen to stop the recording.
• Long press the backspace key on the keyboard to delete the content in the input field.
• Type the text “presentation fGwr.m4a”.
• Tap the “Save” button.

SRLR Cycle 1: Generalization and Logical Structuring. During execution, the agent fails on a
new task instance due to the hard-coded filename. The SRLR loop is triggered.

• Reflect: The agent observes the failure and identifies other potential ambiguities, such as im-
plicit preconditions.

• Locate: The failure’s root cause is traced to the specific filename and the plan’s lack of explicit
logical flow and error-checking.

• Revise: The knowledge is updated in two major ways: (1) It’s generalized by replacing the
hard-coded name with a placeholder. (2) It’s reformed into a more robust, logically structured
sequence with explicit steps for verification and safeguards (e.g., “Ensure no other actions are
taken...”).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

K1
G: Revision 1 (Generalization & Logical Structure)

• Swipe up... and Tap on...
• First, you need to locate and open the Audio Recorder app. (Abstracted)
• Tap the white circular button...
• To start recording, tap the record button. Ensure no other actions are taken until the record-

ing begins. (Added safeguard)
• Long press the backspace key... (Removed as potentially over-specific)
• Type the text “presentation fGwr.m4a”.
• Then, navigate to the save options... and enter [FILENAME]... (Generalized)
• Following this, ensure the file type is set to .m4a... (New step from failure analysis)
• Before confirming..., verify that both the file name and type are correctly entered... (Added

verification step)

SRLR Cycle 2: Re-introducing Critical Specificity and Grounding. While K1
G is more logical,

its abstraction causes new failures. The agent struggles with grounding (e.g., finding the generic
“record button”) and, critically, fails to clear default text in the input field.

• Reflect: The agent recognizes that filenames are consistently corrupted (e.g., ‘Record-
ing1[FILENAME].m4a‘) and that it sometimes hesitates or clicks the wrong UI element.

• Locate: The root causes are identified: (1) the omission of the crucial step to clear the input
field and (2) over-abstraction of UI element descriptions.

• Revise: The plan is refined to achieve a balance. It re-introduces critical actions as manda-
tory preconditions (“you MUST long press...”) and restores specific UI details (“white circular
button”) for better grounding, while retaining the strong logical flow.

K2
G: Revision 2 (Robust and Re-grounded Plan)

• First, you need to locate and open the Audio Recorder app.
• First, swipe up on the screen... and Then, tap on the “Audio Recorder” app icon. (Re-

introduced specificity)
• To start recording, tap the record button. Ensure...
• After opening the app, tap the white circular button...
• When you’re ready to stop..., tap the white square button... (Restored UI details for

grounding)
• (Verification and file type steps from K1

G)
• Before typing the filename, to delete any existing content, you MUST long press the

backspace key... (Critical step re-introduced as mandatory)
• Type [FILENAME] into the designated input field...
• Tap the “Save” button to finalize...

This final knowledge base, K2
G, is superior to its predecessors: it is general enough to handle dif-

ferent task parameters (like K1
G) yet specific enough to execute robustly and avoid common pitfalls

(like K0
G). This demonstrates the effectiveness of the SRLR loop in creating a robust, reusable

knowledge base from minimal initial data.

B.2 LOW-LEVEL EXECUTOR: C-GRPO IMPLEMENTATION

B.2.1 PSEUDOCODE FOR THE C-GRPO ALGORITHM

The C-GRPO algorithm trains the low-level executor (πL) by combining a curriculum learning strat-
egy with the Group Relative Policy Optimization framework. Algorithm 2 provides a high-level
overview of the training process. It begins by initializing the error-decoupled replay buffers based

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2: Curriculum-Guided Group Relative Policy Optimization (C-GRPO)
Input : Initial policy πL(θ), Expert demonstration dataset Dexpert
Output : Trained policy parameters θ

// Phase 1: Initialize Error-Decoupled Replay Buffers
1 Initialize replay buffers Dcon,Dtype,Dparam

2 foreach sample i = (si, âi, T d
i) in Dexpert do

3 Calculate error rates ηtype(i), ηparam(i) with the initial policy πL

4 Assign sample i (along with its error rates) to the corresponding buffer based on thresholds

// Phase 2: Main Training Loop
5 for k ← 1 to Kmax do

// Construct a balanced mini-batch
6 Sample mini-batch B from buffers Dcon,Dtype,Dparam according to ratios {β}

// Augment each sample with Dynamic Demonstration Injection
7 foreach sample i = (si, âi, T d

i , η...) in B do
8 di ← ηtype(i) + ηparam(i) // Calculate sample difficulty
9 li ← |T d

i | · σ(k) · fgate(di) // Calculate injected prefix length
10 ci ← GetPrefix(T d

i , li)⊕ si // Form augmented context

// Perform C-GRPO update on the augmented batch
11 Compute loss JC-GRPO(θ; {ci}) // Generate rollouts, compute rewards/advantages
12 θ ← θ − α∇θJC-GRPO(θ)

13 return θ

on the initial policy’s performance. It then enters a main training loop where balanced mini-batches
are constructed, augmented with dynamic demonstration prefixes, and used for the policy update,
effectively guiding the agent towards acquiring robust procedural skills.

B.2.2 TRAINING DATA CONSTRUCTION

The training dataset for the low-level executor, πL, was constructed from the 116 high-quality,
multi-step expert demonstration trajectories sourced from the AndroidWorld benchmark. To adapt
this data for training a single-step action policy, we performed a meticulous preprocessing pipeline.

Processing Pipeline. First, each trajectory was decomposed into a sequence of single-step state-
action pairs. Second, every pair underwent a manual verification process to ensure its quality and
correctness. We filtered out any steps that were ambiguous or erroneous, such as actions that resulted
in no observable change on the screen or where the natural language instruction did not precisely
match the recorded atomic action. This rigorous cleaning process yielded a final dataset of 606
high-quality samples.

Data Distribution. The dataset encompasses a wide variety of UI interactions across the 20 ap-
plications in AndroidWorld. Critically, the distribution of action types is naturally imbalanced,
with common actions like click appearing far more frequently than less common but equally im-
portant actions such as long press and swipe. This imbalance underscores the need for the
error-decoupled replay balancing mechanism in our C-GRPO algorithm.

Data Format. Each sample was serialized into a JSON object, paired with its corresponding
screenshot. The JSON structure is designed to be compatible with standard VLM training frame-
works. An example is shown in Figure 9. The keys are defined as follows:

• id: A unique identifier for the data sample.
• task: The high-level goal of the entire trajectory.
• conversations: A list containing the human-like instruction (the sub-goal for the current

step) and the ground-truth tool call from the GPT-like model (the expert action).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• image: The file path to the screenshot taken just before the action.

Figure 9: An example of a single training data sample in JSON format.

Training Sample Example

{
"id": "action_MarkorMoveNote_step_0_20250825_164306",
"task": "In Markor, move the note 8zum_friendly_penguin.txt

from WorkProjects to CodeSnippets.",
"conversations": [

{
"from": "human",
"value": "<image>\nSwipe up on the screen to locate

the Markor app in the app drawer."
},
{

"from": "gpt",
"value": "<tool_call>"arguments\": {"action": "swipe",

"coordinate": [546, 2000],
"coordinate2": [546, 800]}}\n
</tool_call>"

}
],
"image": "images/screenshot_20250825_MarkorMoveNote_0000.png"

}

B.2.3 HYPERPARAMETER SETTINGS

Our experimental setup involves distinct configurations for the high-level planner and the low-level
executor. The planner operates in a training-free manner, guided by the hyperparameters of the
SRLR loop. The executor is trained via our C-GRPO algorithm, which we implemented by adapting
the GRPOTrainer framework from VLM-R12 (Shen et al., 2025). All key hyperparameters for
each component, along with the training infrastructure details, are consolidated in Table 5.

2https://github.com/om-ai-lab/VLM-R1

22

https://github.com/om-ai-lab/VLM-R1

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Comprehensive list of hyperparameters for K²-Agent.
Component Hyperparameter Value

High-Level Planner (πH)
MAX ITER Max revision cycles per task 10
SUCCESS THRESH Consecutive successes to stop 3

Low-Level Executor (πL)
Base Learning Rate Learning rate for policy 1× 10−6

Epoch Count Number of training epochs 2
Per-GPU Batch Size Samples per GPU during training 2
Generations per Input (G) Number of rollouts per sample 8
Gradient Accumulation Steps Steps to accumulate gradients 2
KL Weight (β) Weight for KL penalty 0.04
Clipping Ratio (ϵ) GRPO clipping ratio 0.2
Reward Weights (λfmt, λcontent) Weights for format/content reward {1.0, 1.0}

C-GRPO Curriculum Strategy
Buffer Ratios (βcon, βtype, βparam) Sampling ratios for replay pools {0.5, 0.25, 0.25}
Injection Temp (T) Temperature for difficulty gating 0.5
Max Training Steps (Kmax) Total steps for annealing scheduler 1000

Model and Training Infrastructure
High-Level Model (πH) VLM for planner Qwen2.5-VL-72B
Low-Level Model (πL) VLM for executor Qwen2.5-VL-7B
Max Input Tokens Context length limit 1024
Max Output Tokens Generation length limit 256
Optimizer Precision Mixed-precision training type bfloat16
Hardware GPUs used for training 8 x NVIDIA A100 (80GB)

All experiments are carried out on a cluster of eight NVIDIA A100 GPUs with 80 GB memory
each, and a complete training pass requires about eight hours. The software environment includes
flash attn 2.8.3, torch 2.8.0, transformers 4.49.0, and trl 0.17.0, which together enable
efficient use of FlashAttention and smooth integration with the GRPOTrainer workflow.

C EXTENDED DISCUSSION AND COMPARATIVE ANALYSIS

This section elaborates on the distinctions between K2-Agent and other prominent exploration or
hybrid frameworks, specifically discussing the applicability of Hindsight Experience Replay (HER)
Andrychowicz et al. (2017) and contrasting our architecture with ReAct Yao et al. (2022), Voyager
Wang et al. (2023), and RPA systems.

C.1 INAPPLICABILITY OF HINDSIGHT EXPERIENCE REPLAY (HER)

While HER (Andrychowicz et al., 2017) is a powerful exploration technique for goal-conditioned
RL, it relies on the assumption that any visited state can be re-labeled as a valid alternative goal. This
assumption fundamentally conflicts with our vision-based, instruction-following setting. First, our
”goals” are natural language instructions (e.g., ”Open Settings”), while states are pixel-level screen-
shots; there is no trivial mapping to convert an arbitrary intermediate screen back into a high-level
semantic instruction. Second, unlike robotic manipulation where reaching any coordinate is phys-
ically valid, many intermediate GUI states (e.g., loading screens or partial lists) do not correspond
to meaningful user tasks, making goal re-labeling semantically undefined. Consequently, instead of
goal re-labeling, we employ Dynamic Demonstration Injection as a domain-adapted curriculum
to bootstrap exploration in this sparse-reward environment.

C.2 COMPARISON WITH ALTERNATIVE HYBRID ARCHITECTURES

K2-Agent represents a distinct evolution from existing “reasoning + acting” frameworks. (1) vs.
ReAct: Our “No Hierarchy” baseline (Table 4) mirrors a ReAct-style setup where a monolithic
policy handles both reasoning and acting. The significant performance gap (35.3% vs. 76.1%)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

confirms that explicitly decoupling “know-what” from “know-how” is critical for preventing cog-
nitive drift in long-horizon GUI tasks. (2) vs. Voyager: While systems like Voyager evolve skills
as executable code over structured APIs, such stable interfaces are unavailable in vision-only mo-
bile control. K2-Agent instead evolves skills as parametric neural policies via C-GRPO, enabling
operation in pixel-based environments where code generation is inapplicable. (3) vs. RPA: Un-
like Classical Robotic Process Automation (RPA) which relies on brittle, static scripts, K2-Agent
is data-driven. Its SRLR loop adaptively refines knowledge, and its executor generalizes zero-shot
to unseen apps and platforms (as evidenced by AitW and ScreenSpot-v2 results), offering a robust
alternative to fixed automation pipelines.

D EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

D.1 BENCHMARK AND EVALUATION DETAILS

D.1.1 ENVIRONMENTS DETAILS

Environment. Our primary evaluation platform is AndroidWorld (Rawles et al., 2024), a stan-
dardized benchmark that operates on a live Android emulator. It features 116 hand-crafted tasks
distributed across 20 diverse applications. Crucially, to test for generalization and prevent solution
memorization, each task is dynamically instantiated with randomized parameters for every episode.
The tasks span a wide range of complexities, from easy operations to long-horizon procedures. Ta-
ble 6 provides a detailed breakdown of the applications and their corresponding task counts.

Observation Space. Our agent interacts with an Android Virtual Device (AVD) configured to em-
ulate a Pixel 6 running Android Tiramisu (API Level 33), consistent with the standard setup for the
AndroidWorld benchmark. We adopt a vision-centric approach where the agent’s perception relies
solely on raw visual input. The state representation at each step t is a multimodal input comprising:

• Screenshot: An RGB image of the current screen with a resolution of 2400× 1080 pixels. We do
not use any underlying structural information, such as the accessibility tree (A11y tree) or view
hierarchy XML, making the task more reliant on the model’s visual understanding.

• Task Goal: A natural language string describing the overall objective, for example, “Record an
audio clip using Audio Recorder app and save it.”

• History: The sequence of past actions taken within the episode. This historical context is provided
exclusively to the high-level planner (πH) to support multi-step reasoning and error analysis in the
SRLR loop. The low-level executor (πL) operates without this history, focusing only on executing
the current subgoal based on the present visual state.

Action Space. To facilitate robust and precise interaction with the mobile device environment, we
define a structured action space for the low-level executor. Inspired by function-calling APIs, this de-
sign decouples the agent’s intent into discrete action types and their corresponding parameters. This
approach simplifies the learning task for the procedural model, allowing it to focus on grounding
high-level subgoals to specific, executable operations. Table 7 provides a comprehensive summary
of each action, its parameters, and its operational description within our framework.

Reward Design. Our reward design distinguishes between the training-free high-level planner and
the learning-based low-level executor. The high-level planner, πH , does not optimize its parameters
via reward signals; instead, it uses the sparse, binary task-completion feedback from the environment
solely to trigger its SRLR self-evolution loop.

The training of the low-level executor, πL, is guided by a dense, step-wise composite reward signal
Rt. This signal is designed to provide fine-grained feedback on the quality of the generated actions
and is composed of two key components: a format reward and a content reward.

Format Reward (rfmt). This reward component ensures that the model’s output strictly adheres to
our predefined tool-calling schema. An action can only be parsed and executed by the environment
if it is formatted correctly. We define this as a binary indicator:

rfmt(ot) = 1 {ot correctly matches the <tool call>{...}</tool call> schema} ,
where ot is the raw text output generated by the model at step t. A reward of 1 is given for a valid
format, and 0 otherwise.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Overview of the 20 applications and the number of associated tasks in the Android-
World(Rawles et al., 2024). The description for each app highlights its core functionality.
Application Description # Tasks

Simple Calendar Pro A calendar app for creating, deleting, and man-
aging events and appointments.

17

Settings The Android system settings app for managing
device settings such as Bluetooth, Wi-Fi, and
brightness.

15

Markor A note-taking app for creating, editing, deleting,
and managing notes and folders.

14

Broccoli - Recipe App A recipe management app for adding, deleting,
and organizing recipes.

13

Pro Expense An expense tracking app for adding, deleting,
and managing expenses.

9

Simple SMS Messenger An SMS app for sending, replying to, and re-
sending text messages.

7

OpenTracks A sport tracking app for recording and analyz-
ing activities, durations, and distances.

6

Tasks A task management app for tracking tasks, due
dates, and priorities.

6

Clock An app with stopwatch and timer functionality. 4

Joplin A note-taking app. 4

Retro Music A music player app. 4

Simple Gallery Pro An app for viewing images. 4

Camera An app for taking photos and videos. 3

Chrome A web browser app. 3

Contacts An app for managing contact information. 3

OsmAnd A maps and navigation app with support for
adding location markers, favorites, and saving
tracks.

3

VLC A media player app for playing media files. 3

Audio Recorder An app for recording and saving audio clips. 2

Files A file manager app for the Android filesystem,
used for deleting and moving files.

2

Simple Draw Pro A drawing app for creating and saving draw-
ings.

1

Content Reward (rcontent). Given a correctly formatted output, this component evaluates the oper-
ational correctness of the action at by comparing it to the ground-truth expert action ât. The reward
assesses both the chosen action type (e.g., click vs. swipe) and the precision of its parameters
(e.g., coordinates). The content reward is defined as:

rcontent(at, ât) = 1

{
type(at) = type(ât) ∧
∥param(at)− param(ât)∥ < ϵ

}
,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: The structured action space of K²-Agent. Each action is defined as a function call with
specific arguments to control the mobile device.

Action Description Arguments
click Performs a standard, short tap on a specific

screen location. Used for activating buttons,
selecting items, or placing cursor focus.

coordinate

long press Executes a sustained press at a given coordi-
nate. Essential for tasks like selecting text,
opening context menus, or revealing hidden
options.

coordinate

swipe Drags from a starting point to an ending point.
Used for scrolling, navigating pages, or adjust-
ing sliders.

coordinate, coordinate2

type Inputs a character sequence into the currently
focused text field. This action directly injects
text, bypassing the on-screen keyboard.

text

system button Triggers a system-level hardware button com-
mand, such as navigating back or returning to
the home screen.

button

terminate Ends the current task episode, reporting the
final outcome. This signals to the high-level
planner whether the goal was achieved.

status

answer Provides a natural language response. This
action is specifically used for information re-
trieval tasks where the goal is to find and report
information rather than manipulate the UI.

response text

where type(·) returns the action’s type, and param(·) extracts its parameters. For coordinate-based
actions, the norm ∥ · ∥ is the Euclidean distance (L2), while for text-based actions, it corresponds to
an exact string match. The tolerance threshold ϵ is used for coordinate matching.

Total Reward. The final reward for training πL is a weighted combination of the two components:

Rt = λfmt · rfmt(ot) + λcontent · rcontent(at, ât).

In our implementation, we set λfmt = 1.0 and λcontent = 1.0. Empirically, this balanced weight-
ing enables the 7B executor to achieve a favorable trade-off among format compliance, grounding
accuracy, and convergence speed.

D.2 EXTENDED QUANTITATIVE ANALYSIS

D.2.1 ANDROIDWORLD LEADERBOARD SNAPSHOT

We provide here an anonymous snapshot of the official AndroidWorld leaderboard as of August
2025. Figure 10 shows the ranking of our K2-Agent, which achieves a success rate of 76.7%,
placing 1st among all methods that rely solely on raw screenshots and open-source backbones.
For fairness and compliance with the double-blind review process, our submission was made through
an anonymous GitHub repository and contains no identifying information. Competing systems that
leverage additional privileged inputs (e.g., the accessibility tree) or closed-source backbones are also
listed for reference.

D.2.2 DETAILED PERFORMANCE STATISTICS

To provide a granular view of our agent’s performance and facilitate detailed comparisons, Table
8 presents the success/failure outcome for K²-Agent and several key baselines on every one of the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 10: Public leaderboard of AndroidWorld as of August 2025, showing K²-Agent ranked 1st
among all methods using only raw screenshots.

116 tasks in the AndroidWorld benchmark. This table also includes the results from our declarative
knowledge transfer experiments, showing the performance of K²-Agent when its high-level planner
is replaced with Gemini and GPT-4o backbones using the same evolved knowledge base. This allows
for a direct, task-by-task assessment of where different models excel or fall short.

Table 8: Detailed performance comparison on all 116 tasks in AndroidWorld.

Task K
²-A

ge
nt

m
ob

ile
-u

se

K
²-A

ge
nt

(G
em

in
i)

UI
-V

en
us

-7
2B

Dr
oi

dR
un

K
²-A

ge
nt

(G
pt

-4
o)

AudioRecorderRecordAudio ✓ ✓ ✓ ✓ ✓ ✗
AudioRecorder-FileName ✓ ✓ ✓ ✗ ✓ ✓
BrowserDraw ✗ ✗ ✗ ✗ ✗ ✗
BrowserMaze ✓ ✓ ✗ ✗ ✓ ✗
BrowserMultiply ✓ ✓ ✓ ✗ ✓ ✓
CameraTakePhoto ✓ ✓ ✓ ✓ ✓ ✓
CameraTakeVideo ✓ ✓ ✓ ✓ ✓ ✓
ClockStopWatchPausedVerify ✓ ✓ ✓ ✓ ✓ ✓
ClockStopWatchRunning ✓ ✓ ✓ ✓ ✓ ✓
ClockTimerEntry ✓ ✓ ✓ ✓ ✓ ✗
ContactsAddContact ✓ ✓ ✓ ✓ ✓ ✗
ContactsNewContactDraft ✓ ✓ ✗ ✓ ✓ ✗
ExpenseAddMultiple ✓ ✓ ✓ ✓ ✓ ✓
ExpenseAddMultipleFromGallery ✗ ✓ ✗ ✗ ✗ ✗
ExpenseAddMultipleFromMarkor ✗ ✗ ✗ ✗ ✗ ✗
ExpenseAddSingle ✓ ✓ ✓ ✓ ✓ ✓
ExpenseDeleteDuplicates ✓ ✓ ✗ ✓ ✓ ✓
ExpenseDeleteDuplicates2 ✓ ✓ ✓ ✓ ✓ ✗
ExpenseDeleteMultiple ✓ ✓ ✓ ✓ ✓ ✓
ExpenseDeleteMultiple2 ✓ ✓ ✗ ✓ ✓ ✓

Continued on next page

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8 – continued from previous page

Task K
²-A

ge
nt

m
ob

ile
-u

se

K
²-A

ge
nt

(G
em

in
i)

UI
-V

en
us

-7
2B

Dr
oi

dR
un

K
²-A

ge
nt

(G
pt

-4
o)

ExpenseDeleteSingle ✓ ✓ ✓ ✓ ✓ ✓
FilesDeleteFile ✓ ✓ ✓ ✗ ✓ ✓
FilesMoveFile ✓ ✓ ✓ ✗ ✓ ✓
MarkorAddNoteHeader ✗ ✗ ✗ ✗ ✗ ✗
MarkorChangeNoteContent ✓ ✗ ✓ ✗ ✓ ✓
MarkorCreateFolder ✓ ✓ ✓ ✓ ✓ ✓
MarkorCreateNote ✓ ✓ ✓ ✓ ✓ ✓
MarkorCreateNoteAndSms ✓ ✗ ✓ ✗ ✗ ✗
MarkorCreateNoteFromClipboard ✓ ✓ ✓ ✗ ✗ ✗
MarkorDeleteAllNotes ✓ ✓ ✓ ✓ ✗ ✓
MarkorDeleteNewestNote ✓ ✓ ✗ ✓ ✓ ✗
MarkorDeleteNote ✓ ✓ ✓ ✓ ✓ ✓
MarkorEditNote ✓ ✓ ✓ ✓ ✗ ✗
MarkorMergeNotes ✗ ✗ ✗ ✗ ✗ ✗
MarkorMoveNote ✓ ✓ ✗ ✗ ✗ ✓
MarkorTranscribeReceipt ✗ ✗ ✓ ✗ ✗ ✗
MarkorTranscribeVideo ✗ ✗ ✗ ✗ ✗ ✗
NotesIsTodo ✓ ✓ ✓ ✓ ✓ ✗
NotesMeetingAttendeeCount ✓ ✓ ✓ ✓ ✓ ✓
NotesRecipeIngredientCount ✓ ✓ ✓ ✓ ✗ ✓
NotesTodoItemCount ✓ ✓ ✓ ✓ ✓ ✓
OpenAppTaskEval ✓ ✓ ✓ ✓ ✓ ✓
OsmAndFavorite ✓ ✓ ✓ ✓ ✓ ✓
OsmAndMarker ✓ ✓ ✓ ✗ ✗ ✓
OsmAndTrack ✗ ✗ ✗ ✗ ✗ ✗
RecipeAddMultipleRecipes ✗ ✓ ✓ ✓ ✓ ✗
RecipeAdd-FromImage ✗ ✓ ✗ ✗ ✗ ✗
RecipeAdd-FromMarkor ✗ ✓ ✗ ✗ ✗ ✗
RecipeAdd-FromMarkor2 ✗ ✗ ✗ ✗ ✗ ✗
RecipeAddSingleRecipe ✓ ✓ ✓ ✓ ✓ ✓
RecipeDeleteDuplicateRecipes ✓ ✓ ✗ ✓ ✓ ✓
RecipeDeleteDuplicateRecipes2 ✗ ✗ ✗ ✗ ✗ ✗
RecipeDeleteDuplicateRecipes3 ✗ ✗ ✗ ✗ ✗ ✗
RecipeDeleteMultipleRecipes ✓ ✓ ✓ ✓ ✓ ✓
RecipeDeleteMultiple-Constraint ✗ ✓ ✗ ✓ ✗ ✗
RecipeDelete-WithNoise ✓ ✓ ✓ ✓ ✓ ✓
RecipeDeleteSingleRecipe ✓ ✓ ✓ ✓ ✓ ✓
RecipeDelete-WithNoise ✓ ✓ ✓ ✓ ✓ ✓
RetroCreatePlaylist ✓ ✗ ✓ ✓ ✓ ✓
RetroPlayingQueue ✗ ✗ ✓ ✓ ✓ ✗
RetroPlaylistDuration ✗ ✗ ✗ ✗ ✗ ✗
RetroSavePlaylist ✗ ✗ ✓ ✗ ✓ ✗
SaveCopyOfReceiptTaskEval ✓ ✓ ✓ ✓ ✓ ✓
SimpleCalendarAddOneEvent ✗ ✓ ✗ ✓ ✓ ✓
SimpleCalendar-InTwoWeeks ✗ ✓ ✓ ✗ ✗ ✗
SimpleCalendar-RelativeDay ✓ ✓ ✓ ✓ ✗ ✗
SimpleCalendar-Tomorrow ✓ ✓ ✗ ✗ ✓ ✗
SimpleCalendarAddRepeatingEvent ✓ ✓ ✓ ✓ ✗ ✗
SimpleCalendarAnyEventsOnDate ✓ ✓ ✓ ✓ ✗ ✗
SimpleCalendarDeleteEvents ✓ ✓ ✓ ✓ ✓ ✓
SimpleCalendar-OnRelativeDay ✓ ✓ ✓ ✓ ✓ ✗
SimpleCalendarDeleteOneEvent ✓ ✓ ✓ ✓ ✗ ✓
SimpleCalendarEventOnDateAtTime ✓ ✓ ✓ ✓ ✓ ✓
SimpleCalendarEventsInNextWeek ✓ ✗ ✓ ✗ ✗ ✓
SimpleCalendarEventsInTimeRange ✓ ✓ ✓ ✓ ✓ ✗

Continued on next page

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8 – continued from previous page

Task K
²-A

ge
nt

m
ob

ile
-u

se

K
²-A

ge
nt

(G
em

in
i)

UI
-V

en
us

-7
2B

Dr
oi

dR
un

K
²-A

ge
nt

(G
pt

-4
o)

SimpleCalendarEventsOnDate ✓ ✓ ✓ ✓ ✓ ✓
SimpleCalendarFirst-StartTime ✓ ✓ ✓ ✓ ✓ ✓
SimpleCalendarLocationOfEvent ✗ ✓ ✓ ✓ ✓ ✗
SimpleCalendarNextEvent ✓ ✓ ✓ ✗ ✓ ✓
SimpleCalendar-WithPerson ✓ ✓ ✓ ✓ ✗ ✗
SimpleDrawProCreateDrawing ✓ ✓ ✓ ✗ ✓ ✓
SimpleSmsReply ✓ ✓ ✓ ✓ ✗ ✓
SimpleSmsReplyMostRecent ✓ ✓ ✓ ✓ ✓ ✓
SimpleSmsResend ✓ ✓ ✓ ✓ ✓ ✓
SimpleSmsSend ✓ ✓ ✓ ✓ ✗ ✗
SimpleSmsSendClipboardContent ✓ ✓ ✓ ✓ ✗ ✓
SimpleSmsSendReceivedAddress ✓ ✓ ✓ ✓ ✗ ✓
SportsTracker-ForWeek ✓ ✗ ✓ ✗ ✗ ✗
SportsTrackerActivitiesOnDate ✗ ✗ ✓ ✗ ✗ ✓
SportsTrackerActivityDuration ✓ ✓ ✓ ✓ ✓ ✓
SportsTracker-Activity ✓ ✗ ✓ ✗ ✓ ✗
SportsTrackerTotalDistance ✓ ✗ ✗ ✗ ✓ ✓
SportsTrackerTotalDuration ✗ ✗ ✓ ✓ ✗ ✗
SystemBluetoothTurnOff ✓ ✓ ✓ ✓ ✓ ✓
SystemBluetoothTurnOffVerify ✓ ✓ ✗ ✓ ✓ ✓
SystemBluetoothTurnOn ✓ ✓ ✓ ✓ ✓ ✓
SystemBluetoothTurnOnVerify ✓ ✓ ✓ ✓ ✓ ✓
SystemBrightnessMax ✓ ✓ ✓ ✓ ✓ ✓
SystemBrightnessMaxVerify ✓ ✓ ✓ ✓ ✓ ✓
SystemBrightnessMin ✓ ✓ ✓ ✓ ✓ ✓
SystemBrightnessMinVerify ✓ ✓ ✓ ✓ ✓ ✓
SystemCopyToClipboard ✓ ✓ ✓ ✗ ✗ ✓
SystemWifiTurnOff ✓ ✓ ✓ ✓ ✓ ✓
SystemWifiTurnOffVerify ✓ ✓ ✗ ✓ ✓ ✓
SystemWifiTurnOn ✓ ✓ ✓ ✓ ✓ ✓
SystemWifiTurnOnVerify ✓ ✓ ✓ ✓ ✓ ✓
TasksCompletedTasksForDate ✗ ✗ ✓ ✗ ✗ ✓
TasksDueNextWeek ✗ ✗ ✗ ✗ ✗ ✗
TasksDueOnDate ✓ ✗ ✗ ✓ ✗ ✗
TasksHighPriorityTasks ✓ ✗ ✗ ✓ ✗ ✗
TasksHighPriorityTasksDueOnDate ✓ ✗ ✓ ✗ ✗ ✗
TasksIncompleteTasksOnDate ✓ ✗ ✓ ✓ ✓ ✓
TurnOffWifiAndTurnOnBluetooth ✓ ✓ ✓ ✓ ✓ ✓
TurnOnWifiAndOpenApp ✓ ✓ ✗ ✓ ✓ ✓
VlcCreatePlaylist ✗ ✗ ✗ ✗ ✓ ✗
VlcCreateTwoPlaylists ✗ ✗ ✗ ✗ ✓ ✗

Success Rate (%) 76.7 74.1 72.4 65.9 62.9 58.6

E QUALITATIVE ANALYSIS AND CASE STUDIES

E.1 GENERALIZATION CASE STUDIES

E.1.1 DECLARATIVE KNOWLEDGE TRANSFER ACROSS BACKBONES

To validate the model-agnostic nature of the declarative knowledge (KG), we transferred the final
knowledge bases evolved by the Qwen2.5-VL-72B planner to new planners using Gemini-2.5-Pro
and GPT-4o backbones. The transfer was conducted in a zero-shot setting, with the low-level ex-
ecutor held constant. The detailed per-task results are presented in Table 8. The aggregate success

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

rates—72.4% for the Gemini-based planner and 58.6% for the GPT-4o-based planner—confirm
that the declarative knowledge is fundamentally generalizable.

Our analysis reveals three further findings. First, the knowledge demonstrates essential portabil-
ity; as shown in Figure 5(a), the core strategies distilled by SRLR are explicit and robust enough
to improve performance across different model families. Second, an adaptation cost is evident in
the performance gap between the original and new backbones. This is expected, as the linguis-
tic phrasing and strategic details of the knowledge base were co-adapted through interaction with
the Qwen model, and new models may incur a performance penalty when interpreting this tai-
lored knowledge. Most notably, we observed the emergence of new capabilities. On several tasks
where the original Qwen planner failed, such as SimpleCalendarLocationOfEvent and
SportsTrackerTotalDuration, the planners using Gemini or GPT-4o succeeded with the
exact same knowledge base. This highlights a powerful synergy where the transferred knowledge
provides the correct high-level plan, and the superior intrinsic capabilities of the new backbone
model enable it to successfully execute previously intractable steps.

E.1.2 PROCEDURAL SKILL TRANSFER ACROSS BENCHMARKS

To comprehensively evaluate the generalization of learned procedural skills, we test the low-level
executor, trained on AndroidWorld, on two distinct benchmarks in a zero-shot setting. We first use
ScreenSpot-v2 to assess its fundamental, single-step grounding capabilities across platforms, and
then use Android-in-the-Wild (AitW) to evaluate its applicability in complex, long-horizon tasks.

Fundamental Grounding on ScreenSpot-v2. To rigorously assess core GUI grounding capabil-
ities, we conducted a transfer experiment on the complete ScreenSpot-v2 benchmark (Wu et al.,
2024). ScreenSpot-v2 is a reliable standard, containing tasks across three distinct domains: Mobile
(iOS/Android), Desktop (Windows/macOS), and Web. The crucial aspect of this test is the do-
main mismatch: our executor, trained exclusively on AndroidWorld (mobile) data, was evaluated
without any fine-tuning. This tests the hypothesis that the learned skills are fundamental enough to
transfer not only to unseen mobile apps but also to entirely different operating paradigms.

As detailed in Table 9, K²-Agent’s executor achieves a remarkable 91.3% overall accuracy. This
strong performance, despite the challenging cross-platform setting, validates our core hypothe-
sis. By decoupling and focusing on procedural knowledge, the executor learns a robust, platform-
agnostic visual grounding model rather than memorizing platform-specific patterns. This powerful
generalization demonstrates that the executor’s “muscle memory” is fundamentally about under-
standing visual language, making it a highly transferable component.

Long-Horizon Application on Android-in-the-Wild. Beyond single-step grounding, we also
evaluated whether the learned procedural skills can be effectively chained to solve complex, multi-
step tasks. We deployed the same executor, again without any fine-tuning, on the long-horizon tasks
of the Android-in-the-Wild benchmark. For this experiment, the high-level planner was boot-
strapped with a single expert demonstration for each task subset to rapidly generate a high-level
plan.

As shown in Table 2, K2-Agent achieves state-of-the-art performance, with success rates of 86.5%
on AitW-General and 68.3% on AitW-WebShopping. This significantly surpasses prior methods
based on SFT, RL, or closed-source models, confirming that the robust procedural skills learned on
AndroidWorld serve as a strong foundation for solving complex, unseen tasks.

E.2 TRAJECTORY VISUALIZATIONS

To provide a more intuitive understanding of our agent’s behavior, this section presents visual case
studies of both successful and failed trajectories.

E.2.1 SUCCESSFUL TRAJECTORY ON A COMPLEX TASK

Figure 11 illustrates complete steps from a successful execution of the complex, multi-app task
MarkorCreateNoteAndSms. This trajectory demonstrates the effective synergy between the
high-level planner and the low-level executor. At each stage, the planner, guided by its evolved

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 9: Zero-shot performance of the K²-Agent executor on the ScreenSpot-v2 benchmark, com-
pared to other state-of-the-art GUI grounding models. Our executor demonstrates competitive per-
formance, highlighting the strong generalization of its learned procedural skills.

Mobile Desktop Web
Agent Model Text Icon Text Icon Text Icon Overall
Operator (OpenAI, 2025) 47.3 41.5 90.2 80.3 92.8 84.3 70.5
Claude 3.7 Sonnet (Anthropic, 2025b) - - - - - - 87.6
UI-TARS-1.5 (Qin et al., 2025) - - - - - - 94.2
Seed-1.5-VL (Guo et al., 2025) - - - - - - 95.2
SeeClick (Cheng et al., 2024) 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OmniParser-v2 (Yu et al., 2025) 95.5 74.6 92.3 60.9 88.0 59.6 80.7
Qwen2.5-VL-3B (Bai et al., 2025) 93.4 73.5 88.1 58.6 88.0 71.4 80.9
UI-TARS-2B (Qin et al., 2025) 95.2 79.1 90.7 68.6 87.2 78.3 84.7
OS-Atlas-Base-4B (Wu et al., 2024) 95.2 75.8 90.7 63.6 90.6 77.3 85.1
OS-Atlas-Base-7B (Wu et al., 2024) 96.2 83.4 89.7 69.3 94.0 79.8 87.1
JEDI-3B (Xie et al., 2025) 96.6 81.5 96.9 78.6 88.5 83.7 88.6
Qwen2.5-VL-7B (Bai et al., 2025) 97.6 87.2 90.2 74.2 93.2 81.3 88.8
UI-TARS-72B (Qin et al., 2025) 94.8 86.3 91.2 87.9 91.5 87.7 90.3
UI-TARS-7B (Qin et al., 2025) 96.9 89.1 95.4 85.0 93.6 85.2 91.6
JEDI-7B (Xie et al., 2025) 96.9 87.2 95.9 87.9 94.4 84.2 91.7
GUI-Owl-7B (Ye et al., 2025) 99.0 92.4 96.9 85.0 93.6 85.2 92.8
GUI-Owl-32B (Ye et al., 2025) 98.6 90.0 97.9 87.8 94.4 86.7 93.2
UI-Venus-Ground-7B (Gu et al., 2025) 99.0 90.0 97.0 90.7 96.2 88.7 94.1
UI-Venus-Ground-72B (Gu et al., 2025) 99.7 93.8 95.9 90.0 96.2 92.6 95.3
K²-Agent (Executor only) 96.9 80.6 95.9 83.6 95.3 90.6 91.3

knowledge base (KG), issues a clear and logical sub-goal (knowing what). The C-GRPO-trained ex-
ecutor then successfully grounds this sub-goal into a precise, low-level action on the screen (knowing
how), seamlessly navigating between creating a note in one app and sharing its content via another.

E.2.2 ANALYSIS OF GENERALIZATION AND FAILURE MODES

Our framework demonstrates powerful dual-generalization capabilities, where both high-level
declarative knowledge and low-level procedural skills transfer effectively to unseen tasks.

Declarative Knowledge Generalization. We evaluated the planner’s ability to adapt its declara-
tive knowledge to novel tasks in the AitW benchmark. For each new task type, the SRLR loop was
bootstrapped from a single demonstration, allowing the planner to rapidly form a new strategy. Fig-
ure 13 showcases the agent successfully completing two distinct, unseen tasks. This demonstrates
that the SRLR self-evolution process produces robust, high-level strategies that are not mere scripts
but generalizable plans that can be effectively applied to solve problems in new applications.

Procedural Skill Generalization. Figure 14 provides a visual testament to the executor’s proce-
dural generalization. Though trained only on AndroidWorld, the executor correctly identifies target
UI elements on unseen mobile, desktop, and web interfaces from the ScreenSpot-v2 benchmark.
This confirms that C-GRPO training develops a fundamental, platform-agnostic visual grounding
capability rather than overfitting to specific app UIs.

Failure Analysis. Our analysis of failure cases reveals a consistent pattern: the majority of re-
maining errors do not stem from flaws in K²-Agent’s framework (i.e., incorrect high-level plans or
imprecise low-level actions), but from the intrinsic limitations of the current backbone VLM. Figure
12 visualizes a typical example from the RetroCreatePlaylist task, where the agent cor-
rectly identifies all songs but fails to add them in the strictly specified order. Other similar failures,
such as those in ExpenseAddMultipleFromMarkor (requiring multi-document reasoning)
and MarkorMergeNotes (requiring long-context text handling), also point to challenges in com-
plex instruction following and long-horizon reasoning. These tasks represent the current frontier
for foundation models, and we anticipate that as backbone models improve, these failures can be
overcome without changes to the K²-Agent framework itself.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 11: Successful execution of the complex, multi-app task MarkorCreateNoteAndSms.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 12: A representative failure case from the RetroCreatePlaylist task.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 13: Declarative knowledge generalization on Android-in-the-Wild (AitW).

Figure 14: Zero-shot procedural skill transfer to the ScreenSpot-v2 benchmark.

34

	Introduction
	Related work
	training-free agents
	learning-based agent

	Preliminaries
	Method
	Overview of the K²-Agent Framework
	High-Level Planner: Evolving Declarative Knowledge via SRLR Loop
	Summarize
	Reflect
	Locate
	Revise

	Low-level Executor: Learning Procedural Skills with C-GRPO
	Error-Decoupled Replay Balancing
	Dynamic Demonstration Injection
	C-GRPO Objective

	Training and Implementation Details

	Experimental Evaluation
	Performance Against Baselines
	Model Generalization
	Ablation Studies
	Parameter Sensitivity

	Conclusion
	Cognitive Science Foundations of K²-Agent
	Framework and Algorithm Details
	High-Level Planner: The SRLR Loop Implementation
	Pseudocode for the SRLR Iteration
	Demonstration Data Construction
	Implementation Details of SRLR Modules
	Analysis of Induced Declarative Knowledge and Reflection Robustness
	Evolution of the Knowledge Base (KG)

	Low-Level Executor: C-GRPO Implementation
	Pseudocode for the C-GRPO Algorithm
	Training Data Construction
	Hyperparameter Settings

	Extended Discussion and Comparative Analysis
	Inapplicability of Hindsight Experience Replay (HER)
	Comparison with Alternative Hybrid Architectures

	Experimental Setup and Additional Results
	Benchmark and Evaluation Details
	Environments Details

	Extended Quantitative Analysis
	AndroidWorld Leaderboard Snapshot
	Detailed Performance Statistics

	Qualitative Analysis and Case Studies
	Generalization Case Studies
	Declarative Knowledge Transfer Across Backbones
	Procedural Skill Transfer Across Benchmarks

	Trajectory Visualizations
	Successful Trajectory on a Complex Task
	Analysis of Generalization and Failure Modes

