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ABSTRACT

The neocortex and the hippocampus are two complementary learning systems
which interact during memory construction and consolidation. The hippocampus
stores episodic memories coming from the neocortex passing through the entorhi-
nal cortex, and later replays them back to the neocortex to transform them into
semantic memory during memory consolidation. It is thought that memory replay
is a generative process, involved in imagining, because new episodes can also
be generated and instantiated in the neocortex. Here we present a computational
model of hippocampal-neocortical interactions based on a predictive coding net-
work with two hidden layers, which are mapped onto the visual cortex and the
entorhinal cortex. Improving on a previous implementation of this network, our
simulations provide a mechanistic account of memory replay in the neocortex.

1 INTRODUCTION

According to the complementary learning systems (CLS) theory, the necortex is responsible for
semantic memory, that is the general knowledge that we have about the world, whereas hippocampus
stores episodic memories, which correspond to an individual’s emotional and sensory experiences
(Kumaran et al., 2016). For example, the experience of encountering a particularly odd-looking dog
(his look, bark, smell and the surprise you felt when seeing it) can be stored as an episodic memory
whereas the knowledge about what characterizes a typical dog is semantic memory.

After storage in the hippocampus, an episodic memory can be recalled from a corrupted version of it.
Furthermore, episodic memories are replayed during rest or sleep for memory consolidation. Mem-
ory replay corresponds to the spontaneous reactivation of the activity corresponding to an episodic
memory in the hippocampus (hippocampal replay) and its subsequent reinstantiation in the neocor-
tex (cortical replay), so that it can gradually be integrated in the semantic memory of the neocortex.
This idea is supported by empirical evidence from rodent studies during spatial navigation, where
it was found that the rodent hippocampus generates sequences of activations during wakeful rest or
sleep that reflect past trajectories (Buzsáki, 2015). In machine learning, experience replay has been
shown to prevent catastrophic forgetting in a continual learning setting, where the learning of new
tasks interferes with the knowledge of previously learned tasks. It consists of continually storing
episodes in a memory buffer and replaying them when learning a new task.

It was later found that the internally generated hippocampal sequences are not merely replays of past
trajectories, but also include paths that were never experienced before (Kumaran et al., 2016). This
has prompted researchers from computational neuroscience and brain-inspired machine learning to
hypothesize that the hippocampus is a generative model and that memory replay is a generative
process, refered to as generative replay (Stoianov et al., 2022; van de Ven et al., 2020). Moreover,
generative replay has been shown to improve the performance of reinforcement learning agents over
experience replay Wang et al. (2025).

Despite the importance of memory replay for continual learning, its implementation in the neocortex
and the hippocampus is not well understood. Because of the similarity of architecture in all its
areas, researchers hypothesized that a common algorithm underlies computations in the neocortex
(Friston, 2003; Hawkins et al., 2019). Principles of organization in the neocortex have emerged from
empirical studies in the visual cortex, which have shown that this region is arranged hierarchically,
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(a) Neocortical hierachy

(b) Replay in the visual cortex

(c) Pattern completion in the visual cortex

Figure 1: (a) The high-level representations in neocortical areas corresponding to different sensory
modalities are combined in the entorhinal cortex (represented as the dotted circle) which is the input
of the hippocampus (HPC), located at the apex of the neocortical hierarchy. (b) After storage of an
episodic memory in the hippocampus, it can be replayed in the hippocampus (hippocampal replay)
before being reinstantiated in the neocortex, including the visual cortex (cortical replay). (c) The
visual cortex can complete an image based on semantic memory. In this illustration, the completion
performance is perfect, as the recalled image is exactly the original image (as in Salvatori et al.
(2021)), but it is not the case in reality (as explained in the main text).

with forward connections from lower to higher areas, and backward connections from higher to
lower areas (Friston, 2003). At the apex of the neocortical hierarchy, the hippocampus receives input
from the entorhinal cortex, which combines representations from different high-level neocortical
areas of different sensory modalities (Barron et al., 2020), as illustrated in Figure 1a. Therefore,
hippocampal replay could drive neocortical activity using backward connections from the entorhinal
cortex to the neocortical hierachy, as illustrated for the visual cortex in Figure 1b.

Rooted in studies of the visual cortex, predictive coding has been proposed in computational neu-
roscience by Rao & Ballard (1999), and later extended by Friston (2003) as a general theory of
cortical computation, which maps well to the neocortex in terms of architecture and information
processing. Recently, Fontaine & Alexandre (2025b) investigated the role of the neocortex in se-
mantic and episodic memory using a predictive coding network (PCN). They reproduced the result
of Salvatori et al. (2021) that PCNs can store training images as memories (as illustrated in 1c), but
showed that this is done by overfitting the network to a few training images. When the network is
trained on more images, it generalizes better and is able to complete corrupted versions of training
images based on semantic memory, but without recalling the details of the specific training images,
supporting the CLS view that the neocortex is responsible for semantic memory. Even though the
neocortex might not be responsible for episodic memory like the hippocampus, it supports episodic
memory by allowing the episodic memories replayed by the hippocampus to be reinstantiated dur-
ing cortical replay. Fontaine & Alexandre (2025b) modelled experience replay in a PCN, using two
classes of MNIST digits, but the replayed images were found to be blurry, and the representations
at the top of the hierarchy were found to be overlapping at the boundary of the two classes. In this
paper, we tackle these limitations by accurately tuning the number of hidden units and stabilizing the
convergence of the model on the full MNIST dataset using a learning rate scheduler. We found that
adding more neurons in the second hidden layer allows the experience replays to be more accurate,
by increasing the linear separability of representations corresponding to different classes at the top
of the hierarchy, but at the cost of reconstruction and pattern completion performance. Furthermore,
we extend the model to generative replay, by proposing a generative form of hippocampal replay.
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2 RELATED WORKS

Models of memory replay. Other works captured the computation of experience replay and genera-
tive replay using deep learning models, but without being faithful to the architecture and information
processing of the corresponding structures in the brain. (Spens & Burgess, 2024) proposed a model
of memory consolidation consisting of experience replay, in which the neocortex is modelled as a
VAE, whereas the hippocampus is modelled as a Modern Hopfield Network (Krotov & Hopfield,
2016) which replays episodic memories to the input of the VAE. In Stoianov et al. (2022), the hip-
pocampus itself is modelled as a hierarchical generative model supporting generative replay.

PCNs as models of the neocortex. Since the work of Friston (2003), various papers investigated the
idea that predictive coding could underly information processing in the neocortex. Brucklacher et al.
(2023) proposed to study the representations learned by a PCN with two hidden layers and showed
that the representations in the highest area are object-invariant when trained on sequences of continu-
ously transformed images. In addition, they show that top-down reconstruction of inputs from latent
variables when blanking out the input becomes less accurate in higher areas, suggesting that higher
areas encode reduced information such as object identity. In our model, memory replay is modelled
without blanking out the input, in a biologically plausible manner, as memory replay can occur while
the brain is exposed to sensory input. Salvatori et al. (2021) showed that PCNs outperform other
models in auto-associative memory (AM) and suggested based on Barron et al. (2020) that the top
layer of their PCN could correspond to the hippocampus. Tang et al. (2023) extended their model by
adding a recurrent one-layer PCN to the top of a hierarchical PCN modelling the neocortex and Li
et al. (2025) showed that PCNs also detect novelty at different levels of abstraction in the hierarchy.
The architecture and the inference and learning rules of our model are similar to that of Salvatori
et al. (2021) as both models are based on the model by Friston (2003). The main difference is that
our work models memory replay and not auto-associative memory, which is a function associated
to the hippocampus rather than the neocortex according to Fontaine & Alexandre (2025b). How-
ever, the pattern completion performance of our model will be evaluated on unseen images, to tune
the size of the top level. Indeed, even though the neocortex likely cannot recall details of episodic
memories, it can still complete corrupted patterns based on semantic memory. Another difference
with this line of work is that the top level of our PCN corresponds to the entorhinal cortex, and
not the hippocampus. Indeed, as the hippocampus is able to perform one-shot storage of episodic
memories, we believe that it cannot be fully modelled using a PCN.

Image generation in PCN. Other works studied the generation of inputs in predictive coding net-
works (PCN), but without specifying how it can be implemented in the neocortex in the presence of
sensory inputs, or its relation to the hippocampus. On the one hand, Oliviers et al. (2024) proposed
Monte Carlo predictive coding for learning probability distributions of sensory inputs, arguing that
classical predictive coding demonstrated limited performance in generative tasks. On the other hand,
preliminary work by Millidge (2019) showed that a PCN with one hidden layer can be used to gener-
ate inputs by sampling points close to the training data in the latent space, even though the generated
samples were blurry and the authors did not describe their method for sampling. Ororbia & Kifer
(2022) proposed to generate images from an extended version of PCN with ancestral sampling, but
only three images per class are shown. In addition, using the model proposed by Friston (2003), the
authors only show nearest neighbor samples that match an original data point for each class, leaving
aside a large part of the image space which is covered by the generative model.

3 PREDICTIVE CODING

Predictive coding networks (PCN) are based on hierarchical generative models with L layers, of the
type

∀l ∈ {0, 1, ..., L− 1}, pθl
(hl | hl+1) = N (hl;µl,Σl),µl = fl(µl+1;θl)

pθL
(hL) = N (hL;µL,ΣL),µL = θL

where h = (h0,h1, ...,hL) are the states and θ = (θ0,θ1, ...,θL) are the parameters. Level 0 is
the input level, so h0 is the input state and h1,h2, ...,hL are the latent states. In practice, we use
µL = 0 and Σl = I for all l ∈ {0, 1, ..., L}. Therefore, the prior on the latent state of level L is a
centered isotropic multivariate Gaussian pθL

(hL) = N (hL;0, I) with no parameter.
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Recognition is assumed to be deterministic, such that for an input x,

qϕ(h1,h2, ...,hL | x) =
L∏

l=1

δ(hl − ϕl)

where ϕ = (ϕ1,ϕ2, ...,ϕL) is an estimate of the latent states h1,h2, ...,hL corresponding to the
input x.

Inference of the latent states for an input x results from the minimization of a lower bound to the
negative likelihood, called variational free energy
L(θ,ϕ;x) = −Eqϕ(h1,h2,...,hL|x) [log pθ(x,h1,h2, ...,hL)]

= − log pθ(x,ϕ1,ϕ2, ...,ϕL)

= − log pθ0(x | ϕ1)− log pθ1(ϕ1 | ϕ2)− ...− log pθL−1
(ϕL−1 | ϕL)− log p(ϕL)

=
1

2

L−1∑
l=0

[
ξTl ξl + log |Σl|

]
− log p(ϕ0) + constant

where taking the logarithm of a Gaussian distribution results in a quantity

ξl = Σ
− 1

2

l (ϕl − fl(ϕl+1;θl)). (1)
which can be seen as a prediction error for layer l. Thus, the variational free energy corresponds to
the sum of prediction errors in all layers, and PCNs learn hierarchical predictive representations of
the input.

When presented with an input x, the latent states are updated according to

ϕ̇l = −∇ϕl
L(θ,ϕ;x) = −

∂ξTl−1

∂ϕl
ξl−1 −

∂ξTl
∂ϕl

ξl (2)

until the variational free energy is minimized. In practice, we only update the latent states T times
during training.

Similarly, learning of the parameters θ = (θ0,θ2, ...,θL−1) corresponds to the minimization of
the variational free energy F (θ) = Ep(x) [L(θ,ϕ;x))]. After several image presentations, the
parameters are updated once following

∀l ∈ {1, 2, ..., L}, θ̇l = −∇θl
F = −Ep(x)

[
∂ξTl
∂θl

ξl

]
. (3)

This algorithm can be implemented in a neural network, hence the name PCN, with only local
computations for inference and learning. In a PCN, each level l consists of two types of neurons,
with activity ϕl and ξl respectively. When mapped to the neocortical hierarchy, level l + 1 is the
level above l, with level 0 at the bottom and level L at the top. From equation 1, it can be seen that
neurons ξl compute the prediction errors, based on lateral connections with neurons ϕl at the same
level and inhibitory feedback connections with neurons ϕl+1 in the level above, which provide the
predictions. Equation 2 shows that neurons ϕl receive connections from error neurons in the same
level ξl and the level below ξl−1. In addition, it can be seen that equation 3 corresponds to Hebbian
learning, as shown in the next section.

While it is standard in the predictive coding literature to use fixed covariances Σl = I , it was
proposed that the inverse covariance, called precision, Σ−1

l is predicted by higher layers and me-
diates attention (Feldman & Friston, 2010). Indeed, if precision Σ−1

l is low, prediction error

ξl = Σ
− 1

2

l (ϕl − fl(ϕl+1;θl)) is low, and will not influence the update of neuron activities and
weights. As explained by Li (2023) based on Clark (2016), the precision parameter controls the
degree to which the brain attends to the external input or to the internal prediction, determining
whether it is performing perception or imagination.

4 METHODS

Building upon Fontaine & Alexandre (2025a), we propose a predictive coding model of the visual
cortex and show that it learns hierarchical predictive representations of MNIST images, that support
memory replay.
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4.1 MODEL

Our model is a PCN with L = 2 layers
pθ0(h0 | h1) = N (h0;W0h1, I)

pθ1(h1 | h2) = N (h1; f(W1h2 + b1), I)

p(h2) = N (h2;0, I)

where θ0 = W0 and θ1 = (W1, b1). Indeed, the bias and non-linearity are not required in the input
layer, because an image can be represented as a linear combination of basis functions (Olshausen &
Field, 1996).

The variational free energy for an input x is

L(θ,ϕ;x) = 1

2
ξ⊤0 ξ0 +

1

2
ξ⊤1 ξ1 +

1

2
ξ⊤2 ξ2 + constant

where
ξ0 = x−W0ϕ1 (4)
ξ1 = ϕ1 − f(W1ϕ2 + b1) (5)
ξ2 = ϕ2. (6)

4.2 TRAINING ALGORITHM

Let us consider a dataset X = {x(i)}Ni=1 of N i.i.d. samples of a continous variable x. The log
likelihood can be written log pθ(x

(1), ...,x(N)) =
∑N

i=1 log pθ(x
(i)). Therefore, the variational

free energy of the dataset X is

L(θ;X) =

N∑
i=1

L(θ,ϕ;x(i)),

which can be estimated based on minibatches

L(θ;X) ≈ LM (θ;XM ) =
N

M

M∑
i=1

L(θ,ϕ(i);x(i)) (7)

where the minibatch XM = {x(i)}Mi=1 is randomly drawn from the dataset X .

Given a minibatch XM , the latent states ϕ
(i)
0 and ϕ

(i)
1 are updated during T iterations for each

datapoint x(i) to minimize the variational free energy L(θ,ϕ(i);x(i)). The update rules for the two
layers in our model are

∆ϕ1 = α(W⊤
0 ξ0 − ξ1) (8)

∆ϕ2 = α(W⊤
1 diag [f ′(W1ϕ2 + b1)] ξ1 − ξ2). (9)

where α is the inference rate.

Then, the parameters θ0 = W0 and θ1 = (W1, b1) are updated once to minimize the estimate
LM (θ;XM ) given in equation 7. Thus, the learning rules can be calculated from the sum of gradi-
ents

∑M
i=1∇θl

L(θ;x(i))

∆W0 = β

M∑
i=1

ξ
(i)
0 ϕ

(i)⊤
1

∆W1 = β

M∑
i=1

[
ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
2 + b1)

]
ϕ

(i)⊤
2

∆b1 = β

M∑
i=1

ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
2 + b1).

where ⊙ is the element-wise product and β is the learning rate. We train the model on a dataset X
for multiple epochs, and reduce the learning rate by a multiplicative factor γ < 1 at each epoch of
training to prevent instability issues. Details can be found in section A.1 of the appendix.
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Figure 2: PCN with 3 levels mapped to lateral geniculate nucleus (LGN), visual cortex (VC) and
entorhinal cortex (EC). Each node corresponds to multiple neurons. Circle nodes correspond to units
ϕl and triangle nodes correspond to error units ξl. Each connection between nodes corresponds to
a fully connected network, with excitatory connections in the upward direction and inhibitory con-
nections in the downward direction. We consider the upmost prediction to be 0, to have a standard
normal distribution as prior.

4.3 MAPPING TO THE BRAIN

Figure 2 shows how this algorithm can be implemented in a neural network mapped onto the visual
pathway of the brain, with only local computations. The three levels in the network correspond,
from bottom to top, to the lateral geniculate nucleus (LGN) in thalamus (and not the retina because
it doesn’t receive feedback connections from LGN), the visual cortex (VC) and the entorhinal cortex
(EC). This mapping allows us to study memory replay after training the model with algorithm 1.

At inference time, the latent states are updated until convergence or until a maximum number of
iterations Tmax is reached in order to study the converged representations. Convergence occurs when
the relative change in the norm of the latent state ϕl is smaller than a threshold ϵ, i.e.

∥∇ϕl
L(θ,ϕ;x)∥
∥ϕl∥

< ϵ.

During perception, the network is driven by the input image in LGN. While the LGN is set to the
image, the VC and EC converge to hierarchical predictive representations of the image following
the inference rules 8 and 9 respectively. The representation in VC is predictive of the image, as the
prediction W0ϕ1 is a reconstruction of the image. The representations in EC can be stored by the
hippocampus (not explicitly modelled) and later replayed during experience replay.

During memory replay, hippocampal replay first outputs the EC representation of an image stored
by the hippocampus in the case of experience replay or a sample generated in the latent space of EC
in the case of generative replay (as described in the next paragraph). Then, during cortical replay,
the network is driven by the representation in EC obtained from hippocampal replay. While setting
the EC layer to the corresponding representation, the VC converges to the replayed representation
following the inference rule 8. As the network can also be presented with an input in LGN during
memory replay, the representation in VC is protected from ascending input in LGN by setting the
precision Σ−1

0 in the LGN to 0, preventing the prediction errors in LGN to influence the activity in
VC. In this way, attention is focused on the representation in EC, and not on the current input. Then,
the prediction W0ϕ1 based on the replayed representation ϕ1 in VC corresponds to the replayed
image.

In generative replay, sampling of the latent space of EC is class-conditioned. Indeed, we fit a mul-
tivariate Gaussian distribution to each class in the latent space of EC, by estimating the mean and

6
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covariance of training samples in each class. Then, samples from a given class can be generated by
sampling the corresponding Gaussian distribution.

During perception, the network can also perform pattern completion when presented with a cor-
rupted (noisy or incomplete) input. Following Salvatori et al. (2021), while the LGN layer is ini-
tialized to the corrupted input, the VC and EC converge following the same dynamics as in regular
perception (equations 8 and 9), whereas the corrupted part of LGN converges following to the infer-
ence rule

∆ϕ0 = −αϕ0.

obtained by calculating the gradient of the variational free energy of the input with respect to the
corrupted part of LGN. Then, the prediction W0ϕ1 based on the recalled representation ϕ1 in VC
corresponds to the recalled image.

4.4 EXPERIMENTS

The model is trained on the MNIST dataset, which contains images of handwritten digits from 0
to 9. The original training set of 60,000 images is split into a training set of size 50,000 and a
validation set of size 10,000. The validation set is used to evaluate the model during training and
hyperparameter tuning. After training, we evaluate the model on the original test set of 10,000
images.

Hyperparameter values are chosen based on empirical trials informed by the predictive coding liter-
ature and summarized in Table 1 in the appendix. In addition, the number of hidden units in level
1 is obtained by minimizing the variational free energy on the validation set for a PCN with L = 1
using grid search, as shown in Figure 7 in the appendix. The choice of the number of hidden units
in level 2 is more complex and results from a trade-off between different metrics.

In our simulations, we study the influence of the number of hidden units in level 2 on the learned
representations and on memory replay, both quantitatively and qualitatively. Quantitatively, we
evaluate the predictive performance of the model, the quality of the experience replays and the
pattern completion performance using the reconstruction, replay and completion errors, based on
the mean squared error (MSE). The MSE between two flattened images x and x̂ is

MSE(x, x̂) =
1

Npixels

Npixels∑
i=1

(xi − x̂i).

The reconstruction and completion errors are computed between the original and reconstructed im-
ages and between the original and recalled images respectively, averaged over the validation set,
whereas the replay error is computed between the original and replayed images, averaged over the
training set. In addition, we evaluate the linear separability of the latent manifolds corresponding to
the different classes in level 2 of the model using the classification accuracy of a simple multinomial
logistic regression. On the qualitative side, we examine examples of reconstructions of images from
the validation set, as well as examples of experience replay corresponding to images from the train-
ing set. Additionnally, we show examples of images generated by generative replay and visualize
their hierarchical representations.

5 RESULTS

The reconstruction error, completion error, replay error and classification accuracy are plotted
against the number of hidden units in level 2 in Figure 3. These measures are evaluated after train-
ing the model until convergence of all layers, as shown in Figure 8 in the appendix. One the one
hand, the left plot of Figure 3 shows that the second hidden layer in our model does not improve the
predictive power of its representations. On the contrary, the reconstruction error increases with the
number of units in the second hidden level, and the same model with the top layer removed has a
lower reconstruction error (shown as the blue dotted line) than any of the models with two hidden
layers. Similarly, the completion error increases with the number of units in the second hidden level,
but it is always lower than for a model with only one hidden layer, suggesting that adding a second
layer is still beneficial to the completion performance, contrary to the reconstruction performance.
On the other hand, the right plot of Figure 3 shows that the quality of replay and the linear sepa-
rability of the classes in the second hidden level increases with the number of units in that level.

7
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Figure 3: Quantitative evaluation of our model according to different metrics, depending on the
number of hidden units in level 2. The dotted lines correspond to the same model with L = 1.

Figure 4: The same minibatch of images from the training set (shown in Observation) is replayed in
PCNs with different widths n2 at the top level.

Therefore, choosing the number of units in level 2 based on these metrics is not straightforward, and
we will turn to the qualitative evaluation.

In Figure 4, we visualize examples of experience replay obtained with models of different widths.
As shown in Fontaine & Alexandre (2025a), setting the width of the top level to the number of
classes (i.e. n2 = 10) results in replayed images that are blurry and that do not retain the details of
the original images. This issue is solved by increasing the width of the top level to 30. Increasing
it further to 100 improves the sharpness of the replayed images, but at the cost of the completion
performance. Indeed, Figure 5 shows that while a width of 30 enables the network to semantically
complete the bottom half of images taken from the validation set that were masked, a higher width
of 100 makes the completion uninformative of the classes of the masked digits.

However, visual inspection of the reconstructions of images from the validation set and generative
replays does not differentiate the models with different widths. Indeed, the difference in reconstruc-
tion errors between the different models is imperceptible in the reconstructed images. Similarly, the
latent spaces and the quality of the images generated by replay are similar in the different models,
despite the difference in replay error and classification accuracy. Thus, the trade-off between the
replay fidelity and completion performance leads us to choose a width of 30.

Examples of reconstructions of images from the validation set and replayed images obtained by gen-
erative replay for a model with n2 = 30 units in level 2 are shown in Figure 6. It can be seen from
Figure 6a that the representations learned by the model are perfectly predictive of images it has never
seen during training. In Figure 6c, we plotted hierarchical representations obtained with generative
replay, over hierarchical representations inferred from images of the validation set. The represen-
tations of the different classes are well separated in all three levels, including the top level which
was found to have overlapping clusters in Fontaine & Alexandre (2025a), and the representations
generated by generative replay mostly fall within the right clusters in all levels. This is confirmed

8
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Figure 5: Five images from the validation set (shown in the Original column) were masked (as
shown in the Observation column) and completed by a PCN with n2 ∈ {30, 100} neurons in the top
level.

by looking at the generated images in Figure 6b. Most of the images generated for each class are
realistic examples of their classes, even though some of them are blurry.

6 DISCUSSION

We proposed a model of hippocampo-neocortical interactions involved in memory replay using a
PCN. Our work shows that predictive coding accounts for cortical replay, i.e. the reinstantiation in
the neocortex of an episodic memory replayed or generated in the hippocampus. To this purpose,
we modelled hippocampal replay in a minimal way, both in experience replay and generative re-
play, by mapping the top level of the PCN to the output of the hippocampus, the entorhinal cortex.
Some of the images generated by our model were found to be out-of-distribution, probably because
the simple Gaussian distribution we used does not capture the complex, non-linear geometry of the
latent manifolds. This issue could be solved using a Riemannian metric (Arvanitidis et al., 2021).
However, to provide a more complete account of memory replay, future work should aim at mod-
elling the hippocampal formation with its different components to understand hippocampal replay
mechanistically. In this way, realistic in-distribution samples will naturally be generated thanks to
the learned connection between the entorhinal cortex and the hippocampus. In the hippocampus,
generative replay should encompass experience replay as a generative process which samples both
existing episodic memories and imagined ones.

Our work also contributes to understanding hierarchical representations in PCNs. It reveals on the
one hand that adding more neurons in the top level of the network improves the fidelity of experience
replay and the linear separability of the representations corresponding to different classes in the
top level. Indeed, expanding the dimensionality of the activity space of patterns increases their
separability (Cayco-Gajic & Silver, 2019), and the increased separability could lead to better replay,
as there is less interference between patterns. However, our study also shows that the width of the
top level is detrimental to the model’s predictive and completion performance on unseen images. We
also found that adding a second hidden layer is beneficial to pattern completion, but not to image
reconstruction. The negative result about reconstruction can be interpreted in the light of efficient
coding: any image can be described by the linear combination of a set of basis functions (Olshausen
& Field, 1996). In our model, these basis functions correspond to the weights of the bottom layer,
between VC and LGN, which enable for the prediction of images in LGN. As we have tuned the
number of neurons in VC to minimize the reconstruction error on the validation set (see Figure 7 in
the appendix), we have found such a set of basis functions for the MNIST dataset. Therefore, adding
a second layer can only decrease the validation error. These results suggest that layers higher in the
neocortical hierarchy have a role in pattern completion, but not in reconstruction. Furthermore, the
work of (Brucklacher et al., 2023) and (Li et al., 2025) indicate that higher areas in PCNs encode
object identity. However, we find that the classification accuracy of our model is higher if we remove
the top hidden layer (shown as the red dotted line in Figure 3). The role of depth will be investigated
in future work.
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(a) Reconstructions

(b) Generative replay (c) Latent and input space

Figure 6: Visualizations for a model with n2 = 30 units in the top level. (a) Images reconstructed
(right) by a PCN with n2 = 30 units in the top level for a random mini-batch of images from the
validation set (left). (b) Images generated by replay for each class. (c) Hierarchical representations
of the images generated by generative replay (star-shaped markers) and of the images of the vali-
dation set (transparent circle markers), visualized in 2D using t-SNE. Each image is represented as
one data point in each of the three subplots, colored according to the class.
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A APPENDIX

A.1 ALGORITHM

The algorithm described in section 4.2 is summarized in algorithm 1 where α, β are the inference
and learning rates. The constant N

M from equation 7 is factorized in the learning rate β. To prevent
instabilities which occured systematically during training, we propose an exponential learning rate
scheduler

βepoch = γ × βepoch−1

which decays the learning rate β by a multiplicative factor γ at each epoch.

Initialization parameters include the standard deviations σW and σϕ and the number of dimensions
of latent state ϕ0.

A.2 EXPERIMENTS
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Algorithm 1 Model training with minibatches

W1,W2 ← Sample from N (0, σW )
b1 ← U(− 1

n0
, 1
n0

)
repeat

for k = 1 to nbatches do
XM ← Random minibatch of M datapoints drawn from X
for i = 1 to M do

ϕ
(i)
2 ← x(i)

ϕ
(i)
0 ,ϕ

(i)
1 ← Sample from N (0, σϕ)

ξ
(i)
0 , ξ

(i)
1 , ξ

(i)
2 ← Calculate the corresponding errors (equation 4)

for t = 1 to T do
ϕ

(i)
1 ← ϕ

(i)
1 + α(W⊤

2 ξ
(i)
2 − ξ

(i)
1 )

ϕ
(i)
0 ← ϕ

(i)
0 + α(W⊤

1 diag
[
f ′(W1ϕ

(i)
0 + b1)

]
ξ
(i)
1 − ξ

(i)
0 )

ξ
(i)
0 , ξ

(i)
1 , ξ

(i)
2 ← Calculate the corresponding errors (equation 4)

end for
end for
W2 ←W2 + β

∑M
i=1 ξ

(i)
2 ϕ

(i)⊤
1

W1 ←W1 + β
∑M

i=1

[
ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

]
ϕ

(i)⊤
0

b1 ← b1 + β
∑M

i=1 ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

end for
until variational free energy L(θ;X) is minimized

Table 1: Hyperparameter values

Parameter Value

Activation function f tanh
Batch size 64
Standard deviation σW 0.01
Standard deviation σϕ 0.05
Number of iterations Ttrain 50
Number of iterations Tvalid 200
Maximum number of iterations Tmax 20000
Convergence threshold ϵ 2× 10−4

Inference rate α 0.01
Inference optimizer SGD
Initial learning rate β0 10−5

Learning rate decay factor γ 0.99
Learning optimizer Adam
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Figure 7: RMSE between original and reconstructed images averaged over the validation set for a
PCN with L = 1.

Figure 8: Mean prediction errors in level 1 and 2 of a model with 30 units in level 0, averaged over
the whole training set (blue line) and a random minibatch from the validation set (orange line) at
each epoch. The model converges after 2000 epochs thanks to the learning rate scheduler.
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