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Abstract

Editing biological sequences has extensive applications in synthetic biology and
medicine, such as designing regulatory elements for nucleic-acid therapeutics and
treating genetic disorders. The primary objective in biological-sequence editing
is to determine the optimal modifications to a sequence which augment certain
biological properties while adhering to a minimal number of alterations to en-
sure safety and predictability. In this paper, we propose GFNSeqEditor, a novel
biological-sequence editing algorithm which builds on the recently proposed area
of generative flow networks (GFlowNets). Our proposed GFNSeqEditor identifies
elements within a starting seed sequence that may compromise a desired biolog-
ical property. Then, using a learned stochastic policy, the algorithm makes edits
at these identified locations, offering diverse modifications for each sequence in
order to enhance the desired property. Notably, GFNSeqEditor prioritizes edits
with a higher likelihood of substantially improving the desired property. Further-
more, the number of edits can be regulated through specific hyperparameters. We
conducted extensive experiments on a range of real-world datasets and biological
applications, and our results underscore the superior performance of our proposed
algorithm compared to existing state-of-the-art sequence editing methods.

1 Introduction

Editing biological sequences has a multitude of applications in biology, medicine, and biotechnol-
ogy. For instance, gene editing serves as a tool to elucidate the role of individual gene products in
diseases [16] and offers the potential to rectify genetic mutations in afflicted tissues and cells for
therapeutic interventions [7]. The primary objective in biological-sequence editing is to enhance
specific biological attributes of a starting seed sequence, while minimizing the number of edits (Fig-
ure 1). This reduction in the number of alterations not only augments safety but also facilitates the
predictability and precision of modification outcomes.

Several methods have been proposed to address biological-sequence editing, but they have suffered
from several limitations. The most traditional approaches are evolution-based methods, where—
over many iterations—a starting “seed” sequence is randomly mutated, and only the best sequence
(i.e., highest desired property) is kept for the next round [2, 29]. Beyond evolution-based methods,
a perturbation-based editing method known as Ledidi has been introduced by [26]. By treating se-
quence editing as an optimization task, Ledidi learns to perturb specific positions within a given
sequence. However, the utilization of these approaches necessitates the evaluation of numerous
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candidate edited sequences every iteration. This computational demand can become prohibitively
expensive, particularly for lengthy sequences. Additionally, evolution-based methods and Ledidi
heavily rely on evaluations provided by a proxy model capable of assessing the properties of unseen
sequences; the efficacy of these methods is limited by the reliability of the proxy model. Further-
more, both evolution-based methods and Ledidi only perform local searches in sequence space, and
as a result they suffer from low sample efficiency.

Generative flow networks (GFlowNets) [5, 6] are a generative approach known for their capacity to
sequentially generate new objects. GFlowNets have demonstrated remarkable performance in the
generation of novel biological sequences from scratch [13]. Drawing inspiration from the emerging
field of GFlowNets, this paper introduces a novel biological-sequence editing algorithm: GFNSe-
qEditor. Leveraging a pre-trained flow function from the GFlowNet, GFNSeqEditor assesses the
potential for significant property enhancement within a given sequence. GFNSeqEditor iteratively
identifies and subsequently edits specific positions in the input sequence to increase the target prop-
erty. Diversity holds significant importance when suggesting novel biological sequences [21], and
our stochastic approach empowers GFNSeqEditor to generate a diverse set of edited sequences for
each input sequence. In contrast to evolution-based methods and Ledidi, GFNSeqEditor does not en-
gage in local searches. Instead, it relies on a pre-trained flow function that amortizes the search cost
over the learning process, allocating probability mass across entire space to facilitate exploration
and diversity. More discussion about the related works can be found in Appendix C. We conduct
experiments across various DNA and protein sequence editing tasks, showcasing GFNSeqEditor’s
remarkable efficiency in enhancing properties with a reduced number of edits when compared to
existing state-of-the-art methods.

2 Sequence Editing with GFlowNet

To edit a given sequence x, we propose identifying sub-optimal positions of x such that editing
them can lead to considerable improvement in the sequence property. GFNSeqEditor uses a trained
GFlowNet’s flow function Fθ(·) to identify sub-optimal positions of x, and subsequently replace
the sub-optimal parts with newly sampled edits based on the stochastic policy π(·). Preliminaries
on GFlowNets can be found in appendix A.

Using the flow function Fθ(·), GFNSeqEditor iteratively identifies and edits positions in a seed
sequence. Let xt and x:t denote the t-th element and the first t elements in the sequence x, respec-
tively. For example, in the DNA sequence x = ‘ATGTCCGC’, we have x2 = ‘T’ and x:2 = ‘AT’.
At each step t of the algorithm, D(·) accepts x̂:t−1 and evaluates whether appending xt (from the
seed sequence) to the edited partial sequence x̂:t−1 is detrimental to the performance. Using the flow
function Fθ(·), given x̂:t−1, GFlowNet can evaluate the average reward obtained by appending any
possible token to x̂:t−1. In this context, each token can be viewed as an action. Let x̂:t−1+a denotes
the expanded x̂:t−1 by appending token a. For instance for the DNA sequence x = ‘ATGTCCGC’,
appending token a = ‘C’ to x:2, we get x:2 + a = ‘ATC’. Let A represent the available action set.
For each a ∈ A, using the state flow Fθ(x̂:t−1 + a) the value of action a given x̂:t−1 can be evalu-
ated. As discussed in Appendix A, the state flow Fθ(x̂:t−1 + a) is proportional to the total reward
of all possible sequences that have x̂:t−1 + a as their prefix. If the reward resulting from having xt

in the seed sequence is evaluated by Fθ(·) to be relatively small compared to other possible actions,
then xt is considered sub-optimal. In particular, xt is identified as sub-optimal if we have

Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

< δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

+ ν (1)

A T G T C C G C

DNA sequence x with property y

Sequence
Editor E A C G T C C A C

DNA sequence x̂ with property ŷ

Figure 1: An example of editing the DNA sequence ‘ATGTCCGC’. The goal is to make a limited number of
edits to maximize the property ŷ. Each token in the sequence in this example is called a base and can be any
one letter from the alphabet [‘A’, ‘C’, ‘T’, ‘G’]. The editor function E accepts the starting sequence and
determines that the second and seventh bases require editing (highlighted in red). Then, E modifies the bases
at these identified locations.
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Algorithm 1 GFNSeqEditor: Sequence Editor using GFlowNet

1: Input: Sequence x with length T , flow function Fθ(·) and parameters δ, λ and σ.
2: Initialize x̂:0 as an empty sequence.
3: for t = 1, . . . , T do
4: Check if xt is sub-optimal by obtaining D(xt, x̂:t−1; δ, σ) according to equation 2.
5: if D(x̂:t−1; δ, σ) = 1 then
6: Sample x̂t according to policy π(·|x̂:t−1) in equation 3.
7: else
8: Assign x̂t = xt.
9: end if

10: end for
11: Output: Edited sequence x̂.

where 0 ≤ δ ≤ 1 is a parameter chosen by the algorithm and ν ∼ N (0, σ2) is a Gaussian random
variable with variance of σ2. The variance σ2 is a parameter chosen by the algorithm. From equa-
tion 1 it can be inferred that xt is identified as sub-optimal if its associated out-flow is considerably
smaller than the out-flow associated with the best possible action in A. The inclusion of additive
noise ν on the right-hand side of equation 1 introduces a degree of randomness into the process
of identifying sub-optimal positions. This, in turn, fosters exploration in the editing process. The
sub-optimal-position-identifier function D(·) determines if xt is sub-optimal as follows:

D(xt, x̂:t−1; δ, σ) =

{
1 If the condition in equation 1 is met
0 Otherwise

. (2)

If D(xt, x̂:t−1; δ, σ) = 0, at step t the algorithm appends xt from the original sequence x to x̂:t−1.
Otherwise, if D(xt, x̂:t−1; δ, σ) = 1, the algorithm samples an action a according to the following
policy:

π(a|x̂:t−1) = (1− λ)
Fθ(x̂:t−1 + a)∑

a′∈A Fθ(x̂:t−1 + a′)
+ λ1a=xt

(3)

where 0 ≤ λ < 1 is a regularization coefficient and 1a=xt
denotes indicator function and is 1 if

a = xt. The regularization parameter λ allows tuning the sampling process to favor the original
sequence, thereby reducing the number of edits. The policy in equation 3 constitutes a trade-off
between increasing the target property and decreasing the distance between the edited sequence
x̂ and the original sequence x. Specifically, the first term in the right hand side of equation 3
samples actions with probability proportional to their flow. The second term in the right hand side
of equation 3 increases the likelihood of choosing the original xt to reduce the distance between the
edited sequence and the original one. Let x̃t be the action sampled by the policy π in equation 3. In
summary, the t-th element in the edited sequence can be written as

x̂t = D(xt, x̂:t−1; δ, σ)x̃t + (1−D(xt, x̂:t−1; δ, σ))xt. (4)

Therefore, at each step t, the edited sequence is updated as x̂:t = x̂:t−1 + x̂t. This continues until
the step T is reached where T = |x| denotes the length of the original sequence x. Note that x̂:0 is
an empty sequence. Algorithm 1 summarizes the proposed algorithm GFNSeqEditor.

3 Experiments

We conducted extensive experiments to assess the performance of GFNSeqEditor in comparison
to several state-of-the-art baselines across diverse DNA- and protein-sequence editing tasks. We
evaluate on the following datasets: TFbinding, AMP, and CRE. The TFbinding and CRE datasets
consist of DNA sequences, with lengths of 8 for TFbinding and 200 for CRE, respectively. The
AMP dataset comprises protein sequences with variable lengths ranging from 15 to 60 amino acids.
Each sequence in the AMP dataset is categorized as either an anti-microbial peptide (AMP) or a
non-AMP. Each dataset is partitioned into training, validation, and test samples. Models are trained
and validated on the training and validation sets, while algorithm performance is assessed using the
test samples. Additional details about the datasets can be found in Appendix B.1. To train models
associated with baselines and the proposed GFNSeqEditor, we partition each dataset into a 72%
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Table 1: Performance of GFNSeqEditor compared to the baselines in terms of property improvement
(PI), edit percentage (EP) and diversity on TFbinding, AMP, and CRE datasets. Higher PI with a
lower EP is preferable.

TFbinding AMP CRE
Algorithms PI EP(%) Diversity PI EP(%) Diversity PI EP(%) Diversity
DE 0.12 25.00 3.01 0.11 33.82 13.67 0.63 22.93 62.07
Ledidi 0.06 27.80 1.25 0.18 34.79 11.65 1.36 22.13 50.49
Seq2Seq 0.03 41.98 - 0.21 78.05 - - - -
GFNSeqEditor 0.14 24.27 3.84 0.33 34.49 14.34 9.90 21.90 40.41

training set and an 18% validation set. The remaining 10% constitutes the test set, employed to
evaluate the performance of methods in sequence editing tasks. The trained flow function Fθ(·)
employed by the proposed GFNSeqEditor, is an MLP comprising two hidden layers, each with a
dimension of 2048, and |A| outputs corresponding to actions. Throughout our experiments, we
employ the trajectory balance objective for training the flow function. Detailed information about
training the flow function can be found in Appendix B.2. The evaluation of algorithm performance
encompasses property improvement (PI), edit percentage (EP), and diversity metrics, with precise
definitions provided in Appendix B.1.
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Figure 2: GFNSeqEditor shifts the dis-
tribution of non-AMP inputs to the
known AMPs.

We compared GFNSeqEditor to several baselines, in-
cluding Directed Evolution (DE) [2], Ledidi [26], and
Seq2Seq. To perform Directed Evolution for sequence
editing, we select a set of positions uniformly at ran-
dom within a given sequence and then apply the directed-
evolution algorithm to edit these positions. Inspired by
graph-to-graph translation for molecular optimization in
[15], we implemented another editing baseline which is
called Seq2Seq. Essentially, Seq2Seq baseline endeavors
to map an input sequence to a similar sequence with su-
perior property. More information about baselines can be
found in Appendix B.2.

Table 1 presents the performance of GFNSeqEditor and other baselines on TFbinding, AMP and
CRE datasets 3. We set GFNSeqEditor and all baselines except for Seq2Seq to create 10 edited
sequences for each input sequence. However, our Seq2Seq implementation closely resembles a
deterministic machine translator and is limited to producing just one edited sequence per input,
resulting in a diversity score of zero. Additionally, Figure 3 provides a visualization of property
improvement achieved by GFNSeqEditor, DE, and Ledidi across a range of edit percentages. As
evident from Table 1 and Figure 3, GFNSeqEditor surpasses all baselines in terms of achieving
substantial property improvements with a minimal number of edits when compared to the other
methods. This superior performance is attributed to GFNSeqEditor’s utilization of a pre-trained flow
function from GFlowNet, enabling it to attain notably higher property improvements than DE, which
relies on local search techniques for sequence editing. Furthermore, GFNSeqEditor demonstrates
a more significant property enhancement compared to Ledidi. Moreover, in Figure 2, we illustrate
the distribution of input non-AMP sequences, the sequences edited by GFNSeqEditor, and the AMP
samples from the AMP dataset. It is evident from Figure 2 that GFNSeqEditor shifts the property
distribution of input non-AMP sequences towards that of AMP sequences.

4 Conclusions

This paper introduces GFNSeqEditor, a sequence-editing method built upon GFlowNet. Given
an input sequence, GFNSeqEditor identifies and edits positions within the input sequence to en-
hance its property. Experimental evaluations using real-world DNA and protein datasets demon-
strate that GFNSeqEditor outperforms state-of-the-art sequence-editing baselines in terms of prop-

3Seq2Seq relies on identifying pairs of similar sequences for training. However, we were unable to identify
similar pairs for CRE, possibly because of the limited number of training samples relative to the lengthy nature
of the sequences (i.e., sequences with a length of 200).
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Figure 3: Property improvement of AMP (left) and CRE (right) with respect to edit percentage.

erty enhancement while maintaining a similar amount of edits. Nevertheless, akin to many machine
learning algorithms, GFNSeqEditor does have its limitations. It relies on a well-trained GFlowNet
model, necessitating the availability of a high-quality trained GFlowNet for optimal performance.
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A Preliminaries on GFlowNets

Generative Flow Networks (GFlowNets) learn a stochastic policy π(·) to sequentially construct a
discrete object x. Let X be the space of discrete objects x. It is assumed that the space X is
compositional, meaning that an object x can be constructed using a sequence of actions taken from
an action set A. At each step t, given a partially constructed object st, GFlowNet samples an action
at+1 from the set A using the stochastic policy π(·|st). Then, GFlowNet appends at+1 to st to
obtain st+1. In this context, st can be viewed as the state at step t. The above procedure continues
until reaching a terminating state, which yields the fully constructed object x. To construct an object
x, the GFlowNet starts from an initial empty state s0, and applying actions sequentially, all fully
constructed objects must end in a special final state sf . Therefore, the trajectory of states to construct
an object x can be written as τx = (s0 → s1 → · · · → x → sf ). Let T be the set of all possible
trajectories. Furthermore, let R(·) : X → R+ be a non-negative reward function defined on X . The
goal of GFlowNet is to learn a stochastic policy π(·) such that π(x) ∝ R(x). This means that the
GFlowNet learns a stochastic policy π(·) to generate an object x with a probability proportional to
its reward.

As described later, to obtain the policy π(·), the GFlowNet uses trajectory flow F : T → R+. The
trajectory flow F (τ) assigns a probability mass to the trajectory τ . Then the edge flow from state
s to state s′ is defined as F (s → s′) =

∑
∀τ :s→s′∈τ F (τ). Moreover, the state flow is defined

as F (s) =
∑

∀τ :s∈τ F (τ). The trajectory flow F (·) induces a probability measure PF (·) over
completed trajectories that can be expressed as PF (τ) =

F (τ)
Z where Z =

∑
∀τ∈T F (τ) represents

the total flow. The probability of visiting state s can be written as

PF (s) =

∑
∀τ∈T:s∈τ F (τ)

Z
. (5)

Then, the forward transition probability from state s to state s′ can be obtained as

PF (s
′|s) = F (s → s′)

F (s)
. (6)

The trajectory flow F (·) is called a consistent flow if for any state s it satisfies∑
∀s′:s′→s

F (s′ → s) =
∑

∀s′′:s→s′′

F (s → s′′), (7)

which constitutes that the in-flow and out-flow of state s are equal. Bengio et al. [5] shows that if
F (·) is a consistent flow such that the terminal flow is set as reward (i.e. F (x → sf ) = R(x)), the
policy π(·) defined as π(s′|s) = PF (s

′|s) satisfies π(x) = R(x)
Z which means that the policy π(·)

samples an object x proportional to its reward.

In order to learn the policy π(·), a GFlowNet model approximates trajectory flow with a flow func-
tion Fθ(·) where θ includes learnable parameters of the flow function. In order to learn the flow
function that can provide consistency condition, Bengio et al. [5] formulates flow-matching loss
function as follows:

LFM(s;θ) =

(
log

∑
∀s′:s′→s Fθ(s

′ → s)∑
∀s′′:s→s′′ Fθ(s → s′′)

)2

. (8)

Moreover, as an alternative objective function, Malkin et al. [19] introduces trajectory balance as:

LTB(s;θ) =

(
log

Zθ

∏
s→s′ PFθ

(s′|s)
R(x)

)2

(9)

where Zθ is a learnable parameter. The trajectory-balance objective function in equation 9 can
accelerate training GFlowNets and provide robustness to long trajectories. Given a training dataset,
optimization techniques such as stochastic gradient descent can be applied to objective functions in
equation 8 and equation 9 to train the GFlowNet model.

B Supplementary Experimental Results and Details

This appendix provides a comprehensive overview of the experimental setup in Section 3 and
presents additional supplementary experimental results.
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B.1 Datasets and Evaluation Metrics

• TFbinding: The dataset is taken from Barrera et al. [4] and contains all possible DNA
sequences with length 8. The vocabulary is the four DNA bases, {A, C, G, T}. The goal
is to edit a given DNA sequence to increase its binding activity with certain DNA-binding
proteins called transcription factors. Higher binding activity is preferable. For train, test
and validation purposes 50% of the dataset is set aside. The task entails editing a test
dataset consisting of 10% of samples while the remaining data is utilized for training and
validation.

• AMP: The dataset, acquired from DBAASP [25], is curated following the approach out-
lined by Jain et al. [13]. Peptides (i.e. short proteins) within a sequence-length range of 12
to 60 amino acids are specifically chosen. The dataset comprises a total of 6, 438 positive
samples, representing anti-microbial peptides (AMPs), and 9,522 negative samples, which
are non-AMPs. The vocabulary consists of 20 amino acids. The primary objective is to
edit the non-AMP samples in such a way that the edited versions attain the characteristics
exhibited by AMP samples. The task primarily centers on editing a subset comprising 10%
of the non-AMP samples, designated for use as test samples, with the remaining samples
allocated for training and validation purposes.

• CRE: The dataset contains putative human cis-regulatory elements (CRE) which are reg-
ulatory DNA sequences modulating gene expression. CREs were profiled via massively
parallel reporter assays (MPRAs)[10] where the activity is measured as the expression of
the reporter gene. For our analysis, we randomly extract 10, 000 DNA sequences, each
with a length of 200 base pairs, utilizing a vocabulary of the four bases. The overarching
objective is to edit the DNA sequences to increase the reporter gene’s expression specif-
ically within the K562 cell line, which represents erythroid precursors in leukemia. The
task involves editing a subset of 1, 000 test samples, while the rest are allocated for training
and validation purposes.

To evaluate the performance of sequence editing methods, we compute the following metrics:

• Property Improvement (PI): The PI for a given sequence x with label y is calculated as
the average enhancement in property across edits, expressed as PI = 1

ne

∑ne

i=1 (ŷi − y)
where ne is the number of edited sequences associated with the original sequence x and ŷi
denote the property of the i-th edited sequence x̂i. To evaluate the performance of editing
methods, for each dataset we leverage an oracle to obtain ŷi given x̂i. More details about
oracles can be found in Appendix B.

• Edit Percentage (EP): The average Levenshtein distance between x and edited sequences
normalized by the length of x expressed as 1

neT

∑ne

i=1 lev(x, x̂i).

• Diversity: For each sequence x, the diversity among edited sequences can be obtained as
2

ne(ne−1)

∑ne−1
i=1

∑ne

j=i+1 lev(x̂i, x̂j).

B.2 Implementation Details

To evaluate the performance of each sequence editing method in terms of property improvement,
it is required to obtain the properties of edited sequences. To this end, we employ an oracle for
each dataset. The TFbinding dataset contains all possible 65, 792 DNA sequences with length of 8.
Therefore, by looking into the dataset the true label of each edited sequence can be found. Following
Angermueller et al. [1], Jain et al. [13], the AMP dataset is split into two parts: D1 and D2. The
oracle for the AMP dataset is a set of trained models on partition D2 as a simulation of wet-lab
experiments. We employed oracles trained by [13] for AMP dataset. Furthermore, for CRE dataset
we leverage the Malinois model [10] which is a deep convolutional neural network (CNN) for cell
type-informed CRE activity prediction of any arbitrary sequence.

In order to implement DE and Ledidi baselines, there should be a proxy model to enable baselines to
evaluate their candidate edits. For each dataset, we train a proxy model on the training split of each
dataset. For the TFBinding dataset, we configure a three-layer MLP with hidden dimensions of 64.
In the case of AMP, we opt for a four-layer MLP, also with hidden dimensions of 64. Finally, for
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Figure 4: Studying the effect of heyperparameters δ and λ on the performance of GFNSeqEditor
over AMP (left) and CRE (right) datasets. The marker values are edit percentages.
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Figure 5: Studying the effect of heyperparameter σ on the diversity and performance of GFNSeqEd-
itor over AMP (left) and CRE (right) datasets.

CRE, we utilize a four-layer MLP with hidden dimensions set to 2048. Across all models, the learn-
ing rate is consistently set to 10−4, ReLU serves as the activation function, and we set the number
of epochs as 2, 000. For the Seq2Seq baseline, we initially partition the dataset into two subsets: i)
sequences with lower target-property values, and ii) sequences with relatively higher target-property
values. Subsequently, we create pairs of data samples such that each low-property sequence is paired
with its closest counterpart from the high-property sequence set, based on Levenshtein distance. A
translator model is then trained to map each low-property sequence to its high-property pair.

We trained an active learning based GFlowNet model following the setting in Jain et al. [13]. In
active learning setting, at each round of active learning t × K candidates generated by GFlowNet
are sampled and then top K samples based on scores given by a proxy are chosen to be added to
the offline dataset. Here offline dataset refers to an initial labeled dataset. To train the GFlowNet,
we employed the same proxy models as those used by other baseline methods. For all datasets, we
set the number of active learning rounds to 1, with t equal to 5 and K equal to 100. The number
of training steps for TFbinding, AMP and CRE are 5000, 106 and 104, respectively. The remaining
hyperparameters were configured in accordance with the settings established in Jain et al. [13].

B.3 Supplementary Results

Furthermore, in Figure 4, we present the property improvement achieved by GFNSeqEditor along
with edit percentage across various choices of hyperparameters δ and λ. The figure illustrates that
an increase in δ generally corresponds to an increase in both property improvement and edit per-
centage, whereas, in most cases, an increase in λ results in a decrease in property improvement
and edit percentage. Furthermore, in Figure 5, we illustrate the impact of changing σ on property
improvement and edit diversity for GFNSeqEditor. This figure highlights that increasing σ results
in decreased property improvement and enhanced diversity.

B.4 Masking

It’s worth noting that GFNSeqEditor is capable of performing edits even when certain portions of
the input sequence are masked and cannot be modified. Table 2 showcases the performance of
GFNSeqEditor compared to Ledidi on the CRE dataset, with the first 100 elements of the input
sequences masked. As depicted in Table 2, GFNSeqEditor achieves significantly greater property
improvement than Ledidi while utilizing a lower edit percentage.
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Table 2: Performance of GFNSeqEditor and Ledidi with 100 elements of each sequence masked for
editing for CRE dataset.

Algorithms PI EP(%) Diversity PI EP(%) Diversity
Ledidi 0.52 18.69 38.34 0.26 14.39 37.45
GFNSeqEditor 4.79 17.89 32.30 4.05 14.19 25.52

C Related Works

Generative Flow Networks. GFlowNets, initially proposed by Bengio et al. [5], were introduced
as a reinforcement-learning (RL) algorithm designed to expand upon maximum-entropy RL, effec-
tively handling scenarios with multiple paths leading to a common state. However, recent studies
have redefined and generalized its scope, describing it as a general framework for amortized infer-
ence with neural networks [20, 14, 36, 33].

There has been a recent surge of interest in employing GFlowNets across various domains. Notewor-
thy examples include its utilization in molecule discovery [5], Bayesian structure learning [9, 22],
and graph explainability [17]. Recognizing its significance, several studies have emerged to enhance
the learning efficiency of GFlowNets [6, 20, 18, 27] since the introduction of the flow matching
learning objective by Bengio et al. [5]. Moreover, GFlowNets have demonstrated adaptability in
being jointly trained with energy and reward functions [34]. Pan et al. [23] introduce intrinsic ex-
ploration rewards into GFlowNets, addressing exploration challenges within sparse reward tasks.
A couple of recent studies try to extend GFlowNets to stochastic environments, accommodating
stochasticity in transition dynamics [24] and rewards [35].

Sequence Generation. The generation of biological sequences (a separate problem from sequence
editing) has been tackled using a diverse range of methods, including reinforcement learning [1],
Bayesian optimization [30], deep generative models for search and sampling [12], generative ad-
versarial networks [37], diffusion models [3], optimization with deep model-based approaches [31],
adaptive evolutionary strategies [11, 28], likelihood-free inference [32], and surrogate-based black-
box optimization [8], and GFlowNet [13].

Bengio et al. [6] demonstrated that GFlowNet offers improvements over existing sequence-
generation methods by amortizing the search cost over the learning process, allocating probabil-
ity mass across the entire sequence space to facilitate exploration and diversity, enabling the use
of imperfect data, and efficiently scaling with data through the exploitation of structural patterns
in function approximation. It is important to note that all these sequence-generation methods—
including GFLowNet—generate sequences from scratch. However, ab initio generation carries the
risk of deviating too significantly from naturally occurring genomic sequences, which can compro-
mise safety and predictability. In contrast, our proposed method tends to enhance the target property
of sequences while preserving their similarity to naturally occurring sequences.

GFlowNet-AL. Inspired by Bayesian Optimization, Jain et al. [13] proposed a new active learning
algorithm based on GFlowNets to design novel biological sequences. GFlowNet-AL [13] utilizes the
epistemic uncertainty of the surrogate model within its reward function, guiding the GFlowNet to-
wards the optimization of promising yet less-explored regions within the state space. This approach
fosters the generation of a diverse set of sequences.

D Societal Impact

Biological sequence optimization and design hold transformative potential for biotechnology and
health, offering enhanced therapeutic solutions and a vast range of applications. Techniques that
enable refining sequences can lead to advancements like elucidating the role of individual gene
products, rectifying genetic mutations in afflicted tissues, and optimizing properties of peptides,
antibodies, and nucleic-acid therapeutics. However, the dual-edged nature of such breakthroughs
must be acknowledged, as the same research might be misappropriated for unintended purposes.
Our method can be instrumental in refining diagnostic procedures and uncovering the genetic basis
of diseases, which promises a deeper grasp of genetic factors in diseases. Yet, we must approach
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with caution, as these advancements may unintentionally amplify health disparities for marginalized
communities. As researchers, we emphasize the significance of weighing the potential societal
benefits against unintended consequences while remaining optimistic about our work’s predominant
inclination towards beneficial outcomes.
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