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Abstract

We propose policy gradient algorithms for solving
a risk-sensitive reinforcement learning (RL) prob-
lem in on-policy as well as off-policy settings. We
consider episodic Markov decision processes, and
model the risk using the broad class of smooth risk
measures of the cumulative discounted reward. We
propose two template policy gradient algorithms
that optimize a smooth risk measure in on-policy
and off-policy RL settings, respectively. We de-
rive non-asymptotic bounds that quantify the rate
of convergence of our proposed algorithms to a
stationary point of the smooth risk measure. As
special cases, we establish that our algorithms ap-
ply to optimization of mean-variance and distortion
risk measures, respectively.

1 INTRODUCTION

Risk-sensitive reinforcement learning (RL) has received a
lot of attention recently in the literature, and a few repre-
sentative works are Tamar et al. [2012], Prashanth [2014],
Tamar et al. [2015b], Borkar and Jain [2010], Chow et al.
[2017], Prashanth and Ghavamzadeh [2016], Borkar [2010],
Prashanth et al. [2016], Huang and Haskell [2017]. Mean-
variance tradeoff Markowitz [1952], value at risk (VaR),
conditional value at risk (CVaR) Rockafellar and Uryasev
[2000], spectral risk measure Acerbi [2002], distortion risk
measure Denneberg [1990], a risk measure based on cumu-
lative prospect theory (CPT) Tversky and Kahneman [1992]
are some of the popular risk measures considered in the
literature.

Policy gradients form a popular solution approach for tra-
ditional risk-neutral RL. The idea here is to consider a pa-
rameterized set of policies, usually in a continuous space,
and perform a random search using stochastic gradient as-
cent to find a ‘good-enough’ policy that optimizes a certain

performance criterion. Several risk-sensitive RL algorithms
employ this approach to find policies that are risk-optimal,
see Prashanth and Fu [2022] for a detailed survey of some
of the recent developments in this research direction.

In this paper, we consider the problem of optimizing an
abstract smooth risk measure (SRM) in a risk-sensitive RL
context. SRMs constitute a broad class of risk measures
that includes mean-variance risk measure (MVRM) and dis-
tortion risk measure (DRM). Mean-variance tradeoff is a
well-known risk measure that is closely related to exponen-
tial cost risk measure – a connection that can be seen using
a Taylor series expansion (cf. Prashanth and Ghavamzadeh
[2016]). Next, DRM is an expectation w.r.t. a distorted dis-
tribution that is arrived at using a distortion function that
alters the underlying cumulative distribution function (CDF).
Popular risk measures like VaR and CVaR can be seen as
special cases of DRM using appropriate distortion functions.
However, VaR is not a popular objective for risk-sensitive
optimization since it is not coherent1, while CVaR, though
coherent, is not preferable, as it considers all rewards below
VaR equally, while ignoring all those beyond VaR. A DRM
is preferable as it prioritizes all rewards appropriately, rather
than assigning equal weight or selectively focusing on a
fraction using a tail-based risk measure like CVaR.

We employ the policy gradient approach for solving a risk-
sensitive Markov decision process (MDP), with an SRM
as the objective. The goal in our formulation is to find a
policy that maximizes the SRM of the cumulative reward
in an episodic MDP. We propose a template policy gradient
algorithm to solve this problem for an abstract SRM. The
template algorithm has the following crucial components:
a risk estimation scheme and a gradient estimation scheme.
The risk estimation scheme for an abstract SRM is assumed
to guarantee a O(1/m) mean-square error (MSE), where m
is the number of episodes. With an expected value objective

1A risk measure is said to be coherent if it is translation invari-
ant, sub-additive, positive homogeneous, and monotonic Artzner
et al. [1999].
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in a risk-neutral setting, this MSE requirement is natural. For
the case of MVRM and DRMs, we manifest such a bound
for natural estimators. We would like to add that, unlike
expected value where a sample mean was a good estimator,
estimating a DRM is more challenging since the episodes
are obtained using the CDF of the cumulative reward, while
DRM is an expectation with a distorted distribution implying
an estimate of the underlying CDF is necessary, or a sample
mean is not sufficient for DRM estimation.

For the purpose of gradient estimation, we employ the
smoothed functional (SF) approach. This scheme falls under
the realm of simultaneous perturbation methods Bhatna-
gar et al. [2013], which estimate the gradient of a function
given noisy observations. Simultaneous perturbation meth-
ods in general, and SF methods in particular, are efficient
and easy to implement as they require only two function
measurements for estimating the gradient, irrespective of
the parameter dimension. The choice of the SF scheme for
estimating the gradient of an abstract SRM is not arbitrary.
For some risk measures, it is not possible to employ the like-
lihood ratio method to arrive at a policy gradient theorem.
This is true for the mean variance risk measure, as shown in
Prashanth and Ghavamzadeh [2016]. This is also unlike the
classic expected value objective, for which one could use
the policy gradient theorem to arrive at a gradient estimation
scheme based on the likelihood ratio method.

We now summarize our contributions. First, we propose two
template policy gradient algorithms with an SRM as the
objective. The first algorithm operates in an on-policy RL
setting, while the second caters to the off-policy RL setting.
Second, we derive non-asymptotic bounds that quantify the
rate of convergence of our proposed algorithms to a sta-
tionary point of an SRM. As special cases, we establish
that our algorithms and associated theoretical guarantees
apply to optimization of mean-variance and distortion risk
measures, respectively, in a risk-sensitive RL context. To
the best of our knowledge, policy gradient algorithm with
non-asymptotic convergence guarantees are not available
in the literature for SRMs in general, and for the special
cases of mean-variance risk measure and DRMs in particu-
lar. Our non-asymptotic bound for the template algorithm
can be used as a blackbox to characterize the convergence
rate for SRMs beyond mean-variance and DRM. In partic-
ular, one can arrive at a O(1/ε2) bound on the number of
iterations for convergence to an ε-stationary point of the
SRM, provided one verifies the necessary assumptions that
guarantee smoothness of SRM and a MSE bound on the
SRM estimators.

Related work. In Tamar et al. [2015a], the authors pro-
pose a policy gradient algorithm for an abstract coherent
risk measure, and derive a policy gradient theorem using
the dual representation of a coherent risk measure. Their
estimation scheme requires solving a convex optimization
problem. Also, they establish asymptotic consistency of

their proposed gradient estimate. In contrast, our estimation
scheme is computationally inexpensive, and our theoretical
guarantees are non-asymptotic in nature. In Prashanth and
Fu [2022], the authors survey policy gradient algorithms
for optimizing different risk measures in a constrained as
well as an unconstrained RL setting. They provide a non-
asymptotic bound of O(1/N1/3) for an abstract smooth
risk measure, assuming a gradient oracle that satisfies cer-
tain bias-variance conditions. In contrast, we provide con-
crete gradient estimation schemes in a risk-sensitive RL
setting, and more importantly, we derive an improved non-
asymptotic bound of order O(1/

√
N). In Prashanth et al.

[2016] the authors consider a CPT-based objective in an
RL setting, and they employ simultaneous perturbation
stochastic approximation (SPSA) method for the gradient
estimation, and provide asymptotic convergence guarantees
for their algorithm. The optimization of a DRM is closely
related to that of CPT. Under general conditions on the
policy parameterization, which are usually employed in
the analysis of policy gradient algorithms, we show that
DRM is smooth, in turn leading a non-asymptotic bound of
O(1/

√
N). This is unlike Prashanth et al. [2016], where the

authors provide asymptotic guarantees assuming the policy
parameterization ensures that the CPT-value is three times
continuously differentiable — a condition that is hard to
verify in practice. In a non-RL context, the authors in Glynn
et al. [2021] study the sensitivity of DRM using an estimator
that is based on the generalized likelihood ratio method, and
establish a central limit theorem for their gradient estimator.
In Holland and Mehdi Haress [2022], the authors analyze
the optimization of spectral risk measures in an empirical
risk minimization framework that assumes convex losses.

The rest of the paper is organized as follows: Section 2
provides the preliminaries for a risk-sensitive episodic prob-
lem. Section 3 introduces our proposed policy gradient tem-
plate for smooth risk measures. Section 4 presents the non-
asymptotic bounds for our proposed algorithms. Section
5 outlines the application of our algorithms to two promi-
nent examples of SRM, namely, DRM and MVRM. Finally,
Section 6 provides the concluding remarks.

2 PRELIMINARIES

We consider an MDP with a state space S and an action
space A. We assume that S and A are finite spaces. Let
r : S×A×S→ [−rmax, rmax], rmax ∈ R+ be the single stage
scalar reward, and p : S× S×A→ [0, 1] be the transition
probability function. We consider episodic problems, where
each episode starts at a fixed state S0 and terminates at a
special zero reward absorbing state 0. The action selection
is based on parameterized stochastic policies {πθ : S×A×
Rd → [0, 1], θ ∈ Rd}. We make the following assumptions
on the parameterized policies {πθ, θ ∈ Rd}:

(A1). The policies {πθ, θ ∈ Rd} are proper, i.e.,



∃M > 0 : max
s∈S

P (SM 6= 0|S0 = s, πθ) < 1,∀θ ∈ Rd.

(A2). ∃Md,Mh > 0 : ∀θ ∈ Rd,∀a ∈ A, s ∈ S,
‖∇ log πθ(a | s)‖ ≤ Md, and

∥∥∇2 log πθ(a | s)
∥∥ ≤ Mh,

where ‖·‖ is the d-dimensional Euclidean norm when the
operand is a vector, and the operator norm when the
operand is a matrix.

Assumption (A1) is commonly used in the analysis of
episodic MDPs (cf. Bertsekas and Tsitsiklis [1996]). An
assumption like (A2) is common for analyzing policy gra-
dient algorithms (cf. Zhang et al. [2020], Papini et al.
[2018]). To illustrate the plausibility of (A2), let us exam-
ine a policy that follows Gibbs distribution, i.e., πθ(a|s) =
exp(h(s,a,θ))/

∑
b∈A exp(h(s,b,θ)), where h : S×A×Rd → R

is a user defined function. We can see that,

∇ log πθ(a|s) = ∇h(s, a, θ)−
∑
b∈A

πθ(b|s)∇h(s, b, θ);

∇2 log πθ(a|s) = ∇2h(s, a, θ)

+

(∑
b∈A

πθ(b|s)∇h(s, b, θ)

)(∑
b∈A

πθ(b|s)∇h(s, b, θ)

)>
−
∑
b∈A

πθ(b|s)
(
∇2h(s, b, θ) +∇h(s, b, θ)∇h(s, b, θ)>

)
.

If we choose linear policy class, i.e., h(s, a, θ) =
φ(s, a)>θ, with bounded features, i.e., ‖φ(s, a)‖ ≤ M ,
then ‖∇ log πθ(a|s)‖ ≤ |A|M , and

∥∥∇2 log πθ(a|s)
∥∥ ≤

|A|M2 + |A|2M2. Since we consider finite state-action
spaces, it is easy to arrive at constants Md and Mh that
ensure (A2) holds.

We denote by St and At, the state and the action at time
t ∈ {0, 1, · · · } respectively. The cumulative discounted
rewardRθ, which is a random variable, is defined as follows:

Rθ =

T−1∑
t=0

γtr(St, At, St+1),∀θ ∈ Rd, (1)

whereAt ∼ πθ(·, St), St+1 ∼ p(·, St, At), γ ∈ (0, 1) is the
discount factor, and T is the random length of an episode.
We can see that ∀θ ∈ Rd, |Rθ| < rmax

1−γ = Mr a.s. From
(A1), we infer that E[T ] <∞. This fact in conjunction with
T ≥ 0 implies the following bound:

∃Me > 0 : T ≤Me <∞ a.s. (2)

On-policy learning is a scheme where a policy parameter θ is
optimized using the data collected by the same policy πθ. In
contrast, off-policy learning is a scheme where we optimize
θ using data collected by a different behavior policy b.

In an off-policy setting, we collect episodes from b and
estimate the values of πθ, using importance sampling ratios.
We require the behavior policy b to be proper, i.e.,

(A3). ∃M > 0 : maxs∈S P (SM 6= 0 | S0 = s, b) < 1.

We also assume that the target policy πθ is absolutely con-
tinuous w.r.t. the behavior policy b, i.e.,

(A4). ∀θ ∈Rd, b(a|s)=0⇒ πθ(a|s)=0,∀a ∈ A,∀s ∈ S.

Assumption (A4) is standard in an off-policy RL setting (cf.
Sutton et al. [2009]).

The cumulative discounted reward Rb, which is a random
variable, is defined as follows:

Rb =

T−1∑
t=0

γtr(St, At, St+1), (3)

whereAt ∼ b(·, St), St+1 ∼ p(·, St, At), γ ∈ (0, 1), and T
is the random length of an episode. As before, (A3) implies
E[T ] <∞, and the following bound:

∃Me > 0 : T ≤Me <∞, a.s. (4)

The importance sampling ratio ψθ is defined by

ψθ =

T−1∏
t=0

πθ(At | St)
b(At | St)

. (5)

From (A2) and (A4), we obtain ∀θ ∈ Rd, πθ(a|s) > 0 and
b(a|s) > 0, ∀a ∈ A, and ∀s ∈ S. This fact in conjunction
with (4) implies the following bound for ψθ:

∃Ms > 0 : ∀θ ∈ Rd, ψθ ≤Ms, a.s. (6)

The cumulative discounted reward is a random variable
as there is randomness in state transition as modeled by
the transition probability function as well as in the action
selection in the case of stochastic policies. We consider
a smooth risk measure ρ as an objective function, which
provides a numerical value that represents certain aspects of
this random variable.

Definition 1. A risk measure is smooth if it satisfies the
following condition: There exists a positive constant Lρ′
such that,

∀θ1, θ2 ∈ Rd, ‖∇ρ(θ1)−∇ρ(θ2)‖ ≤ Lρ′ ‖θ1−θ2‖ . (7)

Under relatively general conditions, DRM and MVRM can
be considered as instances of smooth risk measures. We
establish this fact in Section 5.

Our goal is to find a policy parameter θ∗ that maximizes the
objective function ρ, i.e,

θ∗ ∈ argmax
θ∈Rd

ρ(θ). (8)



3 POLICY GRADIENT TEMPLATE

We propose two policy gradient algorithms for optimizing a
smooth risk measure. The first algorithm operates in an on-
policy RL setting, and Algorithm 1 presents the pseudocode.
The second algorithm caters to an off-policy RL setting, with
a pseudocode that follows the template in Algorithm 1 with
variations in estimation. There are two crucial ingredients
in each of these policy gradient algorithms:

1. Risk estimation: This refers to the problem of estimat-
ing the value of a smooth risk measure for a given
policy parameter, say θ. In an on-policy setting, the es-
timation scheme has access to a mini-batch of episodes
from the policy πθ itself. On the other hand, in an off-
policy setting, the estimation scheme has to use the
episodes simulated using a behavior policy.

2. Gradient estimation: This refers to the estimation of the
policy gradient∇ρ(θ) for a given parameter θ. Such an
estimate would be used to perform stochastic gradient
ascent in the policy parameter.

The estimation scheme is specific to the risk measure con-
sidered. For the theoretical guarantees in the next section,
we require the following bound on the estimate ρ̂m(θ) of
the risk ρ(θ), given m episodes: For some positive constant
C1,

E
[
|ρ̂m(θ)− ρ(θ)|2

]
≤ C1

m
. (9)

The condition above relates to the mean-square error of the
risk estimator, and the rate of O(1/m) is natural, considering
such a bound is reasonable even for the case of an expected
value objective. For the two applications with mean-variance
and distortion risk measures, we shall establish later that
the estimators of these risk measures satisfy the condition
specified above.

For handling the problem of gradient estimation, both al-
gorithms use an SF-based estimation scheme. The choice
of this gradient estimation scheme is not arbitrary. The ap-
plication of the likelihood ratio method to derive a policy
gradient theorem is not viable for certain risk measures. This
limitation is evident in the case of the mean-variance risk
measure, as demonstrated in [Prashanth and Ghavamzadeh,
2016, Lemma 1]. Specifically, when considering the policy
gradient expression for the squared value E

[
(Rθ)2

]
, it in-

corporates the gradient of the value function at each state of
the MDP. Consequently, this inclusion presents challenges
in accurately estimating the gradient. In the aforementioned
reference, the authors employed SPSA, a popular simultane-
ous perturbation method to workaround the policy gradient
expression. In our work, we use SF, which also falls under
the realm of simultaneous perturbation methods for gradient
estimation. Moreover, unlike Prashanth and Ghavamzadeh
[2016], we consider a broad class of smooth risk measures,

and more importantly, we establish non-asymptotic bounds
that quantify the rate of convergence of our proposed SF-
based policy gradient algorithms.

The SF-based gradient estimation is a zeroth-order gradient
estimation scheme, where the gradient is estimated from per-
turbed function values (cf. Nesterov and Spokoiny [2017],
Bhatnagar et al. [2013], Shamir [2017]). The SF method
forms a smoothed version of the objective function ρ(·) as
ρµ(·) and uses the gradient ∇ρµ as an approximation for
∇ρ. The smoothed functional ρµ(θ) is defined as

ρµ(θ) = Eu∈Bd [ρ(θ + µu)] , (10)

where u is sampled uniformly at random from the unit ball
Bd = {x ∈ Rd | ‖x‖ ≤ 1}, and µ ∈ (0, 1] is the smoothing
parameter. From [Flaxman et al., 2005, Lemma 2.1], we
obtain the following expression for the gradient of ρµ(θ).

∇ρµ(θ) = Ev∈Sd−1

[
d

µ
ρ(θ + µv)v

]
, (11)

where v is sampled uniformly at random from the unit
sphere Sd−1 = {x ∈ Rd | ‖x‖ = 1}. In a determinis-
tic optimization setting with perfect measurements of ρ(·),
the gradient∇ρµ(θ) is estimated as follows:

∇̂µ,nρ(θ) =
d

n

n∑
i=1

ρ(θ + µvi)− ρ(θ − µvi)
2µ

vi, (12)

where ∀i, vi is sampled uniformly at random from Sd−1.
The gradient estimate is averaged over n unit vectors to
reduce the variance. Using the proof technique from Vijayan
and Prashanth [2021], we show that ∇̂µ,nρ(θ) is an unbiased
estimator of∇ρµ(θ), see Appendix A for the details.

In a typical RL setting, we may not have direct measure-
ments of ρ(·), which need to be estimated using sample
episodes. Let ρ̂m(·) be the estimator for ρ(·), then we use a
gradient estimator as given below:

∇̂µ,nρ̂m(θ) =
d

n

n∑
i=1

ρ̂m(θ + µvi)− ρ̂m(θ − µvi)
2µ

vi.

(13)

We solve (8) using the following update iteration:

θk+1 = θk + α∇̂µ,nρ̂m(θk), (14)

where θ0 is set arbitrarily, and α is the step-size.

We consider two algorithms, both armed with a risk esti-
mator ρ̂m(·) and a risk gradient estimate using SF. In our
first algorithm OnP-SF, ρ̂m(·) uses an on-policy evaluation.
Algorithm 1 presents the pseudocode of OnP-SF.

Each iteration of OnP-SF requires 2mn episodes corre-
sponding to 2n perturbed policies. In some practical applica-
tions, it may not be feasible to generate system trajectories



Algorithm 1 OnP-SF

1: Input: Parameterized form of the policy π, iteration
limit N , step-size α, perturbation parameter µ, and
batch sizes m and n;

2: Initialize: Target policy parameter θ0 ∈ Rd, and the
discount factor γ ∈ (0, 1);

3: for k = 0, . . . , N − 1 do
4: for i = 1, . . . , n do
5: Get [v1i , . . . , v

d
i ] ∈ Sd−1;

6: Generate m episodes each using π(θk±µvi);
7: Estimate ρ̂m(θk ± µvi);
8: end for
9: Use (13) to estimate ∇̂µ,nρ̂m(θk);

10: Use (14) to calculate θk+1;
11: end for
12: Output: Policy θR, where R ∼ U{0, N − 1}

corresponding to different perturbed policies. In our sec-
ond algorithm OffP-SF, we overcome the aforementioned
problem by performing the off-policy evaluation. Using
the off-policy setting, the number of episodes needed in
each iteration of our algorithm can be reduced to m. The
pseudocode of OffP-SF is similar to Algorithm 1 with the
following deviations: The estimate ρ̂m(θk ± µvi) in step 7
is performed in a off-policy fashion, and for this purpose m
episodes are generated only once using the behavior policy.
In contrast, step 6 in Algorithm 1 requires simulation of m
episodes in each iteration using the current policy parameter
πθk±µvi .

4 MAIN RESULTS

Our non-asymptotic analysis establishes a bound on the
number of iterations of our proposed algorithms to find
an ε-stationary point of the smooth risk measure, which is
defined below.

Definition 2 (ε-stationary point). Fix ε > 0. Let θR be
the random output of an algorithm. Then, θR is called an
ε-stationary point of problem (8), if E

[
‖∇ρ (θR)‖2

]
≤ ε,

where the expectation is over R.

For a non-convex objective function, it is common in opti-
mization literature to establish a convergence rate result to
an ε-stationary point. Such a convergence notion is used in
the analysis of policy gradient algorithms as well, cf. Papini
et al. [2018], Shen et al. [2019], Zhang et al. [2020].

4.1 BOUNDS FOR ONP-SF/OFFP-SF

We make the following assumptions for the sake of analysis.

(A5). ∀θ ∈ Rd, ρ̂m(θ) and ρ(θ) are bounded.

(A6). ∀θ ∈ Rd, E
[
|ρ̂m(θ)− ρ(θ)|2

]
≤ C1

m .

(A7). ∀θ1, θ2 ∈ Rd, |ρ(θ1)− ρ(θ2)| ≤ Lρ ‖θ1 − θ2‖.

(A8). ∀θ1, θ2 ∈ Rd, ‖∇ρ(θ1)−∇ρ(θ2)‖ ≤ Lρ′ ‖θ1−θ2‖.

We present bounds for an iterate θR that is chosen uniformly
at random from {θ0, · · · , θN−1}. The bound that we present
below applies to the template algorithm for on-policy as well
as off-policy RL settings. Moreover, the bound below is for
a general step-size, smoothing parameter and batch size
parameters. Subsequently, we specialize this result to arrive
at a O(1/

√
N) bound on E

[
‖∇ρ (θR)‖2

]
. The proofs can

be found in Appendix A or in the complete version of this
paper accessible through Vijayan and Prashanth [2023].

Proposition 1. (OnP-SF/OffP-SF) Assume (A5)-(A8). Let
{θi, i = 0, · · · , N − 1} be the policy parameters generated
by OnP-SF/OffP-SF, and let θR be chosen uniformly at
random from this set. Let ρ∗ = maxθ∈Rd ρ(θ). Then

E
[
‖∇ρ(θR)‖2

]
≤ 2 (ρ∗ − ρ(θ0))

Nα
+ µ2d2L2

ρ′

+ Lρ′α

(
2d2L2

ρ

n
+

d2C1

µ2mn

)
+

4d2L2
ρ

n
+

d2C1

µ2mn
, (15)

where Lρ, L′ρ, and C1 are as in (A5)-(A8).

A straightforward specialization of the bound in (15) with
specific choices for the step-size α, smoothing parameter
µ, and batch sizes m and n leads to following bounds for
OnP-SF and OffP-SF algorithms, respectively.

Theorem 1. (OnP-SF) Set α = 1√
N

, µ = 1
4√
N

, n =
√
N ,

and m =
√
N . Then, under the conditions of Proposition 1,

we have

E
[
‖∇ρ(θR)‖2

]
≤ 2 (ρ∗ − ρ(θ0))√

N
+

2d2L2
ρLρ′

N
√
N

+
4d2L2

ρ + d2C1Lρ′

N
+
d2C1 + d2L2

ρ′√
N

.

Theorem 2. (OffP-SF) Set α = 1√
N

, µ = 1
4√
N

, n = N ,
andm = C2 > 0. Then, under the conditions of Proposition
1, we have

E
[
‖∇ρ(θR)‖2

]
≤ 2 (ρ∗ − ρ(θ0))√

N
+

2d2L2
ρLρ′

N
√
N

+
C24d2L2

ρ + d2C1Lρ′

C2N
+
d2C1 + C2d

2L2
ρ′

C2

√
N

.

Remark 1. The results above show that after N iterations
of (14), OnP-SF/OffP-SF return an iterate that satisfies
E
[
‖∇ρ(θR)‖2

]
= O (1/

√
N). To put it differently, to find an

ε-stationary point of the smooth risk measure objective, an
order O(1/ε2) iterations of OnP-SF/OffP-SF are enough.



Table 1: Examples of distortion functions

Dual-power function g(s) = 1− (1− s)r , r ≥ 2

Quadratic function g(s) = (1 + r)s− rs2, 0 ≤ r ≤ 1

Exponential function g(s) = 1−exp(−rs)
1−exp(−r)

, r > 0

Square-root function g(s) =
√
1+rs−1√
1+r−1

, r > 0

Logarithmic function g(s) = log(1+rs)
log(1+r)

, r > 0

Remark 2. The bounds obtained for OnP-SF and OffP-SF
are O(1/

√
N), but with different choices for the parameters

α, µ, n,m. One could vary the parameters n,m for OnP-
SF such that their product remains N , and still obtain the
O(1/

√
N) bound. The implication is that OnP-SF requires

Θ(N) episodes to achieve the aforementioned rate. On the
other hand, one can choose a constant batch size in OffP-SF
and increase the parameter n to be Θ(N) to arrive at a
overall convergence rate of O(1/

√
N). In the off-policy set-

ting, with a fixed dataset, one could increase the parameter
n for higher averaging in the gradient estimate, and such a
scheme would not entail simulation of additional episodes.

Remark 3. Typical results in risk-sensitive RL literature are
produces asymptotic in nature. An exception is a result from
Prashanth and Fu [2022], where non-asymptotic bounds of
O (1/N1/3) are presented. In contrast, we derive O(1/

√
N)

bounds for SRMs.

5 APPLICATIONS

Under relatively general conditions, DRM and MVRM can
be considered as instances of smooth risk measures. We
describe these risk measures in the following sections.

5.1 DISTORTION RISK MEASURES (DRM)

The DRM of Rθ, defined in (1) is the expected value of Rθ

under a distortion of the CDF FRθ , attained using a given
distortion function g(·). We denote by ρg(θ) the DRM of
Rθ, and is defined as follows:

ρg(θ)=

∫ 0

−Mr

(g(1−FRθ (x))−1)dx+

∫ Mr

0

g(1−FRθ (x))dx.

(16)

The distortion function g : [0, 1]→ [0, 1] is non-decreasing,
with g(0) = 0 and g(1) = 1. We can see that ρg(θ)=E[Rθ],
if g(·) is the identity function. A few examples of g(·) are
available in Table 1 and their plots are in Figure 1.

The limit of the integration in 16,Mr = rmax
1−γ or any problem

specific upper bound for
∣∣Rθ∣∣. As g(·) ∈ [0, 1], we can infer

the following bound on ρg(·):

|ρg(·)| ≤ 2Mr. (17)

Figure 1: Examples of distortion functions

The inequality in (17) partially satisfies the conditions spec-
ified by (A5) for the DRM.

Recall that the optimization problem in (8) is solved using
stochastic gradient algorithm, and for each update iteration,
we require estimates of ρg(·). In the following sections, we
describe our algorithms that estimate DRM in on-policy and
off-policy RL settings, respectively.

5.1.1 On-policy DRM estimation

We generate m episodes using the policy πθ, and estimate
the CDF FRθ (·) using sample averages. We denote by Rθi
the cumulative reward of the episode i. We form the estimate
GmRθ (·) of FRθ (·) as follows:

GmRθ (x) =
1

m

m∑
i=1

1{Rθi ≤ x}. (18)

Now, we form an estimate ρ̂Gg (θ) of ρg(θ) as follows:

ρ̂Gg (θ)=

∫ 0

−Mr

(g(1−GmRθ (x))−1)dx+

∫ Mr

0

g(1−GmRθ (x))dx.

(19)

Comparing (19) with (16), it is apparent that we have used
the empirical distribution function GmRθ in place of the true
CDFFRθ . Similar to ρg(·), we can infer the following bound
on ρ̂Gg (·): ∣∣ρ̂Gg (·)

∣∣ ≤ 2Mr. (20)

The inequality in (20) along with (17) satisfies the condi-
tions specified by (A5) for the DRM in an on-policy RL
setting.

We simplify (19) in terms of order statistics as follows:

ρ̂Gg (θ) =

m∑
i=1

Rθ(i)

(
g

(
1− i−1

m

)
−g
(

1− i

m

))
, (21)



where Rθ(i) is the ith smallest order statistic of the samples
{Rθ1, · · ·Rθm}. The reader is referred to Lemma 13 in Ap-
pendix B for the proof. If we choose the distortion function
as the identity function, then the estimator in (21) is merely
the sample mean.

We make the following assumptions to ensure the Lipschitz-
ness, and smoothness of the DRM ρg .

(A9). ∃Mg′ ,Mg′′ > 0 : ∀t ∈ (0, 1), |g′(t)| ≤ Mg′ , and
|g′′(t)| ≤Mg′′ .

The assumption (A9) helps us establish that the distortion
functions and its derivative are Lipschitz continuous. A few
examples of distortion functions, which satisfy (A9) are
given in Table 1.

A critical requirement for establishing convergence guaran-
tee is a bound on the MSE of the risk estimation scheme,
as given in (A6). The result below shows that this MSE
requirement is met by the DRM estimator (19). The proof
can be found in Appendix B.

Lemma 1. Assume (A1)-(A2) and (A9). Then,

E
[∣∣ρg(θ)− ρ̂Gg (θ)

∣∣2] ≤ 16M2
rM

2
g′

m
.

5.1.2 Off-policy DRM estimation

We generate m episodes using the policy b to estimate the
CDF FRθ (·) using importance sampling. We denote by Rbi
the cumulative reward, and ψθi the importance sampling ra-
tio of the episode i. We form the estimate Hm

Rθ (·) of FRθ (·)
as follows:

Hm
Rθ (x) = min{Ĥm

Rθ (x), 1}, where (22)

Ĥm
Rθ (x) =

1

m

m∑
i=1

1{Rbi ≤ x}ψθi . (23)

In the above, Ĥm
Rθ (x) is an empirical estimate of FRθ (x) as

FRθ (x) = E
[
1{Rb ≤ x}ψθ

]
. Because of the importance

sampling ratio, Ĥm
Rθ (x) can get a value above 1. Since we

are estimating a CDF, we restrict Ĥm
Rθ (x) to Hm

Rθ (x).

Now we form an estimate ρ̂Hg (θ) of ρg(θ) as

ρ̂Hg (θ)=

∫ 0

−Mr

(g(1−Hm
Rθ (x))−1)dx+

∫ Mr

0

g(1−Hm
Rθ (x))dx.

(24)

Similar to ρg(·), we can infer the following bound on ρ̂Hg (·):∣∣ρ̂Hg (·)
∣∣ ≤ 2Mr. (25)

The inequality in (25) along with (17) satisfies the condi-
tions specified by (A5) for the DRM in an off-policy RL
setting.

We can simplify (24) in terms of order statistics as

ρ̂Hg (θ) = Rb(1) +

m∑
i=2

Rb(i)g

(
1−min

{
1,

1

m

i−1∑
k=1

ψθ(k)

})

−
m−1∑
i=1

Rb(i)g

(
1−min

{
1,

1

m

i∑
k=1

ψθ(k)

})
, (26)

where Rb(i) is the ith smallest order statistic of the samples
{Rb1, · · ·Rbm}, and ψθ(i) is the importance sampling ratio of
Rb(i). The reader is referred to Lemma 14 in Appendix B for
the proof.

A result in the spirit of Lemma 1 for the off-policy setting is
given below. The result below shows that the MSE require-
ment in (A6) is met by the DRM estimator (24). The proof
can be found in Appendix B.

Lemma 2. Assume (A1)-(A4) and (A9). Then,

E
[∣∣ρg(θ)− ρ̂Hg (θ)

∣∣2] ≤ 16M2
rM

2
g′M

2
s

m
.

5.1.3 Convergence analysis

First we show that the assumptions (A7)-(A8) are satisfied
for the DRM using the results from the following lemma
(see Appendix B for the proof).

Lemma 3. ∀θ1, θ2 ∈ Rd,

|ρg(θ1)− ρg(θ2)| ≤ Lρ ‖θ1−θ2‖ ;Lρ = 2MrMg′MeMd,

‖∇ρg(θ1)−∇ρg(θ2)‖ ≤ Lρ′ ‖θ1 − θ2‖ ;

Lρ′ = 2MrMe

(
MhMg′ +MeM

2
d (Mg′ +Mg′′)

)
.

The main result that establishes a non-asymptotic bound for
Algorithm 1 with DRM as the risk measure is given below.

Corollary 1. (DRM-OnP-SF) Assume (A1)-(A2) and (A9).
Then, under the conditions of Theorem 1, we have

E
[
‖∇ρg(θR)‖2

]
≤

2
(
ρ∗g − ρg(θ0)

)
√
N

+
2d2L2

ρLρ′

N
√
N

+
4d2L2

ρ + d2C1Lρ′

N
+
d2C1 + d2L2

ρ′√
N

.

In the above, ρ∗g = maxθ∈Rd ρg(θ). The constants C1, Lρ,
and Lρ′ are as in Lemmas 1 and 3, respectively.

Proof. Lemma 1 implies (A6) holds for DRM estimator.
Lemma 3 implies the conditions in (A7) and (A8) hold for
DRM. From (17) and (20), we can see that the conditions
in (A5) is satisfied for DRM. The main claim now follows
by an application of Theorem 1.



For the off-policy case, a non-asymptotic bound can be
inferred from Theorem 2 in a similar fashion as the on-
policy case, with Lemma 2 in place of Lemma 1, and (25)
in place of (20).

Corollary 2. (DRM-OffP-SF) Assume (A1)-(A9). Then, un-
der the conditions of Theorem 2, we have

E
[
‖∇ρg(θR)‖2

]
≤

2
(
ρ∗g − ρg(θ0)

)
√
N

+
2d2L2

ρLρ′

N
√
N

+
C24d2L2

ρ + d2C1Lρ′

C2N
+
d2C1 + C2d

2L2
ρ′

C2

√
N

.

In the above, ρ∗g, Lρ, and Lρ′ are as in Corollary 1. The
constant C1 is as in Lemma 2.

Remark 4. If we choose the distortion function as the iden-
tity function, then the estimator in (16) is merely the sample
mean, and we recover the guarantees for a risk-neutral pol-
icy gradient algorithm. In particular, our bounds match the
guarantees given by Vijayan and Prashanth [2021], which
employs an SF-based gradient estimation scheme in a risk-
neutral setting, and establishes consistency with the bounds
of the REINFORCE style policy gradient algorithm.

5.2 MEAN-VARIANCE RISK MEASURE (MVRM)

The MVRM ρλ(θ) of Rθ, defined in (1), is given by

ρλ(θ) = J(θ)− λV (θ), where

J(θ) = E
[
Rθ
]

; V (θ) = E
[(
Rθ
)2]− J(θ)2. (27)

In the above, J(θ) is the value function, which is the ob-
jective in a risk-neutral RL setting. Further, V (θ) is the
variance of the cumulative reward, and λ is a scalar that is
used to tradeoff between mean and variance. A popular risk
measure in control literature is exponential utility, where
the objective is − 1

λ logE[e−λR
θ

], with Rθ denoting the cu-
mulative reward. Using a first-order Taylor expansion, it is
apparent that

− 1

λ
logE[e−λR

θ

] = E[Rθ]− λ

2
Var[Rθ] +O(λ2).

Thus, the MVRM risk measure defined above can be seen
as an approximation to the exponential utility risk measure.
Optimizing the latter risk measure in an RL context is chal-
lenging, and to the best of our knowledge, there is no RL
algorithm with a compact parameterization for this prob-
lem. Instead of using a parameterized family of policies,
the authors in Prashanth and Fu [2022] adopt a different ap-
proach by treating the policy as a probability vector over all
states and actions. Further, they introduce a two timescale
tabular algorithm using Q-values within the context of an
average-cost MDP setting (see Section 7.1 of Prashanth and
Fu [2022] for the details). In contrast, we present a policy

gradient algorithm for MVRM with a provable bound on
the rate for stationary convergence.

It is easy to see that |J(θ)| ≤Mr and V (θ) ≤M2
r . Hence

we could infer the following bound on ρλ(·):

|ρλ(·)| ≤Mr(1 + λMr). (28)

The inequality in (28) partially satisfies the conditions spec-
ified by (A5) for the MVRM.

Next, we describe the estimation of the MVRM in on-policy
and off-policy settings, respectively.

5.2.1 On-policy MVRM estimation

We generate m episodes using the policy πθ, and estimate
J(θ) and V (θ) using sample averages. We denote byRθi the
cumulative reward of the episode i. The estimators Ĵπm of
J(θ) and V̂ πm of V (θ) is defined as follows:

Ĵπm(θ) =
1

m

m∑
i=1

Rθi ; (29)

V̂ πm(θ) =
1

m− 1

m∑
i=1

(
Rθi − Ĵπm

)2
. (30)

Using Theorem 2-3 in [Mood et al., 1974, chapter V1], we
can see that the above estimates are unbiased.

Using (29) and (30), we estimate ρλ(θ) as follows:

ρ̂πλ(θ) = Ĵπm(θ)− λV̂ πm(θ). (31)

We can see that
∣∣∣Ĵπm(·)

∣∣∣ ≤ Mr and V̂ πm(·) ≤ 8M2
r . Hence

we could infer the following bound on ρ̂πλ(·):

|ρ̂πλ(·)| ≤Mr(1 + 8λMr). (32)

The inequality in (32) along with (28) satisfies the condi-
tions specified by (A5) for the MVRM in an on-policy RL
setting.

The result below for the mean-variance estimator (31) sat-
isfies an MSE bound of order O(1/m), in turn verify (A6).
The proof can be found in Appendix C.

Lemma 4. Assume (A1)-(A2), and let m > 2. Then

E
[
|ρ̂πλ(θ)− ρλ(θ)|2

]
≤ 8M2

r + 32λ2M4
r

m
.

5.2.2 Off-policy MVRM estimation

We generate m episodes using the policy b to estimate J(θ)
using importance sampling. We denote byRbi the cumulative
reward, and ψθi the importance sampling ratio of the episode



i. Since J(θ) = E
[
Rbψθ

]
, we estimate it using sample

average as follows:

Ĵbm(θ) =
1

m

m∑
i=1

Rbiψ
θ
i ; (33)

V̂ bm(θ) =
1

m− 1

m∑
i=1

(
Rbiψ

θ
i − Ĵbm

)2
. (34)

As in the on-policy setting, these estimates are unbiased.

Now using (33) and (34), we estimate ρλ(θ) as follows:

ρ̂bλ(θ) = Ĵbm(θ)− λV̂ bm(θ). (35)

Similar to on-policy case, we can see that
∣∣∣Ĵbm(·)

∣∣∣ ≤MrMs

and V̂ bm(·) ≤ 8M2
rM

2
s . Hence we could infer the following

bound on ρ̂bλ(·):∣∣ρ̂bλ(·)
∣∣ ≤MrMs(1 + 8λMrMs). (36)

The inequality in (36) along with (28) satisfies the condi-
tions specified by (A5) for the MVRM in an off-policy RL
setting.

A result in the spirit of Lemma 4 for the off-policy setting
is given below. The result below for the mean-variance
estimator (35) satisfies an MSE bound of order O(1/m), in
turn verify (A6). The proof can be found in Appendix C.

Lemma 5. Assume (A1)-(A4), and let m > 2. Then

E
[∣∣ρ̂bλ(θ)− ρλ(θ)

∣∣2] ≤ 8M2
rM

2
s + 32λ2M4

rM
4
s

m
.

5.2.3 Convergence analysis

We specialize the result in Proposition 1 to MVRM. Though
MVRM is previously analyzed in Tamar et al. [2012],
Prashanth and Ghavamzadeh [2013], they only provide
asymptotic convergence results. In the following lemma,
we show that the assumptions (A7)-(A8) are satisfied for the
MVRM. The proof can be found in Appendix C.

Lemma 6. ∀θ1, θ2 ∈ Rd,

|ρλ(θ1)− ρλ(θ1)| ≤ Lρ ‖θ1 − θ2‖ ;

Lρ = MrMeMd + 3λM2
rMeMd, and

‖∇ρλ(θ1)−∇ρλ(θ1)‖ ≤ Lρ′ ‖θ1 − θ2‖ ;

Lρ′ = MrMe

(
Mh +MeM

2
d

)
+ λM2

rMe

(
3Mh + 5MeM

2
d

)
.

Corollary 3. (MVRM-OnP-SF) Assume (A1)-(A2). Let the
batch size m =

√
N > 2. Then, under the conditions of

Theorem 1, we have

E
[
‖∇ρλ(θR)‖2

]
≤ 2 (ρ∗λ − ρλ(θ0))√

N
+

2d2L2
ρLρ′

N
√
N

+
4d2L2

ρ + d2C1Lρ′

N
+
d2C1 + d2L2

ρ′√
N

.

In the above, ρ∗λ = maxθ∈Rd ρλ(θ). The constants C1, Lρ,
and Lρ′ are as in Lemmas 4 and 6, respectively.

Proof. Lemma 4 implies (A6) holds for MVRM estimator.
Lemma 6 implies the conditions in (A7) and (A8) hold for
MVRM. From (28) and (32), we can see that the conditions
in (A5) is satisfied for MVRM. The main claim now follows
by an application of Theorem 1.

The bound for the off-policy variant follows by using
Lemma 5 in place of Lemma 4, and (36) in place of (32).

Corollary 4. (MVRM-OffP-SF) Assume (A1)-(A4). Let
C2 > 2. Then, under the conditions of Theorem 2, we have

E
[
‖∇ρλ(θR)‖2

]
≤ 2 (ρ∗λ − ρλ(θ0))√

N
+

2d2L2
ρLρ′

N
√
N

+
C24d2L2

ρ + d2C1Lρ′

C2N
+
d2C1 + C2d

2L2
ρ′

C2

√
N

.

In the above, ρ∗λ, Lρ, and Lρ′ are as in Corollary 3. The
constant C1 is as in Lemma 5.

6 CONCLUSIONS

We proposed two policy gradient algorithms that cater to the
broad class of smooth risk measures. Both algorithms em-
ployed an SF-based gradient estimation scheme, and were
shown to work in on-policy as well as off-policy RL set-
tings. We derived non-asymptotic bounds that quantify the
rate of convergence to our proposed algorithms to a station-
ary point of the smooth risk measure. As special cases, we
showed that our theory and algorithms apply to optimiza-
tion of MVRM and DRM, respectively. To the best of our
knowledge, policy gradient algorithms with non-asymptotic
convergence guarantees are not available in the literature for
smooth risk measures in general, and the special cases of
DRM and MVRM, in particular.

As future work, it would be interesting to investigate the
convergence properties of non-smooth risk measures such
as CVaR and CPT. While CVaR can be expressed as a DRM,
its distortion function is not smooth, and CPT has a similar
distortion function that is also non-smooth. To develop pol-
icy gradient algorithms, one could explore the possibility of
using smooth approximations of these distortion functions
and analyze their convergence properties.

Acknowledgements

This work was supported in part by Women Leading IITM
2023 grant.



References

C. Acerbi. Spectral measures of risk: A coherent represen-
tation of subjective risk aversion. Journal of Banking &
Finance, 26(7):1505–1518, 2002.

P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent
measures of risk. Mathematical Finance, 9(3):203–228,
1999.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1st edition, 1996.

S. Bhatnagar, H. Prasad, and L. A. Prashanth. Stochastic
recursive algorithms for optimization. simultaneous per-
turbation methods. Lecture Notes in Control and Inform.
Sci., 434, 2013.

V. S. Borkar. Learning algorithms for risk-sensitive control.
In Proceedings of the 19th International Symposium on
Mathematical Theory of Networks and Systems–MTNS,
volume 5, 2010.

V. S. Borkar and R. Jain. Risk-constrained Markov decision
processes. In IEEE Conference on Decision and Control,
pages 2664–2669, 2010.

Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-
constrained reinforcement learning with percentile risk
criteria. J. Mach. Learn. Res., 18(1):6070–6120, 2017.

D. Denneberg. Distorted probabilities and insurance premi-
ums. Methods of Operations Research, 63(3):3–5, 1990.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online
convex optimization in the bandit setting: Gradient de-
scent without a gradient. In ACM-SIAM Symposium on
Discrete Algorithms, pages 385–394, 2005.

P. Glynn, Y. Peng, M. Fu, and J. Hu. Computing sensitivities
for distortion risk measures. INFORMS J. Comp., 2021.

M. J. Holland and E. Mehdi Haress. Spectral risk-based
learning using unbounded losses. In Proceedings of The
25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine
Learning Research, pages 1871–1886, 2022.

W. Huang and W. B. Haskell. Risk-aware Q-learning for
Markov decision processes. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 4928–
4933. IEEE, 2017.

H. Markowitz. Portfolio selection. The Journal of Finance,
7(1):77–91, 1952.

A. M. Mood, , F. A. Graybill, and D. C. Boes. Introduction
to the Theory of Statistics. McGraw Hill, 3rd edition,
1974.

Y. Nesterov and V. Spokoiny. Random gradient-free mini-
mization of convex functions. Found. Comut. Math., 17:
527– 566, 2017.

M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and
M. Restelli. Stochastic variance-reduced policy gradi-
ent. In ICML, 2018.

L. A. Prashanth. Policy gradients for CVaR-constrained
MDPs. In Algorithmic Learning Theory (ALT), pages
155–169, 2014.

L. A. Prashanth and M. Ghavamzadeh. Variance-constrained
actor-critic algorithms for discounted and average reward
MDPs. Machine Learning, 105(3):367–417, Dec 2016.

L.A. Prashanth and M. Fu. Risk-sensitive reinforcement
learning via policy gradient search. Foundations and
Trends in Machine Learning, 15(5):537–693, 2022.

L.A. Prashanth and M. Ghavamzadeh. Actor-critic algo-
rithms for risk-sensitive mdps. In Adv. Neural Inf. Process.
Syst., volume 26, 2013.

L.A. Prashanth, C. Jie, M. Fu, S. Marcus, and C. Szepesvari.
Cumulative prospect theory meets reinforcement learning:
Prediction and control. In ICML, volume 48, pages 1406–
1415, 2016.

R. T. Rockafellar and S. Uryasev. Optimization of condi-
tional value-at-risk. Journal of risk, 2:21–42, 2000.

O. Shamir. An optimal algorithm for bandit and zero-order
convex optimization with two-point feedback. J. Mach.
Learn. Res., 18(1):1703–1713, 2017.

Z. Shen, A. Ribeiro, H. Hassani, H. Qian, and C. Mi. Hes-
sian aided policy gradient. In ICML, pages 5729–5738,
2019.

R. S. Sutton, H. Maei, and C. Szepesvári. A convergent
o(n) temporal-difference algorithm for off-policy learning
with linear function approximation. In Adv. Neural Inf.
Process. Syst., volume 21, 2009.

A. Tamar, D. D. Castro, and S. Mannor. Policy gradients
with variance related risk criteria. In Proceedings of
the Twenty-Ninth International Conference on Machine
Learning, pages 387–396, 2012.

A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor. Pol-
icy gradient for coherent risk measures. In Adv. Neural
Inf. Process. Syst., 2015a.

A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor. Pol-
icy gradient for coherent risk measures. In Advances
in Neural Information Processing Systems, volume 28,
pages 1468–1476, 2015b.



A. Tversky and D. Kahneman. Advances in prospect the-
ory: Cumulative representation of uncertainty. J. Risk
Uncertain., 5, 1992.

N. Vijayan and L.A. Prashanth. Smoothed functional-based
gradient algorithms for off-policy reinforcement learning:
A non-asymptotic viewpoint. Systems & Control Letters,
155:104988, 2021. ISSN 0167-6911.

N. Vijayan and L.A. Prashanth. A policy gradient approach
for optimization of smooth risk measures. arXiv preprint
arXiv:2202.11046, 2023.

K. Zhang, A. Koppel, H. Zhu, and T. Basar. Global con-
vergence of policy gradient methods to (almost) locally
optimal policies. SIAM J. Control. Optim., 58(6):3586–
3612, 2020.


	Introduction
	Preliminaries
	Policy gradient template
	Main results
	Bounds for OnP-SF/OffP-SF

	Applications
	Distortion risk measures (DRM)
	On-policy DRM estimation
	Off-policy DRM estimation
	Convergence analysis

	Mean-variance risk measure (MVRM)
	On-policy MVRM estimation
	Off-policy MVRM estimation
	Convergence analysis


	Conclusions

