
Under review as submission to TMLR

Reproducibility Study of GNNBoundary: Towards Explain-
ing Graph Neural Networks through the Lens of Decision
Boundaries

Anonymous authors
Paper under double-blind review

Abstract

This study reproduces and extends GNNBoundary, a method for explaining Graph Neural
Networks (GNNs) by analyzing decision boundaries between graph classes. GNNBoundary
identifies adjacent class pairs and generates boundary graphs to provide insights into model
behavior. We evaluate the reproducibility of key claims from the original work, including
the identification of adjacent classes, the generation of accurate boundary graphs, and the
effectiveness of an adaptive loss function in achieving faster convergence. Besides partly
generating successful boundary graphs, our reproduction mostly highlights challenges with
training variability and convergence, particularly with the Enzymes dataset. This suggests
that GNNBoundary’s performance is sensitive to hyperparameter settings and random ini-
tialization. In addition, we extend GNNBoundary to handle three-class decision boundaries.
While it demonstrated its feasibility, it also highlighted limitations in achieving balanced
class separability and convergence. By assessing the abilities of GNNBoundary and the ex-
tension, this study contributes to improving the transparency and interpretability of GNN
decision boundaries. Our findings emphasize the need for refined loss functions, additional
baseline comparisons, and methodological extensions to more complex datasets for improved
reliability.

1 Introduction

Graph Neural Networks (GNNs) are used in many scientific applications, including computer vision, natural
language processing, and chemistry (Wu et al., 2020). GNNs are neural architectures designed to model
relationships within graph-structured data (Zhou et al., 2020). Besides their efficiency, the complexity of
these GNNs presents significant challenges for their application to real-world problems, highlighting the need
for effective explainability methods (Saha & Bandyopadhyay, 2024; Yuan et al., 2022). Such explainability
methods often generate feature descriptors, such as explanation graphs, which highlight the most discrim-
inative features for each class on model-level (Chen et al., 2024; Wang & Shen, 2022; Yuan et al., 2020).
These approaches prioritize graph-based explanations over symbolic representations and mainly focus on
individual predictions or class-level patterns. However, a crucial gap persists in understanding how decision
boundaries, which separate class predictions, influence a GNN’s behavior (McCradden & Stedman, 2024;
Saha & Bandyopadhyay, 2024).

GNNBoundary, proposed by Wang & Shen (2024), introduces a novel approach to address this gap by
explaining the decision boundaries between similar graph classes. Their method identifies adjacent classes
and generates boundary graphs to represent these decision boundaries by incorporating a novel adaptive
boundary loss and dynamic regularization scheduler to improve its effectiveness. These boundary graphs
provide valuable insights into how models differentiate closely between related classes, thereby clarifying the
reasoning of GNNs and complementing existing explanation techniques.

This study focuses on the reproduction of GNNBoundary, specifically the identification of adjacent class pairs
and the generation of accurate boundary graphs. In addition, this research introduces a three-way boundary

1

Under review as submission to TMLR

graph extension. GNNBoundary provides insights into pairwise decision boundaries but real-world graph
data often exhibits more complex characteristics between multiple classes (Li et al., 2018). We hypothesize
that three-class boundary graphs can reveal insights about ambiguities or overlaps in class separability
that are not apparent in pairwise analyses. With this extension of GNNBoundary, we aim to enhance the
performance and reliability of the method towards explaining decision boundaries in GNNs.

2 Related Work

Explainability methods in GNNs can be categorized into instance-level and model-level. Instance-level
methods provide input-dependent explanations but often lack generalizability and fail to capture global
decision-making. Model-level methods, though less explored, aim to elucidate a model’s overall behavior by
generating graphs that trigger specific predictions (Saha & Bandyopadhyay, 2024; Wang & Shen, 2024).

Notable model-level studies include XGNN (Yuan et al., 2020), which uses reinforcement learning to generate
class-specific explanation graphs, and D4Explainer (Chen et al., 2024), which employs diffusion-based models
but at high computational costs. GNNInterpreter (Wang & Shen, 2022) avoids auxiliary black-box models by
leveraging training data embeddings. However, Vasilcoiu et al. (2024) highlights GNNInterpreter’s reliance
on domain-specific knowledge, sensitivity to hyperparameters and seeds, and training instability.

Unlike earlier approaches, GNNBoundary prioritizes boundary-focused analysis. Following GNNBoundary,
Graphon-Explainer (Saha & Bandyopadhyay, 2024) questions its inability to produce class-specific explana-
tions. Therefore, they proposes a technique, that generates both class-specific explanations and boundary
graphs.

3 Scope of Reproducibility

The core contribution of this study is to reproduces GNNBoundary (Wang & Shen, 2024) and investigate the
claims made. Unlike previous techniques, which focus on class-specific explanations, GNNBoundary proposes
a novel technique that addresses the decision boundaries between closely related classes. The authors make
the following three claims:

1. Successfully identify adjacent class pairs: GNNBoundary introduces an algorithm that cor-
rectly identifies adjacent class pairs by estimating the likelihood of a smooth boundary between
them in the GNN’s embedding space.

2. Superior to baseline methods: GNNBoundary is claimed that Quantitative comparisons demon-
strates that GNNBoundary consistently outperforms baseline methods in generating boundary
graphs, producing results that more closely align with the optimal probability distribution.

3. Effective near-boundary graph generation: The model is claimed to effectively generate near-
boundary graphs, achieving faster convergence and reducing the risk of getting trapped in local
minima. Allowing for more accurate boundary representations, improving generalization, and greater
stability in identifying class distinctions.

4 Background

A graph G = (V, E) consists of nodes V with N nodes and edges E ⊆ V × V, with relationships captured in
an adjacency matrix A ∈ {0, 1}N×N . Node features can be represented using a feature matrix Z ∈ RN×d,
where each row corresponds to a node and d is the number of features per node (Zhou et al., 2020). GNNs
refine node representations through message passing and aggregation. This enables the property that a GNN
can be used as a graph classifier f with L layers.

Decision Regions and Boundaries For a graph classifier, the input graph space and intermediate
embedding spaces are partitioned into C decision regions, where each region corresponds to a specific class
assigned by the classifier. At each layer l, the decision regions are denoted as {R(l)

c | c ∈ [1, C]}. For any

2

Under review as submission to TMLR

graph G ∈ R
(l)
c , the classifier assigns the class c = arg max

k
fk(G), where fk(G) represents the score of

the k-th class (1 ≤ k ≤ C) (Karimi et al., 2019). Decision boundaries B(l)
c1∥c2

separate these regions in the
feature space of graph embeddings. These boundaries are defined as the set of points in the embedding space
H(l) where the classifier assigns equal confidence to two classes, c1 and c2, where p(c) = σ(ηl(H(l)))c is the
softmax probability for class c. Here, ηl(H(l)) maps the embeddings H(l) at layer l into logits, and σ(·) is the
softmax function. Additionally, the probabilities for classes c1 and c2 are strictly greater than those of any
other class (∀c′ ̸= c1, c2) (Karimi et al., 2019; Wang & Shen, 2024). The decision boundary can be formally
defined as B(l)

c1∥c2
= {H(l) | p(c1) = p(c2) > p(c′),∀c′ ̸= c1, c2}.

Boundary Graph A boundary graph Gc1∥c2 ∈ Bc1∥c2 is a specific graph whose embedding H(l)(Gc1∥c2)
lies near or on the decision boundary B

(l)
c1∥c2

. For a pair of adjacent classes c1 and c2, the boundary graph
represents a challenging case where the GNN struggles to differentiate between the two classes (Wang &
Shen, 2024). These boundary graphs are critical for understanding the decision-making process of GNNs.

5 Methodology

GNNBoundary has an open-source implementation available.1 We use their code framework to reproduce
the original results and extend it for our additional experiments.2 In the following section, we describe the
methodology we adopted from Wang & Shen (2024).

5.1 GNNBoundary

Figure 1: Overview of GNNBoundary from Wang & Shen (2024). A GCN, is trained and then used as input
for GNNBoundary to identify adjacent class pairs. These pairs are used to generate boundary graphs for
each class pair.

GNNBoundary aims to explain GNNs through the lens of decision boundaries by generating boundary
graphs. An overview is presented in Figure 1. Before the GNNBoundary framework, on each dataset a
Graph Convolutional Network (GCN) Classifier is trained, which is then used as input for GNNBoundary
to identify adjacent class pairs. Utilizing an algorithm designed by the original authors, the degree of
adjacency is computed for each class pair. Subsequently, a novel adaptive loss function is introduced that
can effectively generate faithful near-boundary graphs for adjacent class pairs. Additionally, GNNBoundary’s
training ensures adjacent predictions fall within specific probability ranges by using regularization and budget
constraints. A dynamic scheduler adjusts these penalties to generate efficient, interpretable boundary graphs.

1https://github.com/yolandalalala/GNNBoundary
2https://anonymous.4open.science/r/FACT_AI_2025-B38D/

3

https://github.com/yolandalalala/GNNBoundary
https://anonymous.4open.science/r/FACT_AI_2025-B38D/

Under review as submission to TMLR

5.1.1 Identifying Adjacent Classes

A boundary graph represents the decision boundary between two classes c1 and c2. For such a graph to
exist, boundary embeddings H(l)

c1||c2
∈ B(l)

c1||c2
must exist between the embedding regions R(l)

c1 and R(l)
c2 . As

such, it is important to first identify relevant adjacent class pairs, before attempting to identify a boundary
graph Gc1||c2 ∈ Bc1||c2 . The likelihood of H(l)

c1||c2
existing is measured by how often boundary embeddings

appear between pairs of embeddings H(l)
c1 = ϕl(Gc1) ∈ R(l)

c1 and H(l)
c2 = ϕl(Gc2) ∈ R(l)

c2 , where ϕl(G) is the
embedding of graph G in layer l.

The last hidden layer’s embedding space (L − 1-th layer) is used as its features form a linear decision
boundary. As such, H(l)

c1||c2
∈ B(l)

c1||c2
can be found by interpolating between embeddings H(L−1)

c1 and H(L−1)
c2 .

As a linear decision boundary is used, the interpolation can be doen by determining if the straight-line path
between H(L−1)

c1 and H(L−1)
c2 crosses any other decision region R(L−1)

c′ . Intuitively, this can be understood
by looking at the simplified embedding space in Figure 1. A straight path from the embedding of the red
H(L−1)

c1 to the embedding blue nodes H(L−1)
c3 , would cross embeddings of green nodes H(L−1)

c2 , resulting in
H(l)

c1||c3
/∈ B(l)

c1||c3
. On the other hand, a straight path from H(L−1)

c1 to H(L−1)
c2 doesn’t cross anything, resulting

in H(l)
c1||c2

∈ B(l)
c1||c2

. Additionally, classes c1 and c2 are considered adjacent if their degree of adjacency,
defined as the frequency of observed boundary embeddings H(L−1)

c1||c2
, exceeds a predefined threshold γ.

Given the pre-trained GCNClassifier, an algorithm proposed by Wang & Shen (2024), shown in Appendix
A, identifies class pairs c1 and c2 where boundary graphs Gc1||c2 are most likely to exist using Monte Carlo
sampling. In contrast to the original authors, who use used synthetic graphs generated by GNNInterpreter
(Wang & Shen, 2022), we sample graphs directly from the datasets so that our results better represent
real-world graph examples. The process to determine adjacency follows:

1. Sampling Graphs: Randomly sample K pairs of graphs Gc1 ∈ Rc1 and Gc2 ∈ Rc2 .
2. Interpolating Embeddings: Interpolate linearly between the embeddings H(L−1)

c1 and H(L−1)
c2 .

3. Checking Decision Boundaries: Determine if the straight-line path between H(L−1)
c1 and H(L−1)

c2

crosses any other decision region R(L−1)
c′ . If not, the embeddings H(L−1)

c1||c2
belong to B(L−1)

c1||c2
.

4. Computing Adjacency Degree: Calculate the ratio of successful cases (where H(L−1)
c1||c2

∈ B(l)
c1||c2

)
exists) to K total samples.

5.1.2 Boundary Graphs Generation and Optimization

Upon the identification of an adjacent class pair c1 and c2, the goal is to output an adequate boundary graph.
The graph must satisfy a relaxed near-boundary criterion and adhere to a maximum number of edges. With
this goal, the GNNBoundary model learns the probabilistic distribution P (G) that best represents such
boundary graphs. The training process converges when the expected graph E[G], derived from the current
batch of graph samples G from the distribution, satisfies all boundary graph criteria. GNNBoundary is
trained with a loss function that combines an objective function with regularization terms:

loss =

Objective Loss:

wobjective
1
K

K∑
k=1

L(Gk) +
Budget Penalty

w
(t)
budget ·Rbudget(Ω) +

Gradient Regularization
wL ·Rs

L(Ω, Z) (1)

The loss is minimized with respect to parameters Ω and Z, which represent the edge distribution P (aij) and
node feature distribution P (zi), respectively. Through backpropagation and optimization, these parameters
are updated to refine both graph structure and node features, which improves how well E[G] aligns with the
desired boundary graph characteristics. The following sections detail each loss term.

Objective Loss Function The first term in Equation 1, labeled as Objective Loss, guides the learning of
the distribution P (G) for adjacent class pairs c1 and c2. Wang & Shen (2024) define two key properties for
boundary graph generation:

4

Under review as submission to TMLR

1. The posterior probabilities p(c1) = p(c2) of sampled graphs should approach 0.5, which reflects a
balanced boundary. For a boundary graph b ∈ {c1, c2}, the objective function should encourage p(b)
if p(b) < 0.5 and discourage it otherwise, while always discouraging posterior probabilities p(b′) for
graphs b′ /∈ {c1, c2}.

2. The logits f(G)b for b ∈ {c1, c2} should be maximized while logits f(G)b′ for b′ /∈ {c1, c2} should be
minimized. The function ensures alignment with target class probabilities while preventing focus on
others.

Following the work of the original authors, their alternative objective function is introduced to facilitate the
generation of near-boundary graphs. This function serves as a replacement for the cross-entropy loss, which
was found to be suboptimal for this task. The proposed objective function is designed to achieve faster
convergence while mitigating issues related to local minima (Wang & Shen, 2024).

The formulation enforces class balance by encouraging p(c1) = p(c2) = 0.5 while ensuring that f(G)c1 and
f(G)c2 are not minimized throughout training. The objective function is defined as:

min
G
L(G) = min

G

∑
b′ /∈{c1,c2}

βf(G)b′ · p∗(b′)2 −
∑

b∈{c1,c2}

αf(G)b · (1− p∗(b))2 · 1p∗(b)<maxc∈[1,C] p∗(c) (2)

where α and β are constant hyperparameters. The objective function is differentiated at each iteration
to refine a probabilistic graph distribution P (G), enabling the model to produce graphs that increasingly
satisfy the near-boundary criterion. The GNNBoundary model assumes graphs follow a Gilbert random
graph distribution (Gilbert, 1959) P (G) with independent node features:

P (G) =
∏

vi∈V

P (zi) ·
∏

(vi,vj)∈ϵ

P (aij) (3)

where aij = 1 if nodes vi and vj form an edge and aij = 0 otherwise, so aij ∼ Bernoulli(θij). Furthermore,
zi represents a categorical node feature of node vi. It is assumed that node features zi are i.i.d. and follow
zi ∼ Categorical(pi). As each aij (i.e., each entry in the adjacency graph A) is binary, P(G) is a discrete
distribution over all possible graph configurations, with ∥pi∥1 = 1. However, this presents a problem for
differentiation: as matrix A is discrete, ∇AP (G) does not exist, meaning gradient-based methods cannot
be directly applied via the objective function, and the graphs cannot be optimized. This can be solved by
continuous relaxation which in done at the start of very optimization. The pipeline of graph distribution
initialization to optimization is described below:

1. Continuous Relaxation: To approach this problem and to be able to optimize the discrete graph
G using gradients, a differentiable way to represent matrix A is needed. As direct Bernoulli sampling
is non-differentiable the concept of continuous relaxation was introduced. Instead of treating edges as
discrete, they are defined as a continuous random variable ãij ∈ [0, 1] parametrized by Ω. Similarly,
node features are relaxed to continuous values z̃i ∈ [0, 1]d parameterized by Z, such that ∥z̃i∥1 = 1.
Symbolically this can now be seen as ãij ∼ BinaryConcrete

(
ωij , τa

)
and z̃i ∼ Concrete

(
ζi, τz

)
, where

ωij ∈ Ω and ζ ∈ Z are now learnable parameters, and τa, τz are temperature hyperparameters set
to 0.15 that control how close the samples are to discrete values. Higher values tend to lead to
smoother approximations, while lower values tend to make the samples more discrete.

2. Reparameterization Via Gumbell-Softmax Trick: Even though ãij and z̃i are differentiable,
their sampling must allow gradient backpropagation for the model training. So, it is necessary
to replace original Bernoulli and Categorical sampling with a continuous, differentiable sampling
process that makes backpropogation possible. This can be done by reparametrization through the
Gumbel-Softmax (Concrete) distribution. The Gumbel-Softmax trick provides a way to introduce
noise in a controlled way, by drawing a random variable ϵ for a known distribution. In this case
ϵ ∼ Uniform(0, 1). Subsequently, the noise is transformed via a temperature-based softmax or
sigmoid to produce a continuous sample, which approximates a discrete outcome. Concretely, after
applying this trick each Bernoulli edge ãij and Categorical node feature z̃i are:

ãij = sigmoid
(

ωij + log ϵ− log(1− ϵ)
τa

)
, z̃i = softmax

(
ζi − log(− log ϵ)

τz

)
(4)

5

Under review as submission to TMLR

By expressing ãij and z̃i as functions of ωij , ζi, and a random noise ϵ, sampling randomness in ϵ can
be isolated, which makes it possible to compute ∂ωij

∂ãij
and ∂ζi

∂z̃i
. If the sampling had been done via

a binary method this would have been impossible.
3. Approximating the Objective with Monte Carlo Sampling: By expressing ãij and z̃i as

deterministic functions of ωij , ζi and random noise ϵ, the sampling process becomes differentiable
with respect to ωij and ζi. Because Ã and Z̃ are now continuous, they can be directly substituted
into the objective L(G). This allows standard gradient-based methods to be used to compute
∇Ω,Z L(Ã, Z̃). Monte Carlo is then employed to sample over ϵ and approximate the expected loss
EG∼P (G)[L(G)]. Finally, by minimizing this Monte Carlo estimate we obtain the objective loss term
of 1:

min
A,Z
L(G) = min

Θ,P
EG∼P (G)[L(A, Z)] ≈ min

Ω,Z
Eϵ∼U(0,1)[L(Ã, Z̃)] ≈ min

Ω,Z

1
K

K∑
k=1
L

(
Ã(k), Z̃(k)) (5)

By minimizing this objective function, the model iteratively updates the learned distribution through sampled
batches of 32 graphs, with the aim of tuning the distribution so the expected graph E[G] satisfies the boundary
graph criteria. This optimization process ensures that the generated boundary graphs exhibit balanced class
probabilities, with p(c1) and p(c2) converging towards 0.5, thereby aligning with the decision boundary.
Additionally, the loss function suppresses logits for non-target classes c′ /∈ c1, c2, ensuring that the generated
graphs remain within the intended class distinction. The probabilistic graph distribution P (G) is refined
through backpropagation, allowing the model to iteratively approximate the near-boundary condition while
minimizing the likelihood of convergence to local minima.

Budget Penalty The second loss term in Equation 1 is a budget penalty constraint Rbudget, added to
encourage graph conciseness. The penalty regularizes the graph size through:

Rbudget = Softplus (∥sigmoid(Ω)∥1 −Bloss)2 (6)

where, Bloss represents the maximum allowable number of edges in the boundary graph before a penalty is
imposed. This constraint discourages the formation of excessively large graphs.

To balance regularization with efficient optimization, the training procedure employs a dynamic scheduler
that adaptively adjusts the budget penalty weight w

(t)
budget during training. Initially set to w

(0)
budget = 1, this

weight is updated as the graph approaches the near-boundary criterion according to the following rule:

w
(t)
budget = w

(t−1)
budget · s

I[Ψ(G(t))]
inc · s

I[¬Ψ(G(t))∧(sdec·w(t−1)
budget≥w

(0)
budget)])

dec (7)

where sinc and sdec are hyperparameters controlling the rate of increase and decrease, respectively. The
penalty is initially small, allowing the model to prioritize learning the overall graph structure and class
relationships. As the graph nears the desired boundary, the penalty is gradually increased to enforce graph
sparsity and maintain the desired number of edges.

Gradient Regularization A third loss term is added in Equation 1, incorporating gradient regularization
by adding L1 and L2 regularization terms, denoted by Rs

L(Ω, Z) for s ∈ {1, 2}. The weight wL represents a
weight for L1 as L2 and is defined in Appendix C.

Training Convergence The GNNBoundary training procedure has two final convergence criteria:
1. Ψ(E[G]) = 1
2. The size of E[G] < Bstopping.

For the first criterion, the model generates boundary graphs using a relaxed near-boundary condition. Since
achieving exact boundary conditions where σ(f(G))c1 = σ(f(G))c2 = 0.5 is impractical, a graph G approx-
imately belongs to boundary set Bc1∥c2 when Ψ(G) = p(c1), p(c2) ∈ [pmin, pmax](G). This allows adjacent
class probabilities to be approximately equal rather than exactly the same. The second criterion is enforced
by the budget penalty loss in Equation 1, where the authors penalize graphs exceeding a strict maximum

6

Under review as submission to TMLR

number of edges Bloss. The stopping criterion for the final boundary graph for the maximum number of
edges, Bstopping, is less strict. The training pseudocode for GNNBoundary is presented in Appendix B, and
the parameter values are shown in Appendix C.

5.2 Datasets

As in the original paper, the GNNBoundary method is evaluated using one synthetic dataset and two real-
world datasets3. Further, we introduce an additional dataset, MSRC9 (Neumann et al., 2016) 4. The key
characteristics of each dataset are presented in Table 1.

Dataset Graphs Classes Test Acc. Avg. Nodes Avg. Edges
Collab 5,000 3 0.7400 74.49 2457.78
Motif 11,531 4 0.9900 57.07 77.36
Enzymes 600 6 0.5200 32.63 62.14
MSRC9 221 8 0.9638 40.58 97.94

Table 1: Characteristics of graph datasets

Synthetic Dataset The authors have created a synthetic dataset called Motif, where graphs are classified
based on the presence of 4 specific motifs: House (H), House-X (HX), Complete-4 (Cp4), and Complete-5
(Cp5). The generation process of the Motif dataset is explained in detail by Wang & Shen (2022).

Real-World Datasets The authors use two real-world datasets, namely Collab and Enzymes:
• Collab is a scientific collaboration dataset where graphs represent the ego network of a researcher

(Yanardag & Vishwanathan, 2015). Nodes represent the researchers and its collaborators, and edges
indicate a link between them. Each graph falls into one of three classes, i.e. fields a researcher belongs
to: High Energy Physics (HE), Condensed Matter Physics (CM), and Astro Physics (Astro).

• Enzymes is a dataset containing 6 different classes of enzymes (Borgwardt et al., 2005). Furthermore,
there are 3 types of nodes that all the enzymes are made up of.

Additional Dataset The introduction of the MSRC9 (Neumann et al., 2016) dataset aims to assess the
adaptability of GNNBoundary in handling datasets with a greater number of classes and features. MSRC9
consists of graph-based representations of images derived from the Microsoft Research Cambridge (MSRC)
image dataset (Winn et al., 2005). This dataset comprises eight classes, enabling a more extensive evaluation
of three-class boundary graphs compared to the Enzymes dataset, as a larger number of three-class decision
boundaries can be identified. As a pre-trained classifier is unavailable, a GCN classifier is trained on the
MSRC9 dataset using the code framework and the hyperparameters specified in Table 4 in Appendix C.

5.3 Experimental Setup and Code

5.3.1 Reproducing GNNBoundary

The GNNBoundary methodology described in Section 5.1 and the datasets from Section 5.2 allow us to
reproduce the analysis of class adjacency pairs and quantitatively evaluate the generated near-boundary
graphs.

Hyperparameters and Loss Terms The GNNBoundary model employs multiple hyperparameters, some
of which are specified in the original paper, while others are inferred from the provided demo codebase.
However, the codebase contains inconsistencies, such as undocumented parameter choices and loss terms that
were rarely used. To ensure reproducibility in our experiments, we adopt a consistent set of hyperparameters,
prioritizing values reported in the original paper and supplementing them with the most frequently used
values from the codebase. An exception to this is the target size, where the largest value is taken, which is
done to prioritize convergence over achieving smaller graphs. A detailed overview of the selected parameters,
along with explanations of the final values, is provided in Appendix C.

3https://drive.google.com/file/d/1O3IRF9mhL2KCCU1eVlCEdssaf6y-pq2h/view?usp=sharing
4https://www.chrsmrrs.com/graphkerneldatasets/MSRC_9.zip

7

https://drive.google.com/file/d/1O3IRF9mhL2KCCU1eVlCEdssaf6y-pq2h/view?usp=sharing
https://www.chrsmrrs.com/graphkerneldatasets/MSRC_9.zip

Under review as submission to TMLR

Baseline Given the lack of existing methods for comparing decision boundaries in GNNs, the same base-
line as proposed in the original study is adopted. This baseline constructs boundary graphs by randomly
connecting two sampled graphs from distinct classes (G1 ∈ Rc1 , G2 ∈ Rc2) with a randomly assigned edge.
This approach is based on the assumption that boundary graphs should encapsulate discriminative features
from both classes.

Identification of Adjacent Class Pairs Adjacent class pairs are identified using boundary embeddings
to measure the degree of adjacency between classes, as described in Section 5.1.1. For each dataset, a pre-
trained GCNClassifier from the codebase performs pairwise boundary analysis. In the experimental study,
the sampled graph pairs, G1,k ∈ Rc1 and G2,k ∈ Rc2 are from the datasets. The correct adjacent class pairs
are determined using a predefined adjacency score threshold of 0.8, as adopted from the original paper.

Boundary Graphs Generation and Optimization Following Section 5.1.2, GNNBoundary models are
trained for each adjacent class pair. For each pair, 1000 near-boundary graphs are generated using near-
boundary criteria pmin = 0.45 and pmax = 0.55. The number of near-boundary graphs was increased from
originally 500 to 1000, to better capture the true underlying distribution. Generated graphs are evaluated
to obtain prediction probabilities for the targeted classes. If the model training fails to converge, up to three
additional training attempts are made, after which the most recent model is evaluated. It is important to note
that the reported probability values are averaged across all graphs. Due to variability in the optimization
process and the random seed, these averages are often lower than the best boundary graph results. However,
the average provides a more consistent and reliable measure of performance, accounting for fluctuations
from random initialization, hyperparameter sensitivity, and stochastic optimization. This better reflects the
model’s typical behavior across multiple runs, reducing the influence of outliers or overfitting. Using the
average ensures the reported performance represents the model’s general capabilities, which is important for
reproducibility and generalization.

5.3.2 Three-class GNNBoundary

While GNNBoundary provides insights into the decision boundaries of GNNs, its formulation inherently
assumes that decision boundaries are strictly pairwise. However, in real-world datasets, graph embeddings
do not always conform to this assumption. Instead, multiple classes can exhibit overlapping characteristics,
resulting in regions where data points lie at the intersection of more than two class boundaries. Building
on prior work that demonstrated the existence of three-way decision boundaries in deep neural networks (Li
et al., 2018), we introduce three-class GNNBoundary, which incorporates a three-way adjacency perspective.
This extension does not merely generalize GNNBoundary but rather proposes an novel alternative lens
through which to interpret class interactions in graph classification tasks. By identifying and analyzing
these three-class decision boundaries, we aim to capture nuanced ambiguities in class separability that are
not apparent in pairwise analyses.

Following the original two-way experimental setup from Section 5.3.1, we extend the adjacency detection
method to identify adjacent triplets across the four introduced datasets (Section 5.2). These triplets are
then used to generate three-class boundary graphs, with class probabilities aimed at an optimal distribution
of 0.33 per class.

Three-class Adjacency Understanding the likelihood of three-class boundary graphs requires defining
a three-class adjacency value to quantify the interaction and proximity of the boundaries. Barycentric
interpolation extends the pairwise adjacency algorithm of GNNBoundary. It transforms the linear interpo-
lation for two classes into a three-class setting by representing a point as a weighted combination of three
reference points (Hormann, 2014). Formally, three-class adjacency exists when an interpolated graph embed-
ding lies at the intersection of the decision regions R(l)c1, R(l)c2, and R(l)c3, where boundary embeddings
H(l)c1 ∥ c2 ∥ c3 are located. The interpolation process follows:

H(L−1)
interp = aϕL−1(G1k

) + bϕL−1(G2k
) + cϕL−1(G3k

) (8)

where a, b, c are barycentric coordinates ensuring a + b + c = 1 The three-way adjacency score is computed
as the frequency with which interpolated embeddings are classified into all three adjacent classes over K

8

Under review as submission to TMLR

samples. The adjacency threshold for these triplets was set to 0.9 for most datasets but lowered to 0.6
for Enzymes due to its lower classification accuracy. We validate this three-class adjacency method by
comparing it against the pairwise adjacency scores of the same triplet. The algorithm in Appendix E utilizes
interpolating between embeddings to estimate this likelihood.

Training Three-class GNNBoundary For adjacent triplets, the original GNNBoundary framework
from Section 5.1.2 is modified to accommodate three-class decision boundaries. The model generates 1000
near-boundary graphs, with the loss function adapted to an initial probability range of pminis reduced by
0.033 after each failed attempt, for a maximum of five iterations. This incremental reduction gradually
relaxes the decision boundary constraints, enhancing the model’s ability to adapt to the complexity of three-
class boundaries. The initial lower bound of pmin = 0.3 may be overly restrictive; therefore, reducing it
incrementally mitigates abrupt changes while maintaining sufficient flexibility for convergence. If convergence
is not achieved after all attempts, the most recent non-converged model is retained.

5.4 Computational Requirements

Experiments were conducted on a laptop with AMD Ryzen 7 4000 CPU and Nvidia GeForce GTX 1650
TI. For the MSRC9 dataset, GPU and CPU training times were comparable. For the larger Collab dataset,
GPU training reduced time from 77.2 to 8.06 seconds per iteration. The complete experiments took 105
minutes, with three-class adjacency extensions requiring 140 minutes. With GPU (20W), CPU (12W), and
RAM (2W) power consumption, Netherlands’ carbon intensity of 0.5645, and an assumed PUE of 2, the
total carbon footprint was approximately 70.76g CO2, equivalent to driving 0.284 km by car.

6 Results

6.1 Identifying Adjacenct Classes

In our reproduction study, we identified 7 out of 11 adjacent graph classes that were found by the original
authors. Figure 2 shows we find similar adjacency values for Collab and Motif, leading to the same adjacent
class pairs as the authors. However, for Enzymes, the adjacency values for some class pairs differ from the
results. Pairs EC1-EC2, EC2-EC4, and EC3-EC4 show a substantial difference in adjacency compared to
the original results. At the chosen threshold of more than 0.8, we found 3, 2, and 2 adjacent class pairs
respectively for the Motif, Collab, and Enzymes datasets, while the original paper found 3, 2, and 6. To
reproduce the experiment precisely, we create boundary graphs for all the adjacent pairs found by the original
authors. For the MSRC9 dataset, 15 adjacent pairs were found. For simplicity, the 6 pairs with the highest
adjacency score were used for the GNNBoundary generation.

(a) Collab (b) Motif (c) Enzymes (d) MSRC9

Figure 2: Confusion matrices show reproduced adjacency values between graph classes from four datasets. In
a, b, and c, reproduced values that are larger than the than original adjacency scores are more prominently
red or blue. For MSRC9 (d), as there is no comparison with the authors, the darker shades of gray indicate
larger adjacency scores

5https://www.energyinst.org/statistical-review

9

https://www.energyinst.org/statistical-review

Under review as submission to TMLR

6.2 GNNBoundary Quantitative Evaluation

To support Claims 2 and 3 in our reproduction, we found that GNNBoundary is able to consistently generate
boundary graphs with class probabilities close to the optimal value of 0.5. Table 2 demonstrates that our
GNNBoundary reproduction performs well by generating probabilities close to the optimal value of 0.5.
However, our results are less consistent, since the original probabilities for the target classes are closer to
0.5 with smaller standard deviations. The differences between our reproduction and the original results are
largest in the Enzymes dataset, followed by Collab, with Motif showing the closest alignment to the original
findings. Comparison of our results with the baseline method can be found in Appendix D.

Dataset c1 c2 p(c1) orig p(c1) ∆ p(c2) orig p(c2) ∆

Collab HE CM 0.473 ± 0.015 0.598 ± 0.148 0.125 0.487 ± 0.016 0.377 ± 0.153 -0.110
HE Astro 0.526 ± 0.013 0.682 ± 0.098 0.156 0.466 ± 0.013 0.226 ± 0.122 -0.240

Motif
H HX 0.501 ± 0.028 0.501 ± 0.165 0.000 0.499 ± 0.028 0.498 ± 0.167 -0.001
H Cp4 0.498 ± 0.028 0.476 ± 0.054 -0.022 0.501 ± 0.028 0.529 ± 0.054 0.028

HX Cp5 0.491 ± 0.026 0.242 ± 0.055 -0.249 0.509 ± 0.026 0.325 ± 0.033 -0.184

Enzymes

EC1 EC4 0.489 ± 0.023 0.188 ± 0.038 -0.301 0.487 ± 0.021 0.222 ± 0.047 -0.265
EC1 EC5 0.492 ± 0.023 0.151 ± 0.030 -0.341 0.489 ± 0.025 0.445 ± 0.044 -0.044
EC1 EC6 0.485 ± 0.028 0.286 ± 0.048 -0.199 0.472 ± 0.017 0.307 ± 0.028 -0.165
EC2 EC3 0.488 ± 0.025 0.434 ± 0.047 -0.054 0.488 ± 0.025 0.523 ± 0.062 0.035
EC4 EC5 0.480 ± 0.024 0.344 ± 0.107 -0.136 0.486 ± 0.024 0.097 ± 0.080 -0.389
EC5 EC6 0.481 ± 0.022 0.438 ± 0.113 -0.043 0.486 ± 0.023 0.552 ± 0.111 -0.066

MSRC9

C5 C7 - 0.497 ± 0.082 - - 0.500 ± 0.083 -
C4 C8 - 1.0 ± 0.0 - - 3.4e − 9 ± 7.9e − 9 -
C2 C3 - 0.502 ± 0.087 - - 0.473 ± 0.094 -
C7 C8 - 0.470 ± 0.146 - - 0.483 ± 0.127 -
C1 C3 - 0.467 ± 0.089 - - 0.528 ± 0.088 -
C3 C6 - 0.448 ± 0.092 - - 0.474 ± 0.087 -

Table 2: Comparison of GNNBoundary reproduction results with the original paper’s probabilities, showing
differences ∆. Each entry reports the mean predicted class probability ±σ. Red delta values denote cases
where our mean differs from the original by more than 2σ. Probabilities near 0.33 are preferred.

6.3 Three-class GNNBoundary

Table 3 presents adjacency and boundary graph generation results for three classes. Appendix F validates
three-way adjacency through high pairwise scores. The results show that when GNNBoundary converges,
class predictions approach the desired 0.33. However, for some class combinations, non-convergence results
in inaccurate boundary graphs.

Dataset c1 c2 c3 GNNBoundary Adj. Conv.
p(c1) p(c2) p(c3) score rate

Collab HE CM Astro 0.405 ± 0.039 0.379 ± 0.047 0.216 ± 0.048 1.0 1.0

Motif H HX Cp4 0.704 ± 0.076 0.003 ± 0.003 0.290 ± 0.078 1.0 0.0
H HX Cp5 0.161 ± 0.004 0.427 ± 0.031 0.413 ± 0.026 1.0 0.0

Enzymes
EC1 EC5 EC6 0.030 ± 0.012 0.322 ± 0.013 0.399 ± 0.024 0.72 0.0
EC1 EC2 EC6 0.152 ± 0.020 0.215 ± 0.025 0.156 ± 0.010 0.71 0.6
EC2 EC5 EC6 0.289 ± 0.016 0.222 ± 0.005 0.192 ± 0.029 0.69 0.0
EC2 EC3 EC6 0.338 ± 0.021 0.355 ± 0.046 0.240 ± 0.039 0.63 0.8

MSRC9

C5 C6 C7 0.367 ± 0.082 0.333 ± 0.100 0.299 ± 0.084 1.0 1.0
C0 C2 C4 0.198 ± 0.057 0.614 ± 0.027 0.184 ± 0.049 0.98 0.4
C1 C2 C3 0.307 ± 0.098 0.314 ± 0.123 0.374 ± 0.169 0.97 1.0
C1 C2 C6 0.225 ± 0.073 0.206 ± 0.073 0.298 ± 0.129 0.94 0.8
C2 C5 C7 0.337 ± 0.096 0.295 ± 0.082 0.265 ± 0.078 0.94 0.8
C1 C2 C7 0.440 ± 0.117 0.159 ± 0.036 0.064 ± 0.023 0.92 0.2
C3 C5 C7 0.325 ± 0.054 0.006 ± 0.002 0.669 ± 0.053 0.92 0.0

Table 3: Quantitative evaluation of 1000 boundary graphs for three adjacent classes. Reports the mean
predicted class probability ±σ over 1000 graphs. Thresholds: MSRC9, Motif, Collab = 0.9; Enzymes = 0.6.
Probabilities near 0.33 are ideal.

10

Under review as submission to TMLR

7 Discussion

7.1 GNNBoundary Reproduction

This reproduction study evaluated three claims made by the authors of GNNBoundary (Wang & Shen, 2024)
as an explanation method for GNN decision boundaries.

For Claim 1, the reproduction of adjacent class identification was partially successful, with 7 out of 11
pairs aligning with the original study. While results for the Collab and Motif datasets were consistent with
the original findings, discrepancies were observed in the Enzymes dataset, where only 2 out of 6 adjacent
pairs were identified. Initially, we speculated that an increased number of classes could reduce adjacency
identification performance; however, the successful identification of adjacent pairs in the MSRC9 dataset
contradicts this assumption.

Notably, we observed a correlation between adjacency scores and test classification accuracy: lower accuracy
of the GCNClassifier for Enzymes resulted in unclear decision boundaries, whereas higher accuracy for Motif
and MSRC9 yielded a clearer distinction between adjacent and non-adjacent pairs. The variability in the
adjacency results might, in part, stem from differences in the random sampling process, as the original paper
did not specify a fixed random seed. However, given the large number of samples drawn, the effect of the
seed alone should be minimal. If randomness indeed played a significant role in the observed discrepancies,
increasing the number of sampled pairs even further maybe could have mitigated this effect. Instead, varia-
tions are more likely influenced by factors such as hyperparameter sensitivity, training dynamics, or subtle
implementation details that were not explicitly documented in the original study. These findings partially
validate Claim 1, demonstrating that the proposed algorithm effectively identifies adjacent class pairs while
revealing potential sources of instability in the method.

For Claim 2, our reproduction of the quantitative evaluation of GNNBoundary exhibited significant devi-
ations from the original results. For the Collab and Enzymes datasets, 14 out of 16 probability estimates
deviated by more than 2σ, whereas in the Motif dataset, only 2 out of 6 exhibited such deviations. Nonethe-
less, the generated boundary graphs consistently outperformed the baseline methods, as demonstrated in
Appendix D. While the baseline, being random, may not be a perfect comparison, it still supports the val-
idation of Claim 2. For MSRC9, 5 out of 6 generated boundary graphs yielded probabilities close to the
optimal value of 0.5. We speculate that the clearer identified adjacent pairs in MSRC9 and Motif lead to
more accurate boundary graphs.

The deviations in our results can be attributed to the inherent variability in GNNBoundary training. We
assume that the original authors reported probabilities from a particularly well-performing model rather
than an average over multiple runs, whereas our results are derived from an average of five independent
training runs. This methodological difference, along with ambiguities in the codebase and unspecified hy-
perparameters, contributed to inconsistencies in reproduction. High variance in convergence rates suggests
sensitivity to hyperparameters and weight initialization. Additionally, GNNBoundary’s complex loss func-
tion, with multiple regularization terms and adaptive penalties, likely exacerbates this sensitivity, making
convergence more challenging. Small training modifications can lead to significantly different outcomes, with
some models failing to escape local minima. The authors suggest an optimal loss function should encourage
class logits and balance posterior probabilities around 0.5. While this sometimes holds, our results show
inconsistencies, some boundary graphs have imbalanced probabilities, while others retain low posteriors,
indicating insufficient logit separation. This suggests the loss function may not be ideally suited the opti-
mization of boundary graph generation. Alternatively, discrepancies may arise from additional loss terms or
suboptimal hyperparameter settings. Given the high variance and methodological ambiguities, we cannot
fully validate Claim 3, which asserts that the adaptive loss function consistently generates near-boundary
graphs with faster convergence and reduced risk of local minima.

7.2 Three-class GNNBoundary

The extension of the GNNBoundary methodology to three-way boundary graphs achieved moderate success.
The three-way boundary graphs did not yield perfectly balanced splits for all class triplets, and some mod-

11

Under review as submission to TMLR

els failed to converge altogether. This result is unexpected since the high adjacency score for the triplets
should imply that there are graphs on the boundary of the three classes. In addition, our three-way ad-
jacency method is supported by high pairwise adjacency scores within these triplets, shown in Appendix
F. However, it could be that our three-way adjacency method does not correspond well enough with the
actual decision boundaries between the classes. Another possible cause could be the custom loss function
needs further refinement to handle multi-class decision boundaries effectively. Incorporating a more robust
multi-class regularization term in the loss function could potentially improve the model’s ability to generate
accurate three-way boundary graphs. Another option could be that the GNNBoundary training process
and its hyperparameters need to be further optimized for the three-way decision boundaries. Although our
methodology did not produce perfect three-way boundary graphs, we believe this extension is a step forward
towards enhancing transparency and reliability of GNNs in practical applications.

7.3 Reflection

The detailed explanations by Wang & Shen (2024) of the mathematical concepts behind the adjacency cal-
culation and the GNNBoundary methodology helped us understand the background and their research well.
Additionally, having access to the authors’ codebase and datasets provided us with a foundation for reproduc-
ing the experiments and further understand the methodology. However, recreating the original experiments
was challenging, due to ambiguities in the codebases and its execution. It was unclear whether the authors
employed certain functions from the codebase or relied on alternative methods to reduce variability, due to
randomness. Additionally, unused code in the demo further complicated understanding of how experiments
should be properly executed. The level of uncertainty was increased by the lack of documentation on code
structure and hyperparameter choices, leading to numerous discrepancies between the open-source codebase
implementation and the paper.

Additionally, we contacted the original authors with questions regarding their methodology, codebase, and
hyperparameters, including details on the boundary graph generation process, hyperparameter selection, and
undocumented loss terms. However, we did not receive a response.

7.4 Future Work

Future work should explore methods to enhance classifier accuracy, particularly for datasets like Enzymes,
where lower classification performance may lead to unreliable adjacency estimations. Analyzing the rela-
tionship between classifier confidence and adjacency scores could improve the robustness of GNNBoundary
by mitigating sensitivity to noisy predictions

Secondly, while our speculation about the influence of class numbers on adjacency identification was disproved
by the MSRC9 dataset, it remains a relevant topic. Future studies could explore the impact of increasing
class numbers beyond eight, using larger datasets to understand how adjacency scores evolve as the dataset
grows. This could help GNNBoundary scale to more complex, real-world applications with many classes.

Introducing additional baseline methods beyond random sampling, such as Graphon-Explainer (Saha &
Bandyopadhyay, 2024), could provide more comprehensive comparisons for decision boundary analysis. Ad-
ditionally, the variability in training outcomes suggests that increasing the sampling size could help stabilize
results by capturing a more representative set of boundary graphs. Exploring alternative sampling meth-
ods or ensemble techniques would further improve consistency and reliability. Furthermore, systematic
exploration of hyperparameter sensitivity through fine-tuning could optimize GNNBoundary’s performance,
enhancing reproducibility.

The challenges with three-class decision boundaries suggest that future work should focus on refining the loss
function to better handle multi-class boundaries. Incorporating robust multi-class regularization or adaptive
scheduling could improve convergence and balance in three-class boundary graphs.

Finally, while Wang & Shen (2024) introduced useful metrics like boundary thickness, margin, and com-
plexity, their application was unclear, thereby not explored in this study. Future research could explore and
validate these metrics, providing deeper insights into the decision-making process of GNNs and improving
the interpretability of decision boundaries.

12

Under review as submission to TMLR

References
Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and Hans-

Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Rex Ying. D4explainer: In-distribution explanations of graph
neural network via discrete denoising diffusion. Advances in Neural Information Processing Systems, 36,
2024.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Kai Hormann. Barycentric interpolation. In Approximation Theory XIV: San Antonio 2013, pp. 197–218.
Springer, 2014.

Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the decision boundary of deep neural networks.
arXiv preprint arXiv:1912.11460, 2019.

Yu Li, Lizhong Ding, and Xin Gao. On the decision boundary of deep neural networks. arXiv preprint
arXiv:1808.05385, 2018.

Melissa D McCradden and Ian Stedman. Explaining decisions without explainability? artificial intelligence
and medicolegal accountability. Future Healthcare Journal, 11(3):100171, 2024.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels: effi-
cient graph kernels from propagated information. Machine learning, 102:209–245, 2016.

Sayan Saha and Sanghamitra Bandyopadhyay. Graphon-explainer: Generating model-level explanations for
graph neural networks using graphons. Transactions on Machine Learning Research, 2024.

Ana-Maria Vasilcoiu, Thijs Stessen, Thies Kersten, and Batu Helvacioğlu. [re] gnninterpreter: A probabilistic
generative model-level explanation for graph neural networks. Transactions on Machine Learning Research,
2024.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level explanation for
graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

Xiaoqi Wang and Han Wei Shen. Gnnboundary: Towards explaining graph neural networks through the
lens of decision boundaries. In The Twelfth International Conference on Learning Representations, 2024.

J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 2, pp. 1800–1807 Vol.
2, 2005. doi: 10.1109/ICCV.2005.171.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 1365–1374, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336642. doi: 10.1145/2783258.
2783417. URL https://doi.org/10.1145/2783258.2783417.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):5782–5799, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

13

https://doi.org/10.1145/2783258.2783417

Under review as submission to TMLR

8 Appendix

A Adjacency Algorithm

Algorithm 1 Measure the Degree of Adjacency of a Class Pair
1: count ← 0
2: for k ← 1 . . . K do
3: Randomly sample two graphs G1k

∈ Rc1 and G2k
∈ Rc2

4: Compute score =
∏

λ∈[0,1] 1{c1,c2}
(
arg maxc ηL−1

(
λϕL−1(G1k

) + (1− λ)ϕL−1(G2k
)
))

5: if score ̸= 0 then
6: count ← count +1
7: end if
8: end for
9: return count

K

B GNNBoundary Training Algorithm

Algorithm 2 Training of GNNBoundary using Dynamic Regularization Scheduler
Initialize sampler parameters Ω and Z
for each iteration t do

Sample a batch of k graphs {G1, . . . , GK} from sampler with parameters Ω and Z

loss ← 1
K

∑K
k=1 L(Gk) + w

(t)
budget ·Rbudget(Ω) + wL ·Rs

L(Ω, Z)
Minimize loss with respect to Ω and Z
if Ψ(E[G]) = 1 and the size of E[G] < Bstopping then

return Ω and Z
end if

end for

C Hyperparameter Values

Dataset Hidden Channels Number of Layers

Collab 64 5
Motif 6 3
Enzymes 32 3
MSRC9 16 5

Table 4: GCN Classifier architecture parameter
values.

Parameter Value

Max Nodes 25
Temperature 0.15
Batch Size 32
α 1
β 1
wobjective 25
WL1 1
WL2 1
Budget Penalty: Bloss 10
Target Size Bstopping 60
sinc 1.1
sdec 0.95

Table 5: Unified hyperparameters and loss
weight configuration for all class pairs.

In Tables 4 and 5 the parameters are described that we used in our reproduction study, of which the complete
procedure can be seen in Figure 1. The values were chosen with the aim of current and future reproduction.
Where possible, values were taken from the paper and then supplemented with the most frequently seen

14

Under review as submission to TMLR

values in the demo codebase. A number of undocumented loss terms were seen in the codebase. However,
these were not used in the reproduction, as they were rarely activated, making it unclear when or if they
had been used by the authors.

D Baseline Comparison

Dataset c1 c2 GNNBoundary Baseline
p(c1) p(c2) p(c1) p(c2)

Collab HE CM 0.461 ± 0.050 0.474 ± 0.050 0.262 ± 0.169 0.016 ± 0.071
HE Astro 0.622 ± 0.082 0.313 ± 0.095 0.260 ± 0.166 0.723 ± 0.197

Motif
H HX 0.501 ± 0.165 0.498 ± 0.167 0.754 ± 0.149 0.004 ± 0.018
H Cp4 0.476 ± 0.054 0.523 ± 0.054 0.756 ± 0.151 0.240 ± 0.153

HX Cp5 0.242 ± 0.055 0.325 ± 0.033 0.003 ± 0.003 3.00 ± 4.84

Enzymes

EC1 EC4 0.188 ± 0.038 0.222 ± 0.031 0.031 ± 0.153 0.007 ± 0.068
EC1 EC5 0.151 ± 0.030 0.449 ± 0.044 0.029 ± 0.143 0.070 ± 0.242
EC1 EC6 0.286 ± 0.048 0.306 ± 0.028 0.028 ± 0.141 0.040 ± 0.174
EC2 EC3 0.434 ± 0.047 0.523 ± 0.062 0.091 ± 0.257 0.745 ± 0.407
EC4 EC5 0.344 ± 0.107 0.097 ± 0.080 0.014 ± 0.101 0.072 ± 0.245
EC5 EC6 0.438 ± 0.113 0.552 ± 0.111 0.081 ± 0.258 0.040 ± 0.172

MSRC9

C5 C7 0.497 ± 0.082 0.500 ± 0.083 5.9e-5 ± 0.001 0.165 ± 0.349
C4 C8 1.0 ± 0.0 3.4e-9 ± 7.9e-9 0.056 ± 0.206 0.645 ± 0.434
C2 C3 0.502 ± 0.087 0.473 ± 0.094 0.014 ± 0.094 0.037 ± 0.160
C7 C8 0.470 ± 0.146 0.483 ± 0.127 0.165 ± 0.343 0.629 ± 0.436
C1 C3 0.467 ± 0.089 0.528 ± 0.088 2.1e-12 ± 4.8e-11 0.032 ± 0.147
C3 C6 0.448 ± 0.092 0.474 ± 0.087 0.032 ± 0.145 0.076 ± 0.224

Table 6: The quantitative evaluation of boundary graphs generated by both our reproduction results of
GNNBoundary and our baseline approach. The average predicted class probability of 1000 generated bound-
ary graphs along with the corresponding standard deviation is presented below.

E Three-way Adjacency Algorithm

Algorithm 3 Measure the Degree of Adjacency of Three Classes
1: count ← 0
2: for k ← 1 . . . K do
3: Randomly sample three graphs G1k

∈ R{c1}, G2k
∈ R{c2}, G3k

∈ R{c3}
4: for a, b ∈ [0, 1] where a + b ≤ 1 do
5: c← 1− a− b
6: Compute interpolated embedding: ϕinterp = aϕL−1(G1k

) + bϕL−1(G2k
) + cϕL−1(G3k

)
7: Store classification: classes← arg maxc ηL−1(ϕinterp)
8: end for
9: if |classes| = 3 then

10: count ← count + 1
11: end if
12: end for
13: return count

K

15

Under review as submission to TMLR

F Three-way adjacency and pairwise adjacency scores

Dataset Class Triplet Three-way Score Class Pair Pairwise Score
Collab HE-CM-Astro 1.00 HE-CM 0.88

HE-Astro 0.99
CM-Astro 0.58

Motif H-HX-Cp4 1.00 H-HX 1.00
H-Cp4 1.00
HX-Cp4 0.04

Motif H-HX-Cp5 1.00 H-HX 1.00
H-Cp5 0.00
HX-Cp5 1.00

Enzymes EC1-EC5-EC6 0.72 EC1-EC5 0.72
EC1-EC6 0.82
EC5-EC6 0.80

Enzymes EC1-EC2-EC6 0.61 EC1-EC2 0.63
EC1-EC6 0.82
EC2-EC6 0.77

Enzymes EC2-EC5-EC6 0.69 EC2-EC5 0.55
EC2-EC6 0.77
EC5-EC6 0.80

Enzymes EC2-EC3-EC6 0.63 EC2-EC3 0.71
EC2-EC6 0.77
EC3-EC6 0.60

MSRC9 C6-C7-C8 1.00 C6-C7 1.0
C6-C8 1.0
C7-C8 0.94

MSRC9 C1-C3-C5 0.98 C1-C3 0.94
C1-C5 0.99
C3-C5 0.65

MSRC9 C2-C3-C4 0.97 C2-C3 1.0
C2-C4 0.86
C3-C4 0.84

MSRC9 C2-C3-C7 0.94 C2-C3 1.0
C2-C7 0.88
C3-C7 0.77

MSRC9 C3-C6-C8 0.93 C3-C6 1.0
C3-C8 0.87
C6-C8 1.0

MSRC9 C2-C3-C8 0.92 C2-C3 1.0
C2-C8 0.84
C3-C8 0.87

MSRC9 C4-C6-C8 0.92 C4-C6 0.0
C4-C8 1.0
C6-C8 1.0

Table 7: Three-way and pairwise adjacency scores across different datasets.

16

	Introduction
	Related Work
	Scope of Reproducibility
	Background
	Methodology
	GNNBoundary
	Identifying Adjacent Classes
	Boundary Graphs Generation and Optimization

	Datasets
	Experimental Setup and Code
	Reproducing GNNBoundary
	Three-class GNNBoundary

	Computational Requirements

	Results
	Identifying Adjacenct Classes
	GNNBoundary Quantitative Evaluation
	Three-class GNNBoundary

	Discussion
	GNNBoundary Reproduction
	Three-class GNNBoundary
	Reflection
	Future Work

	Appendix
	Adjacency Algorithm
	GNNBoundary Training Algorithm
	Hyperparameter Values
	Baseline Comparison
	Three-way Adjacency Algorithm
	Three-way adjacency and pairwise adjacency scores

