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Context-Aware Indoor Point Cloud Object Generation through
User Instructions

Anonymous Author(s)

ABSTRACT
Indoor scene modification has emerged as a prominent area within

computer vision, particularly for its applications in Augmented

Reality (AR) and Virtual Reality (VR). Traditional methods often

rely on pre-existing object databases and predetermined object

positions, limiting their flexibility and adaptability to new scenar-

ios. In response to this challenge, we present a novel end-to-end

multi-modal deep neural network capable of generating point cloud

objects seamlessly integrated with their surroundings, driven by

textual instructions. Our model revolutionizes scene modification

by enabling the creation of new environments with previously

unseen object layouts, eliminating the need for pre-stored CAD

models. Leveraging Point-E as our generative model, we intro-

duce innovative techniques such as quantized position prediction

and Top-K estimation to address the issue of false negatives re-

sulting from ambiguous language descriptions. Furthermore, we

conduct comprehensive evaluations to showcase the diversity of

generated objects, the efficacy of textual instructions, and the quan-

titative metrics, affirming the realism and versatility of our model

in generating indoor objects. To provide a holistic assessment, we

incorporate visual grounding as an additional metric, ensuring

the quality and coherence of the scenes produced by our model.

Through these advancements, our approach not only advances the

state-of-the-art in indoor scene modification but also lays the foun-

dation for future innovations in immersive computing and digital

environment creation. The anonymized project is available at https:

//anonymous.4open.science/r/Context-aware-Indoor-PCG-9DFB.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Scene un-
derstanding.
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Query: "Generate a couch that is closer to the TV."

Figure 1: Our model generates a couch that is positioned
close to the television in response to the query and makes
it consistent with the rest of the scene, i.e., the orientation,
size, and overlap with other objects in certain cases.

1 INTRODUCTION
In the rapidly evolving field of computer vision, the significance of

3D computer vision has reached unprecedented heights. It poses

many challenges that are similar to those in 2D image processing but

also offers the opportunity to leverage successful strategies from the

2D domain on classic tasks such as object detection. However, the

complex data structure of point clouds and the nature of 3D scenes

present challenges for tasks like modifying 3D scenes. Applying

experience from 2D image processing is limited in this context. This

paper discusses a new task called scene modification, which aims to

modify a point cloud-based 3D scene according to user instructions,

and proposes a solution for it.

Scene modification aims to create new scenarios with previously

unseen layouts of objects, thereby enriching the geometrical and

auxiliary color features according to the will of the user. For in-

stance, as depicted in Fig. 1, given a specific scene and query, an

object that harmonizes with its surroundings should be generated

and inserted in the correct place by the model.

Scene modification also has a wide range of applications in indus-

tries. It plays a crucial role in the fields of Augmented Reality (AR)

and Virtual Reality (VR). In AR, it is used to superimpose virtual

objects onto the real world, enhancing the user’s perception and

interaction with their environment [21]. In VR, scene modification

is used to create immersive virtual environments. It can generate

diverse scenarios by adding or modifying objects in a virtual scene,

enriching the user’s experience. Nevertheless, in today’s VR and AR

software development process, it is necessary to have a relatively

large material library to insert different types of objects into the

scene. Our method, however, allows developers and artists to create

realistic and consistent objects directly using simple text prompts,

freeing up large amounts of storage and reducing time costs.

In this paper, we focus on 3D scene modification of point clouds,

in which point clouds serve as the fundamental building blocks for

1
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creating complex and detailed 3D objects. Previous works mainly fo-

cus on the transformation of a single object [20] or generating point

clouds from existing ones [23]. Some works on scene modification

reply on inserting pre-built CAD objects into scene [28, 33, 34, 38].

While scene modification can be simplified to selection and inser-

tion as a two-stage pipeline, this may result in inflexibility and

inconsistency with the surroundings, and only a few works address

the issue of generating new objects and incorporating them into

scenes as an end-to-end process.

To address these limitations, we propose an end-to-end multi-

modal deep neural network. It can generate objects consistent with

the surroundings and integrate these objects seamlessly into given

scenes, conditioned on text instructions. This work introduces a

unique data pipeline, empowered by GPT, to transform existing

visual grounding datasets to apply them to the task of instructed

scene modification (Sec. 3.1). Moreover, a feature fusion module has

been designed for space-text feature fusion. After extracting the

spatial features from the 3D scene and textual features from the text

query, these features will be fused as fusion features. The fusion

features, derived from the cross-attention mechanism, capture high-

level information from both the surroundings and the query texts,

enabling conditional object generation and the location prediction

of target point clouds (Sec. 3.2, 3.3 and 3.4).

The effectiveness of our proposed method is validated through

qualitative and quantitative experiments conducted on the ReferIt3D

dataset [1] (Sec. 4). This work, therefore, presents a significant

contribution to this field by addressing previous limitations and

proposing innovative solutions.

In summary, the contributions of our work are as follows:

• We generate a new dataset for scene modification tasks

by designing a GPT-aided data pipeline for paraphrasing

the descriptive texts in ReferIt3D dataset to generative in-

structions, referred to Nr3D-SA and Sr3D-SA datasets. The

dataset will be released to the public and can be utilized for

comparable tasks in subsequent studies.

• We propose an end-to-end multi-modal diffusion-based

deep neural network model for generating in-door 3D ob-

jects into specific scenes according to input instructions.

• We propose quantized position prediction, a simple but

effective technique to predict Top-K candidate positions,

which mitigates false negative problems arising from the

ambiguity of language and provides reasonable options.

• We introduce the visual grounding task as an evaluation

strategy to assess the quality of a generated scene and inte-

grate several metrics to evaluate the generated objects.

2 RELATEDWORK
Text-guided 3D Vision. While 2D text-guided tasks have achieved

great success in recent years, 3D text-guided tasks also hold a high

degree of research interest. The majority of 3D V+L tasks are de-

rived from corresponding 2D tasks as an extension of 2D space

to 3D space, such as 3D visual grounding [1, 6, 15, 41], 3D dense

captioning [8, 9, 17], and 3D shape generation [7, 22, 39]. Despite

the differences between these 3D V+L settings, these tasks are gen-

erally dependent on the 3D features and text features extracted

from the 3D settings and guidance text to adapt the downstream

tasks in a classic encoder-decoder manner. In early works [1, 6], 3D

scene features are combined with text features through direct con-

catenation for downstream classifiers. Since attention mechanisms

have proven to be successful in deep learning, many recent works

[8, 15, 18, 42] have adopted transformer-based decoders as fusion

module to improve performance and achieve better results.

Scene Modification. The field of scene modification has witnessed

substantial progress in recent years. [44] uses GNN to construct

the relationships between objects and their surroundings. Building

on this, [38] introduces a method for inserting objects from CAD

models into predicted positions based on the text prompt. Similarly,

[28, 33, 34] utilized object selection and insertion techniques, sim-

plifying the problem of scene generation to a selection of objects

from the database and pose predictions for each object. However,

a significant limitation of these methods is their heavy reliance

on pre-generated point clouds or pre-stored CAD models. This

dependence often results in inconsistencies with the surrounding

environment and hampers seamless integration into scenes. Fur-

thermore, this approach restricts the variety of objects that can

be generated, contradicting the initial objective of accommodating

open-ended text prompts. This constraint underscores the need

for more flexible and adaptive techniques in scene modification,

capable of generating a wider array of objects while ensuring har-

monious integration with the existing environment. There are also

some works [3, 14, 32] that are built based on neural radiance fields

[25] that can synthesize indoor scenarios. However, these methods

usually need images as input and the camera views of images are

strictly restricted, which may not be feasible for certain tasks.

Point Cloud Generation. Many prior works have explored gener-

ative models over point clouds, including the use of autoencoder

[2], flow-based generation [40], and generative adversarial neu-

ral networks (GAN) [16]. Besides, the Diffusion Model [12, 36],

which has been proven to have great potential in the generative

field, is widely applied. [23] treated point clouds as samples from a

point distribution and reverse diffusion Markov chain to model the

distribution of point. [43] introduce PVD, a diffusion model that

generates point clouds directly instead of translating a latent vector

to a shape. Yet, these studies did not demonstrate the capability

to generate point clouds conditioned on open-ended text prompts.

More recently, OpenAI introduced Point-E [26], a sophisticated

model predicated on the concept of conditional diffusion, uniquely

designed to generate point clouds directly, bypassing the need for

latent vector translation. Point-E is also capable of producing col-

ored point clouds in response to intricate text or image prompts,

showcasing an impressive degree of generalization across a mul-

titude of shape categories. Our object generation model is built

upon the robust foundation provided by Point-E, capitalizing on its

pre-trained model to enhance our system’s capabilities.

3 METHODOLOGY
In this section, we introduce the proposed scenemodificationmethod.

An overview of our model is presented in Fig. 2.

Data Pipeline. We transform the existing visual grounding dataset

to accommodate instructed scene modification. As part of the data

2
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Query:
Generate a couch that is

closer to the TV
Point Clouds

Multi-Modal Feature Fusion

Object Encoder

Context Encoder

Word Embeddings

Transformer
Encoder

Text Classifier

Situate a grey pillow in
front

Add a narrow shelf
directly on the wall

Generate a couch that is
closer to the TV

Choose the grey pillow in
front

Narrowest shelf,
directly on wall

Choose the couch that is
closer to the tv

Rule-based Filtering
& Mixed Correction

LLM Paraphrasing

Descriptive
Text

Generative
Text

Data Pipeline Model Pipeline

DiffusionCLIP

Point-E

Position
Decoder

Input Scene

Output Scene

Figure 2: Overview of our method. (a) A large language model (LLM) is used to paraphrase the descriptive text, combined with
rule-based and manual corrections. (b) Upon receiving generative text as a query and point cloud input, our model integrates
both object and language features to predict the final position. Besides, the language features are aligned across the model. The
amalgamated features are then processed through the Point-E model to generate a realistic object.

pipeline, descriptive texts are paraphrased by LLM to obtain gener-

ative instructions, which are then revised manually and by rules.

Model Pipeline. The scene modification process involves two

stages: (a) locate the desired position using the grounding model;

(b) create a new object based on the location and scene context

using the text-to-point model. In the following sections, we will

elaborate further on each module.

Problem Statement. The task of instructed scene modification

involves generating a suitable target object 𝑂𝑡𝑔𝑡 within a specific

scene 𝑆 based on a generative instruction. In our setup, a scene 𝑆 can

be conceptualized as the ensemble of in-scene objects {𝑂𝑐𝑡𝑥,𝑖 }𝑁𝑖=1.
The spatial representation of object 𝑂 comprises its central lo-

cation 𝒍 ∈ R3, original size 𝑠 ∈ R, and normalized point cloud

p ∈ [−1, 1]𝑃×𝐶 . For ease of understanding, we denote 𝑆 as:

L ∈ R𝑁×3, 𝒔 ∈ R𝑁 , P ∈ [−1, 1]𝑁×𝑃×𝐶
(1)

where 𝑁 is the number of in-scene context objects and 𝐶 is the

number of channels (e.g., 𝐶 = 6 for XYZ-RGB points).

3.1 Dataset Transformation
To adapt the instructed scene modification task, our method trans-

forms the ReferIt3D dataset [1] as shown in data pipeline. ReferIt3D
dataset consists of 41K manually labeled (Nr3D dataset) and 114K

machine-generated (Sr3D dataset) descriptions of specific targets

in given scenes of the ScanNet dataset [10]. Each description en-

try illustrates the in-door location, type, and shape of the target

object. Since the ReferIt3D dataset only contains descriptive texts,

we leverage the GPT-3.5 [4] to paraphrase them into generative

instructions. The transformed datasets are noted as Nr3D-SA and

Sr3D-SA, containing 155K generative instructions for 76 object

classes, involving 1436 different scene scans of the ScanNet dataset.

Prompt engineering is used to facilitate the paraphrasing process.

We construct well-designed prompting templates to instruct GPT-

3.5 to perform paraphrasing. It should also be noted that human-

labeled descriptions of Nr3D are generally more complex than those

generated by machines of Sr3D. Even humans have difficulty distin-

guishing the correctly paraphrased ones from the incorrect ones in

a large corpus. Therefore, we employ rule-based techniques to filter

out the errors produced by GPT-3.5. The errors are then revised

through an additional GPT-4 [27] round with manual corrections.

Detailed information regarding the prompt-based paraphrasing

process, including the prompting templates and filtering rules, can

be found in the Supplementary Material.

3.2 Multi-Modal Context Fusion
To accomplish multi-modal feature fusion, we decouple the fusion

process into feature extraction and cross-attention fusion.

Feature Extraction. Point cloud features of all context objects are
extracted by the object encoder. In practice, we use PointNeXt [30]

rather than the commonly used PointNet++ [29]. For the language

features of the query text, we adopt a Transformer Encoder-based

language model (e.g., BERT [19]). Since the query text is relatively

simple, only part of the encoder layers can handle language mod-

eling. The object encoder and the text encoder produce the point

3
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Figure 3: Extraction of context vector 𝒛𝑐𝑡𝑥 .

cloud and textual features as x𝑜𝑏 𝑗 ∈ R𝑁×𝐷
and x𝑙𝑎𝑛𝑔 ∈ R𝑇×𝐷

, re-

spectively. The dimension of the latent representation is 𝐷 whereas

the token size of query text is 𝑇 .

Cross-attention Fusion. The multi-modal features are fused by

the object feature x𝑜𝑏 𝑗 and the query feature x𝑙𝑎𝑛𝑔 using the cross-

attention mechanism [37]. We adopt a standard Transformer De-

coder as the context encoder. Prior to the cross-attention, a learn-

able token [CTX] is prepended to the front of object features as

𝒙𝑐𝑡𝑥 ∈ R𝐷 . Also, an additional object position embedding is applied

to provide spatial information to the context encoder:

PE(L, 𝒔) = LayerNorm(MLP( [L ∥ 𝒔])) (2)

The multi-modal features are then calculated as:

x𝑚𝑚 = XAttn( [𝒙𝑐𝑡𝑥 ∥ x𝑜𝑏 𝑗 ] + PE(L, 𝒔), x𝑙𝑎𝑛𝑔) (3)

where XAttn is cross-attention encoder, · ∥ · is the concatenation
operator, and MLP is the Multi-Layer Perceptrons.

The cross-attention mechanism integrates both the spatial fea-

ture of context objects and the query text feature. Alternatively,

it can be considered a "scene encoder" that extracts the features

from both the query text and the scene. As shown in Fig. 3, the

context vector 𝒛𝑐𝑡𝑥 representing the entire scene and query is then

extracted from the first token of x𝑚𝑚 , corresponding to the position

of the token [CTX].

3.3 Quantized Position Prediction
Given the inherent ambiguity and potential vagueness of many

queries, predicting the location of objects poses a significant chal-

lenge for our model, as evidenced by our experimental results in

Tab. 3, we introduce a technique known as quantized position predic-
tion. This fundamental concept entails transforming a continuous

coordinate system into discrete bins, simplifying the intricate re-

gression problem into an easier classification task.

We divide the space into discrete bins and train the model to pre-

dict the normalized 𝑥𝑦𝑧 coordinates within each bin. The division

procedure can be formulated as:

˜𝒍 =

⌊
𝒍 −min𝑥𝑦𝑧

max𝑥𝑦𝑧 −min𝑥𝑦𝑧
× 𝐵

⌋
(4)

where
˜𝒍 is the normalized bin coordinate, 𝒍 is the original coordinate,

⌊·⌋ is the floor rounding function, max𝑥𝑦𝑧 and min𝑥𝑦𝑧 represent

the maximum and minimum coordinate of each axis respectively,

and 𝐵 is the total number of bins.

Furthermore, our practical experiments have revealed that ob-

jects within the same class often exhibit substantial variations in

the 𝑥𝑦-plane but tend to have similar 𝑧 coordinates. Thus, we sepa-

rate the prediction process into two parts: one that addresses the

𝑥𝑦-plane bin prediction and the other that addresses the 𝑧-axis bin

prediction, and then concatenate them, formulated as follows:

ˆ𝒍𝑥𝑦 = MLP(𝒛𝑐𝑡𝑥 ), ˆ𝒍𝑧 = MLP(𝒛𝑐𝑡𝑥 )
ˆ𝒍 = [ˆ𝒍𝑥𝑦 ∥ ˆ𝒍𝑧]

(5)

where
ˆ𝒍 is the predicted normalized coordinates. This normalized

position is then restored to the original space’s coordinates as the

final predicted location.

3.4 Context-Aware Point Cloud Generation
We utilize the Point-E model [26] as our point cloud generation

model. Point-E is a generative model developed by OpenAI for gen-

erating 3D point clouds from complex prompts based on Diffusion.

We use the pre-trained model base40M-textvec provided by Point-

E, which has been trained on ShapeNet [5]. Point-E’s diffusion

process, which is similar to other diffusion models, aims to sam-

ple from some normal distribution 𝑞(𝒙0) using a neural network

approximation 𝑝𝜃 (𝒙0).
In Point-E, guidance is used as a trade-off between sample di-

versity and fidelity in diffusion. Point-E inherits the classifier-free

guidance from [13], where a conditional diffusion model is trained

with the class label stochastically dropped and replaced with an

additional Ø, using the drop probability 0.1. During the sampling,

the model’s output 𝜖 is linearly extrapolated away from the uncon-

ditional prediction towards the conditional prediction:

𝜖𝑔𝑢𝑖𝑑𝑒𝑑 = 𝜖𝜃 (𝒙𝑡 ,Ø) + 𝑠 · (𝜖𝜃 (𝒙𝑡 ,𝒚) − 𝜖𝜃 (𝒙𝑡 ,Ø)) (6)

for guidance scale 𝑠 ≥ 1.

Several modifications are made to the Point-E model to better

adapt it for context-aware generation tasks. One of the key changes

involves the integration of context feature vectors 𝒛𝑐𝑡𝑥 with the text

feature vectors 𝒛𝐶𝐿𝐼𝑃 generated by the CLIP model [31] as shown

in Fig. 2. Alignment between 𝒛𝐶𝐿𝐼𝑃 and the text instruction feature

vectors 𝒛𝑙𝑎𝑛𝑔 produced by the transformer encoder is proposed to

enhance cross-modal comprehension. This new combined feature

vector is then used as input labels in the guided diffusion learning

process, formulated as:

ℓ𝑠𝑖𝑚 = Cosine-Similarity(𝒛𝐶𝐿𝐼𝑃 , 𝒛𝑙𝑎𝑛𝑔)
𝒚 = MLP(𝒛𝑐𝑡𝑥 ∥ 𝒛𝐶𝐿𝐼𝑃 )

(7)

The primary objective of this modification is to enable the diffu-

sion model to effectively utilize contextual information from the

scene and query text as guidance. This enables the modification of

objects that are more seamlessly integrated with their environment.

3.5 Loss
The training process involves five losses, four for multi-modal fea-

ture fusion and one for Point-E diffusion, as illustrated in Fig. 2.

4
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"Set up a blue recycling
bin."

"Put a stool in front of
the chair."

Instructions Original Scene
(w/o reference) 

Original Scene
(w/ reference)  Ours

"Place a suitcase closer
to the nightstand."

"Produce a coffee table
that sits between the

bathtub and the couch."

Figure 4: Scenes before and after modification. Each row represents the scenes to be modified under different instructions.
Different random seeds are used to generate the columns of the modified scene. Candidate locations are extracted from the
Top-5 predictions. The bounding boxes of reference objects and generated objects are outlined in blue and red, respectively.

Firstly, we have the loss ℓ𝑜𝑏 𝑗 , originating from the [15] and tai-

lored for multi-modal feature fusion. Specifically, it is computed as

the cross-entropy between the predicted object type of all context

objects from the object feature x𝑜𝑏 𝑗 and their ground truths. Next,

we have the loss ℓ𝑙𝑎𝑛𝑔 , which measures the discrepancy between the

predicted type of the generated object from the query text feature

x𝑙𝑎𝑛𝑔 and the ground truth. The third and fourth losses pertain

to position prediction, represented by ℓ𝑙𝑜𝑐 and ℓ𝑠𝑐𝑎𝑙𝑒 . These are

supervised cross-entropy loss for target position prediction and L1

loss for object size, respectively. ℓ𝑙𝑜𝑐 is the combined loss of two

MLPs defined in Eq. 5. Hence we could define the loss ℓ𝑚𝑚 as the

total loss of multi-modal feature fusion:

ℓ𝑚𝑚 = 𝛼𝑜𝑏 𝑗 × ℓ𝑜𝑏 𝑗 + 𝛼𝑙𝑎𝑛𝑔 × ℓ𝑙𝑎𝑛𝑔 + ℓ𝑙𝑜𝑐 + ℓ𝑠𝑐𝑎𝑙𝑒 (8)

where 𝛼𝑜𝑏 𝑗 and 𝛼𝑙𝑎𝑛𝑔 serve as weights for certain loss terms, both

with the default value of 0.5. We also introduce ℓ𝑠𝑖𝑚 to align the

multi-modal features extracted from the text encoder and CLIP

model. Lastly, for point cloud generation supervision, we inherit

theMean Squared Error (MSE) loss from the Point-E model, denoted

as ℓ𝑝𝑜𝑖𝑛𝑡−𝑒 . We can therefore calculate the total loss as the sum of

all losses during the training process:

ℓ = ℓ𝑚𝑚 + ℓ𝑝𝑜𝑖𝑛𝑡−𝑒 + ℓ𝑠𝑖𝑚 (9)

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. We train and evaluate our method on the Nr3D-SA and

Sr3D-SA datasets generated in Sec. 3.1. For experiments trained

on Nr3D-SA, only query data with explicit reference to the type of

the target object is used, while all data is included in the Sr3D-SA

settings. The datasets are divided into 80% for training and 20% for

evaluation. The target object is separated from the other context

objects in the scene and is set as the ground truth during training.

In the training stage, we apply a 4-direction random rotation on

the scenes. In the evaluation phase, the target object serves as a

reference for assessing the generation quality.

Implementation Details. The dimension 𝐷 of latent representa-

tion throughout the model pipeline is set to 768. For the point

cloud encoder backbone, we adopt the PointNeXt-L model based
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on its state-of-the-art performance [30]. We adopt the pre-trained

BERTBASE [19] with the first 3 layers as the query text encoder. The

context encoder is a 4-layer Transformer Decoder for multi-modal

feature fusion. The number of quantized bins is set to 𝐵 = 32.

We implement our model in PyTorch and deploy point-cloud-

based backbone models using the OpenPoints library [30]. Farthest

Point Sampling (FPS) algorithm based on QuickFPS [11] is also

used for efficient point sampling, with a setting of 𝑃 = 1024 or

𝑃 = 2048 as the point cloud size. For the training phase, our model

is trained with a batch size of 16 for a total of 800,000 steps on both

Nr3D-SA and Sr3D-SA datasets using ∼480 RTX4090 GPU hours.

We also train our model on only Nr3D-SA for quick verification,

with a total of 320,000 steps. For optimization, we use AdamWwith

hyper-parameters 𝛽 = (0.95, 0.999), 𝜖 = 10
−6

and weight decay of

10
−3

. The base learning rate for multi-modal fusion part and Point-

E is 2 × 10
−4

and 4 × 10
−5

respectively, where the learning rate for

BERTBASE and context encoder is set to
1

10
of the base. Additionally,

we employ a linear learning rate schedule from 2 × 10
−4

to 10
−5
.

4.2 Metrics
Quality of Generation. In the context of 3D generation evalua-

tion, Earth Mover’s Distance (EMD) [35] measures the similarity

between two point clouds. Following previous works [2, 40, 43], we

evaluate the quality of generated point clouds using the metrics of

minimum matching distance (MMD), coverage (COV), 1-nearest

neighbor accuracy (1-NNA), and Jensen-Shannon Divergence (JSD).

A similarity between the distribution of generated and reference

point clouds indicates a high degree of realism.

Given the fact that EMD and JSD are only capable of assessing

the disparity in point distribution, thus merely providing an in-

direct evaluation of the generative performance, we propose an

auxiliary metric to evaluate the quality of generated objects and

the performance of language modeling. We employ a PointNeXt

classifier trained on ReferIt3D to classify the generated objects. Fur-

thermore, we observe that objects belonging to certain classes may

have analogous shapes, such as suitcases and boxes. To mitigate this

problem, we apply the Top-K estimation to classification accuracy,

denoted as Acc@𝑘 . This approach allows us to mitigate the false

negatives caused by similar shapes.

Top-K Distance Estimation. Due to the inherent ambiguity and

vagueness in natural language, it is common to encounter multiple

potential position matches for a single query. For example, when

presented with a query like "place a chair in the corner" within a

room with four corners, the model may produce four potential cor-

rect positions. However, only one corner is the truematch according

to the dataset. This array of potential matches adds complexity to

accurately understanding and responding to user queries. To tackle

this issue, we employ a technique called Top-K Distance Estimation,
referred to as Δ𝒍@𝑘 .

This method allows the model to gauge its current performance

more accurately by considering the Top-K closest match position,

rather than relying on a single best match. By taking into account a

range of closely matching responses, the model can better navigate

the nuances and ambiguities of natural language and thus is less

likely to be adversely affected by vague descriptions or queries.

Table 1: Examination of the quality of the modified scene
through visual grounding analysis. We utilized the MVT
model [15], trained on the ReferIt3D dataset. Our modified
scene was used as the test set, and we measured different
accuracy across various difficulty levels, e.g., Easy and Hard
mentioned in [15]. Rnd.means either the location or shape
of the target object is randomly generated. P.O. stands for
Point-E Only model and GT stands for ground truth.

Location Shape Easy(%, ↑) Hard(%, ↑) Overall(%, ↑)
Rnd. Rnd. 4.76 2.53 3.62

Rnd. P.O. 13.58 6.78 10.11

Rnd. GT 23.94 14.83 19.29
Rnd. Ours 15.90 8.76 12.26

GT Rnd. 14.41 7.78 11.03

GT P.O. 36.71 25.64 31.07

GT GT 61.44 47.28 54.22
GT Ours 46.78 33.39 39.95

Ours Rnd. 10.58 5.67 8.08

Ours P.O. 35.06 24.00 29.42

Ours GT 46.07 28.92 37.33
Ours Ours 41.09 27.07 33.94

4.3 Experiment Results
Visualization. Figure 4 visualizes the qualitative results of our

method on the evaluation of the Sr3D-SA dataset. The candidate

locations of each object are chosen from the Top-5 predictions,

while the point cloud is derived using different random seeds. Most

generated point clouds are located close to the reference points

and the shapes are consistent with the instructions. While some

generated objects may vary from the references, they are oriented

and sized following their surroundings.

Additionally, we notice that certain predicted locations diverge

from the reference because of ambiguous instructions, such as the

outcomes of "Set up a blue recycling bin". To mitigate this ambiguity,

positional prepositions (e.g., "in front of the chair") can be employed

to restrict potential locations to those proximate to the desired

ones. Typically, the accuracy of location determination improves

as instructions become less ambiguous.

Diversity of Generations. One of the key advantages of our ap-

proach to 3D object generation, which comes from the diffusion

mechanism, is that diverse shapes can be generated for a given

instruction, as shown in Fig. 5. This figure illustrates three distinct

categories of point clouds generated from different random seeds.

While maintaining consistency with the surrounding environment

and instructions, our method creates meaningful variances in both

shape and color. It allows the choice of the best shape to be made

from a variety of options.

Effectiveness of Instructions. Moreover, since the shape of the

generated object is determined by the instructions, the effective-

ness of different instructions indicates the generalization ability

of our approach. Fig. 6 provides results for the generated objects

when different instructions are applied with slight variations. These

results demonstrate that our approach can capture the differences

6
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Table 2: Snapshot of EMD values and classification accuracy for 32K objects generated from 32K randomly sampled generative
texts from the test set, using our method and Point-E without feature fusion separately. Each class’s proportion in the training
set is also shown. MMD is multiplied by 10

2 and JSD is multiplied by 10
1.

Object Class Ours Point-E Only

MMD↓ COV↑ 1-NNA↓ JSD↓ Acc@1↑ Acc@5↑ MMD↓ COV↑ 1-NNA↓ JSD↓ Acc@1↑ Acc@5↑
chair(7.58%) 11.52 33.10 98.80 2.474 80.59 95.91 11.15 21.63 99.63 2.78 62.39 91.56

door(6.72%) 7.66 29.43 99.78 2.918 0.09 5.14 7.57 21.39 99.93 2.936 2.16 13.89

trash can(4.78%) 10.38 36.47 99.13 2.983 31.66 56.38 11.62 19.37 99.69 3.7 6.77 30.6

window(4.76%) 9.56 30.08 99.17 3.416 31.12 62.55 9.69 27.53 99.77 3.309 39.4 64.27

table(4.70%) 12.59 30.61 98.88 3.988 47.34 80.55 13.2 20.93 99.37 4.614 21.73 45.58

cabinet(3.71%) 12.22 36.38 98.57 2.960 16.95 64.00 10.82 27.64 99.5 2.974 9.21 38.84

picture(3.53%) 6.44 36.25 99.53 3.146 19.06 50.00 6.98 31.24 99.58 3.309 35.01 67.09

shelf(3.42%) 9.28 35.90 99.65 2.912 35.55 76.18 8.79 23.99 99.69 2.91 24.71 48.07

lamp(3.17%) 13.59 30.17 99.17 4.069 50.41 71.90 13.58 24.1 99.86 4.49 12.53 23.28

desk(3.16%) 14.59 35.11 99.56 3.660 11.56 44.67 13.96 22.85 99.85 3.839 1.9 15.33

pillow(2.36%) 10.96 40.94 98.82 3.033 51.18 69.69 10.71 37.24 99.24 3.18 26.58 50.23

backpack(2.34%) 12.02 36.79 97.65 2.758 33.07 66.34 11.54 27.52 99.21 2.414 27.94 68.31

...
...

...

Micro Avg. 12.05 34.08 98.89 3.634 30.75 56.45 11.50 26.87 99.40 3.620 18.37 39.85

Table 3: Additive ablation study of sequentially applying different training techniques for Scene Modification tasks. Vanilla
Transformer refers to the original transformer without any modification and directly predicts a coordinate, instead of a bin
in quantized position prediction. Dash "-" is used as a placeholder for unavailable results. Acc@𝑘 is the Top-𝑘 classification
accuracy of generated objects, whereas Acc𝑜𝑏 𝑗 and Acc𝑙𝑎𝑛𝑔 are the accuracy of categorizing the context objects and instructions.
Δ𝒍@𝑘 stands for the minimum absolute difference between the predicted coordinate and the ground truth coordinate with
Top-𝑘 evaluation. Δ𝑠 measures the difference between the predicted and ground truth sizes. MMD is multiplied by 10

2 and JSD
is multiplied by 10

1.

Ablate Acc@1↑ Acc@5↑ Δ𝒍@1↓ Δ𝒍@5↓ MMD↓ JSD↓ Δ𝑠 ↓ Acc𝑜𝑏 𝑗↑ Acc𝑙𝑎𝑛𝑔↑

Transformer + Point-E 18.96 39.34 2.179 - 13.29 3.575 0.161 51.95 89.63

+ FPS 19.30 40.49 2.251 - 12.78 3.455 0.163 51.72 89.71

Quantized Position (𝐵 = 16) 18.93 39.11 2.599 1.264 12.50 3.538 0.163 51.70 89.97

+ Quantized Position (𝐵 = 32) 23.10 44.23 2.654 1.302 12.37 3.471 0.162 52.07 89.88

+ ℓ𝑠𝑖𝑚 22.22 46.38 2.626 1.376 12.37 3.434 0.148 55.68 81.77

+ Sr3D-SA (Ours) 30.75 56.46 2.486 1.379 12.05 3.634 0.209 63.47 92.31

Office Chair

Monitor

Bookshelf

Figure 5: Diversity. The leftmost column shows the category
of the generated object to be generated from the instruction.
Different generations under the same instruction are shown
in each row.

between instructions while maintaining the semantics of the target

object. Generated objects can exhibit variations in color, shape, and

location while remaining aligned with the provided instructions

and the context of surrounding objects.

Quantitative Result. To assess the quality of the augmented scene,

we employ theMVTmodel [15] to perform visual grounding task on

three distinct scenes: randomly generated scenes, original ReferIt3D

scenes, and our augmented scenes, as shown in Tab. 1. The goal of

visual grounding is to identify the target object in a scene based

on the text provided. There are no distractor objects of the same

type as the target one in Easy tasks, whereas multiple objects of

the same type are available in Hard tasks.

It is observable that our model is capable of generating scenes

that are not only consistent but also easily recognizable by visual

grounding models trained on the original dataset. Despite the inher-

ent complexities involved in scene generation, which may lead to a

certain degree of decline in overall visual grounding accuracy than

the ground truth dataset, our model performs well in generating

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM’24, 28 October - 1 November 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Situate a dark-colored
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the couch.
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Figure 6: Generated objects under instructions with slight
variations. Each target object is created into the scene with
a variation in color, shape or location. The generated object
would be enclosed by a red bounding box.

high-quality scenes. These generated scenes are more identifiable to

the visual grounding model compared to those generated randomly

or those generated by a single Point-E model with ground truth

locations. Performance inHard tasks also indicates the effectiveness
of our approach in complex scenes.

Nevertheless, to conduct a comprehensive assessment of the

performance of object generation, we sample 32,000 generative

texts from the test set. For each generated object within this sample

set, we compute the metrics in Sec. 4.2. We also perform experi-

ments on a single Point-E model to compare the performance of

our context-aware design, i.e., Eq. 7, as shown in Tab. 2. For a more

comprehensive analysis of the object generation, we adapt the clas-

sification estimation with PointNeXt in Sec. 4.2 to categorize the

generated objects, denoted as Acc@𝑘 for Top-𝑘 accuracy. The com-

plete results are in the Appendix. It demonstrates that the ability

of our model to generate objects is deemed reasonable.

Ablation study. In this section, we evaluate our method in differ-

ent settings and strategies. We conduct an additive ablation study

on the location and generation quality, as illustrated in Tab. 3. In

the baseline model, only Nr3D-SA is used as training data, and the

model is built on a bare backbone. Also, we evaluate the accuracy

of identifying context objects and instructions with ℓ𝑜𝑏 𝑗 and ℓ𝑙𝑎𝑛𝑔 .

It is noteworthy that the performance of Δ𝒍@1 degrades when

the quantized position is applied. We observe, however, that the

position predictor without quantized position exhibits significant

Table 4: The results of utilizing the generated data as aug-
mented data for visual grounding, serve as an illustration of
downstream tasks. "w/" denotes the model trained with the
combination of Nr3D dataset and the generated data, while
"w/o" signifies the model trained solely with Nr3D dataset.

Metrics

Dataset

Nr3D w/o Aug. Nr3D w/ Aug.

Easy(%, ↑) 35.2 42.5
Hard(%, ↑) 24.5 30.5

Overall(%, ↑) 29.7 36.4

under-fitting: most of the predicted locations remain close to the

middle of the scene for a statistically minimal Δ𝒍 , which contra-

dicts the intended purpose. We hypothesize that directly predicting

absolute position is more challenging as a regression task than

predicting quantized position as a classification task.

5 DISCUSSION
Owing to the constraints of computational resources, we opted to

sample 1024 or 2048 points. Nonetheless, for existing point cloud

generation models [24], it is advisable to sample more points (e.g.,

4096) to achieve a more real-life outcome. The overhead of gener-

ating point clouds is also considerably greater than that in prior

works based on pre-built databases. Additionally, enhancing the

generative model’s capability may lead to further improvements in

our model’s performance. It is also important for our data-driven

training process to expand the relatively limited dataset. Our results

in the Appendix indicate that the performance is significantly lower

for certain classes with less data.

6 APPLICATION
In addition to its use in AR and VR, our model has the potential

for augmenting data in various downstream tasks, including visual

grounding. To comprehensively explore our model’s capabilities,

we incorporate our generated data alongside Nr3D as the training

set, employing MVT (referenced as [15]) as the visual grounding

model. We then evaluate the performance with or without our

generated objects as augmented data. Results indicate competitive

performance compared to models trained solely on original Nr3D

data. Further details are available in Tab. 4 and Appendix.

7 CONCLUSION
In this work, we present the first end-to-end multi-modal approach

to generate augmented scenes conditioned on instruction. To obtain

a proper dataset for scene augmentation, we use prompt engineer-

ing in conjunction with large language models to transform existing

visual grounding data. Our method then utilizes both spatial and

language features from the scene and instructions as guidance to

the diffusion and locating processes. Furthermore, the experiment

results exhibit the high capability of generating realistic objects

at the appropriate locations according to various metrics and the

visual grounding analysis. We hope this work will be a step towards

the more practical applications of 3D human-computer interactions.
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