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Abstract— This work presents an efficient approach to object
manipulation planning using Monte Carlo Tree Search (MCTS)
to find contact sequences and an efficient ADMM-based trajec-
tory optimization algorithm to evaluate the dynamic feasibility
of candidate contact sequences. To accelerate MCTS, we pro-
pose a methodology to learn a goal-conditioned policy-value
network used to direct the search towards promising nodes.
Further, manipulation-specific heuristics enable to drastically
reduce the search space. Systematic object manipulation ex-
periments in a physics simulator demonstrate the efficiency of
our approach. In particular, our approach scales favorably for
long manipulation sequences thanks to the learned policy-value
network, significantly improving planning success rate.

I. INTRODUCTION

The ability to plan sequences of contacts and movements
to manipulate objects is central to endow robots with suf-
ficient autonomy to perform complex tasks. This remains,
however, particularly challenging. Indeed, finding dynami-
cally feasible sequences of contacts between the manipulator
and an object typically leads to intractable combinatorial and
nonlinear problems.

Recently, trajectory optimization has become a popular
tool for multi-contact locomotion [1]–[4] as this leads to de-
sirable formulations to reason about interaction forces. Yet, it
remains unclear how the planning of contact modes should be
efficiently incorporated, primarily due to its discrete nature
which creates an undesirable consequence: discontinuity in
the dynamics at contact switch. To handle this discontinuity
under the trajectory optimization framework, two streams of
methodologies have emerged:

1) the contact-invariant or contact-implicit approach en-
force contact complementarity either as hard con-
straints [5], [6], penalty terms in a cost function [7]–[9],
or with differentiable soft contacts models [10]

2) the hybrid approach treats contact switches as discrete
decisions within a continuous problem [11]–[13].

In this work, we examine the latter methodology to pro-
pose an optimization framework amenable to customization
with object manipulation-specific heuristics and learning
from data to improve its computational efficiency.

The most common formulation of such problem is
via Mixed-integer Programming (MIP). In the context of
robot manipulation, one representative work is the Contact-
Trajectory Optimization proposed in [12], where contact
scheduling is modeled as binary decision variables and
the non-convexity due to cross product is relaxed by Mc-
Cormick envelopes. The resulted problem is a Mixed-integer
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Quadratic Program (MIQP) which can be solved by off-the-
shelf MIQP solvers. However, the approach has only been
demonstrated on 2D object manipulation with very short
manipulation sequences. This is in contrast to our approach
which handles 3D objects and long sequences.

In the context of machine learning, CoCo proposed in [14]
finds feasible solution to MIP by first learning to map
the problem parameters to the assignment of the discrete
variables offline and then solving the resulted continuous
optimization problem online. While this greatly improves the
solution speed at inference time, it assumes that one is able
to solve the original MIP in a reasonable amount of time to
construct the dataset. If the original problem is prohibitive
to solve, collecting a large dataset for this problem may not
be practical without abundant computational resources.

Recently, an algorithm that augments Contact-Implicit
Trajectory Optimization (CITO) with tree search was pro-
posed in [15] to incorporate domain-specific knowledge for
robot manipulation. It uses depth-first search (DFS) to find a
sequence of kinematically feasible contact modes that have
a stable grasp and then constrain the CITO problem with the
found contact sequence.

In principle, we can employ a brute-force approach to
our problem: search over all possible combinations of the
discrete variables and for each such combination solve the
resulted continuous optimization problem. In general, such
strategy is not practical due to the factorial complexity.
However, it can be made more efficient if 1) the search
space can be notably reduced, 2) good search heuristics are
available, and 3) the non-convex continuous optimization
problem can be solved efficiently. In this work, we show that
all these three requirements can be achieved. In particular,
our contributions are

1) we adapt learning-based Monte Carlo Tree Search
(MCTS) to discrete contact planning problems for
robotic manipulation,

2) we formulate the resulted continuous optimization prob-
lem as a biconvex program to allow efficient solution
via the Alternating Direction Method of Multipliers
(ADMM) [16], and

3) we learn a policy-value network from data collected
on short-horizon tasks which provides good heuristics
for long-horizon tasks and significantly decreases the
overall solution time.

To our best knowledge, this is the first application of
learning-based MCTS to contact planning for manipulation.



II. PROBLEM STATEMENT

A. Inputs

We aim to solve an object manipulation task similar to the
Contact-Trajectory Optimization problem proposed in [12]
where the following quantities are given:

1) a rigid object with known geometry, friction coefficient
µ, mass m, moment of inertia I, and NΩ pre-defined
touchable regions,

2) a trajectory with discretization step ∆t of length T
that consists of the desired object pose, velocity, and
acceleration

3) an environment with known geometry and friction co-
efficient µe, and

4) a manipulator with known kinematics that can make at
most Nc contacts with the object.

At the t-th time step, given the object motion and the
object dynamics, we can compute the desired total force
fdes(t) and torque τdes(t) to be applied to the object from
rigid-body dynamics. In addition, as the geometry of the
object and the environment as well as the object motion are
known, we can obtain Ne(t) environment contact locations
re(t) for e ∈ {1, . . . , Ne(t)} at each time step t by check-
ing the collisions between the object and the environment,
assuming uniform pressure distribution.

B. Outputs

For each time step t, we aim to find the following:
1) the contact region Ωc(t) ∈ {0, 1, . . . , NΩ}, the contact

force fc(t) and the contact location rc(t) for each
contact point c of the manipulator; Ωc(t) = 0 indicates
that the c-th contact point is not in contact, and

2) the environment contact force fe(t)

such that the forces and torques sum to the desired ones

Nc∑
c=1

fc(t) +

Ne(t)∑
e=1

fe(t) = fdes(t) (1a)

Nc∑
c=1

rc(t)× fc(t) +

Ne(t)∑
e=1

re(t)× fe(t) = τdes(t) . (1b)

III. METHOD

The problem described above is challenging even though
the desired object motion is provided, as one needs to find
both the discrete contact region Ωc(t) and the continuous
manipulator contact forces fc(t), the contact locations rc(t),
and the environment contact forces fe(t).

A. Discrete Contact Planning via MCTS

A series of learning-based MCTS algorithms has been
proposed in [17], [18] for the chess-playing agents AlphaGo
and AlphaZero. We adapt it to solve the discrete contact
region planning problem and refer the algorithm as Policy-
Value Monte Carlo Tree Search (PVMCTS): for a given
object motion ξ, we want to find the contact region for each
contact point c at each time step t. The whole sequence is
then evaluated to return a reward r to guide future search.

1) Assumptions: To reduce the search space, we make the
following assumptions:

• Persistent contact: While the downstream continuous
optimization problem may have a small discretization
step, for example ∆t = 0.1 s, most manipulation tasks
do not require contact switch at such a high frequency.
Thus, we assume that a contact point must remain in
the same region for d time steps.

• Contact switch: We allow at most one contact point
to break or make contact at each contact switch, and
we only allow contact switches when the desired object
velocity and acceleration are zero.

• Contact region: Each contact region can only be
touched by at most one contact point.

2) State and action representation: With the assumption
above, at each planning step n, the PVMCTS chooses for
each contact point c its contact region for the next d time
steps, hence an = [Ω1(t), . . . ,ΩNc

(t)]nd+d
t=nd , and the state sn

is simply the concatenation of all previous actions.
3) Heuristics: To reduce the search space, we apply the

following heuristics to further limit the size of the legal
action set A(s):

• Kinematic feasibility: For each contact point c, a con-
tact region will only be considered if inverse kinematics
can find a manipulator configuration that reaches the
center of this region within an error threshold of 1 cm.

• Number of contacts: For time steps where the angular
acceleration is nonzero, we require at least min(Nc, 3)
contact points to be in contact.

4) Reward function: Once the PVMCTS reaches a termi-
nal state, hence Nd = T , we obtain a sequence of contact
regions [Ω1(t), . . . ,ΩNc

(t)]T−1
t=0 , which is used to construct a

continuous optimization problem that solves for the contact
force fc(t), fe(t) and the contact location rc(t) (cf. Sec III-
B). To evaluate this solution, we integrate it to obtain an
object pose q̂(T − 1) with the semi-implicit Euler method.
We then compare it with the desired pose q(T−1) to compute
a weighted distance

D(q, q̂) = ∥p− p̂∥+ β
∥∥∥log(R̂TR)

∥∥∥ , (2)

where β > 0 scales the angular distance. The weighted
distance within a threshold D ≤ Dth is then normalized to
[0, 1] to obtain the reward.

5) Goal-conditioned policy-value network: Note that each
PVMCTS instance only searches for the contact sequence for
a given object motion ξ, thus the rewards are motion-specific.
To allow learning from object motion information as well,
we define an intermediate goal λn = [q(nd), q(nd + h)]
for each planning step n that consists of the current desired
object pose q(nd) and the future one q(nd+ h) in h steps.
Fig 1 depicts the policy-value network architecture.

6) Value classifier: One key difference between our
task and the generic game-play is that our dataset is
highly imbalanced—many contact sequences explored by the
PVMCTS are dynamically infeasible, resulting in rewards
that equal zero. Directly training on such a dataset leads
to underestimation of the value function. Instead, we only
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Fig. 1: Schematic diagram of the policy-value network
architecture. Activation functions and regularization layers
such as Dropout and BatchNorm are omitted.

train our policy-value network on samples that incur positive
rewards. Additionally on the entire dataset D, we train
a binary classifier Cϕ(s) with logistic regression where
positive samples are given more weights. At inference time, a
state is only fed into the policy-value network if the classifier
labels it as positive; otherwise, we simply output zero value
vθ(s) = 0 and uniformly distributed action probability
pθ(s, a) =

1
|A(s)| .

B. Continuous Contact Optimization via ADMM

Now let us consider the sub-problem where we already ob-
tained a sequence of contact regions [Ω1(t), . . . ,ΩNc

(t)]T−1
t=0

for each contact point c: we can find the contact forces and
locations by solving a continuous optimization problem with
the following constraints and cost. For brevity, we omit the
time indices if there is no ambiguity.

1) Dynamics: The contact forces and torques must sum
to the desired ones

Nc∑
c=1

fc +

Ne∑
e=1

fe = fdes (3a)

Nc∑
c=1

rc × fc +

Ne∑
e=1

re × fe = τdes . (3b)

2) Contact location: The contact location must be inside
the given contact region Ωc for Ωc ̸= 0.

3) Contact force: If the c-th contact point is not in contact
with any contact region, hence Ωc = 0, the contact force is
set to zero. Note that this is not a complementarity constraint
as Ωc is already given.

4) Sticking contact: If the c-th contact point is in contact
with the same region at two consecutive time steps, then the
contact location remains the same to prevent the manipulator
from sliding on the object.

5) Coulomb friction: The contact force has to stay inside
the friction cone of the given surface. Note that the envi-
ronment contact can be either sticking or sliding depending
on the velocity of the contact point ṙe(t) relative to the
environment, which can be obtained from the object motion.

6) Performance cost: Finally, we minimize a quadratic
objective function that avoids applying large forces at the

boundary of the contact region

J =

T−1∑
t=0

Nc∑
c=1

∥fc(t)∥2 + ∥rc(t)∥2 (4)

7) Biconvex Decomposition: The continuous optimization
problem described above has an interesting feature that the
only non-convex constraint (3b) due to the cross product
rc × fc is in fact biconvex. When we group the decision
variables into two sets x = [rc(t), αc(t)]

T−1
t=0 and z =

[fc(t), fe(t)]
T−1
t=0 , we can re-write the original problem into

the standard ADMM form with a biconvex constraint

G(x, z) =

Nc∑
c=1

rc × fc +

Ne∑
e=1

re × fe − τdes = 0 . (5)

As all other constraints are separable in x and z, they can
be added as indicator functions to the objective and at each
ADMM update step solved as standard constrained Quadratic
Programs (QPs).

IV. EXPERIMENTS

We conduct simulation experiments to show that our
framework 1) is capable of finding dynamically feasible so-
lutions to manipulation planning problems defined in Sec II,
and 2) scales to long-horizon tasks even when trained only
on data collected from shorter-horizon tasks.

A. Experiment Setup

Throughout all experiments, we consider a manipulator
with Nc = 2 contact points, composed of two modular robot
fingers similar to the ones used in [19] and a 10 cm×10 cm×
10 cm cube with mass m = 0.5 kg on an infinitely large
plane. The cube and the plane have the same friction coef-
ficient µ = µe = 0.8. We consider the following primitive
object motions and the composite of them 1) Sliding (S)
2) Sliding with curvature (SC) 3) Rotating (R) 4) Lifting (L),
and 5) Pivoting (P) generated by interpolating between the
initial and desired object poses. An interpolated trajectory
for a single primitive motion has T = 48 time steps and
lasts 4.8 s. We require each contact point remain in the
same region for d = 8 time steps, hence the trajectory has
N = 6 contact modes. The trajectory always starts with
zero velocity and acceleration for 2.4 s allowing at most two
contact switches.

B. Metrics

We examine three performance metrics to evaluate the
effectiveness and efficiency of our method

1) Pose error: the error between the desired pose and the
one integrated from the solution.

2) Number of evaluations: the number of continuous
optimization problems the PVMCTS needs to solve
until it finds the first feasible solution below the error
threshold Dth.

3) Solution time: the total time needed to find the first
feasible solution.



TABLE I: Task performance for motions interpolated from randomly sampled poses with various lengths. Pose errors are
calculated only for successful tasks.

# Object Trajectory Model Success rate Error [cm,°] # Evaluation Time [s]
motions length T Average Worst Average Worst Average Worst

1 48
Untrained 20/20 0.16, 1.18 0.57, 5.89 4.65 11 2.09 4.88
Trained 20/20 0.15,0.39 0.24,0.83 1.5 4 0.71 1.73

2 96
Untrained 20/20 0.35, 1.23 0.79, 2.24 8.15 25 8.54 21.88
Trained 20/20 0.32,0.88 0.48,1.78 2 5 1.96 4.68

3 144
Untrained 12/20 0.48, 1.86 0.91, 5.98 29.85 50 46.23 84.63
Trained 20/20 0.43,1.81 0.58,4.84 2.3 8 3.18 9.43

4 192
Untrained 5/20 0.61,1.95 0.74,2.13 43.05 50 93.57 137.31
Trained 20/20 0.65, 2.56 1.59, 6.92 2.8 16 6.12 31.02

C. Untrained PVMCTS
In this set of experiments, we show that our method is

capable of generating feasible contact plans for primitive
object motions using an untrained PVMCTS. The network
outputs are simply set to vθ(s, a) = 0 and pθ(s, a) =

1
|A(s)| .

1) Tasks: In this experiment, we consider for each primi-
tive object motion the following desired poses summarized in
Table II. They are given relative to the initial object pose and
the orientation is expressed in the axis-angle representation.

TABLE II: Desired object poses for various primitive mo-
tions.

Tasks Position [cm] Orientation [°]

S [0, 10, 0] [0, 0, 0]
SC [0, 5, 0] [0, 0, 45]
R [0, 0, 0] [0, 0, 90]
L [0, 0, 10] [0, 0, 0]
P [5, 0, 2] [0, 45, 0]

2) Results: Table III shows that our method, even with an
untrained model, is capable of finding dynamically feasible
solutions for object motions after only a handful evalua-
tions on average. Indeed, the heuristics we proposed greatly
reduces the search space while still allowing discovery of
dynamically feasible contact plans that results in small pose
errors for the object motions considered in this task.

3) Executing the contact plan: To validate the solution
found by ADMM, we execute the contact plan in an open-
loop fashion with a simple impedance controller for each
finger in the PyBullet simulator [20]. In simulation, the robot
is able to move the object towards its desired pose even
without the feedback of the actual object pose.

TABLE III: Task performance for primitive object motions.

Tasks Error [cm,°] # Evaluation Time [s]
Average Worst Average Worst Average Worst

S 0.25, 0.72 0.27, 1.69 6.3 15 3.10 7.03
SC 0.09, 0.42 0.14, 0.42 4.3 12 2.31 6.38
R 0.00, 1.69 0.00, 1.69 2.5 9 1.16 3.96
L 0.35, 0.00 0.35, 0.00 5.7 12 2.48 4.89
P 0.36, 2.12 0.42, 3.84 8.2 19 3.62 7.56

D. Learning Planar Manipulation Tasks
In the previous experiments, we have shown the effec-

tiveness of our search strategy thanks to the heuristics that
greatly reduces the size of the set of legal actions A(s).

Nevertheless, the search space still grows exponentially with
the length of the contact sequence N . It is thus natural to ask
if learning from past experience can accelerate the search.

In this experiment, we show that we can significantly
reduce the solution time for longer-horizon tasks even if they
are not contained in the training data.

1) Tasks: : We consider the composition of planar object
motions SC with randomly sampled desired poses, which are
then interpolated. The trajectories in the training data all have
a length of T = 96.

2) Results: We evaluate the trained and untrained models
on tasks that are generated by the same procedure yet have
different trajectory lengths. Each task category with the same
trajectory length has 20 different randomly generated tasks.
We set the maximal number of evaluations to be 50, hence
a task is considered failed if no feasible solution within
the error threshold is found after evaluating 50 contact
sequences. Table I reports the performance metrics of the
untrained and trained model for each task category. We
see that the trained model consistently solve all the tasks,
regardless of the trajectory length, while the untrained model
struggles in long-horizon tasks, solving only 5 out of 20 tasks
with trajectory length T = 192. In contrast to the untrained
model, the average number of evaluations required by the
trained model to find the first feasible solution grows rather
slowly with the trajectory length.

V. CONCLUSION

In this work, we proposed a framework that combines
data-driven tree search via PVMCTS and efficient non-
convex optimization via ADMM to find dynamically feasible
contact forces and locations to realize a given object motion.
We show that the capability of learning from data allows
our framework to achieve great scalability for long-horizon
motions even when the dataset only contains data collected
from shorter motions.

The most limited aspect of our approach is that the object
motion must be provided. While this is possible for simple
tasks, true dexterity requires automatic generation of the
object motion by reasoning about the environment, which
can be achieved by enumerating not only the manipulator
contacts but also the environment contacts as proposed
in [21]. It is thus an interesting future research direction to
incorporate such a component.
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