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ABSTRACT

Existing mobile device control agents often perform poorly when solving com-
plex tasks requiring long-horizon planning and precise operations, typically due
to a lack of relevant task experience or unfamiliarity with skill execution. We
propose K2-Agent, a hierarchical framework that models human-like cogni-
tion by separating and co-evolving declarative (“knowing what) and procedu-
ral (“knowing how”) knowledge for planning and execution. K2-Agent’s high
level reasoner is bootstrapped from a single demonstration per task and runs a
Summarize-Reflect-Locate—Revise (SRLR) loop to distill and iteratively refine
task-level declarative knowledge through self-evolution. The low-level executor
is trained with our curriculum-guided Group Relative Policy Optimization (C-
GRPO), which (i) constructs a balanced sample pool using decoupled reward sig-
nals and (ii) employs dynamic demonstration injection to guide the model in au-
tonomously generating successful trajectories for training. On the challenging
AndroidWorld benchmark, K2-Agent achieves a new state of the art with 76.1%
success rate, ranking lstE| among all methods using only raw screenshots and
open-source backbones. Furthermore, K2-Agent shows powerful dual general-
ization: its high-level declarative knowledge transfers across diverse base models,
while its low-level procedural skills achieve competitive performance on unseen
tasks in ScreenSpot-v2 and Android-in-the-Wild (AitW).
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Figure 1: K2-Agent’s co-evolutionary learning curve on AndroidWorld. The main curve shows
the agent’s success rate steadily improving. Ablations (lower curves) confirm the contribution of

key components, and subplots below illustrate the expanding mastery over new apps and tasks.

'Ranking as of August 2025; an anonymous snapshot of the leaderboard is provided in Appendix
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1 INTRODUCTION

Human intelligence relies on a fundamental distinction between two types of knowledge (Squire,
2009): declarative knowledge (knowing what) and procedural knowledge (knowing how). Declar-
ative knowledge is symbolic and explicit; it can be articulated, summarized from one or a few
demonstrations, and refined through recall. In contrast, procedural knowledge manifests as exe-
cutable skills (e.g., cycling, swimming). It is often implicit, difficult to verbalize, and acquired
through repeated practice to form “muscle memory”. These two knowledge systems, believed to
be supported by distinct cognitive circuits (Squire & Knowlton, [1995)), are co-activated in complex
tasks—one to decide what to do, the other to determine how to do it.

This division of labor is especially critical for long-horizon mobile device control. Recall when you
performed a multi-step task in an unfamiliar app. You need declarative knowledge about the task to
guide the generation of operational intent. For example, you need to know in advance that clicking
the “trash icon” means delete. At the same time, you need procedural knowledge to accurately
translate that intent into atomic actions such as clicking, swiping, and text input.

Existing methods for mobile device control (L1 et al.| 2024])) largely fall into two lines. (i) Training-
free agents (Zhang et al. 2025; |Wang et al) [2024b; |Agashe et all [2024; |2025). These agents
carefully design workflows and encode task-related knowledge into prompts or in-context exam-
ples. Development is relatively cheap and edits are quick, but their performance is capped by the
foundation models, which are often closed-source and cannot be fine-tuned to fix domain-specific,
persistent errors. (ii) Learning-based agents (Hong et al.l 2024} [Pan et al., |2024; Zhang & Zhang,
2023; |Bai et al., 2024; [Wang et al.,|2024c). These agents train parametric policies with supervised
fine-tuning (SFT) or reinforcement learning (RL) on large labeled datasets. While stable on in-
distribution actions, they struggle with long-horizon credit assignment and poor task generalization.

On the decision paradigm, recent work increasingly separates reasoning from action (Qin et al.,
2025; |Gu et al.,[2025)), or adopts an explicit planner—executor hierarchy (Agashe et al.| [2024}2025).
In practice, this design often beats flat policies. However, most hierarchies remain only a structural
split. Either both layers are training-free or both are trained with SFT/RL. This results in systems re-
lying either on extensive manual design or on massive amounts of data and computational resources
(typically requiring 10k+ samples and hundreds of GPUs) (Qin et al} 2025} |Gu et al., [2025). Our
key insight is that know-what and know-how naturally match the hierarchical design; they
should follow different update rules and co-evolve through continuous interaction.

To this end, we propose K2-Agent, a hierarchical planner—executor framework for mobile device
control. It explicitly decouples and co-evolves declarative (know-what) and procedural (know-how)
capabilities, while connecting high-level planning and low-level execution through clear single-step
sub-goals. The high-level planner starts from one demonstration per task and runs a Summa-
rize—Reflect-Locate—Revise (SRLR) loop that keeps an updatable task memory. Using execution
feedback collected in the loop, SRLR locates failure points and revises the knowledge so the plan
improves over time. The low-level executor is trained using our curriculum-guided Group Relative
Policy Optimization (C-GRPO). The method first decouples task execution rewards across action-
type and parameter dimensions, routing samples into different experience pools by error type for
proportional sampling. It then introduces a dynamic demonstration injection that prepends variable-
length expert prefixes to the model’s prompts, conditioned on sample difficulty and training stage.
This guides the model to autonomously generate successful trajectories for GRPO-style training,
thereby building a reusable skill library. These two evolutionary processes are mutually coupled,
forming a closed-loop system where “thinking” and “practice” reinforce each other.

On the challenging AndroidWorld benchmark (Rawles et al., 2024), K2-Agent sets a new SOTA
with a 76.1% success rate. This surpasses all leading learning-based models (Qin et al., |[2025; |Gu
et al.l 2025} [Ye et all 2025) and rivals top closed-source models (FinalRunl 2025) that leverage
additional inputs from the accessibility (A11y) tree. More importantly, K*-Agent attains this with
high efficiency: the planner requires only one demonstration per task, and the executor is trained
on a single server equipped with 8x NVIDIA A100 80GB GPUs. Moreover, K2-Agent exhibits
dual generalization that supports our core hypothesis: (1) Declarative knowledge transfer—the high-
level planner’s learned knowledge transfers across backbone models; and (2) Procedural knowledge
transfer—the executor’s learned skills generalize to entirely novel tasks on Android-in-the-Wild
(AitW) (Rawles et al.,|2023)) and ScreenSpot-v2 (Wu et al., 2024).
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Figure 2: Overview of the K2-Agent. Top: The SRLR loop where declarative knowledge (knowing
what) is iteratively improved using feedback. Bottom: The skill acquisition process where proce-
dural knowledge (knowing how) is learned via C-GRPO, bootstrapped from a single demonstration.

To summarize, our contributions are as follows:

* We introduce K2-Agent, a hierarchical framework that enables closed-loop co-evolution of
declarative and procedural knowledge.

* We design a single-demonstration—initiated SRLR cycle that continuously incorporates execu-
tion feedback to refine a task knowledge base.

* We propose a curriculum-guided RL algorithm (C-GRPO) that efficiently acquires procedural
skills via error-decoupled experience-pool balancing and dynamic demonstration injection.

* We provide extensive evidence of dual generalization—declarative knowledge across back-
bones and procedural skills across benchmarks—highlighting the critical role of co-evolution
in enhancing generalization.

2 RELATED WORK

2.1 TRAINING-FREE AGENTS

Training-free agents leverage the in-context learning capabilities of large vision-language models
(VLMEs) to solve mobile control tasks via carefully engineered prompts and reasoning loops (Zhang
et al.;, 2025; Wang et al., [2024b). Recent works have explored various mechanisms, such as building
explicit knowledge bases (Zhang et al.,|2025)), incorporating reflection steps (Wang et al., 2024b)), or
adopting multi-agent (Wang et al.||2024a) and hierarchical architectures (Agashe et al.,|2024; |2025;
Wang et al., 2025b). While these methods excel at leveraging the fixed knowledge of powerful
foundation models, their self-improvement mechanisms are typically non-parametric (e.g., memory
editing). In contrast, K2-Agent introduces a hybrid approach: it uses a non-parametric SRLR loop to
evolve declarative knowledge while simultaneously fine-tuning a dedicated executor with C-GRPO
to parametrically improve its procedural skills through interaction.

2.2 LEARNING-BASED AGENT

Learning-based agents fine-tune models on domain-specific data to adapt them for mobile control.
The field has rapidly progressed from initial SFT on GUI understanding (Hong et al., [2024; Zhang
& Zhang, [2023)) to RL for interactive decision-making (Bai et al., [2024; Wang et al.| [2024c)). With
the advent of advanced policy optimization techniques like DPO (Rafailov et al.| 2023)) and GRPO
(Shao et al., 2024), recent models have achieved significant gains in grounding and task success by
post-training strong open-source VLMs (Qin et al.| 2025} |Lu et al., 2025} [Luo et al.;, 2025} Liu et al.|
2025b; |Gu et al., 2025). However, these methods typically train a single, monolithic policy, which
conflates the learning of high-level task strategy (“knowing what”) and low-level action execution
(“knowing how”). K2-Agent’s core distinction is the explicit decoupling of these two learning pro-
cesses. By using different, specialized update rules for declarative and procedural knowledge, our
framework enables more targeted, data-efficient, and effective learning for both.
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3 PRELIMINARIES

We model mobile device control as a finite-horizon Markov Decision Process (MDP) M =
(S, A, P,R,7). A state s; € S is a multimodal representation s; = (o0¢, g), where o is the current
visual observation of the screen (we use only raw screenshots, without any extra Ul metadata such
as the accessibility tree) and g is the task instruction. The action space .4 consists of parameterized
primitive UI operations, such as click, long-press, swipe, and type. The transition func-
tion P(s¢41 | S, a¢) defines the probability of moving to s;1; after taking a; in s;. The reward
function R provides environmental feedback. This feedback can be sparse trajectory-level rewards,
indicating overall task success; or dense step-level rewards, guiding fine-grained action generation.
The discount factor is 7. The agent’s objective is to learn a policy m(a; | s;) that maximizes the

expected return: J(7) = E,or {Z?:o vtrt} .

4 METHOD

We propose K2-Agent, a hierarchical framework that mirrors human cognition by separating and co-
evolving declarative (“knowing what”) and procedural (“knowing how”) knowledge. Section
outlines our design. Section [{.2]details the high-level planner that evolves declarative knowledge
through a SRLR self-improvement loop. Section introduces C-GRPO for learning procedural
skills in the low-level executor. Section [{.4]provides implementation and training details.

4.1 OVERVIEW OF THE K2-AGENT FRAMEWORK

As shown in Figure [2] K?-Agent features a two-layer Planner-Executor architecture, where each
layer is initialized by a VLM. The high-level planner, 7z, operates in a training-free mode to main-
tain a declarative knowledge base, K, which is iteratively refined via our SRLR loop. Rather than
acting directly on the environment, 7z consults K to decompose the global task g into a sequence
of immediate sub-goals, z;. The low-level executor, 7y, is a trainable policy that acquires procedural
skills via C-GRPO algorithm. It receives the current observation o, and the sub-goal z; from 7,
making decisions in an augmented state s} = (o¢, g, z¢) to produce atomic actions on the device.

The two modules form a closed-loop co-evolution system. Forward communication occurs via the
sub-goals z;. The feedback loop consists of execution outcomes—successes, failures, and error
patterns—from 7;, being used by 7y to revise the knowledge base K. A more accurate Kg
allows 7y to generate more feasible and executable sub-goals, in turn providing 7y, with a more
structured exploration problem and thus more effective learning signals. This creates a synergistic
cycle where improved planning and execution reinforce one another.

4.2 HIGH-LEVEL PLANNER: EVOLVING DECLARATIVE KNOWLEDGE VIA SRLR Loop

The planner, 7, evolves its declarative knowledge base, K, through a four-stage SRLR loop,
illustrated in Figure[3] This self-improvement cycle is initiated by a single expert demonstration and
performed by the VLM-based planner itself. We detail each stage below. Complete implementation
details and a case study of K evolution are provided in Appendix [B.1]

4.2.1 SUMMARIZE

Given a single demonstration trajectory 7¢ = {(s% a?)}Z%) and a task goal g, 7y performs a

one-pass distillation to produce a structured initial task knowledge base K2 (Figure |3} top-left):
K2 = Summarize(Td, g; 9H) . (1)

The knowledge base is represented as a set of rules or a stepwise checklist that captures the core

logic for completing the task, key UI elements, and their functions. It serves as the starting point for
subsequent iterations in the SRLR loop.

4.2.2 REFLECT

During execution, the reflection module is activated upon completing a new trajectory 7¢. Reflec-
tion operates at two granularities:
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Figure 3: An illustration of the SRLR self-evolution loop. (1) Summarize: An initial knowledge
base is automatically distilled from a demonstration. (2) Reflect: The agent analyzes its execution
trace to identify deviations. (3) Locate: The failure’s root cause is pinpointed. (4) Revise: Atomic
operators repair the knowledge base for the next iteration.

Step-level. The planner continuously verifies whether each action’s outcome aligns with the ex-
pected result in K. This allows for the immediate detection of deviations from the plan.

Task-level. If the episode fails, task-level reflection analyzes the entire trajectory to generate a
structured, root-cause explanation for the failure, such as “failed to identify the Rename button”:

M = Reflectiask (T, Kq, g; 0n) . 2)
4.2.3 LOCATE

To enable precise revision, the locate module aligns the executed trajectory 7 ¢ with the task knowl-
edge encoded in K and identifies the first decision point that yields an unexpected outcome:

t* = Locate(T*¢, Kg; 0n) = min{t ‘ Verify(sfH, ai, K¢, t; 0H) = False}. 3)

Here, Verify(-) € {True, False} checks whether executing af in state s§ produces a next state s§,
that matches the expected outcome for critical step ¢ specified by K.

4.2.4 REVISE

Finally, given the failure explanation M “**° and the failure point (t*, Sge ) , the system performs local
surgeries on K using four atomic operators: Add inserts missing steps; Delete removes erroneous
instructions; Update modifies parameters; and Highlight emphasizes critical constraints. These
operations yield a revised version K. (see evolution example in Appendix :

K{ = Revise(Kg, (t*,s§.), M 0p) . 4)
By iterating the SRLR loop, the K improve over time, enabling higher-quality planning.

4.3 LOW-LEVEL EXECUTOR: LEARNING PROCEDURAL SKILLS WITH C-GRPO

Training the low-level executor, 7y, faces two challenges: (i) Sample Imbalance: The training
data is often biased, with common operations (e.g., click) heavily more than rare ones (e.g.,
long-press, swipe). (ii) Inefficient Exploration: In long-horizon tasks, the huge action space
makes it difficult for agents to autonomously discover successful trajectories through trial and error.

To address these issues, we propose Curriculum-Guided Group Relative Policy Optimization (C-
GRPO), an algorithm that efficiently acquires procedural skills via a novel error-decoupled replay
balancing mechanism and a dynamic demonstration injection strategy.
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Figure 4: Our C-GRPO framework, featuring its two main curriculum components: Error-
Decoupled Replay Balancing (left) to construct balanced mini-batches, and Dynamic Demonstration
Injection (center) to provide adaptive guidance for the GRPO update (right).

4.3.1 ERROR-DECOUPLED REPLAY BALANCING

We observe that execution errors at the action level can be decoupled into type errors (e.g., predicting
swipe instead of click) and parameter errors (e.g., a c1ick with inaccurate coordinates). For

any training mput i, the low-level model 7;, generates G candidate actions {a(g )} . Given an
expert action a;, we define a binary reward

r(a, a) = 1|type(a) = type(a) A |coord(a) — coord(a ||2 ] &)

where type(:) denotes the primitive operator (click, long-press, swipe, type), and
coord(-) € R? denotes the action’s spatial parameters.

Using the G candidates, we estimate two error rates per input z:

ntype - é Z type 7é type(az)] (6)

nparam

Q \

G
Z [type(a(g) = type(a;) A Hcoord( (g)) — coord(a; H2 ] @)

Based on 7ype(¢) and nparam (¢), each input is dynamically assigned to one of three replay buffers:
the conventional pool Doy, the type-exploration pool Diype, and the precision-optimization pool
Dparam. During training, each mini-batch is formed by sampling from these buffers with preset ra-
1108 { Boon, Btype, Pparam }» €nsuring balanced progress on the model’s different weaknesses, leading
to more efficient overall improvement.

4.3.2 DYNAMIC DEMONSTRATION INJECTION

For mobile control agents built on (V)LLMs, the action space effectively spans a vast textual space
grounded to the entire screen. Replay balancing alone cannot make the model reliably discover the
correct action sequence in such a large space, so rewards remain sparse on complex tasks. To guide
exploration, we introduce a dynamic demonstration injection mechanism that prepends a variable
number of atomic expert actions to the input. The injected length [ (in steps) is scheduled by

I = Lp(k,di) = L-0(k) - faue(ds), ®)
where L is the total number of steps in the full demonstration; (k) = max(0, 1 — k/Kpax) is a lin-
ear annealing scheduler that decays with the training step k; feae(d;) = tanh(d;/T) is a difficulty-
gating function controlled by a temperature 7'; and the sample difficulty score d; is the total error
rate, d; = Niype(?) + Mparam (). The actual prefix consists of the first | 1] complete actions.
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Intuitively, this mechanism provides more extensive guidance for samples the model currently finds
difficult, while gradually weaning the model off all demonstrations as training progresses. This
curriculum-based approach greatly increases the probability of generating successful trajectories,
thereby producing denser and higher-quality signals for policy optimization.

4.3.3 C-GRPO OBIJECTIVE

Our final objective integrates these curriculum strategies with the GRPO framework. In each training
step, we construct a balanced mini-batch B and, for each sample ¢ € B, form an augmented context
c using dynamic demonstration injection. The policy is then updated by maximizing the GRPO
objective, where the advantage estimates fl” are derived from group-relative rewards based on the
dense, binary expert-matching signal defined in Equation[5] The objective is:

[o;]

G
181 , o )
Jeareo(05¢) = E(o}6  omy (10) G Z; o ; mln(m,t(e) Ay, clip(ri (0),1 —€,1+¢) Ai,t) ,

9

where the importance ratio r; ;(0) = 3 By optimizing this objective, C-GRPO learns

T Mog(0i,t]c,0i, <t
robust procedural skills with denser and more informative signals.

4.4 TRAINING AND IMPLEMENTATION DETAILS

We use Qwen-2.5-VL-72B as the high-level planner () in the training-free SRLR loop, and the
parameter-efficient Qwen-2.5-VL-7B as the low-level executor (7z), which is post-trained with C-
GRPO. The planner’s knowledge base (K ) is bootstrapped from a single expert demonstration,
which we recorded for each task type through a dedicated data collection pipeline (data collection,
cleaning, and scale are reported in Appendix [B.1.2). For the learning-based executor, the C-GRPO
training set is constructed from demonstration samples collected across all AndroidWorld tasks,
ensuring a strict separation between training and test sets. The executor’s training is guided by a
dense, step-level reward signal composed of a binary format reward (for syntactic correctness) and a
content reward (Equation E], for semantic correctness). Further details on data format, dataset scale,
and reward computation are provided in Appendix [B.2]

To conserve computational resources, the co-evolution of the planner and executor is implemented
via an efficient alternating update mechanism that follows the pattern (SRLRy )" — C-GRPOy,.
We set n = 3 in our experiments, where the planner first refines its knowledge base K over
several iterations before the executor undergoes a single, intensive training phase. All training was
conducted on a single server equipped with 8 x NVIDIA A100 80GB GPUs. A complete list of
hyperparameters used during training is available in Appendix

5 EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate our K2-Agent. This section is organized as follows.
In Section 5.1} we evaluate on the AndroidWorld benchmark and achieve a new state-of-the-art
(SOTA). In Section we study generalization along two axes: transfer of high-level declarative
knowledge across different backbones, and transfer of low-level procedural skills across bench-
marks. In Section[5.3] we present ablations that quantify the contribution of each core component.

5.1 PERFORMANCE AGAINST BASELINES

Environment. We evaluate on AndroidWorld(Rawles et al.| [2024), a widely used benchmark with
116 tasks across 20 apps. Each task is instantiated with randomized parameters per episode, pre-
venting overlap between the training and test splits. Tasks are categorized by difficulty (easy/medi-
um/hard). Human experts achieve about 80% (Rawles et al.||[2024)) average success on this platform.

Baselines. We compare K2-Agent to two families of methods: (1) Training-free: agents that rely
on few-shot capabilities of (V)LLMs (e.g., GPT series (Achiam et al. 2023)), Claude-3.7 Sonnet
(Anthropic| 2025a)), Gemini 2.5 Pro (Comanici et al., 2025)). (2) Learning-based: agents that fine-
tune open-source backbones with domain data via SFT and/or RL.
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Table 1: Comparison of K2-Agent and baselines on AndroidWorld. Our method reports the mean +
std over 3 independent runs.

Type  Agent Base Model Input SR
M3A (Rawles et al.,2024) GPT-4 Turbo Screenshot + Ally 30.6
AndroidGen (Lai et al.|[2025) GPT-o Ally Tree 46.8

Training  Agent S2 (Agashe et al.;[2025) Claude-3.5-Sonnet Screenshot 54.3

free MobileUse (Li et al.,[2025) Qwen2.5-VL-72B Screenshot 62.9
DroidRun (DroidRun, 2025) Gemini-2.5-Pro Screenshot + Ally 63.0
FinalRun (FinalRun, [2025) GPT-5 Screenshot + Ally 76.7
InfiGUI Agent (Liu et al., [2025a) Qwen2-VL-2B Screenshot 9.0
GUI-critic-R1 (Wanyan et al.|[2025) Qwen2.5-VL-2B Screenshot + Ally 27.6
UI-TARS (Qin et al., 2025]) Qwen-2-VL-72B Screenshot 46.6

Learning UI-Venus (Gu et al.|[2025) Qwen2.5-VL-72B Screenshot 65.9

based  Seedl.5-VL (Guo et al.,[2025)) Seed1.5-VL-72B Screenshot + Ally 62.1
Mobile-Agent-v3 (Ye et al..|2025) Qwen-VL based Screenshot 73.3
UI-TARS-2 (Wang et al.}[2025a) Seed-thinking-1.6 Screenshot 73.3
AutoGLM-Mobile (Liu et al.| 2024) AutoGLM-Mobile Screenshot + Ally 75.8

Ours K>-Agent Qwen2.5-VL (72B+7B) Screenshot 76.1 + 1.0

Results and analysis. Table reports success rates on AndroidWorld. K2-Agent sets a new SOTA
with a 76.1% average success rate, surpassing the strongest open-source learning-based methods,
UI-TARS-v2 (73.3%) and Mobile-Agent-v3 (73.3%), and outperforming all closed-source
models restricted to screenshot inputs. Beyond accuracy, our method offers two key advantages:
(i) Screenshot-only input—unlike many high-ranked methods that exploit accessibility (Ally)
trees, K2-Agent operates solely from raw screenshots; (ii) Optimization Efficiency—the high-level
model is bootstrapped from a single demonstration per task category, while the low-level executor
builds on a 7B open-source backbone, requiring substantially fewer training resources.

5.2 MODEL GENERALIZATION

K2-Agent enables two forms of generalization by our design: (i) high-level declarative knowledge
transfers across planner backbones, and (ii) low-level procedural skills transfer across benchmarks.

Transfer of declarative knowledge. The SRLR-produced knowledge K is language-based, and
explicit. We reuse the same K (without extra tuning) across different VLMs and re-evaluate on
AndroidWorld. FigureE] (a) reports task success rates. All backbones benefit from the injected K¢,
indicating that the distilled declarative knowledge is model-agnostic and broadly reusable.

Transfer of procedural skills. We directly transfer the low-level executor, trained on Android-
World, to the ScreenSpot-v2 benchmark in a zero-shot setting. As shown in Table [3| K2-Agent’s
executor achieves a 91.3% overall accuracy, outperforming general-purpose closed-source models
like Claude 3.7 Sonnet and reaching a level competitive with specialized agents such as GUI-Owl-
32B, which were trained on massive-scale GUI datasets. We further validate transfer to Android-
in-the-Wild (AitW) across two subsets, where the high-level planner is bootstrapped from a single
demonstration per subset and the low-level executor is transferred directly. K2-Agent surpasses ex-
isting RL- and SFT-based approaches as well as closed-source models. Results are shown in Table
and Table[3] Additional analysis is provided in Appendix [E.1.2]

Table 2: Zero-shot transfer to AitW using the low-level executor trained on AndroidWorld.

Agent AitW-General (SR %) AitW-WebShopping (SR %)
SoM (Zheng et al.,[2024) 16.7 11.5

AppAgent (Zhang et al.| 2025) 17.7 8.3

CogAgent (Hong et al., [2024) 25.0 385

AutoUI (Zhang & Zhang, [2023) 22.9 25.0

DigiRL (Bai et al.}|[2024) 71.9 67.2

K2-Agent 86.5 68.3
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Table 3: Zero-shot performance of the K2-Agent executor on the ScreenSpot-v2 benchmark.

Mobile Desktop Web

Agent Model Text Icon Text Icon Text Icon Overall
Operator (OpenAl2025) 47.3 41.5 90.2 80.3 92.8 84.3 70.5
Claude 3.7 Sonnet (Anthropic!|2025b) - - - - - - 87.6
UI-TARS-72B (Qin et al.|[2025) 94.8 86.3 91.2 87.9 91.5 87.7 90.3
JEDI-7B (Xie et al.{|2025) 96.9 87.2 95.9 87.9 94.4 84.2 91.7
GUI-Owl-32B (Ye et al.|[2025) 98.6 90.0 97.9 87.8 94.4 86.7 93.2
UI-Venus-Ground-72B (Gu et al.|[2025) 99.7 93.8 95.9 90.0 96.2 92.6 95.3
K2-Agent 96.9 80.6 95.9 83.6 95.3 90.6 91.3
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Figure 5: Ablation and Component Analysis. (a): The declarative knowledge from our SRLR
loop provides a substantial performance boost across four different powerful VLM backbones. (b):
Training reward curves for the low-level executor comparing full C-GRPO (blue), C-GRPO without
replay balancing (red), and C-GRPO without demonstration injection (green).

5.3 ABLATION STUDIES

To assess the contribution of each component in K2-Agent, we conduct ablations on AndroidWorld
by removing or replacing specific modules. We compare five configurations: (1) No Hierarchy.
A flat, end-to-end model. (2) No Hierarchy + SRLR: A flat model that directly incorporates the
knowledge base K from the SRLR loop. (3) Hierarchical (SRLR + SFT-Low). Our hierarchical
design with an SRLR planner, while the low-level executor is trained only with SFT. (4) Hierar-
chical (SRLR + GRPO-Low). The hierarchical design with a vanilla GRPO-trained executor. (5)
K?2-Agent (Full). Our complete model with the SRLR planner and C-GRPO executor.

Results are summarized in Table {] and Figure [I, The No

Hierarchy model performs poorly, confirming that a flat ar-

chitecture struggles to manage both planning and execution. Table 4: Ablation study of K2-
Simply adding the SRLR knowledge base (No Hierarchy + Agent components on Android-
SRLR) provides a notable boost, demonstrating the value of World benchmark.

explicit declarative knowledge. A significant leap occurs  Configuration SR (%)

when we introduce the hierarchy (SRLR + SFT-Low), iso-

lating the structural benefit of decoupling know-what from No H@erarchy 35.3
know-how. Within the hierarchy, replacing SFT with vanilla ~ No Hierarchy + SRLR — 58.6
SRLR + SFT-Low 62.0

GRPO improves performance further by enabling interactive
learning, but progress is limited by inefficient exploration. Fi- SIELR + GRPO-Low 68.9
nally, our full K2-Agent with C-GRPO achieves the highest K -Agent (Full) 76.1

success rate. The superiority of C-GRPO over vanilla GRPO
is not only reflected in the final success rate but also evident during training, as shown in Figure 3]
(b), where C-GRPO consistently achieves higher and more stable rewards.

We further dissect the training dynamics of the low-level executor by isolating the contribution of the
two key components in C-GRPO. As shown in Figure[5]b), the full C-GRPO framework achieves the
highest rewards and the most stable convergence. Ablating Dynamic Demonstration Injection (green
curve) leads to the most severe degradation: the policy attains substantially lower rewards with pro-
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Figure 6: Parameter sensitivity of C-GRPO. (a): Varying the conventional pool ratio S.o. (b):
Effect of the injection temperature 7 in the difficulty-gating function.

nounced oscillations throughout training. This indicates that expert-prefixed trajectories are crucial
for bootstrapping exploration, enabling the agent to reliably discover successful behaviors early
and thereby stabilizing subsequent self-generated rollouts. Meanwhile, removing Error-Decoupled
Replay Balancing (red curve) results in a visibly slower convergence rate and slightly inferior fi-
nal performance, suggesting that without balancing experience across error types, the optimizer is
biased towards frequent, easier operations and struggles to acquire complex skills.

5.4 PARAMETER SENSITIVITY

We analyze the sensitivity of C-GRPO to two key hyperparameters: the conventional replay pool
ratio .o and the demonstration injection temperature 7. Full grid-search settings for all hyperpa-
rameters are reported in Appendix [B:23]

Impact of Replay Balancing Ratios. The left panel of Figure [0 shows training dynamics under
different Seon, With the remaining probability split equally between Dyype and Dparam. All settings
exhibit a clear upward trend and eventually converge, indicating that C-GRPO is robust to replay
buffer composition. Among them, (.., = 0.5 strikes the best balance between preserving the natural
rollout distribution and emphasizing error-corrective samples, yielding the fastest convergence and
highest final reward. In contrast, assigning excessive weight to the conventional pool (e.g., Beon =
0.7) reduces exposure to hard examples and slightly slows learning.

Impact of Injection Temperature. The right panel of Figure [6]examines the injection temperature
T, which controls the difficulty-gating function fgue(d;) = tanh(d;/7T"). With a large temperature
(T' =5), feae = 0, leading to very short or absent expert prefixes and effectively reverting C-GRPO
to vanilla GRPO; the policy barely improves and fails to converge. In contrast, lower temperatures
(T = 0.05, 0.5) activate the curriculum effectively: 7" = 0.05 yields a slightly faster initial improve-
ment due to more aggressive intervention, while 7' = 0.5 provides smoother training and slightly
better stability and final performance. Overall, C-GRPO remains stable over a reasonable range of
hyperparameters, and we adopt Scon = 0.5 and 7" = 0.5 in all main experiments.

6 CONCLUSION

We propose K2-Agent, a hierarchical framework inspired by the cognitive separation of declara-
tive (“knowing what”) and procedural (“knowing how”) knowledge. Our agent synergistically co-
evolves these two capabilities distinctly: a high-level planner uses an SRLR loop to distill and
self-evolving task knowledge from a single demonstration, while a low-level executor masters pre-
cise actions via our highly-efficient C-GRPO post-training algorithm. K2?-Agent not only achieves
SOTA performance on AndroidWorld but, more critically, exhibits powerful and robust dual gener-
alization—transferring declarative knowledge across backbones and procedural skills across bench-
marks. We believe that this knowledge decoupling and co-evolution framework offers a promising
new paradigm for building more general, efficient, and adaptable agents.
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APPENDIX

Statement on LLM Usage. In the preparation of this manuscript, Large Language Models (LLMs)
were utilized as auxiliary tools to enhance language quality and formatting. Specifically, we used
Gemini 2.5 Pro for grammar checking and polishing the prose. Additionally, GPT-series models
were employed to assist with optimizing LaTeX table formatting and to query for specific typesetting
commands (e.g., for pseudocode presentation and color highlighting). We affirm that all scientific
content, core ideas, and experimental results were conceived and articulated entirely by the human
authors. LLMs were not used to generate any substantive scientific content. All suggestions and
modifications from these models were implemented under the direct supervision and final approval
of the authors. All co—authors are aware of and consent to this usage.

A COGNITIVE SCIENCE FOUNDATIONS OF K2-AGENT
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Figure 7: Cognitive inspiration for the K2-Agent framework. The design maps the human dis-
tinction between declarative (“knowing what””) and procedural (“knowing how’’) knowledge onto a
hierarchical agent architecture.

I

Figure 7] illustrates the core cognitive science principle that inspires the design of K2-Agent: the
fundamental distinction between declarative (“knowing what”) and procedural (“knowing how”)
knowledge. Seminal work in cognitive neuroscience (Squire & Knowlton, |1995)) has established
these as distinct memory systems. Declarative knowledge consists of explicit facts and concepts
that can be consciously recalled and articulated, much like how our high-level planner distills and
refines its task knowledge base (K ) from a single demonstration. In contrast, procedural knowl-
edge encompasses implicit skills acquired through repeated practice, such as riding a bicycle, which
are performed automatically and are difficult to verbalize. This mirrors how our low-level executor
is trained via C-GRPO to form robust “muscle memory” for precise Ul operations. By explicitly
modeling this cognitive division, K2-Agent creates a synergistic architecture where planning and
execution can be evolved and optimized using distinct, more suitable mechanisms.

B FRAMEWORK AND ALGORITHM DETAILS

B.1 HIGH-LEVEL PLANNER: THE SRLR LOOP IMPLEMENTATION
B.1.1 PSEUDOCODE FOR THE SRLR ITERATION

The iterative self-evolution of the high-level planner is governed by the Summa-
rize—Reflect-Locate-Revise (SRLR) loop. Algorithm [T] provides a detailed algorithmic view
of this process, outlining how the knowledge base (K ) is initialized from a single demonstration
and then progressively refined through cycles of execution and feedback-driven revision.

The SRLR loop is guided by two primary hyperparameters that control its termination.
‘MAX_ITER’ sets a hard limit on the number of revision cycles to prevent infinite loops, which
we set to 10 in our experiments. ‘SUCCESS_THRESH” defines a stopping criterion based on con-
sistent performance; the loop terminates if the agent successfully completes the task for this many
consecutive episodes. We set this value to 3, indicating that the knowledge base is considered stable
and robust after three successful runs in a row.
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Algorithm 1: The SRLR Algorithm for Planner Self-Evolution

Input: Demonstration T4, task goal g, environment £, VLM backbone 6
Initialize: Evolved knowledge base K¢

// Summarize: Distill initial knowledge from a single demonstration
1 Kg + Summarize(T%, g;05)
/I Tterative Refinement: The main SRLR loop

2044 0, Sstreak < 0
3 while ¢ < MAX_ITER and sy, < SUCCESS_-THRESH do

4 1141
5 (T°¢, success) + Execute(ny,7r, 9, Kg,E) // Execute with current K¢
6 if success then
7 ‘ Sstreak §— Sstreak + 1
8 else
9 Sgtreak < 0
/I Reflect: Analyze the root cause of the failure
1 M « Reflect(T¢, K¢, g; 01
/I Locate: Pinpoint the first point of failure
1 t* < null
12 fort =0to |7°| —1do
13 L if Verify(sy,,,af, Ka,t;0p) = False then
14 L t* < t; break
15 if t* = null then
16 L t* < FullTrajectoryAnalysis(7¢, T, Kq; 05) // Fallback if loop fails
/I Revise: Intelligently update the knowledge base
17 if t* = null then
18 AKg < GenerateRevision(M<2 (T¢, %), T% 0y)
19 K&t « IntelligentFusion(K¢g, AKg; 0n)
20 K¢ + ApplyAtomicEdits(K&™, AK¢)

21 return Kg

B.1.2 DEMONSTRATION DATA CONSTRUCTION

To initialize the SRLR self-evolution loop for the high-level planner 7z, we constructed a high-
quality human expert demonstration trajectory, 7 ¢, for each task category. This demonstration data
was recorded by a human operator in a standard Android emulator environment. For each step,
the operator was instructed to first articulate their intent as a natural language instruction (e.g.,
“Swipe up the screen to locate the Audio Recorder app.”) while the system precisely recorded the
corresponding atomic action, including its type and exact coordinate parameters. We also captured
screenshots immediately before and after each action was executed. A complete demonstration
trajectory thus consists of a sequence of steps, where each step comprises a tuple: (pre-operation
screenshot, post-operation screenshot, natural language instruction, atomic action). For example, in
the “ContactsAddContact” task, the trajectory contains 10 steps; the natural language instruction for
the first step is “Swipe up on the screen to locate the Contacts app.”, and its corresponding atomic
actionis [swipe, (546, 1806), (546, 800)].

For the 116 unique task categories in AndroidWorld, we collected a total of 103 expert demonstra-
tion trajectories to bootstrap the SRLR process. This number is less than the total task count for
two primary reasons. (i) some tasks are inherently difficult even for human experts to complete
reliably, and (ii) certain tasks share overlapping high-level knowledge, allowing one trajectory to
effectively cover multiple categories. In principle, this set could be further reduced by exploiting
such knowledge sharing across tasks.

We maintained a strict separation between the demonstration data used to bootstrap the SRLR loop
and the test data used for evaluation. To ensure this, we followed the design of the AndroidWorld
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benchmark by setting different random seeds for each task instance to dynamically generate its
parameters. This mechanism guarantees that even for tasks of the same category, the specific pa-
rameters encountered during testing (e.g., contact names, filenames, or settings) differ from those in
the initial demonstration, thereby enabling a robust evaluation of the model’s generalization ability.

B.1.3 IMPLEMENTATION DETAILS OF SRLR MODULES

Each stage of the SRLR loop is implemented as a distinct prompt-based query to the high-level
VLM (7g). The specific prompts used for each module are shown below.

Summarize module prompt

Analyze the demonstration and extract the core operational strategy that
an AI agent can use to handle similar tasks.

Task: {task_goal}
Step: {instructions} -> {action_raws}

Output Requirements:

1.Logical Flow: Describe the steps in the exact original order using
First, Then, After that....

2.Critical Success Factors: Summarize 3 or 4 essential rules for success
3.UI Interaction Patterns: Highlight the main interaction methods

Notes:
Keep it concise, emphasize sequence and dependencies.
Generalize the technique rather than focusing on specific content.

. J

Reflect module prompt

Compare and analyze the main error reason.

Error Trajectory: {error_trajectory}
Correct Demonstration: {demo_trajectory}

Analysis Requirements:

1.Compare the sequence step by step against the demonstration to identi-
fy where divergence occurs.

2.Locate the failure within the five information-handling levels:

(1) Source Location

2) Target Selection

3) Data Extraction

4) Data Processing

5) Answer Output

3.Distinguish between wrong target selection and failure in extraction
or processing within the correct target.

4.Provide evidence from the demonstration to show what information was
missing, incorrect, or not properly handled.

Output Format:

ERROR_REASON: State the exact failure point and specify the missing or
incorrect information.

EXPLANATION: Provide step-by-step comparison showing where the error tr-
ajectory diverged from the demonstration and support it with evidence.

J

Locate module prompt

Conduct a step-by-step process to pinpoint where the error occurred,
using error details and demonstration data as references.

Inputs:

Error Reason: {error_reason_72b}
Demonstration Steps: {demonstration}
Prompt with Line Numbers: {prompt_line}
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Process:

Step 1 : Error Location

— Review the stated error reason: {error_reason_72b}

— Identify the exact line numbers in the prompt linked to this error
— Highlight the sections of content that contributed to the issue
Step 2 : Demonstration Reference

— Match the error against relevant demonstration steps

- Extract the instruction that address the error cause

- Specify which part of the demonstration resolves the issue

Output Format:

STEP1_ERROR_LOCATION: [Line number of the first failed step and related
content in the prompt connected to the error]
STEP2_DEMO_CONTENT_LOCATION: [Relevant demonstration steps (instruction
only) that address the error]

Revise module prompt

Modify the prompt based on error analysis and demonstration data.

Inputs

Demonstration Steps: {demonstration}

Prompt Used in Failed Execution: {prompt_line}
Error Location Analysis: {error_location_analysis}

Improvement Process

Step 1 : Direct Prompt Modification

- Emphasize key attention points and critical considerations rather than
adding examples.

— Highlight critical notices using markers such as "IMPORTANT:", "CRI-
TICAL:", "NOTE:", or "PAY ATTENTION TO:".

— Use demonstration reasoning to guide attention points without copying
specific results.

- Treat demonstration data as the source of truth; only include functio-
nality shown in the demonstration.

Step 2 : Semantic Alignment Check

- Review each line of the modified prompt for semantic consistency with
demonstration content.

- For each line, identify the corresponding demonstration instruction
and ensure it aligns in meaning.

- Remove any content not supported by demonstration data.

Focus on:

— Precision: Target exact locations and content.

— Demonstration-Based: All modifications must be grounded in demonstrat-
ion steps.

— Attention Emphasis: Highlight critical points.

- Semantic Consistency: Ensure meaning matches demonstration instruction
— Functionality Verification: Only include demonstrated features.

Output Format
FINAL_MODIFIED_PROMPT: [Complete modified prompt after both steps, with
every line supported by demonstration datal

B.1.4 ANALYSIS OF INDUCED DECLARATIVE KNOWLEDGE AND REFLECTION ROBUSTNESS

To further understand the behavior and limitations of the SRLR loop, we conducted a comprehen-
sive analysis of the induced knowledge bases (K ) and the corresponding reflection logs. This
subsection summarizes our observations, and the next section provides extended case studies and
visualizations.
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(1) Taxonomy of Induced Declarative Knowledge. Across AndroidWorld tasks, the Summarize
stage consistently induces four primary categories of declarative knowledge (distribution shown in

Figure [):
* Step Ordering: Core logical dependencies between task steps, such as “Open the Audio

Recorder app before accessing the file list.”

* UI Layout & Invariants: Stable visual semantics of Ul elements, e.g., “The record button is
the white circle at the bottom center.”

* Parameter Constraints: Format requirements and mandatory input rules, such as “The filename
must include the ‘.m4a’ extension.”

* Recovery Strategies: Conditional checks for resolving common execution anomalies, e.g., “If
the ‘Save’ button is disabled, ensure the text field is focused.”

These types capture task-level logic that is naturally expressible in language and form the planner’s
declarative backbone.

UI Layout & Invariants

| _4

After save the file, ensure the file

Then tap on the record button with
extension is explicitly typed as .méa

a white circle at the bottom center

Recovery Strategies Step Ordering

If the ‘Save' button is grayed out; ’

‘ First, swipe up to open the app drawer...
check if the input field is focused

Then, tap on the search icon to ...

Figure 8: Distribution of the induced declarative knowledge

(2) Boundaries of Summarizable Knowledge. We also identified knowledge types that are in-
herently difficult to verbalize. These limitations highlight the need for the procedural low-level
executor:

* Ineffable Visual Grounding: Precise spatial relations or pixel-level cues that lack stable lin-
guistic descriptions (e.g., “Tap near the 3 o’clock position™).

* Visual Dynamics: Behaviors that require continuous perceptual feedback, such as iterative
swiping until a list terminus is reached.

» Massive Episodic Content: Tasks involving retrieval from large historical content, e.g., search-
ing through dozens of previously viewed images.

While our framework focuses on evolving task logic rather than maintaining long-range episodic
memory, each of these limitations points to directions for complementary improvements. First, in-
effable visual grounding could be mitigated by stronger backbone vision encoders or multimodal
pretraining that yields more precise spatial understanding. Second, visual dynamics may be ad-
dressed by integrating recurrent perceptual modules or short-horizon visual predictors capable of
modeling iterative feedback. Third, massive episodic content would require external memory sys-
tems or retrieval-augmented modules, which are orthogonal to the SRLR loop but could complement
it in future extensions.

(3) Self-Correction of Incorrect Declarative Knowledge. In some cases, the initial Summarize
stage induces overly specific or incorrect rules, especially when a demonstration contains instance-
specific details. The SRLR loop naturally corrects such issues: Reflect identifies the state mismatch,
Locate isolates the faulty rule, and Revise updates and generalizes it.

For example, in the AudioRecorder task (the next subsection), the initial knowledge incorrectly
memorized a fixed filename. After an execution failure, the rule was revised to “Type the filename
specified in the current instruction,” leading to consistent generalization across future episodes.
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(4) Scope and Limitations of Root-Cause Analysis. The reflection process effectively captures
failures that leave clear visual evidence, including:

e omitted or mis-ordered steps,
¢ incorrect Ul navigation,
* wrong element selection or misclicks,

* invalid textual inputs or wrong parameter values.

However, reflection is fundamentally limited by visual observability. Certain execution failures do
not manifest in screenshots, such as: OS-level freezes or dropped touch events, network delays
preventing UI updates and invisible permission denials or background system interrupts.

These cases yield no visual divergence, and thus no reliable root-cause attribution. To maintain
robustness under such conditions, the system employs a strict max-retry fallback mechanism (Algo-
rithmm line [3]) to avoid infinite loops.

B.1.5 EVOLUTION OF THE KNOWLEDGE BASE (Kg)

To concretely illustrate the self-evolution process of the declarative knowledge base (K ) via the
SRLR loop, we showcase its revision process for the ‘AudioRecorderRecordAudioWithFile-
Name’ task. The evolution from K& — K}, — K2 demonstrates a sophisticated learning pattern:
it begins with a literal summary, evolves to a generalized and logically structured plan, and finally
refines into a robust strategy that re-introduces critical, grounded details discovered through further
interaction.

Initial Knowledge (K%) from Summarize Phase. The process starts with the Summarize
module, which distills a single expert demonstration into an initial, structured knowledge base, K.
This plan is a direct, flat list of actions observed in the demonstration.

K%: Initial Plan from Demonstration

» Swipe up on the screen to reveal more apps.

* Tap on the “Audio Recorder” app icon.

* Tap the white circular button at the bottom of the screen to start recording.

 Tap the white square button at the bottom right of the screen to stop the recording.

* Long press the backspace key on the keyboard to delete the content in the input field.
* Type the text “presentation_fGwr.m4a”.

* Tap the “Save” button.

SRLR Cycle 1: Generalization and Logical Structuring. During execution, the agent fails on a
new task instance due to the hard-coded filename. The SRLR loop is triggered.

* Reflect: The agent observes the failure and identifies other potential ambiguities, such as im-
plicit preconditions.

* Locate: The failure’s root cause is traced to the specific filename and the plan’s lack of explicit
logical flow and error-checking.

* Revise: The knowledge is updated in two major ways: (1) It’s generalized by replacing the
hard-coded name with a placeholder. (2) It’s reformed into a more robust, logically structured
sequence with explicit steps for verification and safeguards (e.g., “Ensure no other actions are
taken...”).
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K}: Revision 1 (Generalization & Logical Structure)

* First, you need to locate and open the Audio Recorder app. (Abstracted)

» Tap-the-white-etreular-button—

* To start recording, tap the record button. Ensure no other actions are taken until the record-
ing begins. (Added safeguard)

* Longpress-the-backspacekey— (Removed as potentially over-specific)

13 LR

* Then, navigate to the save options... and enter [FILENAME ] ... (Generalized)
* Following this, ensure the file type is set to .m4a... (New step from failure analysis)

* Before confirming..., verify that both the file name and type are correctly entered... (Added
verification step)

SRLR Cycle 2: Re-introducing Critical Specificity and Grounding. While K, is more logical,
its abstraction causes new failures. The agent struggles with grounding (e.g., finding the generic
“record button’) and, critically, fails to clear default text in the input field.

* Reflect: The agent recognizes that filenames are consistently corrupted (e.g., ‘Record-
ingl [FILENAME].m4a‘) and that it sometimes hesitates or clicks the wrong UI element.

* Locate: The root causes are identified: (1) the omission of the crucial step to clear the input
field and (2) over-abstraction of UI element descriptions.

* Revise: The plan is refined to achieve a balance. It re-introduces critical actions as manda-
tory preconditions (“you MUST long press...”) and restores specific Ul details (“white circular
button”) for better grounding, while retaining the strong logical flow.

K % Revision 2 (Robust and Re-grounded Plan)

* First, swipe up on the screen... and Then, tap on the “Audio Recorder” app icon. (Re-
introduced specificity)
 After opening the app, tap the white circular button...

* When you’re ready to stop..., tap the white square button... (Restored UI details for
grounding)

3 VB VAL ool -1

Yerification-and fite-type-steps from-4ss)

» Before typing the filename, to delete any existing content, you MUST long press the
backspace key... (Critical step re-introduced as mandatory)

* Type [FILENAME] into the designated input field...
* Tap the “Save” button to finalize...

This final knowledge base, K2, is superior to its predecessors: it is general enough to handle dif-
ferent task parameters (like K ;) yet specific enough to execute robustly and avoid common pitfalls
(like K2). This demonstrates the effectiveness of the SRLR loop in creating a robust, reusable
knowledge base from minimal initial data.

B.2 Low-LEVEL EXECUTOR: C-GRPO IMPLEMENTATION
B.2.1 PSEUDOCODE FOR THE C-GRPO ALGORITHM

The C-GRPO algorithm trains the low-level executor (77 ) by combining a curriculum learning strat-
egy with the Group Relative Policy Optimization framework. Algorithm [2] provides a high-level
overview of the training process. It begins by initializing the error-decoupled replay buffers based
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Algorithm 2: Curriculum-Guided Group Relative Policy Optimization (C-GRPO)

Input : Initial policy 7z, (¢), Expert demonstration dataset Dexpert
Output : Trained policy parameters 0

/l Phase 1: Initialize Error-Decoupled Replay Buffers
Initialize replay buffers Deon, Diype; Pparam
foreach sample i = (s, G;, T;%) in Deypers do
Calculate error rates 7yype(7), Nparam () With the initial policy 7y,
Assign sample ¢ (along with its error rates) to the corresponding buffer based on thresholds

// Phase 2: Main Training Loop

for k < 1to K.« do

// Construct a balanced mini-batch

Sample mini-batch B from buffers Deon, Diype; Pparam according to ratios {5}

/I Augment each sample with Dynamic Demonstration Injection
foreach sample i = (s;,a;, T,%,n...) in B do

di < Niype(?) + Nparam () // Calculate sample difficulty
i + |T - o (k) - foue(dsi) /I Calculate injected prefix length
C; — GetPreﬁx(ﬁd, L)@ s; /I Form augmented context
/I Perform C-GRPO update on the augmented batch
Compute loss Jc.grro(6; {ci}) // Generate rollouts, compute rewards/advantages
| 00— aVyeJcareo(f)
return 6

on the initial policy’s performance. It then enters a main training loop where balanced mini-batches
are constructed, augmented with dynamic demonstration prefixes, and used for the policy update,
effectively guiding the agent towards acquiring robust procedural skills.

B.2.2 TRAINING DATA CONSTRUCTION

The training dataset for the low-level executor, 7y, was constructed from the 116 high-quality,
multi-step expert demonstration trajectories sourced from the AndroidWorld benchmark. To adapt
this data for training a single-step action policy, we performed a meticulous preprocessing pipeline.

Processing Pipeline. First, each trajectory was decomposed into a sequence of single-step state-
action pairs. Second, every pair underwent a manual verification process to ensure its quality and
correctness. We filtered out any steps that were ambiguous or erroneous, such as actions that resulted
in no observable change on the screen or where the natural language instruction did not precisely
match the recorded atomic action. This rigorous cleaning process yielded a final dataset of 606
high-quality samples.

Data Distribution. The dataset encompasses a wide variety of Ul interactions across the 20 ap-
plications in AndroidWorld. Critically, the distribution of action types is naturally imbalanced,
with common actions like c1ick appearing far more frequently than less common but equally im-
portant actions such as long_press and swipe. This imbalance underscores the need for the
error-decoupled replay balancing mechanism in our C-GRPO algorithm.

Data Format. Each sample was serialized into a JSON object, paired with its corresponding
screenshot. The JSON structure is designed to be compatible with standard VLM training frame-
works. An example is shown in Figure[9] The keys are defined as follows:

* id: A unique identifier for the data sample.
* task: The high-level goal of the entire trajectory.

* conversations: A list containing the human-like instruction (the sub-goal for the current
step) and the ground-truth tool call from the GPT-like model (the expert action).
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» image: The file path to the screenshot taken just before the action.

Figure 9: An example of a single training data sample in JSON format.

Training Sample Example

{
"id": "action_MarkorMoveNote_step_0_20250825_164306",
"task": "In Markor, move the note 8zum_ friendly_penguin.txt
from WorkProjects to CodeSnippets.",
"conversations": [
{
"from": "human",
"value": "<image>\nSwipe up on the screen to locate
the Markor app in the app drawer."

"from" g "gpt",

"value": "<tool_call>"arguments\": {"action": "swipe",
"coordinate": [546, 20007,
"coordinate2": [546, 800]1}}\n

</tool_call>"
}

I
"image": "images/screenshot_20250825_MarkorMoveNote_0000.png"

}

B.2.3 HYPERPARAMETER SETTINGS

Our experimental setup involves distinct configurations for the high-level planner and the low-level
executor. The planner operates in a training-free manner, guided by the hyperparameters of the
SRLR loop. The executor is trained via our C-GRPO algorithm, which we implemented by adapting
the GRPOTrainer framework from VLM—RlEl . All key hyperparameters for
each component, along with the training infrastructure details, are consolidated in Table 3]

https://github.com/om-ai-lab/VLM-R1
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Table 5: Comprehensive list of hyperparameters for K2-Agent.

Component Hyperparameter Value
High-Level Planner (7 )

MAXITER Max revision cycles per task 10

SUCCESS_THRESH Consecutive successes to stop 3
Low-Level Executor (71,)

Base Learning Rate Learning rate for policy 1x107¢

Epoch Count Number of training epochs 2

Per-GPU Batch Size Samples per GPU during training 2

Generations per Input (G) Number of rollouts per sample 8

Gradient Accumulation Steps Steps to accumulate gradients 2

KL Weight (3) Weight for KL penalty 0.04

Clipping Ratio (¢) GRPO clipping ratio 0.2

Reward Weights (Afmt, Acontent) Weights for format/content reward {1.0, 1.0}
C-GRPO Curriculum Strategy

Buffer Ratios (Bcon, Biype, Bparam) ~ Sampling ratios for replay pools {0.5, 0.25,0.25}

Injection Temp (7") Temperature for difficulty gating 0.5

Max Training Steps (Kmax) Total steps for annealing scheduler 1000
Model and Training Infrastructure

High-Level Model (7x) VLM for planner Qwen2.5-VL-72B

Low-Level Model (71) VLM for executor Qwen2.5-VL-7B

Max Input Tokens Context length limit 1024

Max Output Tokens Generation length limit 256

Optimizer Precision Mixed-precision training type bfloatlé6

Hardware GPUs used for training 8 x NVIDIA A100 (80GB)

All experiments are carried out on a cluster of eight NVIDIA A100 GPUs with 80 GB memory
each, and a complete training pass requires about eight hours. The software environment includes
flash_ attn?2.8.3,torch2.8.0,transformers 4.49.0,and t r1 0.17.0, which together enable
efficient use of FlashAttention and smooth integration with the GRPOTrainer workflow.

C EXTENDED DISCUSSION AND COMPARATIVE ANALYSIS

This section elaborates on the distinctions between K2-Agent and other prominent exploration or
hybrid frameworks, specifically discussing the applicability of Hindsight Experience Replay (HER)

Andrychowicz et al.| (2017) and contrasting our architecture with ReAct[Yao et al.| (2022)), Voyager
Wang et al.|(2023), and RPA systems.

C.1 INAPPLICABILITY OF HINDSIGHT EXPERIENCE REPLAY (HER)

While HER (Andrychowicz et al] [2017)) is a powerful exploration technique for goal-conditioned
RL, it relies on the assumption that any visited state can be re-labeled as a valid alternative goal. This
assumption fundamentally conflicts with our vision-based, instruction-following setting. First, our
“goals” are natural language instructions (e.g., ”Open Settings”), while states are pixel-level screen-
shots; there is no trivial mapping to convert an arbitrary intermediate screen back into a high-level
semantic instruction. Second, unlike robotic manipulation where reaching any coordinate is phys-
ically valid, many intermediate GUI states (e.g., loading screens or partial lists) do not correspond
to meaningful user tasks, making goal re-labeling semantically undefined. Consequently, instead of
goal re-labeling, we employ Dynamic Demonstration Injection as a domain-adapted curriculum
to bootstrap exploration in this sparse-reward environment.

C.2  COMPARISON WITH ALTERNATIVE HYBRID ARCHITECTURES
K2-Agent represents a distinct evolution from existing “reasoning + acting” frameworks. (1) vs.

ReAct: Our “No Hierarchy” baseline (Table [d) mirrors a ReAct-style setup where a monolithic
policy handles both reasoning and acting. The significant performance gap (35.3% vs. 76.1%)
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confirms that explicitly decoupling “know-what” from “know-how” is critical for preventing cog-
nitive drift in long-horizon GUI tasks. (2) vs. Voyager: While systems like Voyager evolve skills
as executable code over structured APIs, such stable interfaces are unavailable in vision-only mo-
bile control. K2-Agent instead evolves skills as parametric neural policies via C-GRPO, enabling
operation in pixel-based environments where code generation is inapplicable. (3) vs. RPA: Un-
like Classical Robotic Process Automation (RPA) which relies on brittle, static scripts, KQ-Agent
is data-driven. Its SRLR loop adaptively refines knowledge, and its executor generalizes zero-shot
to unseen apps and platforms (as evidenced by AitW and ScreenSpot-v2 results), offering a robust
alternative to fixed automation pipelines.

D EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

D.1 BENCHMARK AND EVALUATION DETAILS

D.1.1 ENVIRONMENTS DETAILS

Environment. Our primary evaluation platform is AndroidWorld (Rawles et al., [2024)), a stan-
dardized benchmark that operates on a live Android emulator. It features 116 hand-crafted tasks
distributed across 20 diverse applications. Crucially, to test for generalization and prevent solution
memorization, each task is dynamically instantiated with randomized parameters for every episode.
The tasks span a wide range of complexities, from easy operations to long-horizon procedures. Ta-
ble 6] provides a detailed breakdown of the applications and their corresponding task counts.

Observation Space. Our agent interacts with an Android Virtual Device (AVD) configured to em-
ulate a Pixel 6 running Android Tiramisu (API Level 33), consistent with the standard setup for the
AndroidWorld benchmark. We adopt a vision-centric approach where the agent’s perception relies
solely on raw visual input. The state representation at each step ¢ is a multimodal input comprising:

* Screenshot: An RGB image of the current screen with a resolution of 2400 x 1080 pixels. We do
not use any underlying structural information, such as the accessibility tree (Ally tree) or view
hierarchy XML, making the task more reliant on the model’s visual understanding.

» Task Goal: A natural language string describing the overall objective, for example, “Record an
audio clip using Audio Recorder app and save it.”

* History: The sequence of past actions taken within the episode. This historical context is provided
exclusively to the high-level planner (7z) to support multi-step reasoning and error analysis in the
SRLR loop. The low-level executor (71,) operates without this history, focusing only on executing
the current subgoal based on the present visual state.

Action Space. To facilitate robust and precise interaction with the mobile device environment, we
define a structured action space for the low-level executor. Inspired by function-calling APIs, this de-
sign decouples the agent’s intent into discrete action types and their corresponding parameters. This
approach simplifies the learning task for the procedural model, allowing it to focus on grounding
high-level subgoals to specific, executable operations. Table [/| provides a comprehensive summary
of each action, its parameters, and its operational description within our framework.

Reward Design. Our reward design distinguishes between the training-free high-level planner and
the learning-based low-level executor. The high-level planner, 7z, does not optimize its parameters
via reward signals; instead, it uses the sparse, binary task-completion feedback from the environment
solely to trigger its SRLR self-evolution loop.

The training of the low-level executor, 71, is guided by a dense, step-wise composite reward signal
R;. This signal is designed to provide fine-grained feedback on the quality of the generated actions
and is composed of two key components: a format reward and a content reward.

Format Reward (rgy¢). This reward component ensures that the model’s output strictly adheres to
our predefined tool-calling schema. An action can only be parsed and executed by the environment
if it is formatted correctly. We define this as a binary indicator:

rmi(0¢) = 1 {0 correctly matches the <tool_call>{...}</tool_call> schema},

where oy is the raw text output generated by the model at step ¢. A reward of 1 is given for a valid
format, and O otherwise.
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Table 6: Overview of the 20 applications and the number of associated tasks in the Android-

World(Rawles et al., 2024)). The description for each app highlights its core functionality.

Application Description # Tasks
) Simple Calendar Pro A calendar app for creating, deleting, and man- 17
B aging events and appointments.

E Settings The Android system settings app for managing 15
device settings such as Bluetooth, Wi-Fi, and
brightness.

Markor A note-taking app for creating, editing, deleting, 14

i and managing notes and folders.
Broccoli - Recipe App A recipe management app for adding, deleting, 13
and organizing recipes.

m Pro Expense An expense tracking app for adding, deleting, 9
and managing expenses.

‘ Simple SMS Messenger An SMS app for sending, replying to, and re- 7
‘ sending text messages.

OpenTracks A sport tracking app for recording and analyz- 6
ing activities, durations, and distances.

(C] Tasks A task management app for tracking tasks, due 6
dates, and priorities.

< Clock An app with stopwatch and timer functionality. 4

Joplin A note-taking app. 4

> Retro Music A music player app. 4

o Simple Gallery Pro An app for viewing images. 4

0] Camera An app for taking photos and videos. 3

() Chrome A web browser app. 3

3 Contacts An app for managing contact information. 3

o) OsmAnd A maps and navigation app with support for 3
adding location markers, favorites, and saving
tracks.

-, VLC A media player app for playing media files. 3
© Audio Recorder An app for recording and saving audio clips. 2

n Files A file manager app for the Android filesystem, 2
used for deleting and moving files.

Simple Draw Pro A drawing app for creating and saving draw- 1

b

ings.

Content Reward (7 content)-

Given a correctly formatted output, this component evaluates the oper-

ational correctness of the action a; by comparing it to the ground-truth expert action a;. The reward
assesses both the chosen action type (e.g., click vs. swipe) and the precision of its parameters
(e.g., coordinates). The content reward is defined as:

|param(a;) — param(ay)|| < e

4 type(a;) = type(a;) A
Tcomem(at,at) Z]l{ ype( t) yp ( t) },
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Table 7: The structured action space of K2-Agent. Each action is defined as a function call with
specific arguments to control the mobile device.

Action Description Arguments

click Performs a standard, short tap on a specific coordinate
screen location. Used for activating buttons,
selecting items, or placing cursor focus.

long_press Executes a sustained press at a given coordi- coordinate
nate. Essential for tasks like selecting text,
opening context menus, or revealing hidden
options.

swipe Drags from a starting point to an ending point.  coordinate, coordinate?2
Used for scrolling, navigating pages, or adjust-
ing sliders.

type Inputs a character sequence into the currently  text
focused text field. This action directly injects
text, bypassing the on-screen keyboard.

system_button Triggers a system-level hardware button com-  button
mand, such as navigating back or returning to
the home screen.

terminate Ends the current task episode, reporting the status
final outcome. This signals to the high-level
planner whether the goal was achieved.

answer Provides a natural language response. This response_text
action is specifically used for information re-
trieval tasks where the goal is to find and report
information rather than manipulate the UL

where type(-) returns the action’s type, and param(-) extracts its parameters. For coordinate-based
actions, the norm || - || is the Euclidean distance (Lz), while for text-based actions, it corresponds to
an exact string match. The tolerance threshold e is used for coordinate matching.

Total Reward. The final reward for training 7, is a weighted combination of the two components:

Rt - )\fmt . 7'fmt(0t) + )\coment . 7"content(atv &t)

In our implementation, we set Afy = 1.0 and Aeopene = 1.0. Empirically, this balanced weight-
ing enables the 7B executor to achieve a favorable trade-off among format compliance, grounding
accuracy, and convergence speed.

D.2 EXTENDED QUANTITATIVE ANALYSIS
D.2.1 ANDROIDWORLD LEADERBOARD SNAPSHOT

We provide here an anonymous snapshot of the official AndroidWorld leaderboard as of August
2025. Figure shows the ranking of our K2-Agent, which achieves a success rate of 76.7 %,
placing 1st among all methods that rely solely on raw screenshots and open-source backbones.
For fairness and compliance with the double-blind review process, our submission was made through
an anonymous GitHub repository and contains no identifying information. Competing systems that
leverage additional privileged inputs (e.g., the accessibility tree) or closed-source backbones are also
listed for reference.

D.2.2 DETAILED PERFORMANCE STATISTICS

To provide a granular view of our agent’s performance and facilitate detailed comparisons, Table
presents the success/failure outcome for K2-Agent and several key baselines on every one of the
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AndroidWorld Leaderboard [last update: 28/08/2025)] ¥ & &

Xt RE BE #iE IR L]
Q & @~ 100% ~ © REEE
J22 - 1
A 8 c o 3 F S l 9
.\ Success Rate Number Success Rate
Rank Release Date Result Source Model Type Open? Model Size Model Representation (pass@1)  of trials
2 1 8/2025 mobile-use Al agent v - Llama 4-scout, Gerr | Screenshot + A11y. 776 1
3 2 8/2025 Finalrun Al agent X - GPT-5 Screenshot + A11 76.7 1
42 9/2025 K=-Agent Al agent X 72B+7B  Qwen25VL-72B+ | Screenshot 767 1 |
54 872025 AuloGLM-Moble AT agent %98 AUOGLM-Mobile | Screenshot + AT1y... 7583
s 5 9/2025 MobileUse-v2 Al agent ) Hammer-Ul-328 | Screenshot 750 1
7 5 9/2025 LX-GUlAgent Al agent x - LX-GUIAgent Screenshot + A11y. 750 1
8 7 8/2025 Mobile-Agent-v3 Al agent x 328 GUI-Owl-32B Screenshot 7331
° 8 6/2025 JT-GUIAgent-V2 Al agent x - JT-GUIAgentV2 | Screenshot 6721
09 8/2025 GUL-OWL-78 Model x 78 GUI-OWI-7B Screenshot 664 1
10 8/2025 Ul-Venus Model v 728 Ul-Venus-Navi-728 | Screenshot 659 1
21 06/2025 DroidRun Alagent v - Gemini 25 Pro Screenshot + At1y... 631
512 07/2025 MobileUse Alagent v 728 Qwen25-VL-72B | Screenshot 629 1
"o 13 05/2025 Seed1.5-VL Model v 208 Seed1.5-VL Screenshot + At1y... 6211
s 14 6/2025 JT-GUIAgent-V1 Al agent x - JT-GUIAgent-V1 | Screenshot 600 1
® 15 3/2025 V-Droid Paper Al agent v 8B V-Droid (Liama8B) | Afty tree 595 1
716 4/2025 Agent S2 Al agent v - Agent S2 Screenshot 543 1
© 17 8/2025 Ul-Venus Model v 8 Venus-Navi-78 Screenshot 491 1
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Figure 10: Public leaderboard of AndroidWorld as of August 2025, showing K2-Agent ranked 1st
among all methods using only raw screenshots.

116 tasks in the AndroidWorld benchmark. This table also includes the results from our declarative
knowledge transfer experiments, showing the performance of K2-Agent when its high-level planner
is replaced with Gemini and GPT-40 backbones using the same evolved knowledge base. This allows
for a direct, task-by-task assessment of where different models excel or fall short.

Table 8: Detailed performance comparison on all 116 tasks in AndroidWorld.

Task

e,
Q%

AudioRecorderRecordAudio

AudioRecorder-FileName

BrowserDraw
BrowserMaze

BrowserMultiply
CameraTakePhoto
CameraTakeVideo
ClockStopWatchPausedVerify
ClockStopWatchRunning
ClockTimerEntry
ContactsAddContact
ContactsNewContactDraft
ExpenseAddMultiple
ExpenseAddMultipleFromGallery
ExpenseAddMultipleFromMarkor
ExpenseAddSingle
ExpenseDeleteDuplicates
ExpenseDeleteDuplicates?2
ExpenseDeleteMultiple
ExpenseDeleteMultiple2
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0’06 o
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Table 8 — continued from previous page

c&‘e & &
Y § e g s e
F & $ § & §
- § al s ¥

Task 'Q' $° @' S’ $ 'Q'
ExpenseDeleteSingle v v v v v v
FilesDeleteFile v v v X v v
FilesMoveFile v v v X v v
MarkorAddNoteHeader X X X X X X
MarkorChangeNoteContent v X v X 4 v
MarkorCreateFolder v v v v v v
MarkorCreateNote v v v v v v
MarkorCreateNoteAndSms v X v X X X
MarkorCreateNoteFromClipboard v v v X X X
MarkorDeleteAllNotes v v v v X v
MarkorDeleteNewestNote v v X v v X
MarkorDeleteNote v v v v v v
MarkorEditNote v 4 4 v X X
MarkorMergeNotes X X X X X X
MarkorMoveNote v v X X X v
MarkorTranscribeReceipt X X 4 X X X
MarkorTranscribeVideo X X X X X X
NotesIsTodo v v v v v X
NotesMeetingAttendeeCount v v v v v v
NotesRecipeIngredientCount v v 4 v X v
NotesTodoItemCount v v v v v v
OpenAppTaskEval v v v v v v
OsmAndFavorite v v v v v v
OsmAndMarker v v v X X v
OsmAndTrack X X X X X X
RecipeAddMultipleRecipes X v v v v X
RecipeAdd-FromImage X v X X X X
RecipeAdd-FromMarkor X v X X X X
RecipeAdd-FromMarkor2 X X X X X X
RecipeAddSingleRecipe v v v v v v
RecipeDeleteDuplicateRecipes v v X v v v
RecipeDeleteDuplicateRecipes? X X X X X X
RecipeDeleteDuplicateRecipes3 X X X X X X
RecipeDeleteMultipleRecipes v v v v v v
RecipeDeleteMultiple—Constraint X v X v X X
RecipeDelete-WithNoise v v v v v v
RecipeDeleteSingleRecipe v v v v v v
RecipeDelete-WithNoise v v v v v v
RetroCreatePlaylist v X v v v v
RetroPlayingQueue X X v v v X
RetroPlaylistDuration X X X X X X
RetroSavePlaylist X X v X 4 X
SaveCopyOfReceiptTaskEval v v v v v v
SimpleCalendarAddOneEvent X v X v v ve
SimpleCalendar—-InTwoWeeks X v v X X X
SimpleCalendar-RelativeDay v v v v X X
SimpleCalendar-Tomorrow v v X X v X
SimpleCalendarAddRepeatingEvent v v v v X X
SimpleCalendarAnyEventsOnDate v v v v X X
SimpleCalendarDeleteEvents v v v v v ve
SimpleCalendar—-OnRelativeDay v v v 4 v X
SimpleCalendarDeleteOneEvent v v v v X Ve
SimpleCalendarEventOnDateAtTime v v v v v v
SimpleCalendarEventsInNextWeek v X v X X v
SimpleCalendarEventsInTimeRange v v v 4 v X
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Table 8 — continued from previous page
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v S v Y 8 v
Task & § & S 3 &

SimpleCalendarEventsOnDate
SimpleCalendarFirst-StartTime
SimpleCalendarLocationOfEvent
SimpleCalendarNextEvent
SimpleCalendar-WithPerson
SimpleDrawProCreateDrawing
SimpleSmsReply
SimpleSmsReplyMostRecent
SimpleSmsResend

SimpleSmsSend
SimpleSmsSendClipboardContent
SimpleSmsSendReceivedAddress
SportsTracker-ForWeek
SportsTrackerActivitiesOnDate
SportsTrackerActivityDuration
SportsTracker—-Activity
SportsTrackerTotalDistance
SportsTrackerTotalDuration
SystemBluetoothTurnOff
SystemBluetoothTurnOffvVerify
SystemBluetoothTurnOn
SystemBluetoothTurnOnVerify
SystemBrightnessMax
SystemBrightnessMaxVerify
SystemBrightnessMin
SystemBrightnessMinVerify
SystemCopyToClipboard
SystemWifiTurnOff
SystemWifiTurnOffVerify
SystemWifiTurnOn
SystemWifiTurnOnVerify
TasksCompletedTasksForDate
TasksDueNextWeek
TasksDueOnDate
TasksHighPriorityTasks
TasksHighPriorityTasksDueOnDate
TasksIncompleteTasksOnDate
TurnOffWifiAndTurnOnBluetooth
TurnOnWifiAndOpenApp
VlcCreatePlaylist
VlcCreateTwoPlaylists
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E QUALITATIVE ANALYSIS AND CASE STUDIES

E.1 GENERALIZATION CASE STUDIES

E.1.1 DECLARATIVE KNOWLEDGE TRANSFER ACROSS BACKBONES

To validate the model-agnostic nature of the declarative knowledge (K ), we transferred the final
knowledge bases evolved by the Qwen2.5-VL-72B planner to new planners using Gemini-2.5-Pro

and GPT-40 backbones. The transfer was conducted in a zero-shot setting, with the low-level ex-
ecutor held constant. The detailed per-task results are presented in Table[8] The aggregate success
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rates—72.4% for the Gemini-based planner and 58.6% for the GPT-40-based planner—confirm
that the declarative knowledge is fundamentally generalizable.

Our analysis reveals three further findings. First, the knowledge demonstrates essential portabil-
ity; as shown in Figure 5(a), the core strategies distilled by SRLR are explicit and robust enough
to improve performance across different model families. Second, an adaptation cost is evident in
the performance gap between the original and new backbones. This is expected, as the linguis-
tic phrasing and strategic details of the knowledge base were co-adapted through interaction with
the Qwen model, and new models may incur a performance penalty when interpreting this tai-
lored knowledge. Most notably, we observed the emergence of new capabilities. On several tasks
where the original Qwen planner failed, such as SimpleCalendarLocationOfEvent and
SportsTrackerTotalDuration, the planners using Gemini or GPT-40 succeeded with the
exact same knowledge base. This highlights a powerful synergy where the transferred knowledge
provides the correct high-level plan, and the superior intrinsic capabilities of the new backbone
model enable it to successfully execute previously intractable steps.

E.1.2 PROCEDURAL SKILL TRANSFER ACROSS BENCHMARKS

To comprehensively evaluate the generalization of learned procedural skills, we test the low-level
executor, trained on AndroidWorld, on two distinct benchmarks in a zero-shot setting. We first use
ScreenSpot-v2 to assess its fundamental, single-step grounding capabilities across platforms, and
then use Android-in-the-Wild (AitW) to evaluate its applicability in complex, long-horizon tasks.

Fundamental Grounding on ScreenSpot-v2. To rigorously assess core GUI grounding capabil-
ities, we conducted a transfer experiment on the complete ScreenSpot-v2 benchmark (Wu et al.|
2024). ScreenSpot-v2 is a reliable standard, containing tasks across three distinct domains: Mobile
(10S/Android), Desktop (Windows/macOS), and Web. The crucial aspect of this test is the do-
main mismatch: our executor, trained exclusively on AndroidWorld (mobile) data, was evaluated
without any fine-tuning. This tests the hypothesis that the learned skills are fundamental enough to
transfer not only to unseen mobile apps but also to entirely different operating paradigms.

As detailed in Table 0] K2-Agent’s executor achieves a remarkable 91.3% overall accuracy. This
strong performance, despite the challenging cross-platform setting, validates our core hypothe-
sis. By decoupling and focusing on procedural knowledge, the executor learns a robust, platform-
agnostic visual grounding model rather than memorizing platform-specific patterns. This powerful
generalization demonstrates that the executor’s “muscle memory” is fundamentally about under-
standing visual language, making it a highly transferable component.

Long-Horizon Application on Android-in-the-Wild. Beyond single-step grounding, we also
evaluated whether the learned procedural skills can be effectively chained to solve complex, multi-
step tasks. We deployed the same executor, again without any fine-tuning, on the long-horizon tasks
of the Android-in-the-Wild benchmark. For this experiment, the high-level planner was boot-
strapped with a single expert demonstration for each task subset to rapidly generate a high-level
plan.

As shown in Table [2| K2-Agent achieves state-of-the-art performance, with success rates of 86.5%
on AitW-General and 68.3% on AitW-WebShopping. This significantly surpasses prior methods
based on SFT, RL, or closed-source models, confirming that the robust procedural skills learned on
AndroidWorld serve as a strong foundation for solving complex, unseen tasks.

E.2 TRAJECTORY VISUALIZATIONS

To provide a more intuitive understanding of our agent’s behavior, this section presents visual case
studies of both successful and failed trajectories.

E.2.1 SUCCESSFUL TRAJECTORY ON A COMPLEX TASK

Figure [T1] illustrates complete steps from a successful execution of the complex, multi-app task
MarkorCreateNoteAndSms. This trajectory demonstrates the effective synergy between the
high-level planner and the low-level executor. At each stage, the planner, guided by its evolved
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Table 9: Zero-shot performance of the K2-Agent executor on the ScreenSpot-v2 benchmark, com-
pared to other state-of-the-art GUI grounding models. Our executor demonstrates competitive per-
formance, highlighting the strong generalization of its learned procedural skills.

Mobile Desktop Web
Agent Model Text Icon Text Icon Text Icon Overall
Operator (OpenAl!2025) 473 41.5 90.2 80.3 92.8 84.3 70.5
Claude 3.7 Sonnet (Anthropic/[2025b) - - - - - - 87.6
UI-TARS-1.5 (Qin et al.[[2025) - - - - - - 94.2
Seed-1.5-VL (Guo et al.|[2025) - - - - - - 95.2
SeeClick (Cheng et al.[[2024) 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OmniParser-v2 (Yu et al.[[2025) 95.5 74.6 92.3 60.9 88.0 59.6 80.7
Qwen2.5-VL-3B (Bai et al.|[2025) 934 73.5 88.1 58.6 88.0 71.4 80.9
UI-TARS-2B (Qin et al.|[2025) 95.2 79.1 90.7 68.6 87.2 78.3 84.7
OS-Atlas-Base-4B (Wu et al.|[2024) 95.2 75.8 90.7 63.6 90.6 773 85.1
OS-Atlas-Base-7B (Wu et al.|[2024) 96.2 83.4 89.7 69.3 94.0 79.8 87.1
JEDI-3B (Xie et al.[[2025) 96.6 81.5 96.9 78.6 88.5 83.7 88.6
Qwen2.5-VL-7B (Bai et al.|[2025) 97.6 87.2 90.2 742 93.2 81.3 88.8
UI-TARS-72B (Qin et al.[|2025) 94.8 86.3 91.2 87.9 91.5 87.7 90.3
UI-TARS-7B (Qin et al.|[2025) 96.9 89.1 95.4 85.0 93.6 85.2 91.6
JEDI-7B (Xie et al.[|2025) 96.9 87.2 95.9 87.9 94.4 84.2 91.7
GUI-Owl-7B (Ye et al.|[2025) 99.0 92.4 96.9 85.0 93.6 85.2 92.8
GUI-Owl-32B (Ye et al.[[2025) 98.6 90.0 97.9 87.8 94.4 86.7 93.2
UI-Venus-Ground-7B (Gu et al.![2025) 99.0 90.0 97.0 90.7 96.2 88.7 94.1
UI-Venus-Ground-72B (Gu et al.[[2025) 99.7 93.8 95.9 90.0 96.2 92.6 95.3
K2-Agent (Executor only) 96.9 80.6 95.9 83.6 95.3 90.6 91.3

knowledge base (K ), issues a clear and logical sub-goal (knowing what). The C-GRPO-trained ex-
ecutor then successfully grounds this sub-goal into a precise, low-level action on the screen (knowing
how), seamlessly navigating between creating a note in one app and sharing its content via another.

E.2.2 ANALYSIS OF GENERALIZATION AND FAILURE MODES

Our framework demonstrates powerful dual-generalization capabilities, where both high-level
declarative knowledge and low-level procedural skills transfer effectively to unseen tasks.

Declarative Knowledge Generalization. We evaluated the planner’s ability to adapt its declara-
tive knowledge to novel tasks in the AitW benchmark. For each new task type, the SRLR loop was
bootstrapped from a single demonstration, allowing the planner to rapidly form a new strategy. Fig-
ure |13| showcases the agent successfully completing two distinct, unseen tasks. This demonstrates
that the SRLR self-evolution process produces robust, high-level strategies that are not mere scripts
but generalizable plans that can be effectively applied to solve problems in new applications.

Procedural Skill Generalization. Figure [14|provides a visual testament to the executor’s proce-
dural generalization. Though trained only on AndroidWorld, the executor correctly identifies target
UI elements on unseen mobile, desktop, and web interfaces from the ScreenSpot-v2 benchmark.
This confirms that C-GRPO training develops a fundamental, platform-agnostic visual grounding
capability rather than overfitting to specific app Uls.

Failure Analysis. Our analysis of failure cases reveals a consistent pattern: the majority of re-
maining errors do not stem from flaws in K2-Agent’s framework (i.e., incorrect high-level plans or
imprecise low-level actions), but from the intrinsic limitations of the current backbone VLM. Figure
visualizes a typical example from the RetroCreatePlaylist task, where the agent cor-
rectly identifies all songs but fails to add them in the strictly specified order. Other similar failures,
such as those in ExpenseAddMultipleFromMarkor (requiring multi-document reasoning)
and MarkorMergeNotes (requiring long-context text handling), also point to challenges in com-
plex instruction following and long-horizon reasoning. These tasks represent the current frontier
for foundation models, and we anticipate that as backbone models improve, these failures can be
overcome without changes to the K2-Agent framework itself.
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Figure 14: Zero-shot procedural skill transfer to the ScreenSpot-v2 benchmark.
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