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ABSTRACT

We study the role of contextual information in the online learning problem of
brokerage between traders. At each round, two traders arrive with secret valua-
tions about an asset they wish to trade. The broker suggests a trading price based
on contextual data about the asset. Then, the traders decide to buy or sell de-
pending on whether their valuations are higher or lower than the brokerage price.
We assume the market value of traded assets is an unknown linear function of a
d-dimensional vector representing the contextual information available to the bro-
ker. Additionally, at each time step, we model traders’ valuations as independent
bounded zero-mean perturbations of the asset’s current market value, allowing for
potentially different unknown distributions across traders and time steps. Con-
sistently with the existing online learning literature, we evaluate the performance
of a learning algorithm with the regret with respect to the gain from trade. If the
noise distributions admit densities bounded by some constant L, then, for any time
horizon T :

• If the agents’ valuations are revealed after each interaction, we provide an
algorithm achieving O(Ld lnT ) regret, and show a corresponding matching
lower bound of Ω(Ld lnT ).

• If only their willingness to sell or buy at the proposed price is revealed after
each interaction, we provide an algorithm achieving O(

√
LdT lnT) regret,

and show that this rate is optimal (up to logarithmic factors), via a lower
bound of Ω(

√
LdT).

To complete the picture, we show that if the bounded density assumption is lifted,
then the problem becomes unlearnable, even with full feedback.

1 INTRODUCTION

Inspired by a recent stream of literature (Cesa-Bianchi et al., 2021; Azar et al., 2022; Cesa-Bianchi
et al., 2024a; 2023; Bolić et al., 2024; Bernasconi et al., 2024), we approach the bilateral trade prob-
lem of brokerage between traders through the lens of online learning. When viewed from a regret
minimization perspective, bilateral trade has been explored over rounds of seller/buyer interactions
with no prior knowledge of their private valuations. As in Bolić et al. (2024), we focus on the case
where traders are willing to either buy or sell, depending on whether their valuations for the asset
being traded are above or below the brokerage price.

This setting is especially relevant for over-the-counter (OTC) markets. Serving as alternatives to
conventional exchanges, OTC markets operate in a decentralized manner and are a vital part of the
global financial landscape.1 In contrast to centralized exchanges, the lack of strict protocols and
regulations allows brokers to take on the responsibility of bridging the gap between buyers and sell-
ers, who may not have direct access to one another. In addition to facilitating interactions between
parties, brokers leverage their contextual knowledge and market insights to determine appropriate
pricing for assets. By examining factors such as supply and demand, market trends, and other asset-
specific information, brokers aim to propose prices that reflect the true value of the asset being

1In the US alone, the value of assets traded in OTC markets exceeded a remarkable 50 trillion USD in 2020,
surpassing centralized markets by more than 20 trillion USD (Weill, 2020). This growth has been steadily
increasing since 2016 (www.bis.org, 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

traded. This price discovery process is a crucial aspect of a broker’s role, as it helps ensure efficient
transactions by accounting for the unique circumstances surrounding each asset. Additionally, in
many OTC markets, as in our setting, traders choose to either buy or sell depending on the con-
tingent market conditions (Sherstyuk et al., 2020). This behavior is observed across a broad range
of asset trades, including stocks, derivatives, art, collectibles, precious metals and minerals, energy
commodities like gas and oil, and digital currencies (cryptocurrencies), among others (Bolić et al.,
2024).

In the existing literature on online learning for bilateral trade, the contextual version of this problem
has never been investigated. This case is of significant interest given that the broker often has access
to meaningful information about the asset being traded and the surrounding market conditions before
having to propose a trading price. This information might help the broker to propose more targeted
trading prices by inferring the current market value of the corresponding asset, and ignoring it could
be extremely costly in terms of missing trading opportunities. We aim to fill this gap in the online
learning literature on bilateral trade to guide brokers in these contextual scenarios.

1.1 SETTING

In the following, the elements of any Euclidean space are treated as column vectors and, for any real
number x, y, we denote their minimum by x ∧ y and their maximum by x ∨ y.

We study the following problem. At each time t ∈ N,

○ Two traders arrive with private valuations Vt,Wt ∈ [0,1] about an asset they want to trade.

○ The broker observes a context ct ∈ [0,1]d and proposes a trading price Pt ∈ [0,1].
○ If the price Pt lies between the lowest valuation Vt ∧Wt and highest valuation Vt ∨Wt

(meaning the trader with the minimum valuation is ready to sell at Pt and the trader with
the maximum valuation is eager to buy at Pt), the asset is bought by the trader with the
highest valuation from the trader with the lowest valuation at the brokerage price Pt.
○ Some feedback is disclosed.

At any time t ∈ N, we denote the hidden marked value of the asset currently being traded by mt ∈
[0,1]. We assume an unknown linear relation exists between the market value mt for the asset being
traded at time t and the corresponding context ct the broker observes before proposing a trading
price. Specifically, we assume that there exists ϕ ∈ [0,1]d, unknown to the broker, such that, for each
t ∈ N, it holds that mt = c⊺tϕ. We model the sequence of contexts c1, c2, . . . as a deterministic [0,1]d-
valued sequence (possibly generated in an adversarial manner by someone who knows the broker’s
algorithm) that is initially unknown but sequentially discovered by the broker. As a consequence,
note that the sequence of market values m1,m2, . . . can change arbitrarily (and even adversarially)
from one time step to the next. To account for variability due to personal preferences or individual
needs, we assume the traders’ valuations are zero-mean perturbations of the market values. More
precisely, we assume that there exists an independent family of random variables (ξt, ζt)t∈N such
that, for each t ∈ N, it holds that E[ξt] = 0 = E[ζt] and Vt =mt + ξt and Wt =mt + ζt.2

Following the recent stream of bilateral trade literature investigating the interplay between learning
and the regularity of the underlying valuation distributions (Cesa-Bianchi et al., 2021; 2023; Bolić
et al., 2024), we focus on the case when the traders’ valuation distributions admit densities that are
uniformly bounded by some constant L ≥ 1. We note that this assumption is equivalent to the same
uniformly bounded density assumption on the distributions of the noise ξ1, ζ1, ξ2, ζ2, . . . . We will
later also analyze what happens when the bounded density assumption is lifted.

Consistently with the existing bilateral trade literature, the reward associated with each interaction is
the sum of the net utilities of the traders, known as gain from trade. Formally, for any p, v,w ∈ [0,1],
the utility of a price p when the valuations of the traders are v and w is

g(p, v,w) ∶= ( v ∨w − p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

buyer’s net gain

+ p − v ∧w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

seller’s net gain

)I{v ∧w ≤ p ≤ v ∨w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
whenever a trade happens

} = (v ∨w − v ∧w) I{v∧w ≤ p ≤ v∨w}.

2We remark that we are not assuming that the two processes (ξt)t∈N and (ζ)t∈N are i.i.d., and in fact the
distributions of these random variables may change adversarially over time.
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The aim of the learner is to minimize the regret with respect to the best function of the contexts,
defined, for any time horizon T ∈ N, as

RT ∶= sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(GFTt(p⋆(ct)) −GFTt(Pt))] ,

where we let GFTt(p) ∶= g(p, Vt,Wt) for all p ∈ [0,1], and the expectation is taken with respect
to the randomness in (ξt, ζt)t∈N and, possibly, the internal randomization used to choose the trading
prices (Pt)t∈N.

Finally, we consider the two most studied types of feedback in the bilateral trade literature. Specifi-
cally, at each round t, only after having posted the price Pt, the learner receives either:

○ Full feedback, i.e., the valuations Vt and Wt of the two current traders are disclosed.

○ Two-bit feedback, i.e., only the indicator functions I{Pt ≤ Vt} and I{Pt ≤ Wt} are dis-
closed.

The information gathered in the full feedback model reflects direct revelation mechanisms, where
traders disclose their valuations Vt and Wt prior to each round, but the price determined by the
mechanism at time t is based solely on the previous valuations V1,W1, . . . , Vt−1,Wt−1. Conversely,
the two-bit feedback model reflects posted price mechanisms. In this model, traders only indicate
their willingness to buy or sell at the posted price, and their valuations Vt and Wt remain undisclosed.

1.2 OUR CONTRIBUTIONS

Under the assumption that the traders’ valuations are unknown linear functions of d-dimensional
contexts perturbed by zero-mean noise with time-variable densities bounded by some L, and with the
goal of designing simple and interpretable optimal algorithms, we make the following contributions.

1. We prove a structural result (Lemma 1) with two crucial consequences. First, Lemma 1
shows that posting the traders’ (unknown) expected valuation as the trading price would
maximize the expected gain from trade. Second, it proves that the loss paid by posting a
suboptimal price is at most quadratic in the distance from an optimal one.

2. In the full feedback setting, we introduce an algorithm based on ridge regression estimation
(Algorithm 1) and, leveraging the previous lemma, we prove its optimality by showing
matching Ld lnT regret upper and lower bounds (Theorems 1 and 2).

3. In the two-bit feedback setting, the prices we post directly affect the information we re-
trieve. We note that this information is so scarce that it is not even enough to reconstruct
bandit feedback. We solve this challenging exploration-exploitation dilemma by proposing
an algorithm (Algorithm 2) that decides to either explore or exploit adaptively, based on
the amount of contextual information gathered so far, and prove its optimality by showing
a
√
LdT lnT regret upper bound (Theorem 3) and a matching (up to a

√
lnT )

√
LdT lower

bound (Theorem 4).

4. Finally, we investigate the necessity of the bounded density assumption: by lifting this
assumption, we show that the problem becomes unlearnable (Theorem 5).

To the best of our knowledge, our work is the first to analyze a noisy contextual bilateral trade
problem (in fact, the first that analyzes a contextual bilateral trade problem in general) and one of
only two works on bilateral trade (the other one being Bolić et al. 2024) where the dependence on
all relevant parameters is tight. As we discuss in Section 1.3, most related works on non-contextual
bilateral trade obtain (at best) a matching dependence in the time horizon only, while those on non-
parametric noisy contextual pricing/auctions lack matching lower bounds altogether.

1.3 RELATED WORKS

Building upon the foundational work of Myerson and Satterthwaite (Myerson & Satterthwaite,
1983), a rich body of research has investigated bilateral trade from a game-theoretic and best-
approximation standpoint (Colini-Baldeschi et al., 2016; 2017; Blumrosen & Mizrahi, 2016; Brustle
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et al., 2017; Colini-Baldeschi et al., 2020; Babaioff et al., 2020; Dütting et al., 2021; Deng et al.,
2022; Kang et al., 2022; Archbold et al., 2023). For an insightful analysis of this literature, see
Cesa-Bianchi et al. (2024a).

Our work builds upon the recent research on bilateral trade within online learning settings. Given
the close relationship between our and these existing works, we discuss these connections in detail.
First, to the best of our knowledge, the existing online learning literature on bilateral trade never
discussed contextual problems. In Cesa-Bianchi et al. (2021); Azar et al. (2022); Cesa-Bianchi et al.
(2024a; 2023; 2024b); Bernasconi et al. (2024), the authors studied non-contextual bilateral trade
problems where sellers and buyers have definite roles. Cesa-Bianchi et al. (2021; 2024a) show that
the adversarial setting is unlearnable, and hence they focus on the case where sellers’ and buyers’
valuations form an i.i.d. process. They obtain a

√
T regret rate in the full-feedback setting. For

the two-bit feedback case, they show that the problem is unlearnable in general, but it turns out to
be learnable at a tight regret rate of T 2/3 by assuming that sellers’ and buyers’ valuations are in-
dependent of each other and they admit a uniformly bounded density. Azar et al. (2022) show that
learning is achievable in the adversarial case if the weaker α-regret objective is considered. Specifi-
cally, in the full-feedback case, they obtain a tight 2-regret rate of

√
T . In the two-bit feedback case,

they show that learning is impossible in general, but by allowing the learner to use weakly budget-
balanced mechanisms, they recover a 2-regret of order T 3/4, without a matching lower bound. In a
different direction, Cesa-Bianchi et al. (2023; 2024b) show that learning is achievable in the adver-
sarial case if the adversary is forced to be smooth, i.e., the sellers’ and buyers’ valuation distributions
may change adversarially over time, but these distributions admit uniformly bounded densities. In
the full-feedback case, they obtain a tight

√
T regret rate. In the two-bit feedback case, they show

that the problem is still unlearnable, but, by allowing the learner to use weakly budget-balanced
mechanisms, they prove a surprisingly sharp T 3/4 regret rate. Bernasconi et al. (2024) propose the
notion of globally budget-balanced mechanisms, a further relaxation of the weakly budget-balanced
notion, under which they show that learning is achievable in the adversarial case at a tight regret rate
of
√
T in the full-feedback case, and at a regret rate of T 3/4 in the two-bit feedback case, without a

matching lower bound. We remark that in all the papers we discussed so far, every two-bit feedback
upper bound that requires a bounded density assumption lacks a corresponding lower bound with a
sharp dependence on this parameter. The closest to our setting is the one proposed in Bolić et al.
(2024). There, the authors study the non-contextual version of our trading problem with flexible
sellers’ and buyers’ roles, with the further assumption that the sellers’ and buyers’ valuations form
an i.i.d. sequence. Under the M -bounded density assumption, they obtain tight M lnT and

√
MT

regret rates in the full-feedback and two-bit feedback settings, respectively. If the bounded density
assumption is removed, they show that the learning rate degrades to

√
T in the full-feedback case

and the problem turns out to be unlearnable in the two-bit feedback case. We remark that, inter-
estingly, under the bounded density assumption, we are able to achieve the same regret rates in the
contextual version of this problem without requiring that traders share the same valuation distribu-
tion, while, without the bounded density assumption, the contextual problem is unlearnable even
under full-feedback.

Our linear assumption appears commonly in the literature on digital markets, particularly in prob-
lems like pricing and auctions. In Cohen et al. (2016; 2020), the authors first address a deterministic
setting, then a noisy one with known noise distribution where they obtain a regret rate of order T 2/3

without presenting a lower bound. The deterministic case has also been investigated in Lobel et al.
(2017; 2018); Leme & Schneider (2018; 2022); Liu et al. (2021). Notably, the best results currently
known only apply to deterministic settings, while, in the case of noisy linear functions, to the best
of our knowledge (Xu & Wang, 2021; Badanidiyuru et al., 2023; Fan et al., 2024; Luo et al., 2024;
Chen & Gallego, 2021; Javanmard & Nazerzadeh, 2019; Bu et al., 2022; Shah et al., 2019), the only
known guarantees are limited to parametric or semi-parametric settings and a clear general picture
of the minimax rates is still missing. In contrast, thanks to our Lemma 1, we are able to address the
trading problem even when the noise is non-parametric, obtaining optimal rates (matched by corre-
sponding lower bounds) which are significantly faster than the ones known for contextual auctions
and pricing.

Another rich related field explored in its many variants (Hanna et al., 2023; Slivkins et al., 2023;
Leme et al., 2022; Foster et al., 2021; 2019; Zhou et al., 2019; Kirschner & Krause, 2019; Metevier
et al., 2019; Foster & Krishnamurthy, 2018; Kannan et al., 2018; Oh & Iyengar, 2019; Hu et al.,
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2020; Neu & Olkhovskaya, 2020; Wei et al., 2020; Krishnamurthy et al., 2020; Luo et al., 2018;
Krishnamurthy et al., 2021) is contextual linear bandits. In its standard form, at the beginning of
each round, an action set is revealed to the learner, and the assumption is that the reward (which
equals the feedback) is a linear function of the action selected from the action set. Instead, in our
setting, the market price is a linear function of the context, while the rewards are linked to the price
the learner posts by the non-linear gain from trade function. Moreover, in contrast to contextual
bandits, in our 2-bit feedback model, the feedback differs from and is not sufficient to compute the
reward of the action the learner selects at every round. For these reasons, the techniques appearing
in contextual linear bandits do not directly translate to our problem.

2 STRUCTURAL RESULTS

We begin by presenting a structural result whose economic interpretation is as follows: even if the
broker does not know the traders’ valuation distribution, if these valuations can be modeled as zero-
mean noisy perturbations with bounded densities of some market value, then the best price to post to
maximize the expected gain from trade is precisely the market value. In particular, this generalizes
a similar result appearing in Bolić et al. (2024), which holds under the further assumption that the
valuations have the exact same distribution. The following result also gives a representation formula
for the expected gain from trade, which implies in particular that the cost of posting a suboptimal
price is only quadratic in the distance from the market value. This structural result is the key to
unraveling the intricacies of the noisy contextual setting, and it is what ultimately allows us to obtain
tight regret guarantees in all settings, distinguishing ours from similar contextual pricing works.

Lemma 1. Suppose that V and W are two [0,1]-valued independent random variables, with pos-
sibly different densities bounded by some constant L ≥ 1, and such that E[V ] = E[W ] =∶ m. Then,
for each p ∈ [0,1], it holds that

0 ≤ E[g(m,V,W ) − g(p, V,W )] ≤ L ∣m − p∣2 .

Proof. We denote by F (resp., G) the cumulative distribution function of V (resp., W ). For each
p ∈ [0,1], from the Decomposition Lemma in (Cesa-Bianchi et al., 2024a, Lemma 1), it holds that

E[(W − V )I{V ≤ p ≤W}] = F (p)∫
1

p
(1 −G(λ))dλ + (1 −G(p))∫

p

0
F (λ)dλ ,

E[(V −W )I{W ≤ p ≤ V }] = G(p)∫
1

p
(1 − F (λ))dλ + (1 − F (p))∫

p

0
G(λ)dλ .

Hence, for each p ∈ [0,1],

E[(W − V )I{V ≤ p ≤W}] = F (p)∫
1

p
(1 −G(λ))dλ + (1 −G(p))∫

p

0
F (λ)dλ

= F (p) (m − ∫
p

0
(1 −G(λ))dλ) + ∫

p

0
F (λ)dλ −G(p)∫

p

0
F (λ)dλ

= ∫
p

0
F (λ)dλ + (m − p)F (p) − pG(p) +G(p)∫

p

0
(1 − F (λ))dλ + F (p)∫

p

0
G(λ)dλ

= ∫
p

0
(F +G) (λ)dλ + (m − p) (F +G) (p) −G(p) (m − ∫

p

0
(1 − F (λ))dλ) + (F (p) − 1)∫

p

0
G(λ)dλ

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) − (G(p)∫

1

p
(1 − F (λ))dλ + (1 − F (p))∫

p

0
G(λ)dλ)

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) −E[(V −W )I{W ≤ p ≤ V }] .

Rearranging, it follows that, for each p ∈ [0,1],

E[g(p, V,W )] = E[(W − V )I{V ≤ p ≤W}] +E[(V −W )I{W ≤ p ≤ V }]

= ∫
p

0
(F +G)(λ)dλ + (m − p)(F +G)(p) .
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Hence, for any p ∈ [0,1], it holds that

E[g(m,V,W ) − g(p, V,W )] = ∫
m

p
((F +G)(λ) − (F +G)(p))dλ ≥ 0 .

Finally, since F and G are absolutely continuous with weak derivative bounded by L, by the funda-
mental theorem of calculus (Bass, 2013, Theorem 14.16) it holds that, for p ∈ [0,1],

E[g(m,V,W )−g(p, V,W )] = ∫
m

p
∫

λ

p
(F ′+G′)(ϑ)dϑdλ ≤ 2L∫

m

p
∣λ−p∣dλ = L∣m−p∣2 .

As a corollary of Lemma 1, we obtain the following result, that upper bounds the regret in terms
of the sum of the squared distances between the prices the algorithm posts and the actual market
values.

Corollary 1. Consider the setting introduced in Section 1.1. If the valuations admit densities
bounded by a constant L ≥ 1, then, for any time horizon T ∈ N, we have

RT = E [
T

∑
t=1
(GFTt(c⊺tϕ) −GFTt(Pt))] ≤

T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2]) .

Proof. Given that for each t ∈ N and each p ∈ [0,1] it holds that GFTt(p) ∈ [0,1], we have

sup
p∈[0,1]

E[GFTt(p) −GFTt(Pt)] ≤ 1 ,

and hence, recalling that mt = c⊺tϕ and that E[Vt] =mt = E[Wt], we also have, for each T ∈ N,

RT = sup
p⋆∶[0,1]d→[0,1]

T

∑
t=1

1 ∧ (E[g(p⋆(ct), Vt,Wt)] −E[g(Pt, Vt,Wt)])

(○)=
T

∑
t=1

1 ∧ (E[g(c⊺tϕ,Vt,Wt)] −E[g(Pt, Vt,Wt)])

(∗)=
T

∑
t=1

1 ∧E[[E[g(c⊺tϕ,Vt,Wt) − g(p, Vt,Wt)]]
p=Pt

]
(○)
≤

T

∑
t=1

1 ∧ (LE[∣Pt − c⊺tϕ∣
2]) ,

where (○) follows from Lemma 1, and (∗) from the Freezing Lemma (Cesari & Colomboni, 2021,
Lemma 8).

3 FULL FEEDBACK

In this section, we focus on the full feedback setting, corresponding to direct revelation mechanisms.
We show that performing ridge regression to obtain an estimate of the unknown vector ϕ and using
it as a proxy linear function to convert contexts into prices (Algorithm 1) is enough to achieve
logarithmic regret. In the following, we denote by 1d the d-dimensional identity matrix.

Algorithm 1: Ridge Regression Pricing — Full Feedback
Observe context c1, post P1 ∶= 1/2, and receive feedback V1, W1;
Let x1 ∶= [c1 ∣ c1], let Y1 ∶= [V1 ∣W1], and compute ϕ̂1 ∶= (x1x

⊺
1 + d−11d)−1x1Y

⊺
1 ;

for time t = 2,3, . . . do
Observe context ct, post Pt ∶= c⊺t ϕ̂t−1, and receive feedback Vt, Wt;
Let xt ∶= [xt−1 ∣ ct ∣ ct], Yt ∶= [Yt−1 ∣ Vt ∣Wt], and compute ϕ̂t ∶= (xtx

⊺
t + d−11d)−1xtY

⊺
t ;

Theorem 1. Consider the full-feedback setting introduced in Section 1.1. If the learner runs Algo-
rithm 1 and the traders’ valuations admit a density bounded by L ≥ 1, then, for any time horizon
T ∈ N, it holds that RT ≤ 1 + 4Ld lnT .
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Proof. Recall that (ξt, ζt)t∈N is an independent family of zero mean random variables each of them
admitting a density bounded by L, that for any t ∈ N, it holds that mt = c⊺tϕ, that mt+ξt = Vt ∈ [0,1]
and that mt + ζt =Wt ∈ [0,1]. For any t ∈ N, simple calculations show that

E[∣c⊺t+1ϕ̂t − c⊺t+1ϕ∣2] = (E [c⊺t+1ϕ̂t − c⊺t+1ϕ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bias

)2 +Var[c⊺t+1ϕ̂t]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

variance

.

which is the well-known decomposition of the quadratic error with bias and variance of the estimator
c⊺t+1ϕ̂t for the quantity c⊺t+1ϕ. Noting that, for each t ∈ N, it holds that E[Y ⊺t ] = x⊺tϕ, we have,

E[c⊺t+1ϕ̂t − c⊺t+1ϕ] = c⊺t+1(xtx
⊺
t + d−11d)−1xtx

⊺
tϕ − c⊺t+1(xtx

⊺
t + d−11d)−1(xtx

⊺
tϕ + d−1ϕ)

= −c⊺t+1(xtx
⊺
t + d−11d)−1d−1ϕ =∶ (○) ,

and hence, by the Cauchy-Schwarz inequality applied to the scalar product (a, b) ↦ a⊺(xtx
⊺
t +

d−11d)−1b, by the fact that (xtx
⊺
t + d−11d)−1 ⪯ d−11−1d (where, for any two symmetric matrices

A1,A2, we say that A1 ⪯ A2 if and only if A2 −A1 is semi-positive definite), and by the fact that
∥ϕ∥22 ≤ d, we can control the bias term as follows

(E[c⊺t+1ϕ̂t − c⊺t+1ϕ])
2
= (○)2 ≤ c⊺t+1(xtx

⊺
t + d−11d)−1ct+1 ⋅ d−1ϕ⊺(xtx

⊺
t + d−11d)−1d−1ϕ

≤ c⊺t+1(xtx
⊺
t + d−11d)−1ct+1 ⋅ d−1ϕ⊺(d−11d)−1d−1ϕ ≤ c⊺t+1(xtx

⊺
t + d−11d)−1ct+1. (1)

For each t ∈ N, letting ∆t be the 2t × 2t diagonal matrix with vector of diagonal elements given by
(Var[V1],Var[W1],Var[V2],Var[W2], . . . ,Var[Vt],Var[Wt]), we have

Var[c⊺t+1ϕ̂t] = c⊺t+1(xtx
⊺
t + d−11d)−1(xt∆tx

⊺
t )(xtx

⊺
t + d−11d)−1ct+1. (2)

Now, for each t ∈ N, given that V1,W1, . . . , Vt,Wt are [0,1]-valued, we have that ∆t is diagonal
with diagonal elements less than 1, and hence xt∆tx

⊺
t ⪯ xtx

⊺
t + d−11d, which yields a control on

the variance term as follows,
Var[c⊺t+1ϕ̂t] ≤ c⊺t+1(xtx

⊺
t + d−11d)−1(xtx

⊺
t + d−11d)(xtx

⊺
t + d−11d)−1ct+1 = c⊺t+1(xtx

⊺
t + d−11d)−1ct+1 .

In the end, for each t ∈ N, we have

E[∣c⊺t+1ϕ̂t − c⊺t+1ϕ∣2] ≤ 2c⊺t+1(xtx
⊺
t + d−11d)−1ct+1 = 2 ∥ct+1∥2(xtx

⊺

t+d−11d)−1

= 2 ∥ct+1∥2(2∑t
s=1 csc⊺s+d−11d)−1 = ∥

√
2ct+1∥

2

(∑t
s=1(

√
2cs)(

√
2cs)⊺+d−11d)−1

, (3)

where, for any positive definite matrix A ∈ Rd×d and each u ∈ Rd, we have defined ∥u∥A ∶=
√
u⊺Au.

Now, for any time horizon T ∈ N, leveraging Corollary 1, we have that

RT ≤
T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2]) ≤ 1 +
T−1
∑
t=1

1 ∧ (LE [∣c⊺t+1ϕ̂t − c⊺t+1ϕ∣2])

≤ 1 +L
T−1
∑
t=1

1 ∧ ∥
√
2ct+1∥

2

(∑t
s=1(

√
2cs)(

√
2cs)⊺+d−11d)−1

=∶ (⋆) .

From here, we apply the elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4) to
obtain that, for any time horizon T ∈ N,

RT ≤ (⋆) ≤ 1 + 2Ld ln(
dd−1 + 2d(T − 1)

dd−1
) = 1 + 2Ld ln(1 + 2d(T − 1)) ≤ 1 + 2Ld ln(2dT ) .

If d < T /2, this implies that RT ≤ 1 + 2Ld ln(2dT ) ≤ 1 + 4Ld lnT . If, instead, d ≥ T /2, then,
recalling that L ≥ 1, we obtain once again that RT ≤ T ≤ 1 + 4Ld lnT , concluding the proof.

We conclude this section by stating a matching worst-case Ω(Ld lnT ) regret lower bound for any
algorithm in the full-feedback case, proving the optimality of Algorithm 1.

At a high level, the proof of this result is based on first building a sequence of contexts defined as
a common element of the canonical basis of Rd during each one of d blocks of T /d consecutive
time-steps. Then, in each block, an adaptation of the non-contextual full-feedback lower bound
construction in (Bolić et al., 2024, Theorem 3) yields a lower bound of order L ln(T /d). Summing
over blocks gives the result. For a full proof of this result, see Appendix A.
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Theorem 2. There exist two numerical constants a, b > 0 such that, for any L ≥ 2 and any time
horizon T ≥ max(4, adL5,2d), there exists a sequence of contexts c1, . . . , cT ∈ [0,1]d such that,
for any algorithm α for the contextual brokerage problem with full feedback, there exists a vector
ϕ ∈ [0,1]d and two zero-mean independent sequences (ξt)t∈[T ] and (ζt)t∈[T ] independent of each
other, such that if we define Vt ∶= c⊺tϕ + ξt and Wt ∶= c⊺tϕ + ζt, then for each t ∈ [T ] it holds that
c⊺tϕ ∈ [0,1], Vt and Wt are [0,1]-valued random variables with density bounded by L, and the
regret of α on the sequence of traders’ valuations V1,W1, . . . , VT ,WT satisfies RT ≥ bLd lnT .

We remark that the previous lower bound holds even for algorithms that have prior knowledge of
the sequence of contexts c1, c2, . . . and that Theorem 1 shows that Algorithm 1 matches the optimal
Ld lnT rate even without this a-priori knowledge.

4 TWO-BIT FEEDBACK

In this section, we focus on the two-bit feedback setting, corresponding to posted-price mechanisms.
We show that a simple deterministic rule that decides to either explore (by posting a price drawn
uniformly in [0,1] to gather feedback to reconstruct the cumulative distribution functions of the
traders’ valuations) or exploit (by posting the scalar product of the context and the current ridge
regression estimate of the unknown weight vector ϕ) based on the amount of information gathered
along the various context dimensions (Algorithm 2) is enough to achieve Õ(

√
LdT) regret. We

recall that 1d is the d-dimensional identity matrix. Also, for any positive definite matrix A ∈ Rd×d,
we define ∥⋅∥A ∶Rd → [0,∞), v ↦

√
v⊺Av.

Algorithm 2: Scouting Ridge Regression Pricing — Two-bit Feedback
Post P1 uniformly at random in [0,1], and observe D1 ∶= I{P1 ≤ V1},E1 ∶= I{P1 ≤W1};
Let b1 ∶= 1, let x1 ∶= [c1 ∣ c1], let Y1 ∶= [D1 ∣ E1] and compute ϕ̂1 ∶= (x1x

⊺
1 + d−11d)−1x1Y

⊺
1 ;

for time t = 2,3, . . . do

Observe context ct and define bt ∶= I{∥
√
2ct∥

2

(xt−1x
⊺

t−1+d−11d)−1
>
√

2d ln(1+2d(T−1))
LT

};
if bt = 1 then

Post Pt uniformly at random in [0,1], and observe Dt ∶= I{Pt ≤ Vt},Et ∶= I{Pt ≤Wt};
Let xt ∶= [xt−1 ∣ ct ∣ ct], let Yt ∶= [Yt−1 ∣Dt ∣ Et] and compute
ϕ̂t ∶= (xtx

⊺
t + 1d)−1xtY

⊺
t ;

else post Pt = c⊺t ϕ̂t−1 and let xt ∶= xt−1, Yt ∶= Yt−1, and ϕ̂t ∶= ϕ̂t−1;

Theorem 3. Consider the two-bit feedback setting introduced in Section 1.1. If the learner runs
Algorithm 2 and the traders’ valuations admit a density bounded by L ≥ 1, then, for any time
horizon T such that LT ≥ 2d ln(1 + 2d(T − 1)), it holds that RT ≤ 1 + 4

√
LdT lnT .

Proof. Without loss of generality we assume that T ≥ 2. Note that for any t ∈ N, if bt = 1, then

E[Dt] = P[Pt ≤ Vt] = ∫
1

0
P[u ≤ Vt]du = E[Vt] = E[c⊺tϕ + ξt] = c⊺tϕ ,

and, analogously, E[Et] = c⊺tϕ. It follows that E[Y ⊺t ] = x⊺tϕ, for any t ∈ N. Now, for any t ∈ N,
using the very same arguments as in the proof of Theorem 1, from the fact that E[Y ⊺t ] = x⊺tϕ
we can deduce an analogous of (1), and, from the fact that the variances of the random variables
D1,E1, . . . ,Dt,Et (for the indexes for which they are defined) are less than or equal to 1, we can
deduce an analogous of (2). These two results team up to yield a bound analogous to (3): for
t ∈ {2,3, . . .},

E[∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] ≤ 2 ∥ct∥
2

(xt−1x
⊺

t−1+d−11d)−1 .
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Hence, leveraging Corollary 1, for any T ∈ N, we have that

RT ≤
T

∑
t=1

1 ∧ (LE [∣Pt − c⊺tϕ∣2]) ≤
T

∑
t=2
(1 − bt)LE [∣c⊺t ϕ̂t−1 − c⊺tϕ∣2] +

T

∑
t=1

bt

≤ L
T

∑
t=2
(1 − bt) ∥

√
2ct∥

2

(xt−1x
⊺

t−1+d−11d)−1
+

T

∑
t=1

bt ≤
√

2LdT ln(1 + 2d(T − 1)) +
T

∑
t=1

bt .

Now, given that LT /(2d ln(1 + 2d(T − 1))) ≥ 1, using the convention 0/0 = 0,

T

∑
t=2

bt =
T

∑
t=2

bt ∥
√
2ct∥

2

(xt−1x
⊺

t−1+d−11d)−1

∥
√
2ct∥

2

(xt−1x
⊺

t−1+d−11d)−1
≤
√

LT

2d ln(1 + 2d(T − 1))

T

∑
t=2

1 ∧ bt ∥
√
2ct∥

2

(2∑t−1
s=1 bscsc⊺s+d−11d)−1

=
√

LT / (2d ln(1 + 2d(T − 1)))
T−1
∑
t=1

1 ∧ ∥bt+1
√
2ct+1∥

2

(∑t
s=1(bs

√
2cs)(bs

√
2cs)⊺+d−11d)

−1 =∶ (∗).

Using the elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4), we obtain

T

∑
t=1

bt ≤ 1 + (∗) ≤ 1 +
√

LT /(2d ln(1 + 2d(T − 1))) ⋅ 2d ln(1 + 2d(T − 1)) = 1 +
√

2LdT ln(1 + 2d(T − 1)) .

Hence, if d < T /2, this implies that RT ≤ 1 + 2
√
2LdT ln (1 + 2d(T − 1)) ≤ 1 + 4

√
LdT lnT . On

the other hand, if d ≥ T /2, then, since L ≥ 1, we obtain, again, RT ≤ T ≤ 1 + 4
√
LdT lnT .

We conclude this section by stating a matching (up to logarithmic terms) worst-case Ω(
√
LdT)

regret lower bound for any algorithm in the two-bit-feedback case, proving the optimality of Algo-
rithm 2.

At a high level, the proof of this result is based on the same trick (as in the proof of Theorem 2)
of choosing contexts equal to vectors of the canonical basis of Rd in order to obtain d indepen-
dent 1-dimensional sub-instances. In each block, an adaptation of the non-contextual full-feedback
lower bound construction in Bolić et al. (2024, Theorem 5) yields a lower bound of order

√
LT /d.

Summing over blocks gives the result. For more details on the proof of this result, see Appendix B.
Theorem 4. There exist two numerical constants a, b > 0 such that, for any L ≥ 2 and any time
horizon T ≥max(4, adL3,2d), there exists a sequence of contexts c1, . . . , cT ∈ [0,1]d such that, for
any algorithm α for the contextual brokerage problem with two-bit feedback, there exists a vector
ϕ ∈ [0,1]d and two zero-mean independent sequences (ξt)t∈[T ] and (ζt)t∈[T ] independent of each
other such that, if we define Vt ∶= c⊺tϕ + ξt and Wt ∶= c⊺tϕ + ζt, then for each t ∈ [T ] it holds that
c⊺tϕ ∈ [0,1], Vt and Wt are [0,1]-valued random variables with density bounded by L, and the
regret of α on the sequence of traders’ valuations V1,W1, . . . , VT ,WT satisfies RT ≥ b

√
LdT .

We remark that the previous lower bound holds even for algorithms that have prior knowledge of
the sequence of contexts c1, c2, . . . and that Theorem 3 shows that Algorithm 2 matches the optimal√
LdT rate (up to a

√
lnT factor) even without this a-priori knowledge.

5 BEYOND BOUNDED DENSITIES

In this final section, we investigate the general case where the valuations of the traders are not
assumed to have a bounded density, and we show that the problem is, in general, unlearnable.

At a high level, the main reason why the problem becomes unlearnable is that Lemma 1 and its
Corollary 1 fail to hold. In fact, the optimal price at time t depends in general not only on the market
value mt = c⊺tϕ, but also on properties of the time-varying distributions of the perturbations ξt and
ζt, which essentially turns our problem into a fully-adversarial one where we strive to compete
against time-varying policies. For a full proof of the following theorem, see Appendix C.
Theorem 5. There exists a sequence of contexts c1, c2, ⋅ ⋅ ⋅ ∈ [0,1]d and a vector ϕ ∈ [0,1]d, such
that for any algorithm α for the contextual brokerage problem under full feedback, there exists an
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independent sequence of zero mean random variables ξ1, ζ1, ξ2, ζ2, . . . , such that if the valuations of
the traders at time t are Vt = c⊺tϕ+ ξt and Wt = c⊺tϕ+ ζt, then c⊺tϕ ∈ [0,1], Vt,Wt are [0,1]-valued
random variables, and the regret of α on the sequence of traders’ valuations V1,W1, . . . , VT ,WT

satisfies RT = Ω(T ).

We remark that the previous unlearnability result holds even for algorithms that have prior knowl-
edge of the sequence of contexts c1, c2, . . . and, strikingly, of the vector ϕ.

6 CONCLUSIONS

Motivated by the real-life desideratum to exploit prior information on the traded assets, we inves-
tigated the noisy linear contextual online learning problem of brokerage between traders without
predetermined seller/buyer roles. We provided a complete picture with tight regret bounds in all the
proposed settings, i.e., under full and two-bit feedback, and with or without regularity assumptions
on the noise distributions, achieving tightness (up to log terms) in all relevant parameters.
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A PROOF OF THEOREM 2

Without loss of generality, we assume that d divides T . In fact, if we prove the theorem for this case,
then, by leveraging that T ≥ 2d and T ≥ 4, the general case follows from

RT ≥ bLd ln(⌊T /d⌋d) ≥
b

2
Ld lnT .

Let n ∶= T /d. Let e1, . . . , ed be the canonical basis of Rd. Define, for all i ∈ [d] and j ∈ [n], the
context cj+(i−1)n ∶= ei. We assume that these contexts are known to the learner in advance and,
therefore, we can restrict the proof to deterministic algorithms without any loss of generality.

Let L ≥ 2, JL ∶= [ 12 −
1

14L
, 1
2
+ 1

14L
], f ∶= I[0, 37 ] + LIJL

+ I[ 4
7 ,1]

, and, for any ε ∈ [−1,1],
gε ∶= −εI[ 1

7 ,
3
14
] + εI( 3

14 ,
2
7
] and fε ∶= f + gε. For any ε ∈ [−1,1], note that 0 ≤ fε ≤ L and

∫
1
0 fε(x)dx = 1, hence fε is a valid density on [0,1] bounded by L. We will denote the corre-

sponding probability measure by νε, set ν̄ε ∶= ∫[0,1] xdνε(x), and notice that direct computations
show that ν̄ε = 1

2
+ ε

196
. Consider for each q ∈ [0,1], an i.i.d. sequence (Bq,t)t∈N of Bernoulli ran-

dom variables of parameter q, an i.i.d. sequence (B̃t)t∈N of Bernoulli random variables of parameter
1/7, an i.i.d. sequence (Ut)t∈N of uniform random variables on [0,1], and uniform random variables
E1, . . . ,Ed on [−ε̄L, ε̄L], where ε̄L ∶= 7

L
, such that ((Bq,t)t∈N,q∈[0,1], (B̃t)t∈N, (Ut)t∈N,E1, . . . ,Ed)

is an independent family. Let φ∶ [0,1] → [0,1] be such that, if U is a uniform random variable on
[0,1], then the distribution of φ(U) has density 7

6
⋅f ⋅ I[0,1]∖[1/7,2/7] (which exists by the Skorokhod

representation theorem (Williams, 1991, Section 17.3)). For each ε ∈ [−1,1] and t ∈ N, define

Gε,t ∶= (
2 +Ut

14
(1 −B 1+ε

2 ,t) +
3 +Ut

14
B 1+ε

2 ,t) B̃t + φ(Ut)(1 − B̃t) , (4)

Vε,t ∶= Gε,2t−1, Wε,t ∶= Gε,2t, ξε,t ∶= Vε,t − ν̄ε, and ζε,t ∶= Wε,t − ν̄ε. In the following, if
a1, . . . , ad is a sequence of elements, we will use the notation a1∶d as a shorthand for (a1, . . . , ad).
For each ε1, . . . , εd ∈ [−1,1], each i ∈ [d], and each j ∈ [n], define the random variables
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ξε1∶d
j+(i−1)n ∶= ξεi,j+(i−1)n and ζε1∶d

j+(i−1)n ∶= ζεi,j+(i−1)n. The family (ξε1∶dt , ζε1∶dt )
t∈[T ],ε1∶d∈[−1,1]d

is
an independent family, independent of (E1, . . . ,Ed), and for each i ∈ [d] and each j ∈ [n] it can be
checked that the two random variables ξε1∶d

j+(i−1)n, ζ
ε1∶d
j+(i−1)n are zero mean with common distribution

given by νεi . For each ε1, . . . , εd ∈ [−1,1], let ϕε1∶d ∶= (ν̄ε1 , . . . , ν̄εd), and for each i ∈ [d] and
j ∈ [n], let V ε1∶d

j+(i−1)n ∶= c
⊺
j+(i−1)nϕε1∶d + ξ

ε1∶d
j+(i−1)n and W ε1∶d

j+(i−1)n ∶= c
⊺
j+(i−1)nϕε1∶d + ζ

ε1∶d
j+(i−1)n. Note

that these last two random variables are [0,1]-valued zero-mean perturbations of c⊺
j+(i−1)nϕε1∶d with

shared density given by fεi , and hence bounded by L.

We will show that any algorithm has to suffer the regret inequality in the statement of the theorem if
the sequence of evaluations is V ε1∶d

1 ,W ε1∶d
1 , . . . , V ε1∶d

T ,W ε1∶d
T , for some ε1, . . . , εd ∈ [0,1].

Before doing that, we first need the following. For any ε1, . . . , εd ∈ [−1,1], p ∈ [0,1], and t ∈ [T ]
let GFTε1∶d

t (p) ∶= g(p, V
ε1∶d
t ,W ε1∶d

t ).
By Lemma 1, we have, for all ε1, . . . , εd ∈ [−1,1], i ∈ [d], j ∈ [n], and p ∈ [0,1],

E[GFTε1∶d
j+(i−1)n(p)] = 2∫

p

0
∫

λ

0
fεi(s)dsdλ + 2(ν̄εi − p)∫

p

0
fεi(s)ds ,

which, together with the fundamental theorem of calculus —(Bass, 2013, Theorem 14.16), noting
that p ↦ E[GFTε1∶d

j+(i−1)n(p)] is absolutely continuous with derivative defined a.e. by p ↦ 2(ν̄εi −
p)fεi(p)— yields, for any p ∈ JL,

E[GFTε1∶d
j+(i−1)n(ν̄εi)] −E[GFTε1∶d

j+(i−1)n(p)] = L∣ν̄εi − p∣
2 . (5)

Note also that for all ε1, . . . , εd ∈ [−ε̄L, ε̄L], t ∈ [T ], and p ∈ [0,1] ∖ JL, a direct verification shows
that

E[GFTε1∶d
t (p)] ≤ E [GFTε1∶d

t (1/2)] . (6)

Fix any arbitrary deterministic algorithm for the full feedback setting (αt)t∈[T ], i.e., (given that the
contexts c1, . . . , cT are here fixed and declared ahead of time to the learner), a sequence of functions
αt∶ ([0,1] × [0,1])

t−1 → [0,1] mapping past feedback into prices (with the convention that α1 is

just a number in [0,1]). For each t ∈ [T ], define α̃t∶ ([0,1] × [0,1])
t−1 → JL equal to αt whenever

αt takes values in JL, and equal to 1/2 otherwise. Define Z1 ∶= 1+E1

2
, . . . , Zd ∶= 1+Ed

2
.

Now, note the following

sup
ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(αt(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n))]

(6)
≥ sup

ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)nW

ε1∶d
j−1+(i−1)n))]

♠= L sup
ε1∶d∈[−ε̄L,ε̄L]d

d

∑
i=1

n

∑
j=1

E[∣ν̄εi − α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n)∣

2]

≥ L
d

∑
i=1

n

∑
j=1

E[∣ν̄Ei − α̃t(V E1∶d

1 ,WE1∶d

1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n)∣
2]

♥
≥ L

d

∑
i=1

n

∑
j=1

E[∣ν̄Ei −E[ν̄Ei ∣ V
E1∶d

1 ,WE1∶d

1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n]∣
2]

= L

196

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ V E1∶d

1 ,WE1∶d

1 . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n]∣
2]

♦
≥ L

196

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ B 1+Ei
2 ,1+2(i−1)n, . . . ,B 1+Ei

2 ,2(j−1)+2(i−1)n]∣
2]

♣= L

196

d

∑
i=1

n

∑
j=1

E[∣Ei −E[Ei ∣ B 1+Ei
2 ,1

, . . . ,B 1+Ei
2 ,2(j−1)]∣

2]
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= L

49

d

∑
i=1

n

∑
j=1

E[∣Zi −E[Zi ∣ BZi,1, . . . ,BZi,2(j−1)]∣
2]

where ♠ follows from (5) and the fact that α̃t takes values in JL; ♥ from the fact that the
minimizer of the L2(P)-distance from ν̄Ei in σ(V E1∶d

1 ,WE1∶d

1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n)
is E[ν̄Ei ∣ V E1∶d

1 ,WE1∶d

1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n] (see, e.g., (Williams, 1991,
Section 9.4)); ♦ follows from the fact that, by Equation (4) and the indepen-
dence of Ei from ((Bq,t)t∈N,q∈[0,1], (B̃t)t∈N, (Ut)t∈N), the conditional expectation
E[Ei ∣ V E1∶d

1 ,WE1∶d

1 , . . . , V E1∶d

j−1+(i−1)n,W
E1∶d

j−1+(i−1)n] is a measurable function of
B 1+Ei

2 ,1+2(i−1)n, . . . ,B 1+Ei
2 ,2(j−1)+2(i−1)n, together with the same observation made in ♥ about the

minimization of L2(P) distance; and ♣ follows from the fact that the sequence (B 1+Ei
2 ,t
)
t∈N

is
i.i.d..

Finally, the general term of this last sum is the expected squared distance between the random pa-
rameter (drawn uniformly over [(1 − ε̄L)/2, (1 + ε̄L)/2]) of an i.i.d. sequence of Bernoulli random
variables and the conditional expectation of this random parameter given 2(j − 1) independent real-
izations of these Bernoullis. A probabilistic argument shows that there exist two universal constants
ã, b̃ > 0 such that, for all j ≥ b̃L4 and each i ∈ [d],

E[∣Zi −E[Zi ∣ BZi,1, . . . ,BZi,2(j−1)]∣
2] ≥ ã 1

j − 1
. (7)

At a high level, this is because, in an event of probability Ω(1), if j is large enough, the
conditional expectation E[Zi ∣ BZi,1, . . . ,BZi,2(j−1)] is very close to the empirical average

1
2(j−1) ∑

2(j−1)
s=1 BZi,s, whose expected squared distance from Z is Ω(1/(j − 1)). For a formal proof

of (7) with explicit constants, we refer the reader to Bolić et al. (2024, Appendix B of the extended
arxiv version). Summing over i ∈ [d] and j ∈ [n], we obtain that there exist ε1, . . . , εd ∈ [−1,1]d
such that

d

∑
i=1

n

∑
j=1

E[GFTε1∶d
j+(i−1)n(ν̄εi) −GFTε1∶d

j+(i−1)n(α̃t(V ε1∶d
1 ,W ε1∶d

1 , . . . , V ε1∶d
j−1+(i−1)n,W

ε1∶d
j−1+(i−1)n))]

= Ω(Ld lnn) = Ω(Ld lnT ) .

B PROOF OF THEOREM 4

Fix L ≥ 2 and T ∈ N. We will use the very same notation as in the proof of Theorem 2. In
particular, the contexts c1, . . . , cT are again the same as before and declared ahead of time to the
learner. We will show that for each algorithm for contextual brokerage with 2-bit feedback and
each time horizon T , if Rε1∶d

T is the regret of the algorithm at time horizon T when the traders’
valuations are V ε1∶d

1 ,W ε1∶d
1 , . . . , V ε1∶d

T ,W ε1∶d
T , then maxσ1∶d∈{−1,1}d R

(σ1ε,...,σdε)
T = Ω(

√
dLT ) if ε =

Θ((LT /d)−1/4) and T = Ω(dL3).

Note that for all ε1∶d ∈ [−1,1]d, i ∈ [d], j ∈ [n], and p < 1
2

, if εi > 0, then, a direct verification shows
that

E [GFTε1∶d
j+(i−1)n (1/2)] ≥ E[GFTε1∶d

j+(i−1)n(p)] . (8)

Similarly, for all ε1∶d ∈ [−1,1]d, i ∈ [d], j ∈ [n], and p > 1
2

, if εi < 0, then

E [GFTε1∶d
j+(i−1)n (1/2)] ≥ E[GFTε1∶d

j+(i−1)n(p)] . (9)

Furthermore, a direct verification shows that, for each ε1∶d ∈ [−1,1]d and t ∈ [T ],

max
p∈[0,1]

E[GFTε1∶d
t (p)] − max

p∈[ 17 ,
2
7 ]
E[GFTε1∶d

t (p)] ≥
1

50
= Ω(1) . (10)

Now, assume that T ≥ dL3/144 so that, defining ε ∶= (LT /d)−1/4, we have that for any
σ1∶d ∈ {−1,1}d, any i ∈ [d] and any j ∈ [n], the maximizer of the expected gain from trade
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p ↦ E[GFT
(σ1ε,...,σdε)
j+(i−1)n (p)] is at 1

2
+ σiε

196
and hence belongs to the spike region JL. If σi = 1

(resp., σi = −1) case, the optimal price for the rounds 1 + (i − 1)n, . . . , in belongs to the region
( 1
2
, 1
2
+ 1

14L
] (resp., [ 1

2
− 1

14L
, 1
2
)). By posting prices in the wrong region [0, 1

2
] (resp., [ 1

2
,1]) in the

σi = 1 (resp., σi = −1) case, the learner incurs a Ω(Lε2) = Ω(
√
L/dT) instantaneous regret by (5)

and (8) (resp., (5) and (9)). Then, in order to attempt suffering less than Ω(
√
L/T ⋅n) = Ω(

√
LT /d)

regret in the rounds 1 + (i − 1)n, . . . , in, the algorithm would have to detect the sign of σi and play
accordingly. We will show now that even this strategy will not improve the regret of the algo-
rithm (by more than a constant) because of the cost of determining the sign of σi with the available
feedback. Since for any i ∈ [d] and j ∈ [n], the feedback received from the two traders at time
j + (i − 1)n by posting a price p is I{p ≤ V

(σ1ε,...,σdε)
j+(i−1)n } and I{p ≤ W

(σ1ε,...,σdε)
j+(i−1)n }, the only way

to obtain information about (the sign of) σi is to post in the costly (Ω(1)-instantaneous regret by
Equation (10)) sub-optimal region [ 1

7
, 2
7
]. However, posting prices in the region [ 1

7
, 2
7
] at time

j + (i − 1)n can’t give more information about σi than the information carried by V
(σ1ε,...,σdε)
j+(i−1)n

and W
(σ1ε,...,σdε)
j+(i−1)n , which, in turn, can’t give more information about σi than the information car-

ried by the two Bernoullis B 1+σiε

2 ,2(j+(i−1)n)−1 and B 1+σiε

2 ,2(j+(i−1)n). Since only during rounds
1 + (i − 1)n, . . . , in is possible to extract information about the sign of σi and, (via an information-
theoretic argument) in order to distinguish the sign of σi having access to i.i.d. Bernoulli random
variables of parameter 1+σiε

2
requires Ω(1/ε2) = Ω(

√
LT /d) samples, we are forced to post at least

Ω(
√
LT /d) prices in the costly region [ 1

7
, 2
7
] during the rounds 1+(i−1)n, . . . , in suffering a regret

of Ω(
√
LT /d) ⋅Ω(1) = Ω(

√
LT /d). Putting everything together, no matter what the strategy, each

algorithm will pay at least Ω(
√
LT /d) regret in each epoch 1 + (i − 1)n, . . . , in for every i ∈ [d],

resulting in an overall regret of Ω(
√
LT /d) ⋅ d = Ω(

√
dLT).

C PROOF OF THEOREM 5

Assume that d ≥ 2 (for the case d = 1, the following proof can be adapted straightforwardly by
defining ϕ = 1 and ct = 1/2+ εt, where εt is an arbitrary small sequence of biases). Let (at)t∈N be a
sequence of distinct elements in [0,1] and, for all t ∈ N, let ct ∶= (at,1− at,0,0, . . . ,0). Notice that
(ct)t∈N is a sequence of distinct elements in [0,1]2. Define ϕ ∶= (1/2,1/2,0,0, . . . ,0). Notice that
for each t ∈ N it holds that c⊺tϕ = 1/2. Let ε ∈ (0,1/16). For any θ ∈ {0,1}, consider the following
probability distribution

µθ ∶= (
1

4
+ (1 − 2θ)ε) δ− 1

2
+ 1

2
δ2(1−θ)ε−2θε + (

1

4
− (1 − 2θ)ε) δ 1

2
,

where for any a ∈ R, δa is the Dirac’s delta probability distribution centered in a. Consider an
independent family of random variables (ξt,θ, ζt,θ)t∈N,θ∈{0,1} such that for any t ∈ N and any θ ∈
{0,1}, we have that both ξt,θ and ζt,θ are random variables with common distribution µθ. Notice
that for each t ∈ N and each θ ∈ {0,1} we have that E[ξt,θ] = 0 = E[ζt,θ]. Define, for each t ∈ N
and each θ ∈ {0,1}, the random variables Vt,θ ∶= c⊺tϕ+ ξt and Wt,θ ∶= c⊺tϕ+ ζt. Notice that these are
[0,1]-valued random variables and that (Vt,θ,Wt,θ)t∈N,θ∈{0,1} is an independent family. Now, for
each θ ∈ {0,1} and each t ∈ N, let

p#(θ) ∈ argmax
p∈[0,1]

E[g(p, Vt,θ,Wt,θ)] ,

which does exist because the function [0,1] → [0,1], p ↦ E[g(p, Vt,θ,Wt,θ)] is upper semicontin-
uous (this can be proved as in Cesa-Bianchi et al. 2024a, Appendix B) and defined on a compact
set. Furthermore, note that the previous definition is independent of t because, for any θ ∈ {0,1},
the pairs (Vt1,θ,Wt1,θ) and (Vt2,θ,Wt2,θ) share the same distribution for every t1, t2 ∈ N. Fix a
learning algorithm for the full-feedback contextual brokerage problem, fix a time horizon T ∈ N,
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and notice that since the contexts c1, c2, . . . are all distinct, it follows that

max
θ1,...,θT ∈{0,1}T

sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(g(p⋆(ct), Vt,θt ,Wt,θt) − g(Pt, Vt,θt ,Wt,θt))]

= max
θ1,...,θT ∈{0,1}T

T

∑
t=1

⎛
⎝

sup
p∈[0,1]

E[g(p, Vt,θt ,Wt,θt)] −E[g(Pt, Vt,θt ,Wt,θt)]
⎞
⎠

= max
θ1,...,θT ∈{0,1}T

E [
T

∑
t=1
(g(p#(θt), Vt,θt ,Wt,θt) − g(Pt, Vt,θt ,Wt,θt))] =∶ (#) .

Now, consider an i.i.d. family of Bernoulli random variables (Θt)t∈N with parameter 1/2, indepen-
dent of the whole family (Vt,θ,Wt,θ)t∈N,θ∈{0,1}. We have that

(#) ≥ E [
T

∑
t=1
(g(p#(Θt), Vt,Θt ,Wt,Θt

) − g(Pt, Vt,Θt ,Wt,Θt))]

=
T

∑
t=1
(E[g(p#(Θt), Vt,Θt ,Wt,Θt

)] −E[g(Pt, Vt,Θt ,Wt,Θt)]) =∶ ($)

Now, for each t ∈ [T ], we see that

E[g(p#(Θt), Vt,Θt ,Wt,Θt
)] = E[E[g(p#(Θt), Vt,Θt ,Wt,Θt

) ∣ Θt]]

= E[ max
p∈[0,1]

E[g(p, Vt,Θt ,Wt,Θt
) ∣ Θt]]

and long but straightforward computations show that, for each p ∈ [0,1], it holds that

E[g(p, Vt,Θt ,Wt,Θt
) ∣ Θt] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
4
+ ε(1 − 2Θt) if 0 ≤ p < 1

2
− 2Θtε + 2(1 −Θt)ε ,

3
8
+ 2ε2 if p = 1

2
− 2Θtε + 2(1 −Θt)ε ,

1
4
− ε(1 − 2Θt) if 1

2
− 2Θtε + 2(1 −Θt)ε < p ≤ 1 ,

from which it follows that

max
p∈[0,1]

E[g(p, Vt,Θt ,Wt,Θt
) ∣ Θt] =

3

8
+ 2ε2 .

On the other hand, for each t ∈ [T ], leveraging the freezing lemma (Cesari & Colomboni, 2021,
Lemma 8), we have that

E[g(Pt, Vt,Θt ,Wt,Θt)] = E[E[g(Pt, Vt,Θt ,Wt,Θt) ∣ Pt]] = E[[E[g(p, Vt,Θt ,Wt,Θt)]]
p=Pt

]

= E[[1
2
E[g(p, Vt,Θt ,Wt,Θt) ∣ Θt = 0] +

1

2
E[g(p, Vt,Θt ,Wt,Θt) ∣ Θt = 1]]

p=Pt

]

and again, tedious but straightforward computations show that, for each p ∈ [0,1], it holds that
1

2
E[g(p, Vt,Θt ,Wt,Θt) ∣ Θt = 0] +

1

2
E[g(p, Vt,Θt ,Wt,Θt) ∣ Θt = 1]

= 1

4
(I{p < 1

2
− 2ε} + I{1

2
+ 2ε < p}) + ( 5

16
+ ε

2
+ ε2)(I{p = 1

2
− 2ε} + I{p = 1

2
+ 2ε})

+ (1
4
+ ε) I{1

2
− 2ε < p < 1

2
+ 2ε}

≤ 5

16
+ ε

2
+ ε2 .

We conclude that
($) ≥ T

16
+ (ε2 − ε

2
)T ,

from which it follows that there exists θ1, . . . , θT ∈ {0,1} such that

sup
p⋆∶[0,1]d→[0,1]

E[
T

∑
t=1
(g(p⋆(ct), Vt,θt ,Wt,θt) − g(Pt, Vt,θt ,Wt,θt))] ≥

T

16
+ (ε2 − ε

2
)T ≥ T

32
.
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