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Abstract

Progressively applying Gaussian noise transforms complex data distributions to
approximately Gaussian. Reversing this dynamic defines a generative model. When
the forward noising process is given by a Stochastic Differential Equation (SDE),
Song et al. (2021) demonstrate how the time inhomogeneous drift of the associ-
ated reverse-time SDE may be estimated using score-matching. A limitation of
this approach is that the forward-time SDE must be run for a sufficiently long
time for the final distribution to be approximately Gaussian while ensuring that
the corresponding time-discretization error is controlled. In contrast, solving the
Schrödinger Bridge (SB) problem, i.e. an entropy-regularized optimal transport
problem on path spaces, yields diffusions which generate samples from the data
distribution in finite time. We present Diffusion SB (DSB), an original approxima-
tion of the Iterative Proportional Fitting (IPF) procedure to solve the SB problem,
and provide theoretical analysis along with generative modeling experiments. The
first DSB iteration recovers the methodology proposed by Song et al. (2021), with
the flexibility of using shorter time intervals, as subsequent DSB iterations reduce
the discrepancy between the final-time marginal of the forward (resp. backward)
SDE with respect to the Gaussian prior (resp. data) distribution. Beyond generative
modeling, DSB offers a computational optimal transport tool as the continuous
state-space analogue of the popular Sinkhorn algorithm (Cuturi, 2013).

1 Introduction

Score-Based Generative Modeling (SGM) is a recently developed approach to probabilistic generative
modeling that exhibits state-of-the-art performance on several audio and image synthesis tasks; see e.g.
Song and Ermon (2019); Cai et al. (2020); Chen et al. (2021a); Kong et al. (2021); Gao et al. (2020);
Jolicoeur-Martineau et al. (2021b); Ho et al. (2020); Song and Ermon (2020); Song et al. (2020,
2021); Niu et al. (2020); Durkan and Song (2021); Hoogeboom et al. (2021); Saharia et al. (2021);
Luhman and Luhman (2021, 2020); Nichol and Dhariwal (2021); Popov et al. (2021); Dhariwal and
Nichol (2021). Existing SGMs generally consist of two parts. Firstly, noise is incrementally added
to the data in order to obtain a perturbed data distribution approximating an easy-to-sample prior
distribution e.g. Gaussian. Secondly, a neural network is used to learn the reverse-time denoising
dynamics, which when initialized at this prior distribution, defines a generative model (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song and Ermon, 2019; Song et al., 2021). Song et al. (2021) have
shown that one could fruitfully view the noising process as a Stochastic Differential Equation (SDE)
that progressively perturbs the initial data distribution into an approximately Gaussian one.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Forward

Forward

Backward

Backward

DSB Steps

DSB 1

DSB 5

t
t = 0 t = T

Generative Model

Figure 1: The reference forward diffusion initialized from the 2-dimensional data distribution fails
to converge to the Gaussian prior in T = 0.2 diffusion-time (N = 20 discrete time steps), and
the reverse diffusion initialized from the Gaussian prior does not converge to the data distribution.
However, convergence does occur after 5 DSB iterations.

The corresponding reverse-time SDE is an inhomogeneous diffusion whose drift depends on the
logarithmic gradients of the perturbed data distributions, i.e. the scores. In practice, these scores are
approximated using neural networks and score-matching techniques (Hyvärinen and Dayan, 2005;
Vincent, 2011) while numerical SDE integrators are used for the sampling procedure.

Although SGM provides state-of-the-art results (Dhariwal and Nichol, 2021), sample generation is
computationally expensive. In order to learn the reverse-time SDE from the prior, i.e. the generative
model, the forward noising SDE must be run for a sufficiently long time to converge to the prior and
the step size must be sufficiently small to obtain a good numerical approximation of this SDE. By
reformulating generative modeling as a Schrödinger bridge (SB) problem, we mitigate this issue and
propose a novel algorithm to solve SB problems. Our detailed contributions are as follows.

Generative modeling as a Schrödinger bridge problem. The SB problem is a famous entropy-
regularized Optimal Transport (OT) problem introduced by Schrödinger (1932); see e.g. (Léonard,
2014b; Chen et al., 2021b) for reviews. Given a reference diffusion with finite time horizon T , a data
distribution and a prior distribution, solving the SB amounts to finding the closest diffusion to the
reference (in terms of Kullback–Leibler divergence on path spaces) which admits the data distribution
as marginal at time t = 0 and the prior at time t = T . The reverse-time diffusion solving this SB
problem provides a new SGM algorithm which enables approximate sample generation from the
data distribution using shorter time intervals compared to the original SGM methods. Our method
differs from the entropy-regularized OT formulation in (Genevay et al., 2018), which deals with
discrete distributions and relies on a static formulation of SB, as opposed to our dynamical approach
for continuous distributions which operates on path spaces. It also differs from (Finlay et al., 2020)
which approximates the SB solution by a diffusion whose drift is computed using potentials of the
dual formulation of SB. Finally, Wang et al. (2021) have recently proposed to perform generative
modeling by solving not one but two SB problems. Contrary to us, they do not formulate generative
modeling as computing the SB between the data and prior distributions. D Solving the Schrödinger
bridge problem using score-based diffusions. The SB problem can be solved using Iterative
Proportional Fitting (IPF) (Fortet, 1940; Kullback, 1968; Chen et al., 2021b). We propose Diffusion
SB (DSB), a novel implementation of IPF using score-based diffusion techniques. DSB does not
require discretizing the state-space (Chen et al., 2016; Reich, 2019), approximating potential functions
using regression (Bernton et al., 2019; Dessein et al., 2017; Pavon et al., 2021), nor performing kernel
density estimation (Pavon et al., 2021). The first DSB iteration recovers the method proposed by
Song et al. (2021), with the flexibility of using shorter time intervals, as additional DSB iterations
reduce the discrepancy between the final-time marginal of the forward (resp. backward) SDE w.r.t.
the prior (resp. data) distribution; see Figure 1 for an illustration. An algorithm akin to DSB has
been proposed concurrently and independently by Vargas et al. (2021); the main difference with our
algorithm is that they estimate the drifts of the SDEs using Gaussian processes while we use neural
networks and score matching ideas.
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Theoretical results. We provide the first quantitative convergence results for the methodology
of Song et al. (2021). In particular, we show that while we simulate Langevin-type diffusions in
potentially extremely high-dimensional spaces, the SGM approach does not suffer from poor mixing
times. Additionally, we derive novel quantitative convergence results for IPF in continuous state-space
which do not rely on classical compactness assumptions (Chen et al., 2016; Ruschendorf et al., 1995)
and improve on the recent results of Léger (2020). Finally, we show that DSB may be viewed as the
time discretization of a dynamic version of IPF on path spaces based on forward/backward diffusions.

Experiments. We validate our methodology by generating image datasets such as MNIST and
CelebA. In particular, we show that using multiple steps of DSB always improve the generative
model. We also show how DSB can be used to interpolate between two data distributions.

Notation. In the continuous-time setting, we set C = C([0, T ] ,Rd) the space of continuous functions
from [0, T ] to Rd and B(C) the Borel sets on C. For any measurable space (E, E), we denote by P(E)
the space of probability measures on (E, E). For any ` ∈ N, let P` = P((Rd)`). When it is defined,
we denote H(p) = −

∫
Rd p(x) log p(x)dx as the entropy of p and KL(p|q) as the Kullback–Leibler

divergence between p and q. When there is no ambiguity, we use the same notation for distributions
and their densities. All proofs are postponed to the supplementary.

2 Denoising Diffusion, Score-Matching and Reverse-Time SDEs

2.1 Discrete-Time: Markov Chains and Time Reversal

Consider a data distribution with positive density pdata
1, a positive prior density pprior w.r.t. Lebesgue

measure both with support on Rd and a Markov chain with initial density p0 = pdata on Rd evolving
according to positive transition densities pk+1|k for k ∈ {0, . . . , N − 1}. Hence for any x0:N =

{xk}Nk=0 ∈ X = (Rd)N+1, the joint density may be expressed as

p(x0:N ) = p0(x0)
∏N−1
k=0 pk+1|k(xk+1|xk). (1)

This joint density also admits the backward decomposition

p(x0:N ) = pN (xN )
∏N−1
k=0 pk|k+1(xk|xk+1),with pk|k+1(xk|xk+1) =

pk(xk)pk+1|k(xk+1|xk)

pk+1(xk+1)
, (2)

where pk(xk) =
∫
pk|k−1(xk|xk−1)pk−1(xk−1)dxk−1 is the marginal density at step k ≥ 1. For

the purpose of generative modeling, we will choose transition densities such that pN (xN ) =∫
p(x0:N )dx0:N−1 ≈ pprior(xN ) for large N , where pprior is an easy-to-sample prior density. One

may sample approximately from pdata using ancestral sampling with the reverse-time decomposition
(2), i.e. first sample XN ∼ pprior followed by Xk ∼ pk|k+1(·|Xk+1) for k ∈ {N − 1, . . . , 0}. This
idea is at the core of all recent SGM methods. The reverse-time transitions in (2) cannot be simulated
exactly but may be approximated if we consider a forward transition density of the form

pk+1|k(xk+1|xk) = N (xk+1;xk + γk+1f(xk), 2γk+1I), (3)

with drift f : Rd → Rd and stepsize γk+1 > 0. We first make the following approximation from (2)

pk|k+1(xk|xk+1) = pk+1|k(xk+1|xk) exp[log pk(xk)− log pk+1(xk+1)]

≈ N (xk;xk+1 − γk+1f(xk+1) + 2γk+1∇ log pk+1(xk+1), 2γk+1I), (4)

using that pk ≈ pk+1, a Taylor expansion of log pk+1 at xk+1 and f(xk) ≈ f(xk+1). In practice,
the approximation holds if ‖xk+1 − xk‖ is small which is ensured by choosing γk+1 small enough.
Although ∇ log pk+1 is not available, one may obtain an approximation using denoising score-
matching methods (Hyvärinen and Dayan, 2005; Vincent, 2011; Song et al., 2021).

Assume that the conditional density pk+1|0(xk+1|x0) is available analytically as in (Ho et al., 2020;
Song et al., 2021). We have pk+1(xk+1) =

∫
p0(x0)pk+1|0(xk+1|x0)dx0 and elementary cal-

culations show that ∇ log pk+1(xk+1) = Ep0|k+1
[∇xk+1

log pk+1|0(xk+1|X0)]. We can therefore

1In this presentation, we assume that all distributions admit a density w.r.t. the Lebesgue measure for
simplicity. However, the algorithms presented here only require having access to samples from pdata and pprior.
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formulate score estimation as a regression problem and use a flexible class of functions, e.g. neural
networks, to parametrize an approximation sθ?(k, xk) ≈ ∇ log pk(xk) such that

θ? = arg minθ
∑N
k=1 Ep0,k [||sθ(k,Xk)−∇xk

log pk|0(Xk|X0)||2],

where p0,k(x0, xk) = p0(x0)pk|0(xk|x0) is the joint density at steps 0 and k. If pk|0 is not available,
we use θ? = arg minθ

∑N
k=1Epk−1,k

[||sθ(k,Xk) − ∇xk
log pk|k−1(Xk|Xk−1)||2]. In summary,

SGM involves first estimating the score function sθ? from noisy data, and then sampling X0 using
XN ∼ pprior and the approximation (4), i.e.

Xk = Xk+1 − γk+1f(Xk+1) + 2γk+1sθ?(k + 1, Xk+1) +
√

2γk+1Zk+1, Zk+1
i.i.d.∼ N (0, I). (5)

The random variable X0 is approximately p0 = pdata distributed if pN (xN ) ≈ pprior(xN ). In what
follows, we let {Yk}Nk=0 = {XN−k}Nk=0 and remark that {Yk}Nk=0 satisfies a forward recursion.

2.2 Continuous-Time: SDEs, Reverse-Time SDEs and Theoretical results

For appropriate transition densities, Song et al. (2021) showed that the forward and reverse-time
Markov chains may be viewed as discretized diffusions. We derive the continuous-time limit of the
procedure presented in Section 2.1 and establish convergence results. The Markov chain with kernel
(3) corresponds to an Euler–Maruyama discretization of (Xt)t∈[0,T ], solving the following SDE

dXt = f(Xt)dt+
√

2dBt, X0 ∼ p0 = pdata, (6)

where (Bt)t∈[0,T ] is a Brownian motion and f : Rd → Rd is regular enough so that (strong) solutions
exist. Under conditions on f , it is well-known (see Haussmann and Pardoux (1986); Föllmer (1985);
Cattiaux et al. (2021) for instance) that the reverse-time process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] satisfies

dYt = {−f(Yt) + 2∇ log pT−t(Yt)} dt+
√

2dBt, (7)
with initialization Y0 ∼ pT , where pt denotes the marginal density of Xt.

The reverse-time Markov chain {Yk}Nk=0 associated with (5) corresponds to an Euler–Maruyama
discretization of (7), where the score functions∇ log pt(x) are approximated by sθ?(t, x).

In what follows, we consider f(x) = −αx for α ≥ 0. This framework includes the one of Song and
Ermon (2019) (α = 0, pprior(x) = N (x; 0, 2T I)) for which (Xt)t∈[0,T ] is simply a Brownian motion
and Ho et al. (2020) (α > 0, pprior(x) = N (x; 0, I/α)) for which it is an Ornstein–Uhlenbeck process,
see Section S3.3 for more details. Contrary to Song et al. (2021) we consider time homogeneous
diffusions. Both approaches approximate (5) using distinct discretizations but our setting leverages
the ergodic properties of the Ornstein–Uhlenbeck process to establish Theorem 1.
Theorem 1. Assume that there exists M ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rd

‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, (8)

with sθ? ∈ C([0, T ] × Rd,Rd). Assume that pdata ∈ C3(Rd, (0,+∞)) is bounded and that there
exist d1, A1, A2, A3 ≥ 0, β1, β2, β3 ∈ N and m1 > 0 such that for any x ∈ Rd and i ∈ {1, 2, 3}

‖∇i log pdata(x)‖ ≤ Ai(1 + ‖x‖βi), 〈∇ log pdata(x), x〉 ≤ −m1 ‖x‖2 + d1 ‖x‖ ,
with β1 = 1. Then for any α ≥ 0, there exist Bα, Cα, Dα ≥ 0 such that for any N ∈ N and {γk}Nk=1
with γk > 0 for any k ∈ {1, . . . , N}, the following bounds on the total variation distance hold:

(a) if α > 0, we have ‖L(X0)− pdata‖TV ≤ Cα(M + γ̄1/2) exp[DαT ] +Bα exp[−α1/2T ];

(b) if α = 0, we have ‖L(X0)− pdata‖TV ≤ C0(M + γ̄1/2) exp[D0T ] +B0(T−1 + T−1/2);

where T =
∑N
k=1 γk, γ̄ = supk∈{1,...,N} γk and L(X0) is the distribution of X0 given in (5).

Proof. We provide here a sketch of the proof. The whole proof is detailed in Section S3.2. Denote
P ∈P(C) the path measure associated with (6) and PR its time-reversal. Denote QN the Markov
kernel taking us from Y0 to YN induced by (5). We have

‖ppriorQN − pdata‖TV = ‖ppriorQN − pdataPT |0(PR)T |0‖TV
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≤ ‖ppriorQN − pprior(PR)T |0‖TV + ‖pprior(PR)T |0 − pdataPT |0(PR)T |0‖TV

≤ ‖ppriorQN − pprior(PR)T |0‖TV + ‖pprior − pT ‖TV.

We control the first term by bounding the discretization error of QN when compared to (PR)T |0 via
the Girsanov theorem. The second term is controlled using the mixing properties of the forward
diffusion process.

Condition (8) ensures that the neural network approximates the score with a given precision M ≥ 0.
Under (8) and conditions on pdata, Theorem 1 states how the Markov chain defined by (5) approximates
pdata in the total variation norm ‖ · ‖TV. The bounds of Theorem 1 show that there is a trade-off
between the mixing properties of the forward diffusion which increases with α, and the quality of the
discrete-time approximation which deteriorates as α and T increase, sinceBα, CαDα →α→+∞ +∞.
Indeed increasing α makes the drift steeper and the continuous-time process converges faster but
smaller step sizes are required in order to control the error between the discrete and the continuous-
time processes. Theorem 1 is the first theoretical result assessing the convergence of SGM methods.
Indeed while Block et al. (2020) establish convergence results for a time-homogeneous Langevin
diffusion targeting a density whose score is approximated by a neural network, all SGM methods
used in practice rely on time-inhomogeneous processes. Contrary to the time-homogeneous case,
this approach does not suffer from poor mixing times as the mixing time dependency in the bounds
of Theorem 1 is entirely determined by the mixing time of the forward process, given by a simple
Brownian motion or an Ornstein–Ulhenbeck process, and is independent of the dimension. Finally,
note that (8) is a strong assumption. In practice we expect to obtain such bounds in expectation over
X with high probability w.r.t. the data distribution as in (Block et al., 2020, Proposition 9). Our results
are also related to (Tzen and Raginsky, 2019, Theorem 3.1) which establishes the expressiveness of
related generative models using tools from stochastic control.

3 Diffusion Schrödinger Bridge and Generative Modeling

3.1 Schrödinger Bridges

The SB problem is a classical problem appearing in applied mathematics, optimal control and
probability; see e.g. Föllmer (1988); Léonard (2014b); Chen et al. (2021b). In the discrete-time
setting, it takes the following (dynamic) form. Consider as reference density p(x0:N ) given by (1),
describing the process adding noise to the data. We aim to find π? ∈PN+1 such that

π? = arg min {KL(π|p) : π ∈PN+1, π0 = pdata, πN = pprior} . (9)

Assuming π? is available, a generative model can be obtained by sampling XN ∼ pprior, followed by
the reverse-time dynamics Xk ∼ π?k|k+1(·|Xk+1) for k ∈ {N − 1, . . . , 0}. Before deriving a method
to approximate π? in Section 3.2, we highlight some desirable features of Schrödinger bridges.

Static Schrödinger bridge problem. First, we recall that the dynamic formulation (9) admits a
static analogue. Using e.g. Léonard (2014a, Theorem 2.4), the following decomposition holds for
any π ∈PN+1, KL(π|p) = KL(π0,N |p0,N ) + Eπ0,N

[KL(π|0,N |p|0,N )], where for any µ ∈PN+1

we have µ = µ0,Nµ|0,N with µ|0,N the conditional distribution of X1:N−1 given X0, XN
2. Hence

we have π?(x0:N ) = πs,?(x0, xN )p|0,N (x1:N−1|x0, xN ) where πs,? ∈P2 with marginals πs,?
0 and

πs,?
N is the solution of the static SB problem

πs,? = arg min {KL(πs|p0,N ) : πs ∈P2, π
s
0 = pdata, π

s
N = pprior} . (10)

Link with optimal transport. Under mild assumptions, the static SB problem can be seen as an
entropy-regularized optimal transport problem since (10) is equivalent to

πs,? = arg min
{
−Eπs [log pN |0(XN |X0)]−H(πs) : πs ∈P2, π

s
0 = pdata, π

s
N = pprior

}
.

If pk+1|k(xk+1|xk) = N (xk+1;xk, σ
2
k+1) as in Song and Ermon (2019), then pN |0(xN |x0) =

N (xN ;x0, σ
2) with σ2 =

∑N
k=1 σ

2
k which induces a quadratic cost and

πs,? = arg min
{
Eπs [||X0 −XN ||2]− 2σ2H(πs) : πs ∈P2, π

s
0 = pdata, π

s
N = pprior

}
.

2See Section S4.1 for a rigorous presentation using the disintegration theorem for probability measures.
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Mikami (2004) showed that πs,? → π?W weakly and 2σ2 KL(πs,?|p0,N ) → W2
2 (pdata, pprior) as

σ → 0, where π?W is the optimal transport plan between pdata and pprior andW2 is the 2-Wasserstein
distance. Note that the transport cost c(x, x′) = − log pN |0(x′|x) is not necessarily symmetric.

3.2 Iterative Proportional Fitting and Time Reversal

In all but trivial cases, the SB problem does not admit a closed-form solution. However, it can be
solved using Iterative Proportional Fitting (IPF) (Fortet, 1940; Kullback, 1968; Ruschendorf et al.,
1995) which is defined by the following recursion for n ∈ N with initialization π0 = p given in (1):

π2n+1 = arg min
{

KL(π|π2n) : π ∈PN+1, πN = pprior
}
, (11)

π2n+2 = arg min
{

KL(π|π2n+1) : π ∈PN+1, π0 = pdata
}
.

This sequence is well-defined if there exists π̃ ∈ PN+1 such that π̃0 = pdata, π̃N = pprior and
KL(π̃|p) < +∞. A standard representation of πn is obtained by updating the joint density p using
potential functions, see Section S4.2 for details. However, this representation of the IPF iterates is
difficult to approximate as it requires approximating the potentials. Our methodology builds upon an
alternative representation that is better suited to numerical approximations for generative modeling
where one has access to samples of pdata and pprior.
Proposition 2. Assume that KL(pdata ⊗ pprior|p0,N ) < +∞. Then for any n ∈ N, π2n and π2n+1

admit positive densities w.r.t. the Lebesgue measure denoted as pn resp. qn and for any x0:N ∈ X ,
we have p0(x0:N ) = p(x0:N ) and

qn(x0:N ) = pprior(xN )
∏N−1
k=0 p

n
k|k+1(xk|xk+1), pn+1(x0:N ) = pdata(x0)

∏N−1
k=0 q

n
k+1|k(xk+1|xk).

In practice we have access to pnk+1|k and qnk|k+1. Hence, to compute pnk|k+1 and qnk+1|k we use

pnk|k+1(xk|xk+1) =
pnk+1|k(xk+1|xk)pnk (xk)

pnk+1(xk+1)
, qnk+1|k(xk+1|xk) =

qnk|k+1(xk|xk+1)qnk+1(xk+1)

qnk (xk)
.

To the best of our knowledge, this representation of the IPF iterates has surprisingly neither been
presented nor explored in the literature. One may interpret these formulas as follows. At iteration 2n,
we have π2n = pn with p0 = p given by the noising process (1). This forward process initalized with
pn0 = pdata defines reverse-time transitions pnk|k+1, which, when combined with an initialization pprior

at step N defines the reverse-time process π2n+1 = qn. The forward transitions qnk+1|k associated to
qn are then used to obtain π2n+2 = pn+1. IPF then iterates this procedure.

3.3 Diffusion Schrödinger Bridge as Iterative Mean-Matching Proportional Fitting

To approximate the IPF recursion defined in Proposition 2, we use similar approximations to Sec-
tion 2.1. If at step n ∈ N we have pnk+1|k(xk+1|xk) = N (xk+1;xk + γk+1f

n
k (xk), 2γk+1I) where

p0 = p and f0k = f , then we can approximate the reverse-time transitions in Proposition 2 by
qnk|k+1(xk|xk+1) = pnk+1|k(xk+1|xk) exp[log pnk (xk)− log pnk+1(xk+1)]

≈ N (xk;xk+1 + γk+1b
n
k+1(xk+1), 2γk+1I),

with bnk+1(xk+1) = −fnk (xk+1) + 2∇ log pnk+1(xk+1). We can also approximate the forward
transitions in Proposition 2 by pn+1

k+1|k(xk+1|xk) ≈ N (xk+1;xk + γk+1f
n+1
k (xk), 2γk+1I) with

fn+1
k (xk) = −bnk+1(xk)+2∇ log qnk (xk). Hence we have fn+1

k (xk) = fnk (xk)−2∇ log pnk+1(xk)+

2∇ log qnk (xk). It follows that one could estimate fn+1
k , bn+1

k by using score-matching to approximate
{∇ log pik+1(x)}ni=0 , {∇ log qik(x)}ni=0. This approach is prohibitively costly in terms of memory
and compute, see Section S5. We follow an alternative approach which avoids these difficulties.
Proposition 3. Assume that for any n ∈ N and k ∈ {0, . . . , N − 1},
qnk|k+1(xk|xk+1) = N (xk;Bnk+1(xk+1), 2γk+1I), p

n
k+1|k(xk+1|xk) = N (xk+1;Fnk (xk), 2γk+1I),

with Bnk+1(x) = x+ γk+1b
n
k+1(x), Fnk (x) = x+ γk+1f

n
k (x) for any x ∈ Rd. Then we have for any

n ∈ N and k ∈ {0, . . . , N − 1}
Bnk+1 = arg minB∈L2(Rd,Rd) Epnk,k+1

[‖B(Xk+1)− (Xk+1 + Fnk (Xk)− Fnk (Xk+1))‖2], (12)

Fn+1
k = arg minF∈L2(Rd,Rd) Eqnk,k+1

[‖F(Xk)− (Xk +Bnk+1(Xk+1)−Bnk+1(Xk))‖2]. (13)
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Proposition 3 shows how one can recursively approximate Bnk+1 and Fn+1
k . In practice, we use

neural networks Bβn(k, x) ≈ Bnk (x) and Fαn(k, x) ≈ Fnk (x). Note that the networks could also be
learned jointly. In this case, at equilibrium, we would obtain a bridge between pdata and pprior but not
necessarily the Schrödinger bridge.

Network parameters αn, βn are learnt through gradient descent to minimize empirical versions of the
sum over k of the loss functions given by (12) and (13) computed using M samples and denoted as
ˆ̀b
n(β) and ˆ̀f

n+1(α). The resulting algorithm approximating L ∈ N IPF iterations is called Diffusion

Schrödinger Bridge (DSB) and is summarized in Algorithm 1 with Zjk, Z̃
j
k

i.i.d.∼ N (0, I), see Figure 1
for an illustration.

Algorithm 1 Diffusion Schrödinger Bridge

1: for n ∈ {0, . . . , L} do
2: while not converged do
3: Sample {Xj

k}
N,M
k,j=0, where Xj

0 ∼ pdata, and
Xj
k+1 = Fαn(k,Xj

k) +
√

2γk+1Z
j
k+1

4: Compute ˆ̀b
n(βn) approximating (12)

5: βn ← Gradient Step(ˆ̀b
n(βn))

6: end while
7: while not converged do
8: Sample {Xj

k}
N,M
k,j=0, where Xj

N ∼ pprior, and
Xj
k−1 = Bβn(k,Xj

k) +
√

2γkZ̃
j
k

9: Compute ˆ̀f
n+1(αn+1) approximating (13)

10: αn+1 ← Gradient Step(ˆ̀f
n+1(αn+1))

11: end while
12: end for
13: Output: (αL+1, βL)

The DSB algorithm is initialized us-
ing the reference dynamics fα0(k, x) =
f(x). Once βL is learnt we can eas-
ily approximately sample from pdata by
sampling XN ∼ pprior and then using
Xk−1 = BβL(k,Xk) +

√
2γkZk with

Zk
i.i.d.∼ N (0, I). The resulting samples

X0 will be approximately distributed
from pdata. Although DSB requires learn-
ing a sequence of network parameters,
αn, βn, fewer diffusion steps are needed
compared to standard SGM. In addition,
as detailed in Section S9, β0 may be
trained efficiently in a similar manner
to previous SGM methods. Subsequent
αn+1, βn+1 are refinements of αn, βn,
hence may be fine-tuned from previous
iterations.

3.4 Convergence of Iterative Proportional Fitting

In this section, we investigate the theoretical properties of IPF. When the state-space is discrete
and finite (Franklin and Lorenz, 1989; Peyré and Cuturi, 2019) or in the case where pdata and pprior
are compactly supported (Chen et al., 2016), IPF converges at a geometric rate w.r.t. the Hilbert-
Birkhoff metric, see Lemmens and Nussbaum (2014) for a definition. Other than recent work by
Léger (2020), only qualitative results exist in the general case where pdata or pprior is not compactly
supported (Ruschendorf et al., 1995; Rüschendorf and Thomsen, 1993). We establish here quantitative
convergence of IPF in this non-compact setting as well as novel monotonicity results. We require
only the following mild assumption.
A1. pN , pprior > 0, |H(pprior)| < +∞,

∫
Rd | log pN |0(xN |x0)|pdata(x0)pprior(xN )dx0dxN < +∞.

Assumption A1 is satisfied in all of our experimental settings. We recall that for µ, ν ∈P(E) with
(E, E) a measurable space, the Jeffrey’s divergence is given by J(µ, ν) = KL(µ|ν) + KL(ν|µ).
Proposition 4. Assume A1. Then (πn)n∈N is well-defined and for any n ≥ 1 we have

KL(πn+1|πn) ≤ KL(πn−1|πn), KL(πn|πn+1) ≤ KL(πn|πn−1).

In addition, (‖πn+1 − πn‖TV)n∈N and (J(πn+1, πn))n∈N are non-increasing. Finally, we have
limn→+∞ n {KL(πn0 |pdata) + KL(πnN |pprior)} = 0.

A more general result with additional monotonicity properties is given in Section S6. Under similar
assumptions, Léger (2020, Corollary 1) established KL(πn0 |p0) ≤ C/n with C ≥ 0 using a Bregman
divergence gradient descent perspective. In contrast, our proof relies only on tools from information
geometry. In addition, we improve the convergence rate and show that (πn)n∈N converges in total
variation towards π∞, i.e. we not only obtain convergence of the marginals but also convergence
of the joint distribution. Under restrictive conditions on pdata and pprior, Ruschendorf et al. (1995)
showed that π∞ is the Schrödinger bridge. In the following proposition, we avoid this assumption
using results on automorphisms of measures (Beurling, 1960).
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Proposition 5. Assume A1. Then there exists a solution π? ∈ PN+1 to the SB problem. Assume
that limn→+∞ ‖πn − π∞‖TV = 0 with π∞ ∈ PN+1. Let h = p0,N/(p0 ⊗ pN ) and assume that
h ∈ C((Rd)2, (0,+∞)) and that there exist Φ0,ΦN ∈ C(Rd, (0,+∞)) such that∫

Rd×Rd(|log h(x0, xN )|+ |log Φ0(x0)|+ |log ΦN (xN )|)pdata(x0)pprior(xN )dx0dxN < +∞,
with h(x0, xN ) ≤ Φ0(x0)ΦN (xN ). If p is absolutely continuous w.r.t. π∞ then π∞ = π?.

Proposition 5 extends previous IPF convergence results without the assumption that the mapping h is
lower bounded, see Ruschendorf et al. (1995); Chen et al. (2016). Our assumption on h can be relaxed
and replaced by a tighter condition on π∞, see Section S6.2. Proposition 4 suggests a convergence
rate of order o(n) for the IPF in the non-compact setting. However, in some situations, we recover
geometric convergence rates with explicit dependency w.r.t. the problem constants, see Section S7. In
practice, we do not run IPF for pdata, pprior but using empirical versions of these distributions. Recent
results in Deligiannidis et al. (2021) show that the iterates of IPF based on empirical distributions
remain close to the iterates one would obtain using the true distributions, uniformly in time. In
particular, the SB computed using the empirical distributions converges to the one computed using
the true distributions as the number of samples goes to infinity.

3.5 Continuous-time IPF

We describe an IPF algorithm for solving SB problems in continuous-time. We show that DSB
proposed in Algorithm 1 can be seen as a discretization of this IPF. Given a reference measure
P ∈P(C), the continuous formulation of the SB involves solving the following problem

Π? = arg min {KL(Π|P) : Π ∈P(C), Π0 = pdata, ΠT = pprior} , T =
∑N−1
k=0 γk+1.

Similarly to (11), we define the IPF (Πn)n∈N with Π0 = P associated with (6) and for any n ∈ N
Π2n+1 = arg min

{
KL(Π|Π2n) : Π ∈P(C), ΠT = pprior

}
,

Π2n+2 = arg min
{

KL(Π|Π2n+1) : Π ∈P(C), Π0 = pdata
}
.

One can show that for any n ∈ N, Πn = πs,nP|0,T , with (πs,n)n∈N the IPF for the static SB problem.
In particular, Proposition 4 and Proposition 5 extend to the continuous IPF framework. In what
follows, for any P ∈P(C), we define PR as the reverse-time measure, i.e. for any A ∈ B(C) we have
PR(A) = P(AR) where AR = {t 7→ ω(T − t) : ω ∈ A}. The following result is the continuous
counterpart of Proposition 2 and states that each IPF iteration is associated with a diffusion, showing
that DSB can be seen as a discretization of the continuous IPF.
Proposition 6. Assume A1 and that there exist M ∈ P(C), U ∈ C1(Rd,R), C ≥ 0 such that for
any n ∈ N, x ∈ Rd, KL(Πn|M) < +∞, 〈x,∇U(x)〉 ≥ −C(1 + ‖x‖2) and M is associated with

dXt = −∇U(Xt)dt+
√

2dBt, (14)
with X0 distributed according to the invariant distribution of (14). Then, for any n ∈ N we have:

(a) (Π2n+1)R is associated with dY2n+1
t = bnT−t(Y

2n+1
t )dt+

√
2dBt with Y2n+1

0 ∼ pprior;

(b) Π2n+2 is associated with dX2n+2
t = fn+1

t (X2n+2
t )dt+

√
2dBt with X2n+2

0 ∼ pdata;
where for any n ∈ N, t ∈ [0, T ] and x ∈ Rd, bnt (x) = −fnt (x) + 2∇ log pnt (x), fn+1

t (x) =
−bnt (x) + 2∇ log qnt (x), with f0t (x) = f(x), see (6), and pnt , qnt the densities of Π2n

t and Π2n+1
t .

4 Experiments

Gaussian example. We first confirm that our algorithm recovers the true SB in a Gaussian setting
where the ground truth is available. Let pprior = N (−a, I), pdata = N (a, I) with a ∈ Rd and consider
a Brownian motion as reference dynamics. The analytic expression for the static SB isN ((−a, a),Σ)
with Σ ∈ R2d×2d given in Section S7.2. We let a = 0.1 × 1 with d = 50 or d = 5. In Figure 2,
we illustrate the convergence of DSB. We train each DSB with a batch size of 128, N = 20 and
γ = 1/40. We compare two network configurations: “small” where the network is given by Figure S2
(30k parameters) whereas “large” corresponds to the same network but with twice as many latent
dimensions (240k parameters). The small network recovers the statistics of SB in the low-dimensional
setting (d = 5) but is unable to recover the variance and covariance for d = 50. Increasing the size of
the network solves this problem.
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Mean Variance Covariance

Figure 2: Convergence of DSB to ground-truth. From left to right: estimated mean, variance and
covariance (first component) after each DSB iteration. The ground-truth value is given by the dashed
line in each scenario.

Data distribution

DSB Iteration 1

DSB Iteration 20

Figure 3: Data distributions pdata vs distribution at
t = 0 for T = 0.2 after 1 and 20 DSB iterations.

Two dimensional toy experiments. We eval-
uate the validity of our approach on toy two di-
mensional examples. Contrary to existing SGM
approaches we do not require that the number
of steps is large enough for pN ≈ pprior to hold.
We use a fully connected network with posi-
tional encoding (Vaswani et al., 2017) to approx-
imate Bnk and Fnk , see Section S10.1 for details
about our implementation. Animated plots of
the DSB iterations may be found online on our
project webpage3. In Figure 3, we illustrate
the benefits of DSB over classical SGM. We fix
f(x) = −αx and choose pprior = N (0, σ2

dataI),
hence α = 1/σ2

data where σ2
data is the variance

of the dataset. We let N = 20 and γk = 0.01,
i.e. T = 0.2. Since T is small, we do not have pN ≈ pprior and the reverse-time process obtained
after the first DSB iteration (corresponding to original SGM methods) does not yield a satisfactory
generative model. However, multiple iterations of DSB improve the quality of the synthesis.

Generative modeling. DSB is the first practical algorithm for approximating the solution to the SB
problem in high dimension (d = 3072 for CelebA). Whilst our implementation does not yet compete
with state-of-the-art methods, we show promising results with fewer diffusion steps compared to
initial SGMs (Song and Ermon, 2019) and demonstrate its performance on MNIST (LeCun and
Cortes, 2010) and CelebA (Liu et al., 2015).

t = 0 t = 0.31 t = 0.60 t = 0.63
Figure 4: Generative model for CelebA 32× 32 after 10 DSB iterations with N = 50 (T = 0.63)

A reduced U-net architecture based on Nichol and Dhariwal (2021) is used to approximate Bnk and
Fnk . Further details are given in Section S10.2. Our method is validated on downscaled CelebA in
Figure 4. Figure 5 illustrates qualitative improvement over 8 DSB iterations with as few as N = 12
diffusion steps. Note, as shown in Section S10.2, we obtain better results with higher N yet still
significantly fewer steps than in the original SGM procedures (Song and Ermon, 2020, 2019) which
use N = 100. Figure 6 illustrates how the sample quality, measured quantitatively in terms of Fréchet

3https://vdeborto.github.io/publication/schrodinger_bridge/

9

https://vdeborto.github.io/publication/schrodinger_bridge/
https://vdeborto.github.io/publication/schrodinger_bridge/


Inception Distance (FID) (Heusel et al., 2017), improves with the number of DSB iterations for
various numbers of steps N .

DSB 1 DSB 8

Figure 5: Generated samples (N = 12) Figure 6: FID vs DSB Iterations.

Dataset interpolation. Schrödinger bridges not only allow us to reduce the number of steps in SGM
methods but also enable flexibility in the choice of the prior density pprior, which is not necessarily
Gaussian contrary to previous works on SGM. In particular, our approach is still valid if pprior is any
other data distribution p′data. In this case DSB converges towards a bridge between pdata and p′data,
see Figure 7. These experiments pave the way towards high-dimensional optimal transport between
arbitrary data distributions.

Figure 7: First row: Swiss-roll to S-curve (2D). Iteration 9 of DSB with T = 1 (N = 50). From left
to right: t = 0, 0.4, 0.6, 1. Second row: EMNIST (Cohen et al., 2017) to MNIST. Iteration 10 of
DSB with T = 1.5 (N = 30). From left to right: t = 0, 0.4, 1.25, 1.5.

5 Discussion

Score-based generative modeling (SGM) may be viewed as the first stage of solving a Schrödinger
bridge problem. Building on this interpretation, we developed a novel methodology, the Diffusion
Schrödinger Bridge (DSB), that extends initial SGM approaches and allows one to perform generative
modeling with fewer diffusion steps. DSB complements recent techniques to speed up existing
SGM methods that rely on either different noise schedules (Nichol and Dhariwal, 2021; San-Roman
et al., 2021; Watson et al., 2021), alternative discretizations (Jolicoeur-Martineau et al., 2021a) or
knowledge distillation (Luhman and Luhman, 2021). Additionally, as the solution of the Schrödinger
problem is a diffusion, it is possible as in Song et al. (2021, Section 4.3) to obtain an equivalent
neural ordinary differential equation that admits the same marginals as the diffusion but enables exact
likelihood computation, see Section S8.3. Even though the final time T > 0 within DSB can be
arbitrarily small, we observed that this has limits as choosing T too close to 0 decreases the quality
of the generative models. One reason for this behavior is that if the endpoint of the original forward
process is too far from the target distribution pprior, then learning the score around the support of
pprior is challenging even for DSB. From a theoretical point of view, we have provided quantitative
convergence results for SGM methods and derived new state-of-the-art convergence bounds for IPF
as well as novel monotonicity results. We have demonstrated DSB on generative modeling and
data interpolation tasks. Finally, although this work was motivated by generative modeling, DSB is
much more widely applicable as it can be thought of as the continuous state-space counterpart of the
celebrated Sinkhorn algorithm (Cuturi, 2013; Peyré and Cuturi, 2019). For example, DSB could be
used to solve multi-marginal Schrödinger bridges problems (Di Marino and Gerolin, 2020), compute
Wasserstein barycenters, find the minimizers of entropy-regularized Gromov–Wasserstein problems
(Mémoli, 2011) or perform domain adaptation in continuous state-spaces.
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