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ABSTRACT

Region proposal networks (RPN) are a key component of modern object detectors.
An RPN identifies image boxes likely to contain objects, and so worth further
investigation. An RPN false negative is unrecoverable, so the performance of
an object detector can be significantly affected by RPN behavior, particularly in
low-data regimes. The RPN for a few shot detector is trained on base classes.
Our experiments demonstrate that, if the distribution of box aspect ratios for base
classes is different from that for novel classes, errors caused by RPN failure to
propose a good box become significant. This is predictable: for example, an RPN
trained on base classes that are mostly square will tend to miss short wide boxes. It
has not been noticed to date because the (relatively few) standard base/novel class
splits on current datasets do not display this effect. But changing the base/novel
split highlights the problem. We describe datasets where the distribution shift is
severe using PASCAL VOC, COCO, and LVIS datasets.
We show that the effect can be mitigated by training multiple distinct but cooperat-
ing specialized RPNs. Each specializes in a different aspect ratio, but cooperation
constraints reduce the extent to which the RPNs are tuned. This means that if a
box is missed by one RPN, it has a good chance of being picked up by another.
Experimental evaluation confirms this approach results in substantial improve-
ments in performance on the ARShift benchmarks, while remaining comparable
to SOTA on conventional splits. Our approach applies to any few-shot detector
and consistently improves performance of detectors.

1 INTRODUCTION

Most state-of-the-art object detectors follow a two-stage detection paradigm. A region proposal
network (RPN) finds promising locations, and these are passed through a classifier to determine
what, if any, object is present. In this architecture, if an RPN makes no proposal around an object,
the object will not be detected. For a few-shot detector, one splits the classes into base and novel,
then trains the RPN and classifier on base classes, fixes the RPN, and finally fine-tunes the classifier
on novel classes using the RPN’s predictions.

Objects in large-scale object detection datasets (e.g. COCO (Lin et al., 2014); LVIS (Gupta et al.,
2019)) have typical aspect ratio that varies somewhat from instance to instance, and often differs
sharply from category to category. As a result, the few-shot training procedure has a built-in problem
with distribution shift. This phenomenon is illustrated in Figure 1. Imagine all base classes are
roughly square, and all novel classes are either short and wide, or tall and narrow. The RPN trained
on the base classes should miss some novel class boxes. These boxes will have two effects: the
training data the classifier sees will be biased against the correct box shape; and, at run time, the
detector may miss objects because of RPN failures. We refer to this problem as the bias (the RPN
does not deal fairly with different aspect ratios). The bias occurs because the RPN sees few or no
examples of the novel classes during training (Kang et al., 2019; Wang et al., 2020; Yan et al., 2019).

To date, this bias has not been remarked on. This is an accident of dataset construction: the standard
base/novel splits in standard datasets do not result in a distribution shift. But other base/novel splits
do result in a distribution shift large enough to have notable effects, and Section 3 shows our evidence
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Figure 1: RPN is severely affected by the distribution shift of object aspect ratios from base to novel
classes, leading to degenerated few-shot detection performance. After training on the base classes
which are mostly boxy objects (bike, chair, table, tv, animals, etc.), (Left) state-of-the-art
few-shot detector DeFRCN (Qiao et al., 2021) built on the conventional RPN misses the elongated
novel class (train) object at the proposal stage and generates no proposal with IoUgt > 0.7 – this
is a disaster (the classifier of DeFRCN will not see a train box proposal, and so it cannot detect the
train). By contrast, (Right) our CoRPN’s remedy this issue and thus improve few-shot detection
for DeFRCN. Red boxes are the groundtruth box of the novel class train object; green boxes are
box proposals output by the model. We plot positive proposals with IoUgt > 0.7 following Qiao
et al. (2021).

that this effect occurs in practice. In particular, we describe ARShift benchmarks that simulate the
real-world scenario where the aspect ratio distribution shift is severe. RPNs in state-of-the-art few-
shot detectors are heavily biased towards familiar aspect ratio distributions, and so have weaker than
necessary performance on non-standard splits because their RPNs are unfair. Evaluation practice
should focus on performance under hard splits.

In few-shot detection applications, a more robust RPN will be more reliable, because applications
typically offer no guarantees about the aspect ratio of novel classes. We show how to build a more
robust RPN by training multiple RPN classifiers to be specialized but cooperative. Our CoRPN’s
can specialize (and a degree of specialization emerges naturally), but our cooperation constraints
discourage individual RPN classifiers from overspecializing and so face generalization problems.
CoRPN’s are competitive with SOTA on widely used conventional benchmarks of few-shot detec-
tion, using conventional splits. But on our ARShift benchmarks with hard splits based on PASCAL
VOC, MS-COCO, and LVIS (Everingham et al., 2010; Lin et al., 2014; Kang et al., 2019; Wang
et al., 2020), they beat SOTA, because they are more robust to shifts in aspect ratio distribution.

Our contributions: (1) We show the bias has severe effects on detector performance, and describe
ARShift benchmarks that evaluate these effects. (2) We describe a general approach to improving
RPN robustness to distribution shifts. Our CoRPN construction works with many types of few-shot
detectors. (3) We show that performance improvements resulting from CoRPN’s results from im-
proved fairness. (4) Our CoRPN’s are competitive with SOTA on widely used conventional bench-
marks. But on the hard splits in ARShift, they beat SOTA, because they are fair.

2 RELATED WORK

Object Detection with Abundant Data. There are two families of detector architecture, both rely-
ing on the fact that one can quite reliably tell whether an image region contains an object independent
of category (Endres & Hoiem, 2010; van de Sande et al., 2011). In serial detection, a proposal pro-
cess (RPN in what follows) offers the classifier a selection of locations likely to contain objects, and
the classifier labels them. This family includes R-CNN and its variants (Girshick, 2015; Girshick
et al., 2014; He et al., 2017; Ren et al., 2015) In parallel detection, there is no explicit proposal
step; these methods can be faster but the accuracy may be lower. This family includes YOLO and
its variants (Bochkovskiy et al., 2020; Redmon & Farhadi, 2017; Redmon et al., 2016; Redmon
& Farhadi, 2018), SSD (Liu et al., 2016), point-based detectors such as CornerNet (Law & Deng,
2018) and ExtremeNet (Zhou et al., 2019), and emerging transformer-based methods exemplified by
DETR (Carion et al., 2020). This paper identifies an issue with the proposal process that can impede
strong performance when there is very little training data (the few-shot case). The effect is described
in the context of two-stage detection, but likely occurs in one-stage detection too.
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Few-Shot Object Detection. Few-shot detection involves detecting objects for which there are very
few training examples (Chen et al., 2018; Kang et al., 2019; Schwartz et al., 2019), and state-of-the-
art methods are usually serial (Wang et al., 2019; Yan et al., 2019; Wang et al., 2020; Fan et al., 2020;
Wu et al., 2020; Xiao & Marlet, 2020; Yang et al., 2020; Li et al., 2021a; Hu et al., 2021; Zhang
et al., 2021; Li et al., 2021b; Zhu et al., 2021). There is a rich few-shot classification literature
(roots in Thrun (1998); Fei-Fei et al. (2006)). Dvornik et al. (2019) uses ensemble procedures
for few-shot classification. As to detection, TFA (Wang et al., 2020) shows that a simple two-
stage fine-tuning approach outperforms other complex methods. Much work seeks improvements by
applying different techniques, such as meta-learning (Wang et al., 2019; Yan et al., 2019; Hu et al.,
2021; Zhang et al., 2021), metric learning (Han et al., 2021; Wu et al., 2021; Yang et al., 2020),
refinement (Wu et al., 2020; Li et al., 2021b), feature reweighting (Kang et al., 2019), semantic
relations (Zhu et al., 2021), augmentation (Li & Li, 2021; Zhang & Wang, 2021), and margin loss (Li
et al., 2021a). Other work (Fan et al., 2021) alleviates forgetting of base classes. In particular, Qiao
et al. (2021) achieves state-of-the-art performance by decoupling the gradient of the backbone and
other components of the detector, as well as adding a prototypical calibration module. Here we
focus on the two most representative methods – the state-of-the-art DeFRCN (Qiao et al., 2021) and
the widely used TFA (Wang et al., 2020) – as our main baselines.

Few-Shot Detection Benchmarks. The existing literature can be seen as variations on a standard
detection framework, where one splits data into two sets of categories: base classes Cb (which have
many training examples) and novel classes Cn (which have few). The RPN and classifier are trained
with instances from the base classes, and then fine-tuned with the few-shot novel class data. While
the choice of the split can be important in revealing different aspects of few-shot detection, existing
benchmarks (Kang et al., 2019; Wang et al., 2020) have only focused on a few fixed, rather arbitrary
splits. However, we explore the scenario where there exists a notable distribution shift between base
and novel classes, and investigate the behavior of RPNs accordingly.

Proposal Process in Few-Shot Detection. Relatively little work adjusts the proposal process, which
is usually seen as robust to few-shot issues because there are many base examples. (Sun et al.,
2021) introduces contrastive-aware object proposal encodings to facilitate classification. Attention
mechanisms are also introduced that feed category-aware features instead of plain image features
into the proposal process (Hsieh et al., 2019; Fan et al., 2020; Xiao & Marlet, 2020; Osokin et al.,
2020), as well as re-ranking proposals based on similarity with query images (Hsieh et al., 2019;
Fan et al., 2020). Making the RPN category-aware improves the quality of novel class proposals,
but at inference time the model suffers from catastrophic forgetting of base categories – current
category-aware features cannot summarize the very large number of base class examples efficiently
or accurately. An RPN that is generally well-behaved can still create serious trouble in the few-shot
case by missing important proposals for the novel classes during fine-tuning. We show that the
proposal process can be improved by a carefully constructed cooperating RPN’s without substantial
loss of performance for the base classes.

3 OUR APPROACH

We believe that improving the population of RPN boxes seen by the classifier in training will always
tend to improve a detector, and so focus on finding and fixing the effect within a standard few-shot
object detection framework. Our proposed strategy is general and can work with different types
of few-shot detectors. Here we consider the two most representative methods: the state-of-the-art
DeFRCN (Qiao et al., 2021) and the widely used TFA (Wang et al., 2020). We first observe the box
aspect ratio distribution shift problem through our pilot study, and show that naı̈ve ensemble of RPN
experts does not sufficiently solve this problem on our hard ARShift splits. Then we introduce our
CoRPN’s that effectively tackles the aspect ratio distribution shift problem via the cooperation and
diversity losses.

3.1 BACKGROUND

We use the few-shot detection setting introduced in Kang et al. (2019). We split the dataset into
two sets of categories: base classes Cb and novel classes Cn. The training process is two-phase:
(1) base classes training, and (2) fine-tuning with novel classes. In phase 1, the model is trained
with base class instances which results in a |Cb|-way detector. After base classes training, weights
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(a) (b)

Figure 2: The choice of base and novel class split can have a strong effect on the distribution of box
aspect ratios. This histogram on COCO (a) and LVIS (b) shows: (blue) the distribution of aspect
ratios for base classes; (pink) a randomly selected set of novel classes — note the bimodal structure,
suggesting that different classes might have quite different bounding box distributions; and (yellow)
for each of our selected hard set of novel classes in COCO-ARShift and LVIS-ARShift. Note that
these classes are “rare” classes in LVIS so the histogram appears sparse. Experimental evidence
(Tables 1, 2 and 3) suggests that a standard RPN trained on the base set performs poorly on our
novel classes, while our CoRPN’s address the issue and substantially improve the performance. We
believe that our hard splits in ARShift are relatively easy to generate and examples are provided in
the appendix.

Method shot=1 2 3 5 10
TFA w/ cos + CoRPN’s 28.1 31.7 36.0 38.6 44.7
DeFRCN + CoRPN’s 37.0 49.3 55.1 56.7 59.0
TFA w/ cos (Wang et al., 2020) 19.1 27.2 28.0 34.4 42.1
DeFRCN (Qiao et al., 2021) 31.0 44.6 47.5 55.2 57.2
DeFRCN Ensemble of Experts 29.7 42.7 50.9 55.3 56.0

Table 1: Our proposed split VOC-ARShift causes serious problems for current state-of-the-art few-
shot detectors, which are resolved by using CoRPN’s. CoRPN’s bring significant improvements
(AP50) to all baseline models under distribution shift of base/novel class box aspect ratios. Note
that naı̈ve ensemble of RPN experts sometimes leads to even worse results, potentially due to the
overspecialization of its individual RPNs. Results in bold are the better result between ours and the
baselines. Results in red are the best.

for novel classes are randomly initialized, making the classifier a (|Cb| + |Cn|)-way classifier. In
phase 2, the model is fine-tuned using either a set of few novel class instances or a balanced dataset
containing both novel and base classes. The classifier sees the ground truth box and RPN boxes; it
is typically trained to regard RPN boxes with IoU≥0.7 as positive, and with IoU<0.3 as negative.
After the fine-tuning phase, we evaluate our model by average precision (AP) on novel and base
categories. Although the focus of few-shot detection is the novel classes, since most test images
contain instances from both base and novel classes, it is essential to maintain good performance on
base classes.

We adopt the widely-used Faster R-CNN (Ren et al., 2015) as our base model. Faster R-CNN is a
two-stage detector, which consists of a backbone image feature extractor, an RPN, followed by the
region of interest (ROI) pooling layer, and a bounding box classifier and a bounding box regressor
on top of the model. The RPN determines if a box is a foreground or a background box. Following
the RPN is non-maximum suppression (NMS) which ranks and selects top proposal boxes. In phase
1, the whole model is trained on many-shot base class instances. Phase 2 fine-tunes part of the model
on novel class instances with other parts frozen. Specifically, for TFA (Wang et al., 2020), only the
top layer of the bounding box classifier and regressor are fine-tuned. For DeFRCN (Qiao et al.,
2021), the whole model is fine-tuned except for the convolutions in the bounding box classifier and
regressor.

3.2 PILOT STUDY: BOX DISTRIBUTION SHIFT

In the real world, the bounding box distribution of these novel categories often differs from the base
categories, resulting in unfair few-shot performances. Namely, the difference in the distribution of
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1-shot 2-shot 3-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours DeFRCN + CoRPN’s 8.7 15.3 8.7 12.4 20.5 13.4 14.7 24.4 15.9

Baselines DeFRCN (Qiao et al., 2021) 7.1 13.0 7.0 11.5 20.3 12.5 14.3 24.4 15.1
DeFRCN Ensemble of Experts 8.0 14.3 7.9 12.3 20.6 13.0 14.2 23.5 15.0

Table 2: Our proposed split COCO-ARShift causes serious problems for current state-of-the-art
few-shot detectors, which are resolved by using CoRPN’s. CoRPN’s consistently outperform the
DeFRCN (Qiao et al., 2021) baseline in all cases (novel split in 1, 2 and 3 shots) and are superior to
the ensemble of experts method overall. Results in red are the best.

Split 1 Split 2 Split 3 Entire test set
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours DeFRCN + CoRPN’s 12.3 31.0 9.4 16.0 27.5 18.8 13.7 20.4 16.8 15.3 26.4 15.6

Baseline DeFRCN (Qiao et al., 2021) 9.6 22.9 7.0 8.0 19.1 1.7 9.0 18.8 6.3 15.0 26.6 14.2
DeFRCN Ensemble of Experts 11.5 26.0 8.4 14.8 24.3 12.1 12.4 20.1 14.7 14.8 25.0 13.9

Table 3: Our proposed three splits on LVIS (LVIS-ARShift) cause serious problems for current state-
of-the-art few-shot detectors, which are resolved by using CoRPN’s. As a reference, we also provide
the results on all rare classes in the entire LVIS test set. Our CoRPN’s outperform the baseline by
large margins on all the splits with aspect ratio distribution shift, especially in AP75, suggesting
that CoRPN’s improve the quality of detection under aspect ratio shift. CoRPN’s also marginally
outperform the baseline on the entire test set in mAP and AP75. Results in red are the best.

box scale, aspect ratio, and center location all inhibit a successful transfer. Previous work tries to
alleviate the scale issues with multiscale features and the location issues with translation invariance
of convolution. However, these approaches fail to solve all of these problems, especially when the
distribution between base and novel class box aspect ratios has a significant shift. We simulate this
scenario by proposing new splits: our ARShift benchmark, on the PASCAL VOC, COCO and LVIS
datasets that emphasize this distribution shift and the fairness to different aspect ratio distributions.

We manually select a set of classes that will likely have a different box distribution to the base cate-
gories. Figure 2 shows that our split has a more significant shift in the box aspect ratio distribution.
As an naı̈ve approach to alleviating this issue, we modified the RPN classifier to be an ensemble of
expert RPN classifiers. Instead of using one RPN classifier for all proposals, we use 3 RPN classi-
fiers for the anchors of 3 different aspect ratios (0.5, 1, and 2.0 respectively). The 3 RPN classifiers
independently output their prediction for their respective anchors, which are combined as the final
prediction. Tables 1, 2 and 3 show that compared to the baseline DeFRCN (Qiao et al., 2021), this
approach represented by ‘DeFRCN Ensemble of Experts’ performs comparably and thus cannot fully
address the issue. Intuitively, in this ensemble of experts method, individual RPN classifiers might
be overspecializing and so facing generalization problems. Instead, we propose a method where we
do not explicitly enforce each RPN classifier to specialize in an aspect ratio, but let the specialization
emerge in the learning process. This method, named CoRPN’s, shows a large improvement over the
baselines in Tables 1, 2 and 3.

3.3 LEARNING COOPERATING RPN’S (CORPN’S)

We would like to alter the RPN to improve the population of boxes reported, especially on our
ARShift benchmark where novel classes has a large box distribution shift. We expect that doing
so affects mainly the few-shot case. As illustrated in Figure 3, we use multiple redundant RPN
classifiers, but our goals imply that these RPN classifiers need to be trained to cooperate (i.e., they
should not be a pure ensemble of experts). In what follows, we use the term RPN and RPN classifier
interchangeably unless otherwise noted. In particular, we train and evaluate our RPN classifiers
using an OR strategy – a box is classified with the label reported by the most confident RPN, which
gets the gradient during training. This has two effects. First, the RPN’s can specialize to a degree,
though we do not allow the RPN’s to drift too far apart. In turn, if one RPN misses a positive box,
the other might find it. Second, the training strategy may improve the variation of proposals, which
is especially essential when dealing with a different proposal box distribution in the few-shot case.
Both effects may bring improvements to the model’s fairness with respect to aspect ratio distribution.

Faster R-CNN’s RPN consists of a feature extractor, a binary classifier (which decides whether a box
is foreground or background), and a bounding box regressor (which is not relevant to our current
purpose). We do not intend for our RPN’s to use distinct sets of features, since it would introduce a
large number of additional parameters, so we construct redundant classifiers while keeping both the
feature extractor and the bounding box regressor shared between all RPN’s.
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Figure 3: Illustration for our CoRPN’s network. Left is the original structure for the RPN in Faster
R-CNN; right is our CoRPN’s, consisting of cooperating bounding box classifiers. Note that we
only add multiple classifier heads that share features, so the model complexity of CoRPN’s does
not significantly exceeds a regular RPN. For convenience, we use the term RPN and RPN classifier
interchangeably.

An RPN with a single classifier is trained with a cross-entropy loss Lcls = LCE and produces
a single prediction. In our case, we train N different binary classifiers simultaneously, and must
determine (1) what prediction is made at test time and (2) what gradient goes to what classifier at
training time. At test time, a given box gets the score from the most confident RPN. If the highest
foreground probability is closer to one than the highest background probability, the box is predicted
to be foreground; otherwise, it is predicted to be the background. In training time, merely taking the
gradient of the best RPN score is not good enough, because the model may collapse to the trivial
solution where one RPN scores all boxes, and the others do nothing interesting. For any foreground
box, we want at least one RPN to have a very confident foreground prediction and all others to have
good foreground scores too (so that no foreground box is missed).

We use the following strategy. For a specific anchor box i, each RPN j (of the N RPN’s) outputs a
raw score rji , indicating if the box is a foreground box or not: ri = [r1i , r

2
i , . . . , r

N
i ]. After applying a

sigmoid, the jth RPN produces the foreground probability f j
i = σ(rji ) for anchor box i. We choose

the score from the j∗th RPN such that

j∗ = argminj min{f j
i , 1− f j

i }, (1)

namely the most certain RPN which produces probability closest to the edge of the [0, 1] interval.
At training time, only the chosen j∗th RPN gets the gradient from anchor box i. The RPN selection
procedure is per-box, and even adjacent boxes can pass through different RPN’s.

Other than the standard cross-entropy loss, we use two additional loss terms: a diversity loss Ldiv en-
courages RPN’s to be distinct, and a cooperation loss Lcoop encourages cooperation and suppresses
foreground false negatives. The final loss is

Lcls := Lj∗

CE + λdLdiv + λcLcoop, (2)

where λd and λc are trade-off hyperparameters.

3.4 ENFORCING DIVERSITY

We do not want our RPN’s to be too similar and prefer their specialization. For each positive anchor
box, RPN responses should be different because we want different RPN’s to cover different types
of proposal boxes. To this end, we propose a loss function to enforce diversity among RPN’s.
Given a set of NA anchor boxes, the N RPN’s produce an N by NA matrix of probabilities F =
[f1, f2, . . . , fN ]T . The covariance matrix is

Σjk(F) = E[(f j − E[f j ])(fk − E[fk])T ]. (3)

We define the diversity loss Ldiv by the log determinant loss

Ldiv := − log(det(Σ(F))). (4)

This log determinant loss has been widely used in previous work (Boyd & Vandenberghe, 2008;
Dhillon, 2008) to encourage diversity. By this diversity loss, we encourage the probability matrix
to have rank N , so each RPN is reacting differently on the collection of NA boxes. This procedure
ensures each RPN to be the most certain RPN for some boxes, so that every RPN is being selected
and trained. Omitting this loss can cause some RPN classifier to receive little training.
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Novel Class Base Class
1-shot 2-shot 3-shot 1-shot 2-shot 3-shot

Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
TFA w/ cos + CoRPN’s 4.1 7.2 4.4 5.4 9.6 5.6 7.1 13.2 7.2 34.1 55.1 36.5 34.7 55.3 37.3 34.8 55.2 37.6
DeFRCN + CoRPN’s 5.0 9.7 4.8 8.6 16.1 7.8 10.9 20.0 10.4 30.3 45.6 33.2 31.2 47.9 34.2 32.0 48.1 35.1
TFA w/ cos (Wang et al., 2020) 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5 34.1 54.7 36.4 34.7 55.1 37.6 34.7 54.8 37.9
DeFRCN (Qiao et al., 2021) 4.8 9.5 4.4 8.5 16.3 7.8 10.7 20.0 10.3 30.3 45.7 33.4 31.2 47.1 34.5 31.8 47.9 35.1
MPSR** (Wu et al., 2020) 2.3 4.1 2.3 3.5 6.3 3.4 5.2 9.5 5.1 12.1 17.1 14.2 14.4 20.7 16.9 15.8 23.3 18.3
FsDetView (Xiao & Marlet, 2020) 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 2.4 7.0 1.0 4.4 11.9 2.2 4.9 13.6 2.2
FSOD* (Fan et al., 2020) 2.4 4.8 2.0 2.9 5.9 2.7 3.7 7.2 3.3 11.9 20.3 12.5 15.6 24.4 17.2 17.4 27.3 19.0

Table 4: CoRPN’s not only improve performance on our hard split, but also perform comparably
with state of the art on more traditional splits without forgetting the base classes, hence improving
model fairness for aspect ratio distribution. CoRPN’s mostly beat strong baselines in few-shot de-
tection performance on the (extremely difficult) COCO novel classes task for 1, 2, and 3-shot cases.
Results in bold are the better result between ours and the baselines. All approaches are evaluated
following the standard procedure in Xiao & Marlet (2020). *Model re-evaluated using the standard
procedure (with base and novel classes joint space) for a fair comparison. **Model evaluated using
public code and pre-trained base classes detector.

Ratio Novel Set 1 Novel Set 2 Novel Set 3
0.5 RPN2 99.68% RPN5 99.72% RPN2 98.64%
1.0 RPN3 99.68% RPN2 99.67% RPN2 99.83%
2.0 RPN1 99.67% RPN1 99.59% RPN1 10.75%, RPN2 89.25%

Table 5: Aspect ratio coverage of different RPN classifiers on VOC standard splits. For example,
RPN1 refers to the first RPN classifier in the CoRPN’s. This provides evidance that CoRPN’s indeed
learn to specialize in box aspect ratios, despite no direct supervision.

3.5 LEARNING TO COOPERATE

We also want the RPN’s to cooperate so that they all agree to a certain extent for foreground boxes.
We propose a cooperation loss to prevent any RPN from firmly rejecting any foreground box. For
foreground box i, with the jth RPN, we define the cooperation loss

Li,j
coop := max{0, ϕ− f j

i }, (5)

where ϕ is a constant parameter (usually less than 0.5), acting as a lower bound for each RPN’s
probability assigning to a foreground box. If an RPN’s response is below ϕ, that RPN is going to be
penalized. The final cooperation loss is an average of cooperation losses over all foreground boxes
and all RPN’s.

4 EXPERIMENTS

Benchmarks. We propose a new base/novel split on both the PASCAL VOC (Everingham et al.,
2010), MS-COCO (Lin et al., 2014) and LVIS (Gupta et al., 2019) datasets to simulate the real-
world scenario, where the novel class box distribution deviates from the base class counterpart.
Our proposed split VOC-ARShift is similar to the conventional few-shot detection VOC split (Kang
et al., 2019; Wang et al., 2020). We use the images and annotations of VOC (07 + 12) and select
15 classes as base classes, and leave the rest as novel classes. In our proposed COCO-ARShift
split, we use the images and annotation of COCO 2014, select the 20 VOC classes as training, and
select 10 out of the other 60 classes as novel classes. We select these classes to explicitly produce
a distribution shift in the box aspect ratios, as shown in Figure 2. In our LVIS-ARShift benchmark,
we use LVIS v0.5 and 10 shots following Wang et al. (2020). In each setting, the base classes are
the 20 VOC classes in COCO, while the novel classes are 10 rare classes manually picked that have
an aspect ratio distribution shift from the base classes. The detailed classes of our proposed splits
are in Section H in the appendix.

Apart from our proposed ARShift setting, we also evaluate on two widely-used few-shot detection
benchmarks (Kang et al., 2019; Wang et al., 2020) based on PASCAL VOC and COCO. For a fair
comparison, we use the same train/test splits and novel class instances as in Kang et al. (2019); Wang
et al. (2020) to train and evaluate all models. On COCO, we report base/novel classes AP, AP50,
and AP75 under shots 1, 2, 3, 5, 10, and 30. On PASCAL VOC, we report AP50 for three different
base/novel class splits under shots 1, 2, 3, 5, and 10. Following Wang et al. (2020) and Qiao et al.
(2021), we use Faster R-CNN as our base model and use an ImageNet pre-trained (Russakovsky
et al., 2015) ResNet-101 as the backbone, unless otherwise noted.

Training Procedure. Our training and fine-tuning procedures are consistent with previous work
TFA (Wang et al., 2020) and DeFRCN (Qiao et al., 2021). On PASCAL VOC, at phase 1 base
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Figure 4: Qualitative results of our CoRPN’s + DeFRCN on COCO-ARShift on 5-shots, compared
with the DeFRCN baseline. The results illustrate that our approach discovers novel objects missed
by the baseline, and also has less misclassification.

classes training, each model is trained on the union set of VOC 07+12 trainval data. Evaluation is
on the VOC 07 test set. At the fine-tuning phase, each model is fine-tuned with a balanced few-shot
dataset sampled from VOC 07+12 that contains both base classes and novel classes. On COCO,
following Wang et al. (2020), the fine-tuning phase is two-stage: at stage 1, we fine-tune the model
on novel classes; at stage 2, we then fine-tune the model with a balanced few-shot dataset containing
both base and novel classes. Please refer to Section C of the appendix for our implementation details
and hyperparameters.

Baselines and Evaluation Procedure. We mainly focus on comparing against the state-of-the-art
baseline DeFRCN (Qiao et al., 2021), and a widely-used previous work TFA (Wang et al., 2020).
Our approach incorporates CoRPN’s into the baseline models, while keeping other model compo-
nents and design choices unchanged. In addition, we thoroughly compare with a variety of recent
few-shot detectors, including FSOD (Fan et al., 2020), MPSR (Wu et al., 2020), FSDetView (Xiao &
Marlet, 2020). These baselines address other aspects of few-shot detection which are different from
us (Section 2), and their modifications are thus largely orthogonal to our effort here. Note that our
evaluation follows the standard procedure in Wang et al. (2020). This standard procedure computes
AP separately for novel and base categories for a detector that is engineered to detect both novel
and base classes ((|Cb|+ |Cn|)-way). We focus on the novel class performance, and also report the
base class performance in Table 4. For work (Fan et al., 2020) with different evaluation procedures,
we re-evaluate their methods with the standard procedure, so that results in Tables 4 can be different
from the original reported results.

4.1 MAIN RESULTS

Our evaluation mainly focuses on our proposed ARShift splits, but also includes the conventional
splits. Also, we focus on the extremely few-shot regime, which is the most challenging scenario for
few-shot detection. Tables 1, 2 and 3 show the detection performance on our proposed ARShift
splits where a bounding box aspect ratio distribution shift is present between base and novel classes.
Table 4 summarize the detection results for base and novel classes in low shots on the conventional
COCO benchmark, respectively. For completeness, the results for base and novel classes in higher
shots on PASCAL VOC and COCO are summarized in Section B of the appendix, where our model
also performs comparably. We present our qualitative results in Figures 4 and 6.

CoRPN’s consistently outperform the baselines. Tables 1, 2 and 3 show that CoRPN’s greatly
outperform the baseline TFA (Wang et al., 2020), DeFRCN (Qiao et al., 2021) and an aspect ratio
ensemble modified from the DeFRCN model, especially in very low shots. Especially, we provide
the results on three additional base and novel class splits on the LVIS dataset (Gupta et al., 2019) in
Table 3. LVIS is a much more challenging long-tail recognition dataset, containing a large amount
of rare classes, hence the fairness for aspect ratio is more crucial. We also provide the results on
all rare classes in the LVIS test set as a reference. Our CoRPN’s outperform the state-of-the-art

8



Under review as a conference paper at ICLR 2023

Method AP AP50 AP75
DeFRCN Qiao et al. (2021) 13.6 31.0 9.6
CoRPN’s 18.8 37.0 17.2
No Cooperation Loss 14.7 30.9 11.7
No Diversity Loss 13.8 30.2 10.0

Threshold
ϕ = 0.1 14.2 31.0 11.1
ϕ = 0.4 16.8 35.2 13.5
ϕ = 0.7 14.7 31.5 11.6
ϕ = 0.9 14.8 33.6 10.1

Table 6: Our diversity loss and cooperation loss are both required for CoRPN’s to obtain the largest
improvement. A sub-optimal threshold in the cooperation loss also has an adverse effect on perfor-
mance. The table shows 1-shot novel class performance of all models under our proposed VOC-
ARShift novel split.

DeFRCN baseline by large margins on all the splits with aspect ratio distribution shift, especially in
AP75, suggesting that CoRPN’s improve the quality of detection in such scenarios. CoRPN’s also
marginally outperform the DeFRCN baseline on the entire set of rare classes in mAP and AP75 on
LVIS. On the conventional splits, as shown in Tables 4, CoRPN’s consistently improve over TFA
for all shots, and also marginally outperform DeFRCN on the challenging COCO dataset. The
combination of both results shows a significant improvement in aspect ratio distribution fairness in
our model.

CoRPN’s beat other state of the art. With our simple modification on RPN, we also outperform
other sophisticated approaches in the very low-shot regime on the more challenging COCO dataset.
In particular, we significantly outperform baselines that introduce attention mechanisms for adjust-
ing proposal generation (Hsieh et al., 2019; Fan et al., 2020) under the standard evaluation procedure.
We believe CoRPN’s could be combined with other approaches with improvements from different
perspectives, such as exploiting better multi-scale representation (Wu et al., 2020), incorporating
metric learning (Yang et al., 2020), or adding feature aggregation module (Xiao & Marlet, 2020) for
further improvements.

CoRPN’s don’t forget base classes. While improving detection on novel classes through fine-
tuning, we maintain strong performance on base classes – there is no catastrophic forgetting (Ta-
ble 4). By contrast, the base class performance of some state-of-the-art baselines dramatically drops,
demonstrating that they cannot fairly detect novel and base classes.

4.2 ABLATION STUDY

We investigate how the proposals of CoRPN’s change and conduct a series of ablations that evaluate
the contribution of each loss component and different design choices. Specifically, we find that:
(1) CoRPN’s specialize in different aspect ratios without explicit supervision; (2) Our cooperation
loss and diversity loss are both necessary for CoRPN’s to improve fairness; (3) (in Section F of the
appendix) CoRPN’s outperform other baselines such as with larger RPN sub-networks, an existing
cosine loss based diversity, and bootstrapping.

Specialization for aspect ratios emerges in CoRPN’s training. Table 5 shows that the boxes
of three different aspect ratios are handled by different RPN classifiers in CoRPN’s. Instead of
explicitly training different RPN classifiers to handle different aspect ratios, CoRPN’s learn a more
flexible specialization, improving the performance.

CoRPN’s need both diversity and cooperation losses. Table 6 shows that after removing either
loss, CoRPN’s does not improve the performance over the baseline. Also, when the threshold hyper-
parameter is suboptimal, the performance surpasses the baseline but still substantially underperforms
the CoRPN’s with the optimal hyperparameter.

5 CONCLUSION

We identify the bias of few-shot detectors towards familiar aspect ratio distribution. As illustrated
in our ARShift benchmark, a substantial improvement on under-represented aspect ratio distribution
can be obtained by our proposed CoRPN’s which produce more informative proposals. Our method
achieves a new state of the art on both our proposed settings with hard base and novel splits and
widely-used benchmarks in the very few-shot regime. This is achieved by training CoRPN’s with
diversity and cooperation losses.
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A APPENDIX

This appendix provides additional experimental results and details that support the approach in the
main paper and are not included there due to limited space. The seven sections include (1) additional
results for higher-shots on the COCO-ARShift, comparisons with additional baselines for ARShift,
and results on base classes before and after finetuning; (2) explainations for additional evaluation
and experimental details; (3) discussion of the training and inference time and memory; (4) results
on conventional splits; (5) analysis with additional ablation study; (6) addtional qualitative results;
and (7) details of the proposed base and novel class splits on ARShift for PASCAL VOC, COCO,
and LVIS.

B ADDITIONAL RESULTS

Higher-Shot Results on COCO-ARShift

In Table 2 of the main paper, we show that CoRPN’s outperform the DeFRCN (Qiao et al., 2021)
baseline consistently on 1, 2, and 3 shots. Table 10 shows that this performance improvement
persists in 5, 10, and 30 shots. In this scenario where more support instances are available, CoRPN’s
consistently outperform the DeFRCN (Qiao et al., 2021) baseline.

Additional Baseline on ARShift

In Table 1 of the main paper, we mainly compare our method against the state-of-the-art method
DeFRCN (Qiao et al., 2021) on our VOC-ARShift. In Table 11 we also evaluate an additional
baseline FSCE (Sun et al., 2021). Note that other recently published methods represented by FSCE
underperform our DeFRCN baseline by significant margins on our ARShift splits as well, so we do
not include these other methods in our main paper.

Results on Base classes

Here we provide the detection results on base classes after base classes training (stage 1) and after
fine-tuning (stage 2). As shown in Table 9, the performance of our CoRPN’s + DeFRCN on base
classes is comparable with DeFRCN (Qiao et al., 2021), while we achieve large improvements on
novel test classes as shown in Table 1 of the main paper. After fine-tuning, our CoRPN’s also do not
forget base classes. Table 9 shows that the performance of our CoRPN’s + DeFRCN after fine-tuning
is still comparable with the baseline.

Average Recall

We present the average recall (AR) result on the three splits in our LVIS-ARShift benchmark in
Table 7. Here we show AR1000 by the convention of COCO. Our CoRPN’s also improve few-
shot detection in the AR, meaning that our CoRPN’s miss fewer novel objects under aspect ratio
distribution shift.

Per-Category Result

In Table 8 we present the 1-shot AP50 for each novel class on our VOC-ARShift benchmark. Our
CoRPN’s improve upon the vanilla DeFRCN baseline by large amounts in 4 of the 5 categories,
while the naive ensemble of experts only achieves marginal improvements.

Analysis of Proposal Aspect Ratio

Figure 5 shows the aspect ratio distribution of proposals from the baseline RPN and our CoRPN’s.
Our CoRPN’s produce more diverse proposals that are robust to the aspect ratio distribution shift.

C IMPLEMENTATION AND EVALUATION DETAILS

Implementation Details and Hyperparameters. For ease of comparison, we use the same values
for all shared training and fine-tuning hyperparameters (batch size, learning rate, momentum, weight
decay, etc.) as the baselines Wang et al. (2020) and Qiao et al. (2021). CoRPN’s have the following
additional hyperparameters: the number of RPN’s, the cooperation loss threshold ϕ, the diversity
loss trade-off λd, and the cooperation loss trade-off λc. For COCO and LVIS, we directly used
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Method Split 1 Split 2 Split 3
Ours DeFRCN + CoRPN’s 18.4 24.8 28.3

Baselines DeFRCN (Qiao et al., 2021) 17.6 18.5 13.9
DeFRCN Ensemble of Experts 18.1 23.4 25.0

Table 7: Average recall (AR1000) on our LVIS-ARShift benchmark. We achieve performance im-
provements over both baselines in recall.

Method Train Bottle Aeroplane Horse Bus
Ours DeFRCN + CoRPN’s 46.2 4.5 43.4 10.5 80.4

Baselines DeFRCN (Qiao et al., 2021) 27.5 1.8 23.2 50.6 51.7
DeFRCN Ensemble of Experts 27.6 3.1 24.3 54.7 38.6

Table 8: Per-Category 1-shot AP50 result on our VOC-ARShift benchmark. Our method achieves
large improvement in 4 of the 5 classes.

hyperparameter sets that worked well on PASCAL VOC. In Table 4, we report CoRPN’s detection
results. We find that hyperparameters selected from PASCAL VOC are generalizable to the more
challenging COCO and LVIS benchmark. Results reported in Table 4 are obtained with 5 RPNs, ϕ
= 0.3, λc = 1, λd = 0.025 for TFA(Wang et al., 2020), and λc = 2, λd = 0.05 for DeFRCN (Qiao
et al., 2021).

Selection Procedure – Cumulative Variance. We summarized the hyperparameter selection cri-
teria for PASCAL VOC in the experiment section in the main paper. The second criterion is the
cumulative variance in the RPN’s response matrix to foreground boxes. Specifically, given a set of
M anchor boxes, the N RPN’s produce an N by M matrix of probabilities F = [f1, f2, . . . , fN ]T .
We run a principal component analysis (PCA) on F with N components and compare the cumulative
percentage of variance explained by each component. We would like the variance to be distributed
across components.

Evaluation. As mentioned in the main paper, for a fair comparison, we use the standard evaluation
procedure for all the compared models. We also compare against other approaches with the same
novel class instances and test images. Authors of methods compared in this submission have helped
us ensure the performance we report is a proper reflection of their methods, and we will acknowledge
properly in any final version. In the standard evaluation procedure, when a test image comes in, the
model has no assumption on what category the image contains (Wang et al., 2020). The detector’s
classifier is (|Cb|+|Cn|)-way, detecting objects from a joint space of both base and novel categories.
In the main paper, we marked results with * if they were re-evaluated under the standard procedure,
and with ** if the original work used the standard procedure, but the results were not reported and
so they were evaluated by us.

Specifically, below we include the details on how we obtained the results (with special marks) in the
main paper; other results (without special marks) (Wang et al., 2020; Pérez-Rúa et al., 2020; Yang
et al., 2020; Sun et al., 2021; Li et al., 2021a; Zhu et al., 2021) including the concurrent work (Sun
et al., 2021; Li et al., 2021a; Zhu et al., 2021) are from the original papers.

• We fine-tuned and evaluated MPSR using the publicly released code and the pre-trained
detection model for base classes (Wu et al., 2020).

• We re-evaluated FSOD (Fan et al., 2020) and CoAE (Hsieh et al., 2019) under the standard
procedure, using the publicly released code and the pre-trained model (Fan et al., 2020;
Hsieh et al., 2019). FSOD uses a class-agnostic 2-way classifier that determines if an
object is foreground or background. At inference time, FSOD produces a balanced number
of proposals per novel category and collects these proposals for NMS. We adapt FSOD
under the standard procedure such that there are a balanced number of proposals for all
base and novel categories. For a fair comparison, we also fine-tuned FSOD with the same
novel category instance(s) as in TFA (Wang et al., 2020).

• We re-evaluated CoAE under the standard evaluation, using the publicly released code
and a pre-trained model (Hsieh et al., 2019). For each test image containing a certain
category, CoAE samples support image(s) from this category and collects boxes based on
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Figure 5: The aspect ratio distribution of proposals from the baseline RPN and our CoRPN’s. Our
CoRPN’s produce more diverse proposals robust to the aspect ratio distribution shift.

After Phase 1 After Phase 2
Method w/o fine-tuning 1-shot 2-shot 3-shot 5-shot 10-shot
DeFRCN (Qiao et al., 2021) 81.4 76.5 77.0 76.9 77.0 76.7
DeFRCN + CoRPN’s (Ours) 82.8 75.6 75.8 75.7 75.5 75.4

Table 9: Base classes AP50 on VOC-ARShift after base class training (phase 1) and after fine-tuning
(phase 2). The same hyperparameter setting applies to both models. Notice that ours is higher after
phase 1 and slightly lower but comparable with the results of DeFRCN after phase 2, but our method
achieves significantly better performance on test classes as shown in Table 1 of the main paper (e.g.,
7.3AP on 1-shot and 6.6 AP on 2-shot). Neither our method nor the baseline forgets base classes
significantly.

the support image(s). At inference time, instead of providing each test image with support
feature(s) from this category, we provide each test image support feature(s) from all base
and novel categories. We then collect boxes from all categories and evaluate them. For a
fair comparison, we also fine-tuned CoAE with the same novel category instance(s) as in
TFA (Wang et al., 2020).

D TRAINING & INFERENCE TIME AND MEMORY

The only architectural difference between CoRPN’s and the baseline RPNs of TFA (Wang et al.,
2020) and DeFRCN(Qiao et al., 2021) is that CoRPN’s have multiple RPN classifiers. Note that we
only duplicate the RPN classifiers, but not the entire RPN. In the baselines, the RPN’s classifier is
a 1×1 convolutional layer, with input channels as the number of feature channels (256) and output
channels as the number of cell anchors (3). Compared with the baselines, CoRPN’s with 5 RPN’s
have four additional RPN classifiers and thus consist of 256×12 additional parameters. In our
experiments, we find that CoRPN’s with 5 RPN’s increase the training time by only 3%, with roughly
the same inference time and same memory footprint, compared with the baselines.

E RESULTS ON CONVENTIONAL SPLITS

In Table 4 of the main paper, we show that CoRPN’s perform comparably or even better on conven-
tional splits on 1, 2, and 3 shots on COCO. In this section we present more conventional split results.
Table 12 shows PASCAL VOC conventional split results where our CoRPN’s perform comparably
with the baselines. Table 13 shows the results on COCO 5, 10, and 30 shots, where our method also
obtains similar performance to the baseline.

15



Under review as a conference paper at ICLR 2023

5-shot 10-shot 30-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
DeFRCN (Qiao et al., 2021) 16.9 27.4 18.0 18.9 30.8 20.2 21.2 34.5 22.2
DeFRCN + CoRPN’s (Ours) 17.2 27.0 18.3 19.3 31.0 21.0 21.4 34.9 22.0

Table 10: When there are many shots (our proposed COCO-ARShift in 5, 10 and 30 shots), while
the impact of using CoRPN’s is reduced, CoRPN’s still outperform the DeFRCN (Qiao et al., 2021)
baseline in most cases. The reduced improvement is likely because missing objects in the RPN stage
becomes a less important effect. Results in red are the best.

Method shot=1 2 3 5 10
TFA w/ cos + CoRPN’s 28.1 31.7 36.0 38.6 44.7
DeFRCN + CoRPN’s 37.0 49.3 55.1 56.7 59.0
TFA w/ cos (Wang et al., 2020) 19.1 27.2 28.0 34.4 42.1
FSCE (Sun et al., 2021) 23.7 33.5 35.8 41.5 48.1
DeFRCN (Qiao et al., 2021) 31.0 44.6 47.5 55.2 57.2
DeFRCN Ensemble 29.7 42.7 50.9 55.3 56.0

Table 11: In Table 1 of the main paper, we mainly compare our method against the state-of-the-
art method DeFRCN (Qiao et al., 2021) on our VOC-ARShift. Here we evaluate the result of an
additional baseline FSCE (Sun et al., 2021) (marked in green). Note that other recently published
methods represented by FSCE underperform our DeFRCN baseline by significant margins on our
ARShift splits as well, so we do not include these methods in our main paper.

Baseline Ours Baseline Ours

Baseline OursBaseline Ours

Baseline Ours Baseline Ours

Figure 6: Additional qualitative results of our CoRPN’s + DeFRCN on COCO-ARShift on 5-shots,
compared with the DeFRCN baseline.

F ADDITIONAL ANALYSIS

We present some additional ablation studies for our CoRPN’s. Note that these ablations are per-
formed on the conventional split. Even on conventional splits, our CoRPN’s outperform these naive
strategies. Our CoRPN’s will likely achieve more performance improvement on our ARShift splits.
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Novel Set 1 Novel Set 2 Novel Set 3
Method shot=1 2 3 5 10 shot=1 2 3 5 10 shot=1 2 3 5 10

Ours
TFA w/ fc + CoRPN’s 40.8 44.8 45.7 53.1 54.8 20.4 29.2 36.3 36.5 41.5 29.4 40.4 44.7 51.7 49.9
TFA w/ cos + CoRPN’s 44.4 38.5 46.4 54.1 55.7 25.7 29.5 37.3 36.2 41.3 35.8 41.8 44.6 51.6 49.6
DeFRCN + CoRPN’s 44.1 56.8 62.2 66.0 65.5 31.8 41.2 46.1 49.9 53.3 38.9 51.3 54.6 59.4 61.5

Main baselines
TFA w/ fc (Wang et al., 2020) 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos (Wang et al., 2020) 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
DeFRCN (Qiao et al., 2021) 43.8 57.5 61.4 65.3 67.0 31.5 40.9 45.6 50.1 52.9 38.2 50.9 54.1 59.2 61.9

Other baselines

FRCN+ft-full (Wang et al., 2020) 15.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
MPSR (Wu et al., 2020) 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
NP-RepMet (Yang et al., 2020) 37.8 40.3 41.7 47.3 49.4 41.6 43.0 43.4 47.4 49.1 33.3 38.0 39.8 41.5 44.8
CME (Li et al., 2021a) 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
SRR-FSD (Zhu et al., 2021) 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

Table 12: CoRPN’s not only improve performance on our ARShift split, but also perform compa-
rably with state of the art on more traditional splits: Few-shot detection (AP50) on PASCAL VOC
novel classes under three base/novel splits in the generalized few-shot learning setting. CoRPN’s
outperform the main baselines TFA and DeFRCN mostly in the very low shots, with comparable per-
formance in the higher shots, regardless of classifier choice. Note that these other baselines address
different aspects of few-shot detection, and could be combined with them for further improvements.
All models are based on Faster R-CNN with a ResNet-101 backbone, and follow the evaluation
procedure in Wang et al. (2020). Results in bold are the better result between ours and the main
baselines.

5-shot 10-shot 30-shot
Method Backbone AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Ours
TFA w/ fc + CoRPN’s ResNet-101 8.9 16.9 8.6 10.5 20.2 9.8 13.5 25.0 12.9
TFA w/ cos + CoRPN’s ResNet-101 8.8 16.4 8.7 10.6 19.9 10.1 13.9 25.1 13.9
DeFRCN + CoRPN’s ResNet-101 14.1 25.2 13.6 16.7 29.7 16.8 20.8 39.6 20.9

Main baselines
TFA w/ fc (Wang et al., 2020) ResNet-101 8.4 16.0 8.4 10.0 19.2 9.2 13.4 24.7 13.2
TFA w/ cos (Wang et al., 2020) ResNet-101 8.3 15.3 8.0 10.0 19.1 9.3 13.7 24.9 13.4
DeFRCN (Qiao et al., 2021) ResNet-101 13.5 24.7 13.0 16.7 29.6 16.7 21.0 36.7 21.4

Other baselines

FsDetView (Xiao & Marlet, 2020) ResNet-101 8.1 20.1 4.4 10.7 25.6 6.5 15.9 31.7 15.1
FSCE (Sun et al., 2021) ResNet-101 – – – 11.9 – 10.5 16.4 – 16.2
CME (Sun et al., 2021) ResNet-101 – – – 15.1 24.6 16.4 16.9 28.0 17.8
SRR-FSD (Zhu et al., 2021) ResNet-101 – – – 11.3 23.0 9.8 14.7 29.2 13.5

Table 13: When there are many shots, the impact of using CoRPN’s on the conventional split is
reduced, likely because missing objects in the RPN stage becomes a less important effect. CoRPN’s
perform acceptably for few-shot detection performance on the difficult COCO novel classes task
for 5-shot, 10-shot, and 30-shot. *Model re-evaluated using the standard procedure (with base and
novel classes joint space) for a fair comparison. ‘–’ denotes that numbers are not reported in the
corresponding paper. CoRPN’s consistently outperform the main baseline DeFRCN except for the
30-shot case.

Bootstrapping. Table 1 in the main paper shows that our CoRPN’s outperform naive ensembles.
Here we further compare CoRPN’s with a bootstrapping baseline in Table 14. We construct the boot-
strapping baseline by using multiple RPN classifiers, the number of which is the same as CoRPN’s.
Instead of selecting the most confident RPN to get gradients, we randomly select an RPN to get
gradients during training. There are no additional loss terms in training these RPN classifiers. In
the fine-tuning stage and the inference time, we use the same selection procedure as CoRPN’s (i.e.,
using the most certain RPN).

Diversity loss in Dvornik et al. (2019). In Table 14, we also compare our CoRPN’s with (Dvornik
et al., 2019), which utilizes a pairwise cosine similarity based diversity loss. Our CoRPN’s also
outperform this baseline with a considerable margin.

Larger RPN. We compare CoRPN’s with a baseline with larger RPN sub-networks in Table 15.
We find that using larger RPN sub-networks does not improve performance, suggesting that the
advantage of CoRPN’s is not simply the result of using more parameters. In CoRPN’s, all RPN
classifiers share the same RPN feature extractor, as shown in Figure 4 (main paper). We enlarge the
feature dimension in the RPN. We implemented two options: a large RPN where the RPN feature
extractor’s output channels increase from 256 to 272, and a larger RPN where the output channels
double to 512. We also modified the RPN classifier and bounding box regressor to take in larger
features for both options. Table 15 shows that simply enlarging the model capacity and the anchor
density of the original RPN cannot improve the few-shot detection performance.
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Method AP50

2 RPN’s, Bootstrapping 31.8
2 RPN’s, Dvornik et al. (2019) 32.4
2 RPN’s, CoRPN’s (Ours) 35.8

Table 14: Our diversity term – the log-determinant loss – offers improvements over a bootstrapping
baseline and a pairwise cosine similarity based diversity loss in Dvornik et al. (2019). The table
shows novel class AP50 under PASCAL VOC novel split 3, shot 1.

Method # param added AP50
TFA, original 0 30.8
TFA, Large RPN 28×256 25.9
TFA, Larger RPN 268×256 27.8
TFA + CoRPN’s, 2 RPN’s 3×256 35.8
TFA + CoRPN’s, 5 RPN’s 12×256 34.8
TFA + CoRPN’s, 10 RPN’s 27×256 35.7

Table 15: Performance improvements of CoRPN’s are not due to the increased number of parameters
in CoRPN’s. This table shows the novel class AP50 of TFA (Wang et al., 2020) with large RPN and
even larger RPN, and compares with CoRPN’s with different numbers of RPN’s. All results are with
PASCAL VOC novel split 3, shot 1. The second column presents how many additional parameters
are introduced to the original TFA model. Using larger RPN sub-networks does not improve the
performance, while CoRPN’s significantly improve with fewer added parameters.

G ADDITIONAL QUALITATIVE RESULTS

In Figure 6 we show some additional qualitative result of our CoRPN’s model on COCO. Notably,
our model could successfully discover novel objects omitted by the baseline, and also successfully
classify some novel objects that cause confusion for the baseline method.

H DATA SPLITS

PASCAL VOC Split. For our proposed PASCAL VOC-ARShift split, the base classes include
“bicycle”, “boat”, “car”, “cat”, “chair”, “diningtable”, “dog”, “person”, “sheep”, “tvmoni-
tor”, “bird”, “pottedplant”, “cow”, “motorbike”, and “sofa”; the novel classes include “train”,
“bottle”, “aeroplane”, “horse”, and “bus”.

COCO Split. For our proposed COCO-ARShift split, the base classes include the 20 VOC classes in
COCO; the novel classes include “hot dog”, “tennis racket”, “fire hydrant”, “laptop”, “suitcase”,
“frisbee”, “teddy bear”, “bowl”, “kite”, and “elephant”.

LVIS Splits. For our proposed LVIS-ARShift splits, the base classes include the 20 VOC classes
in LVIS; the novel classes of the first split include “Loafer (type of shoe)”, “batter (food)”, “cabin
car”, “cylinder”, “egg roll”, “liquor”, “nailfile”, “plow (farm equipment)”, “vinegar”, and “yoke
(animal equipment)”; the novel classes of the second split include “broach”, “burrito”, “cargo
ship”, “crayon”, “incense”, “peeler (tool for fruit and vegetables)”, “pin (non jewelry)”, “roller
skate”, “tinsel”, and “vodka”; the novel classes of the third split include “ax”, “beaker”, “ferry”,
“fish (food)”, “funnel”, “incense”, “needle”, “space shuttle”, “stepladder”, and “vulture”.
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