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Abstract

Persistence diagrams are one of the most popular types of data summaries1

used in Topological Data Analysis. The prevailing statistical approach to2

analyzing persistence diagrams is concerned with filtering out topological3

noise. In this paper, we adopt a different viewpoint and aim at estimating4

the actual distribution of a random persistence diagram, which captures both5

topological signal and noise. To that effect, [CD19] has shown that, under6

general conditions, the expected value of a random persistence diagram is7

a measure admitting a Lebesgue density, called the persistence intensity8

function. In this paper, we are concerned with estimating the persistence9

intensity function and a novel, normalized version of it – called the persistence10

density function. We present a class of kernel-based estimators based on11

an i.i.d. sample of persistence diagrams and derive estimation rates in12

the supremum norm. As a direct corollary, we obtain uniform consistency13

rates for estimating linear representations of persistence diagrams, including14

Betti numbers and persistence images. Interestingly, the persistence density15

function delivers stronger statistical guarantees.16

1 Introduction17

Topological Data Analysis (TDA) is a field at the interface of computational geometry,18

algebraic topology and data science whose primary objective is to extract topological and19

geometric features from possibly high-dimensional, noisy and/or incomplete data. The20

literature on the statistical analysis of TDA summaries has mainly focused on distinguishing21

topological signatures from the unavoidable topological noise resulting from the data sampling22

process. Toward that goal, the primary objective in designing statistical inference methods23

for TDA is to isolate points on the sample persistence diagrams that are sufficiently far24

from the diagonal to be deemed statistically significant in the sense of expressing underlying25

topological features instead of randomness. This paradigm is entirely natural when the26

target of inference is the unobservable persistence diagram arising from a filtration of interest,27

and the sample persistent diagrams are noisy and imprecise approximations to it. On28

the other hand, empirical evidence has also demonstrated that topological noise is not29

unstructured and, in fact, may also carry expressive and discriminative power that can be30

leveraged for various machine-learning tasks. In some applications, the distribution of the31

topological noise itself is of interest; in cosmology, see e.g., [WNv+21]. As a result, statistical32

summaries able to express the properties of both topological signal and topological noise33

in a unified manner have also been proposed and investigated: e.g., persistence images and34
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linear functional of the persistence diagrams. In a recent contribution, [CD19] has derived35

sufficient conditions to ensure that the expected persistent measure – the expected value36

of the random counting measure corresponding to a noisy persistent diagram – admits a37

Lebesgue density, hereafter called the persistence intensity function; see also [CWRW15].38

The significance of this result is multifaceted. First, the persistent intensity function provides39

an explicit and highly-interpretable representation of the entire distribution of the persistence40

homology of random filtrations. Secondly, it allows for a straightforward calculation of the41

expected linear representation of a persistent diagram as a Lebesgue integral. Finally, the42

representation provided by the persistence intensity function is of functional, as opposed43

to algebraic, nature and thus analytically simpler. It is amenable to statistical analysis via44

well-established theories and methods from the non-parametric statistics literature.45

In this paper we derive consistency rates of estimation of the persistence intensity function46

and of a novel variant called persistence density function in the ℓ∞ norm based on a sample of47

i.i.d. persistent diagrams. As we argue below in Theorem 3.1, controlling the estimation error48

for the persistence intensity function in the ℓ∞ norm is stronger than controlling the optimal49

transport measure OTq for any q > 0 and, under mild assumptions, immediately implies50

uniform control and concentration of any bounded linear representation of the persistence51

diagram including (persistent) Betti numbers and persistence surfaces.52

2 Background and definitions53

In this section we introduce fundamental concepts from TDA that we will use throughout54

the paper. We refer the reader to [CM21, CD19] for detailed background and extensive55

references.56

Persistence diagrams. We define a persistence diagram to be a locally finite multiset of57

points D = {ri = (bi, di) | 1 ≤ i ≤ N(D)} belonging to the set58

Ω = Ω(L) = {(b, d) | 0 < b < d ≤ L} ⊂ R2, (1)

consisting of all the points on the plane in the positive orthant above the identity line and of59

coordinate values no larger than a fixed constant L > 0. The coordinates of each point of60

D correspond to the birth and death times of a persistent homology feature, where time is61

measured with respect to the totally ordered set indexing a filtration. The restriction that62

the persistence diagrams be contained in a box of side length L is a mild assumption that is63

widely used in the TDA literature; see [DL21] and the discussion therein. To simplify our64

notation, we will omit the dependence on L, but we will keep track of this parameter in our65

error bounds. Some related quantities used throughout are66

∂Ω := {(x, x) | 0 ≤ x ≤ L}; Ω := Ω ∪ ∂Ω;

Ωℓ :=
{
ω ∈ ∂Ω : min

x∈Ω
∥ω − x∥2 ≤ ℓ

}
, ℓ ∈ (0, L/

√
2). (2)

That is, ∂Ω is a segment on the diagonal in R2 and Ωℓ consists of all the points in Ω at a67

Euclidean distance of ℓ or smaller from it.68

The expected persistent measure and its normalization. A persistence diagram69

D = {ri = (bi, di) ∈ Ω | 1 ≤ i ≤ N(D)} can be equivalently represented as a counting70

measure µ on Ω given by71

A ∈ B 7→ µ(A) =
N(D)∑
i=1

δri(A),

where B = B(Ω) is the class of all Borel subsets of Ω and δr denotes the Dirac point mass at72

r ∈ Ω. We will refer to µ as the persistence measure corresponding to D and, with a slight73

abuse of notation, will treat persistence diagrams as counting measures. If D is a random74

persistence diagram, then the associated persistence measure is also random. In addition75

to the persistence measure µ associated to a persistence diagram D, we will also study its76

normalized measure µ̃, which is the persistence measure divided by the total number of points77
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N(D) in the persistence diagram. In detail, µ̃ is the (possibly random) probability measure78

on Ω given by79

A ∈ B 7→ µ̃(A) = 1
N(D)

N(D)∑
i=1

δri
(A).

The normalized persistence measure may be desirable when the number of points N(D)80

in the persistence diagram is not of direct interest but their spatial distribution is. This81

is typically the case when the persistence diagrams at hand contain many points or are82

obtained from large random filtrations (e.g. the Vietoris-Rips complex built on point clouds),83

so that the value of N(D) will mostly accounts for noisy topological fluctuations due to84

sampling.85

We will consider the setting in which the observed persistence diagram D is a random draw86

from an unknown distribution. Then, the (non-random) measures87

A ∈ B 7→ E[µ](A) = E[µ(A)] and A ∈ B 7→ E[µ̃](A) = E[µ̃(A)]

are well defined. We will refer to E[µ] and E[µ̃] as the expected persistence measure and88

the expected persistence probability, respectively. Notice that typically, neither is a dis-89

crete measure, and that the expected persistence probability is a probability measure by90

construction.91

The interpretations of the measure E[µ] and the probability measure E[µ̃] is straightforward:92

for any Borel set A ⊂ Ω, E[µ](A) is the expected number of points from the random93

persistence diagram falling in A, while E[µ̃](A) is the probability that a random persistence94

diagram will intersect A. As a result, they are able to directly express the randomness of95

the distribution of persistence diagram including structural properties of the topological96

noise. Despite their interpretability, the expected persistence measure and probability are97

not yet standard concepts in the practice and theory of TDA. As a result, they have not98

been thoroughly investigated.99

The persistence intensity and density functions and linear representations. In a100

recent, important contribution, [CD19] derived conditions – applicable to a wide range to101

problems – that ensure that the expected persistence measure E[µ] and its normalization E[µ̃]102

both admit densities with respect to the Lebesgue measure on Ω. Specifically, under fairly103

mild and general conditions detailed in [CD19] there exist measurable functions p : Ω → R≥0104

and p̃ : Ω → R≥0, such that for any Borel set A ⊂ Ω,105

E[µ](A) =
∫

A

p(u)du, and E[µ̃](A) =
∫

A

p̃(u)du. (3)

In fact, [CD19] provided explicit expressions for p and p̃ (see Section D.5). Notice that,106

by construction, p̃ integrates to 1 over Ω. We will refer to the functions p and p̃ as the107

persistence intensity and the persistence density functions, respectively. We remark that the108

notion of a persistence intensity function was originally put forward by [CWRW15].109

The persistence intensity and density functions “operationalize” the notions of expected110

persistence measure and expected persistence probability introduced above, allowing to111

evaluate, for any Borel set A, E[µ](A) and E[µ̃](A) in a straightforward way as Lebesgue112

integrals.113

The main objective of the paper is to construct estimators p̂ and p̌ of the persistence intensity114

p and persistence density p̃, respectively, and to provide high probability error bounds115

with respect to the L∞ norm. As we show below in Theorem 3.1,L∞-consistency for the116

persistence intensity function is a stronger guarantee than consistency in the OTp metric,117

for any p < ∞. Interestingly, we find that estimation of the persistence probability density118

function is statistically easier, in the sense that uniform estimation error bounds can be119

obtained for all points in Ω. In contrast, estimating the persistence intensity function becomes120

progressively more difficult for points near ∂Ω. See Theorem 3.6 below.121

Linear representations of persistence diagrams. As noted in [CD19], the persistence122

intensity and density functions are naturally suited to compute the expected value of linear123
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representations of random persistence diagrams. A linear representation Ψ of the persistence124

diagram D = {ri = (bi, di) ∈ Ω | 1 ≤ i ≤ N(D)} with corresponding persistence measure µ125

is a summary statistic of D of the form126

Ψ(D) =
N(D)∑
i=1

f(ri) =
∫

Ω
f(u)dµ(u), (4)

for a given measurable function f on Ω. (An analogous definition can be given for the127

normalized persistence measure µ̃ instead). Then,128

E[Ψ(D)] =
∫

Ω
f(u)dE[µ](u) =

∫
Ω

f(u)p(u)du, (5)

where the second identity follows from (3). Linear representations include persistent Betti129

numbers, persistence surfaces, persistence silhouettes and persistence weighted Gaussian130

kernels.131

The persistence surface is an especially popular linear representation introduced by [AEK+17].132

In detail, for a kernel function K(·) : R2 → R≥0 and any x ∈ R2, let Kh(x) = 1
h2 K(x

h ),133

where h > 0 is the bandwidth parameter1. The persistence surface of a persistence measure134

µ is defined as135

ρh(u) =
∫

Ω
f(ω)Kh(u − ω)dµ(ω), (6)

where f(ω) : R2 → R is the user-defined weighting function, chosen to ensure stability of the136

representation. Our analysis allows to immediately obtain consistency rates for the expected137

persistence surface in L∞ norm, which, for brevity, we present in the supplementary material138

(see Theorem B.5). Instead we focus on the estimation error the expected Betti numbers.139

Betti and the persistent Betti numbers. The Betti number at scale x ∈ [0, L] is140

the number of persistent homologies that are in existence at “time" x. Furthermore, the141

persistent Betti number at a certain point x = (x1, x2) ∈ Ω measures the number of142

persistent homologies that are born before x1 and die after x2. In our notation, given143

a persistence diagram D and its associated persistence measure µ, for x ∈ [0, L] and144

x = (x1, x2) ∈ Ω, the corresponding Betti number and persistent Betti number are given by145

βx(D) = µ(Bx) and βx(D) = µ(Bx),
respectively, where Bx = [0, x) × (x, L] and Bx = [0, x1) × (x2, L]. Though Betti numbers146

are among the most prominent and widely used TDA summaries, relatively little is known147

about the statistical hardness of estimating their expected values when the sample size is148

fixed and the number of persistence diagrams increases. Our results will yield error bounds149

of this type. We will also consider normalized versions of the Betti numbers defined using150

the persistence probability µ̃ of the persistence diagram:151

β̃x(D) = µ̃(Bx) and β̃x(D) = µ̃(Bx).

Notice that, by definition, β̃x(D) ≤ 1. While their interpretation is not as direct as the Betti152

numbers computed using persistence diagrams, the expected normalized (persistence) Betti153

numbers are informative topological summaries while showing favorable statistical properties154

(see Theorem 3.12 below).155

3 Main results156

3.1 The OT distance between measures and L∞ distance between intensity157

functions158

A popular and, arguably, natural metric for persistence diagrams – and, more generally,159

locally finite Radon measures such as normalized persistence measures and probabilities – is160

1[AEK+17] showed empirically that the bandwidth does not have a major influence on the
efficiency of the persistence surface.
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the optimal transport distance; see, e.g., [DL21]. In detail, for two Radon measures µ and ν161

supported on Ω, an admissible transport from µ to ν is defined as a function π : Ω × Ω → R,162

such that for any Borel sets A, B ⊂ Ω,163

π(A × Ω) = µ(A), and π(Ω × B) = ν(B).

Let adm(µ, ν) denote all the admissible transports from µ to ν. For any q ∈ R+ ∪ {∞}, the164

q-th order Optimal Transport (OT) distance between µ and ν is defined as165

OTq(µ, ν) =
(

inf
π∈adm(µ,ν)

∫
Ω×Ω

∥x − y∥q
2dπ(x,y)

) 1
q

.

When µ and ν are persistent diagrams the choice of q = ∞ corresponds to the widely-used166

bottleneck distance. The OT distance is widely used for good reasons: by transporting from167

and to the diagonal ∂Ω, it captures the distance between two measures that have potentially168

different total masses, taking advantage of the fact that points on the diagonal have arbitrary169

multiplicity in persistent diagrams. It also proves to be stable with respect to perturbations170

of the input to TDA algorithms. However, for expected persistent measures with intensity171

functions with respect to the Lebesgue measure, we will show next that the L∞ distance172

between intensity functions provides a tighter control on the difference between two persistent173

measures. Below, for a real-valued function on Ω, we let ∥f∥∞ = supx∈Ω |f(x)| be its L∞174

norm.175

Theorem 3.1 Let µ, ν be two expected persistent measures on Ω with intensity functions176

pµ and pν respectively. Then177

OTq
q(µ, ν) ≤

(
L

2

)q+2 (
2
√

2
q + 1 − 2

q + 2

)
∥pµ − pν∥∞. (7)

Furthermore, there exists two sequences of expected persistence measures {µn}n∈N and178

{νn}n∈N with intensity functions {pµn
}n∈N and {pνn

}n∈N respectively such that, as n → ∞,179

OTq(µn, νn) → 0, while ∥pµn − pνn∥∞ → ∞.

The bottleneck distance For the case q = ∞, which yields the bottleneck distance when180

applied to persistence diagrams, there can be no meaningful upper bound in the form of181

(7): we show in Section D.1 of the supplementary material that there exist two sequences182

of measures such that their bottleneck distance converges to a finite number while the L∞183

distance between their intensity functions vanishes. Existing contributions [Pey18, NGK21]184

also upper bound the optimal transport distance by a Sobolev-type distance between density185

functions. It is noteworthy that these bounds require, among other things, the measures186

to have common support and the same total mass, two conditions that are not assumed in187

Theorem 3.1.188

3.2 Non-parametric estimation of the persistent intensity and density functions189

In this section, we analyze the performance of kernel-based estimators of the persistent190

intensity function p(·) and the persistent density function p̃(·). We adopt the setting where191

we observe n i.i.d. persistent measures µ1, µ2, . . . , µn. The procedures we proposed are192

directly inspired by kernel density estimators for probability densities traditionally used193

in the non-parametric statistics literature; see, e.g., [GN21]. Specifically, we consider the194

following estimator for p(·) and p̃(·), respectively:195

ω ∈ R2 7→ p̂h(ω) := 1
n

n∑
i=1

∫
Ω

Kh(x − ω)dµi(x); (8a)

ω ∈ R2 7→ p̌h(ω) = 1
n

n∑
i=1

∫
Ω

Kh(x − ω)dµ̃i(x), (8b)

where K(·) is the kernel function, which we assume to satisfy a number of standard regularity196

conditions used in non-parametric literature, discussed in detail in Section B.2 of the197

supplementary material.198
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Assumptions. We will impose a number of regularity conditions on the expected persistent199

measures, the persistence intensity and density functions and the kernel function. Of course,200

we will assume throughout that both p and p̃ (see (3)) are well-defined as densities with201

respect to the Lebesgue measure, though we point out that this is not strictly necessary for202

Theorems 3.6 and 3.9.203

Our first assumption of smoothness of both p and p̃ is needed to control the point-wise bias204

of our estimators and is a standard assumption in non-parametric density estimation.205

Assumption 3.2 (Smoothness) The persistence intensity function p and persistence prob-206

ability density function p̃ are Hölder smooth of the order of s > 0 with parameters Lp and207

Lp̃ respectively2.208

In our next assumption, we impose boundedness conditions on p and p̃, which are needed in209

order to apply a key concentration inequality for empirical processes.210

Assumption 3.3 (Boundedness) For some q > 0, let p̄(ω) := ∥ω − ∂Ω∥q
2p(ω). Then,211

∥p̄∥∞ = sup
ω∈Ω

∥ω − ∂Ω∥q
2p(ω) < ∞ and ∥p̃∥∞ = sup

ω∈Ω
p̃(ω) < ∞.

Notice that instead of assuming a bound on the L∞ norm of the intensity function p,212

we are only requiring the weaker condition that the weighted intensity function p̄(ω) =213

∥ω − ∂Ω∥q
2p(ω) has finite L∞ norm, due to the fact that the total mass of the persistence214

measure may not be uniformly bounded in a number of common data-generating mechanisms.215

Indeed, it is not a priori clear that Assumption 3.3 itself is realistic; in the supplementary216

material we prove that this assumption holds for the Vietoris-Rips filtration built on i.i.d.217

samples. On the other hand, assuming that the persistence density is uniformly bounded218

poses no problems. See Theorems B.1 and B.2 in the supplementary material for formal219

arguments. This fact is the primary reason why the persistence probability density function220

– unlike the persistence intensity function – can be estimated uniformly well over the entire221

set Ω - see (3.6) below. We refer readers to Section B.1 of the supplementary materials for222

details and a discussion on this subtle but consequential point.223

In our last assumption, we require a uniform bound on the q-th order total persistence,224

though not on the total number of points in the persistence diagram. As elucidated in225

[CSEHM10] and discussed in [DP19] and [DL21], this is a relatively mild assumption, which226

should be expected to hold under a broad variety of data-generating mechanisms.227

Assumption 3.4 (Bounded total persistence) There exists a constant M > 0, such228

that, for the value of q as in Assumption 3.3, it holds that, almost surely,229

max
i=1,...,n

∫
Ω

∥ω − ∂Ω∥q
2dµi(ω) < M.

We will denote with Zq
L,M the set of persistent measures on ΩL satisfying Assumption 3.4.230

We are now ready to present our first result concerning the bias of the kernel estimators,231

whose proof is relatively standard.232

Theorem 3.5 Under Assumption 3.2, for any ω ∈ Ω,233

|E[p̂h(ω)] − p(ω)| ≤ Lphs

∫
∥v∥2≤1

K(v)∥v∥s
2dv, and

|E[p̌h(ω)] − p̃(ω)| ≤ Lp̃hs

∫
∥v∥2≤1

K(v)∥v∥s
2dv.

The next result provides high-probability uniform bounds on the fluctuations of the kernel234

estimators around their expected values.235

2We refer readers to the supplementary material for definitions.
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Theorem 3.6 Suppose that Assumptions 3.3 and 3.4 hold. Then,236

(a) there exists a positive constant C depending on M, ∥K∥∞, ∥K∥2, ∥p̄∥∞ and q such237

that for any δ ∈ (0, 1), it can be guaranteed with probability at least 1 − δ that238

sup
ω∈Ω2h

ℓq
ω|p̂h(ω) − Ep̂h(ω)| ≤ C max

{
1

nh2 log 1
δh2 ,

√
1

nh2

√
log 1

δh2

}
,

where ℓω := ∥ω − ∂Ω∥2 − h;239

(b) there exists a positive constant Cdepending on M, ∥K∥∞, ∥K∥2, ∥p̃∥∞ and q such240

that for any δ ∈ (0, 1), it can be guaranteed with probability at least 1 − δ that241

sup
ω∈Ω

|p̌h(ω) − Ep̌h(ω)| ≤C max
{

1
nh2 log 1

δh2 ,

√
1

nh2

√
log 1

δh2

}
.

Remark. The dependence of the constants on problem related parameters is made explicit242

in the proofs; see the supplementary material.243

There is an important difference between the two bounds in Theorem 3.6: while the variation244

of p̌h(ω) is uniformly bounded everywhere on Ω, the variation of p̂h(ω) is uniformly bounded245

only when ω is at least 2h away from the diagonal ∂Ω, and may increase as ω approaches246

the diagonal. The difficulty in controlling the variation of p̂h near the diagonal comes from247

the fact that we only assume the total persistence of the persistent measures to be bounded;248

in other words, the number of points near the diagonal in the sample persistent diagrams249

can be prohibitively large, since their contribution to the total persistence is negligible. This250

is to be expected in noisy settings in which the sampling process will result in topological251

noise consisting of many points in the persistence diagram near the diagonal. The above252

result suggests that it is advantageous to rely on density-based, instead of intensity-based253

representations of the persistent measures.254

Bias-variance trade-off and minimax lower bound. If follows from Theorems 3.5255

and 3.6 that the choice h ≍ n− 1
2(s+1) for the bandwidth will optimize the bias-variance256

trade-off, yielding high-probability estimation errors257

sup
w∈Ω2h

ℓq
ω|p̂h(ω) − p(ω)| ≲ O

(
n− s

2(s+1)

)
, and sup

w∈Ω
|p̌h(ω) − p̃(ω)| ≲ O

(
n− s

2(s+1)

)
.

The following theorem shows that the above rate is minimax optimal for the persistence258

density function. For brevity, we here omit a similar result for the persistence intensity259

function (see Theorem B.4 in the supplementary material).260

Theorem 3.7 Let F denote the set of functions on Ω with Besov norm bounded by B > 0:261

F = {f : Ω → R, ∥f∥Bs
∞,∞

≤ B}.

Then,262

inf
p̌n

sup
P

E
µ1,...,µn

i.i.d.∼ P
∥p̌n − p̃∥∞ ≥ O(n− s

2(s+1) ),

where the infimum is taken over estimator p̌n mapping µ1, . . . , µn to an intensity function263

in F , the supremum is over the set of all probability distributions on Zq
L,M and p̃ is the264

intensity function of EP [µ̃].265

3.3 Kernel-based estimators for linear functionals of the persistent measure266

The kernel estimators (8) can serve as a basis for estimating bounded linear representations267

of the expected persistence measure E[µ] and its normalized counterpart E[µ̃]. Specifically,268

for R > 0, let F2h,R and F̃R denote the set of linear representations of the form269

F2h,R =
{

Ψ =
∫

Ω2h

fdE[µ]
∣∣∣∣f : Ω2h → R≥0,

∫
Ω2h

ℓ−q
ω f(ω)dω ≤ R

}
, and

F̃R =
{

Ψ̃ =
∫

Ω
fdE[µ̃]

∣∣∣∣f : Ω → R≥0,

∫
Ω

f(ω)dω ≤ R

}
.
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Then, any linear representations Ψ ∈ F2h,R and Ψ̃ ∈ F̃R can be estimated by270

Ψ̂h =
∫

Ω2h

f(ω)p̂h(ω)dω, and Ψ̌h =
∫

Ω
f(ω)p̌h(ω)dω, (9)

respectively. The following theorems provide uniform bounds on the bias and variation of271

these kernel-based estimators.272

Theorem 3.8 Under Assumption 3.2, it holds that273

sup
Ψ∈F2h,R

∣∣∣E[Ψ̂h] − Ψ
∣∣∣ ≤ LphsR

∫
∥v∥2≤1

K(v)∥v∥2
2dv; and

sup
Ψ∈F̃R

∣∣∣E[Ψ̌h] − Ψ̃
∣∣∣ ≤ Lp̃hsR

∫
∥v∥2≤1

K(v)∥v∥2
2dv.

Theorem 3.9 Assume that Assumptions 3.2 and 3.3 hold. Then,274

(a) there exists a constant C depending on M, ∥K∥∞, ∥K∥2, ∥p̄∥∞ and q such that for275

any δ ∈ (0, 1), it can be guaranteed with probability at least 1 − δ that276

sup
Ψ∈F2h,R

∣∣∣Ψ̂h − E[Ψ̂h]
∣∣∣ ≤ CR · max

{
1

nh2 log 1
δh2 ,

√
1

nh2

√
log 1

δh2

}
;

(b) there exists a constant C depending on M, ∥K∥∞, ∥K∥2, ∥p̃∥∞ and q such that for277

any δ ∈ (0, 1), it can be guaranteed with probability at least 1 − δ that278

sup
Ψ∈F̃R

∣∣∣Ψ̌h − E[Ψ̌h]
∣∣∣ ≤ CR · max

{
1

nh2 log 1
δh2 ,

√
1

nh2

√
log 1

δh2

}
.

It is important to highlight the fact that the above bounds hold uniformly over the choice of279

linear representations under only mild integrability assumptions.280

Theorems 3.8 and 3.9 are direct corollaries of Theorems 3.5 and 3.6. We again stress the281

difference between the two upper bounds of Theorem 3.9: part (a) shows that for a linear282

functional of the original persistent measure to have controlled variation, we need the field283

of integral to be at least 2h away from the diagonal ∂Ω, a requirement that is not necessary284

for linear functionals of the normalized persistent measure, as is shown in part (b).285

Next, we apply Theorems 3.9 and 3.9(a) to the persistent Betti number, which, for any286

x ∈ Ω, can be estimated by287

β̂x,h =
∫

Bx

p̂h(ω)dω. (10)

288

Corollary 3.10 Under Assumption 3.2, it holds that289

sup
x∈Ω

∣∣∣E[β̂x,h] − βx

∣∣∣ ≤ Lphs L2

4

∫
∥v∥2≤1

K(v)∥v∥2
2dv.

Corollary 3.11 Under Assumptions 3.2 and 3.3(a), there exists a constant C depending on290

M, ∥K∥∞, ∥K∥2, ∥p̄∥∞ and q > 2 such that for any δ ∈ (0, 1),291

sup
x∈Ω: ℓx>h

ℓq−2
x

∣∣∣β̂x,h − E[β̂x,h]
∣∣∣ ≤ C max

{
1

nh2 log 1
δh2 ,

√
1

nh2

√
log 1

δh2

}
holds with probability at least 1 − δ.292

Notice that in order for the variation of β̂x,h to be bounded, we need x to be at least 2h293

away from the diagonal ∂Ω, and that the upper bound for the variation increases as x294

8



approaches the diagonal. Therefore, based on our analysis, the kernel-based estimator p̂h295

will not be guaranteed to yield a stable estimation of the Betti number βx. As remarked296

above, this issue arises as the intensity function may not be uniformly bounded near the297

diagonal. Indeed, in the supplementary material, we describe an alternative proof technique298

based on an extension of the standard VC inequality and arrive at a very similar rate.299

If instead we target the normalized Betti numbers β̃x, this issue disappears when we deploy300

the analogous estimator β̌x,h =
∫

Bx
p̌h(ω)dω, constructed using p̌h. Indeed, Theorem 3.9(b)301

leads to the following uniform bounds.302

Corollary 3.12 Assume that Assumptions 3.2 and 3.3 hold true. Then there exist a constant303

C > 0 depending on M, ∥K∥∞, ∥K∥2, ∥p̃∥∞ and q such that for any δ ∈ (0, 1), it can be304

guaranteed with probability at least 1 − δ that305

sup
x∈Ω

∣∣∣β̌x,h − E[β̌x,h]
∣∣∣ ≤ CL2

4 max
{

1
nh2 log 1

δh2 ,

√
1

nh2

√
log 1

δh2

}

As a direct consequence of the previous result, we obtain a uniform error bound for the306

expected normalized Betti curve, i.e.307

sup
x∈(0,L)

∣∣∣β̌x,h − E[β̌x,h]
∣∣∣ ≤ CL2

4 max
{

1
nh2 log 1

δh2 ,

√
1

nh2

√
log 1

δh2

}
,

To the best of our knowledge this is the first result of this kind, as typically one can only308

establish pointwise and not uniform consistency of Betti numbers.309

4 Numerical Illustration and discussion310

To illustrate our methodology and highlight the differences between the persistence intensity311

and density functions, we consider the MNIST handwritten digits dataset and the ORBIT5K312

dataset. The ORBIT5K dataset contains independent simulations for the linked twist313

map, dynamical systems for fluid flow as described in [AEK+17]; see also Appendix G.2 of314

[KKZ+20]. In Section E of the supplementary material, we show the estimated persistence315

intensity and density functions computed from persistence diagrams obtained over a varying316

number of random samples from the ORBIT5K datasets, for different model parameters.317

The figures confirm our theoretical finding that the values of the persistence density function318

near the diagonal are not as high (on a relative scale) as those of the persistence intensity319

function. An analogous conclusion can be reached when inspecting the persistence intensity320

and density functions for different draws of the MNIST datasets for the digits 4 and 8. We321

further include plots of the average Betti and normalized Betti curves from the ORBIT5K322

dataset, along with the curves of the empirical point-wise 5% and 95% quantiles. These323

plots reveal the different scales of the Betti curves and normalized Betti curves, and of their324

uncertainty.325

In this paper, we have taken the first step towards developing a new set of methods and326

theories for statistical inference for TDA based on samples of persistence diagrams. Our main327

focus is on the estimation of the persistence intensity function [CD19, CWRW15], a TDA328

summary of a functional type that encodes the entire distribution of a random persistence329

diagram and is naturally suited to handle linear representations. We have analyzed a simple330

kernel estimator and derived uniform consistency rates that hold under very mild assumptions.331

We also propose the persistence density function, a novel functional TDA summary that332

enjoys stronger statistical guarantees. Though our results guarantee that the proposed333

estimators are consistent, in order to carry out statistical inference, it is necessary to develop334

more sophisticated procedures that quantify the uncertainty of our estimators. Towards that335

goal, it would be interesting to develop bootstrap-based methods for constructing confidence336

bands for both the persistence intensity and density functions.337
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