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ABSTRACT

The neocortex and the hippocampus are two complementary learning systems
which interact during memory construction and consolidation. The hippocampus
stores episodic memories coming from the neocortex passing through the entorhi-
nal cortex, and later replays them back to the neocortex to transform them into
semantic memory during memory consolidation. It is thought that memory replay
is a generative process, involved in imagining, because new episodes can also
be generated and instantiated in the neocortex. Here we present a computational
model of hippocampal-neocortical interactions based on a predictive coding net-
work with two hidden layers, which are mapped onto the visual cortex and the
entorhinal cortex. Improving on a previous implementation of this network, our
simulations provide a mechanistic account of memory replay in the neocortex.

1 INTRODUCTION

According to the complementary learning systems theory, the necortex is responsible for semantic
memory, that is the general knowledge that we have about the world, whereas hippocampus stores
episodic memories, which correspond to an individual’s emotional and sensory experiences (Ku-
maran et al., 2016). For example, the experience of encountering a particularly odd-looking dog
(his look, bark, smell and the surprise you felt when seeing it) can be stored as an episodic memory
whereas the knowledge about what characterizes a typical dog is semantic memory.

The episodic memories stored in the hippocampus are replayed during rest or sleep, reactivating
the corresponding activity in the neocortex so that they are gradually integrated in the semantic
memory of the neocortex. This idea is supported by empirical evidence from rodent studies during
spatial navigation, where it was found that the rodent hippocampus generates sequences of activa-
tions during wakeful rest or sleep that reflect past trajectories (Buzsáki, 2015). In machine learning,
experience replay has been shown to prevent catastrophic forgetting in a continual learning setting,
where the learning of new tasks interferes with the knowledge of previously learned tasks. It consists
of continually storing episodes in a memory buffer and replaying them when learning a new task.

It was later found that the internally generated hippocampal sequences are not merely replays of past
trajectories, but also include paths that were never experienced before (Kumaran et al., 2016). This
has prompted researchers from computational neuroscience and brain-inspired machine learning to
hypothesize that the hippocampus is a generative model and that memory replay is a generative
process, refered to as generative replay (Stoianov et al., 2022; van de Ven et al., 2020). Moreover,
generative replay has been shown to improve the performance of reinforcement learning agents over
experience replay Wang et al. (2025).

Because of the similarity of architecture in all its areas, researchers hypothesized that a common
algorithm underlies computations in the neocortex (Friston, 2003; Hawkins et al., 2019). Principles
of organization in the neocortex have emerged from empirical studies in the visual cortex, which
have shown that this region is arranged hierarchically, with forward connections from lower to higher
areas, and backward connections from higher to lower areas (Friston, 2003). At the apex of the
neocortical hierarchy, the hippocampus receives input from the entorhinal cortex, which combines
representations from different high-level neocortical areas of different sensory modalities (Barron
et al., 2020), as illustrated in Figure 1a. Therefore, replay could drive neocortical activity using
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(a) Neocortical hierachy (b) Replay in visual cortex

Figure 1: (a) The high-level representations in neocortical areas corresponding to different sensory
modalities are combined in the entorhinal cortex (represented as the dotted circle) which is the input
of the hippocampus (HPC), located at the apex of the neocortical hierarchy. (b) Experience replay is
illustrated by isolating the visual cortex from (b). An image is processed by the visual cortex before
being stored in the hippocampus (HPC). It can later be replayed by the hippocampus in the visual
cortex.

backward connections from the entorhinal cortex to the neocortical hierachy, as illustrated for the
visual cortex in Figure 1b.

In contrast, modern artificial neural networks used in image recognition only have forward connec-
tions. Recent work showed that adding feedback connections to recurrent vision models provides
robustness to noise perturbations and adversarial attacks when coupled with stochastic neural vari-
ability during training Greco et al. (2025). However, this kind of models is specific to image clas-
sification, and does not intend to capture generative processes such as visual imagery. Generative
models such as Variational Autoencoders (VAE) capture this kind of generative processes using de-
coders which can be seen as backward connections, but the neurons in the network are updated in a
feedforward fashion. In contrast, activity of neurons in the neocortex is the result of the interaction
of feedforward and feedback information. In addition, learning in these artificial neural networks is
based on backpropagation, which is thought to be biologically implausible.

Rooted in studies of the visual cortex, predictive coding has been proposed in computational neuro-
science as a general theory of cortical computation, which maps well to the neocortex in terms of
architecture and information processing, as well as local learning rule (Friston, 2003). This frame-
work has been implemented in different versions to solve practical tasks in machine learning, both
supervised and unsupervised (Pinchetti et al., 2025; Ororbia & Kifer, 2022). However, little work
has been done in computational neuroscience to study how this theory can account for the functions
of the neocortex, in a biologically plausible way. Recently, (Fontaine & Alexandre, 2025) proposed a
biologically inspired model of the neocortex, based on a predictive coding network with two hidden
layers and showed that it could account for perceptual and mnesic mechanisms, including experi-
ence replay and recall. However, the study was focused on memory retrieval from a corrupted input
because the aim was to show that the neocortex could not recall the details of episodic memories like
the hippocampus does. Thus, the model was trained on only two classes of digits from the MNIST
dataset, and the representations at the top of the hierarchy were overlapping at the boundary of the
two classes, resulting in imperfect experience replays. In this paper, we tackle these limitations by
accurately tuning the number of hidden units and stabilizing the convergence of the model on the full
MNIST dataset using a learning rate scheduler. We found that adding more neurons in the second
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hidden layer does not improve reconstruction (quite the contrary), but allows the episodic replays to
be more accurate, by increasing the linear separability of representations corresponding to different
classes at the top of the hierarchy. Furthermore, we show that the model can account for generative
replay in addition to episodic replay.

2 RELATED WORKS

In a bio-inspired model of memory consolidation (Spens & Burgess, 2024), the neocortex is mod-
elled as a VAE, whereas the hippocampus corresponds to a memory buffer replaying episodic mem-
ories to the input of the VAE. Even though this model captures the cognitive process of memory
consolidation, it is not faithful to the architecture and information processing of the corresponding
structures in the brain. Other works studied the generation of inputs in predictive coding networks
(PCN). On the one hand, Oliviers et al. (2024) proposed Monte Carlo predictive coding for learn-
ing probability distributions of sensory inputs, arguing that classical predictive coding demonstrated
limited performance in generative tasks. On the other hand, preliminary work by Millidge (2019)
showed that a PCN with one hidden layer can be used to generate inputs by sampling points close
to the training data in the latent space, even though the generated samples were blurry and the au-
thors did not describe their method for sampling. Ororbia & Kifer (2022) proposed to generate
images from an extended version of PCN with ancestral sampling, but only three images per class
are shown. In addition, using the model proposed by Friston (2003), the authors only show nearest
neighbor samples that match an original data point for each class, leaving aside a large part of the
image space which is covered by the generative model.

3 PREDICTIVE CODING

Predictive coding networks (PCN) are based on hierarchical generative models with L layers, of the
type

pθ0(h0) = N (h0;µ0,Σ0),µ0 = θ0

∀l ∈ {1, 2, ..., L}, pθl
(hl | hl−1) = N (hl;µl,Σl),µl = fl(µl−1;θl)

where h = (h0,h1, ...,hL) are the states and θ = (θ0,θ1, ...,θL) are the parameters. Level L is
the input level, so hL is the input state and h0,h1, ...,hL−1 are the latent states. In practice, we
use µ0 = 0 and Σl = I for all l ∈ {0, 1, ..., L}. Therefore, the prior on the latent state of level 0 is
a centered isotropic multivariate Gaussian pθ0(h0) = N (h0;0, I) with no parameter.

Recognition is assumed to be deterministic, such that for an input x,

qϕ(h0,h1, ...,hL−1 | x) =
L−1∏
l=0

δ(hl − ϕl)

where ϕ = (ϕ0,ϕ1, ...,ϕL−1) is an estimate of the latent states h0,h1, ...,hL−1 corresponding
to the input x.

Inference of the latent states for an input x results from the minimization of a lower bound to the
negative likelihood, called variational free energy

L(θ,ϕ;x) = −Eqϕ(h0,h1,...,hL−1|x) [log pθ(h0,h1, ...,hL−1,x)]

= − log pθ(ϕ0,ϕ1, ...,ϕL−1,x)

= − log pθ0(ϕ0)− log pθ1(ϕ1 | ϕ0)− log pθ2(ϕ2 | ϕ1)− ...− log pθL
(ϕL | ϕL−1)

= − log p(ϕ0) +
1

2

L∑
l=1

[
ξTl ξl + log |Σl|

]
+ constant

where taking the logarithm of a Gaussian distribution results in a quantity

ξl = Σ
− 1

2

l (ϕl − fl(ϕl−1;θl)). (1)

which can be seen as a prediction error for layer l. Thus, the variational free energy corresponds to
the sum of prediction errors in all layers, and PCNs learn hierarchical predictive representations of
the input.
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When presented with an input x, the latent states are updated according to

ϕ̇l = −∇ϕl
L(θ,ϕ;x) = −

∂ξTl+1

∂ϕl
ξl+1 −

∂ξTl
∂ϕl

ξl (2)

until the variational free energy is minimized. In practice, we only update the latent states T times
during training.

Similarly, learning of the parameters θ = (θ1,θ2, ...,θL) corresponds to the minimization of the
variational free energy F (θ) = Ep(x) [L(θ,ϕ;x))]. After several image presentations, the parame-
ters are updated once following

∀l ∈ {1, 2, ..., L}, θ̇l = −∇θl
F = −Ep(x)

[
∂ξTl
∂θl

ξl

]
. (3)

This algorithm can be implemented in a neural network, hence the name PCN, with only local
computations for inference and learning. In a PCN, each level l consists of two types of neurons,
with activity ϕl and ξl respectively. When mapped to the neocortical hierarchy, level l + 1 is the
level below l, with level 0 at the top and level L at the bottom. From equation 1, it can be seen that
neurons ξl compute the prediction errors, based on lateral connections with neurons ϕl at the same
level and inhibitory feedback connections with neurons ϕl−1 in the level above, which provide the
predictions. Equation 2 shows that neurons ϕl receive connections from error neurons in the same
level ξl and the level below ξl+1. In addition, it can be seen that equation 3 corresponds to Hebbian
learning, as shown in the next section.

While we choose fixed covariances Σl = I , it was proposed in later publications that the inverse
covariance, called precision, Σ−1

l is predicted by higher layers and mediates attention (Feldman &

Friston, 2010). Indeed, if precision Σ−1
l is low, prediction error ξl = Σ

− 1
2

l (ϕl − fl(ϕl−1;θl)) is
low, and will not influence the update of neuron activities and weights.

4 METHODS

Building upon Fontaine & Alexandre (2025), we propose a predictive coding model of the visual
cortex and show that it learns hierarchical predictive representations of MNIST images, that support
both memory and imagination in a biologically inspired way.

4.1 MODEL

Our model is a PCN with L = 2 layers

p(h0) = N (h0;0, I)

pθ1
(h1 | h0) = N (h1; f(W1h0 + b1), I)

pθ2(h2 | h1) = N (h2;W2h1, I)

where θ1 = (W1, b1) and θ2 = W2. Indeed, the bias and non-linearity are not required in the input
layer, because an image can be represented as a linear combination of basis functions (Olshausen &
Field, 1996).

The variational free energy for an input x is

L(θ,ϕ;x) = 1

2
ξ⊤0 ξ0 +

1

2
ξ⊤1 ξ1 +

1

2
ξ⊤2 ξ2 + constant

where

ξ0 = ϕ0 (4)
ξ1 = ϕ1 − f(W1ϕ0 + b1) (5)
ξ2 = x−W2ϕ1. (6)
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4.2 TRAINING ALGORITHM

Let us consider a dataset X = {x(i)}Ni=1 of N i.i.d. samples of a continous variable x. The log
likelihood can be written log pθ(x

(1), ...,x(N)) =
∑N

i=1 log pθ(x
(i)). Therefore, the variational

free energy of the dataset X is

L(θ;X) =

N∑
i=1

L(θ,ϕ;x(i)),

which can be estimated based on minibatches

L(θ;X) ≈ LM (θ;XM ) =
N

M

M∑
i=1

L(θ,ϕ(i);x(i)) (7)

where the minibatch XM = {x(i)}Mi=1 is randomly drawn from the dataset X .

Given a minibatch XM , the latent states ϕ
(i)
0 and ϕ

(i)
1 are updated during T iterations for each

datapoint x(i) using equation 2. During training, we do not need to update the latent states until
convergence of the variational free energy because we train for multiple epochs, so T can be low to
accelerate training. The update rules for the two layers can be calculated from the gradients

∇ϕ1
L(θ,ϕ;x) = −W⊤

2 ξ2 + ξ1

∇ϕ0
L(θ,ϕ;x) = −W⊤

1 diag [f ′(W1ϕ0 + b1)] ξ1 + ξ0.

Then, the parameters θ1 = (W1, b1) and θ2 = W2 are updated once to minimize the estimate
LM (θ;XM ) given in equation 7. Thus, the learning rules can be calculated from the sum of gradi-
ents

∑M
i=1∇θl

L(θ;x(i)). For an input x, it can be shown that

∇W2L(θ,ϕ;x) = −ξ2ϕ⊤
1

∇W1L(θ,ϕ;x) = − [ξ1 ⊙ f ′(W1ϕ0 + b1)]ϕ
⊤
0

∇b1L(θ,ϕ;x) = −ξ1 ⊙ f ′(W1ϕ0 + b1)

where ⊙ is the element-wise product. Therefore, we update the parameters with the gradients

∇W2LM (θ;XM ) ∝
M∑
i=1

∇W2L(θ,ϕ(i);x(i)) = −
M∑
i=1

ξ
(i)
2 ϕ

(i)⊤
1

∇W1LM (θ;XM ) ∝
M∑
i=1

∇W1L(θ,ϕ(i);x(i)) = −
M∑
i=1

[
ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

]
ϕ

(i)⊤
0

∇b1LM (θ;XM ) ∝
M∑
i=1

∇b1L(θ,ϕ(i);x(i)) = −
M∑
i=1

ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

During the updates, the gradients are scaled by a multiplicative factor which is the inference rate
for the latent states and the learning rate for the parameters. We train the model on a dataset X
for multiple epochs, and reduce the learning rate by a multiplicative factor γ < 1 at each epoch of
training to prevent instability issues. Details can be found in section A.1 of the appendix.

4.3 MEMORY REPLAY

Figure 2 shows how this algorithm can be implemented in a neural network mapped onto the visual
pathway of the brain, with only local computations. The three levels in the network correspond,
from bottom to top, to the lateral geniculate nucleus (LGN) in thalamus (and not the retina because
it doesn’t receive feedback connections from LGN), the visual cortex (VC) and the entorhinal cortex
(EC). This mapping allows us to study memory replay after training the model with algorithm 1.
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Figure 2: PCN with 3 levels mapped to lateral geniculate nucleus (LGN), visual cortex (VC) and
entorhinal cortex (EC). Each node corresponds to multiple neurons. Circle nodes correspond to units
ϕl and triangle nodes correspond to error units ξl. Each connection between nodes corresponds to
a fully connected network, with excitatory connections in the upward direction and inhibitory con-
nections in the downward direction. We consider the upmost prediction to be 0, to have a standard
normal distribution as prior.

At inference time, the latent states are updated until convergence or until a maximum number of
iterations Tmax is reached in order to study the converged representations. Convergence occurs when
the relative change in the norm of the latent state ϕl is smaller than a threshold ϵ, i.e.

∥∇ϕl
L(θ,ϕ;x)∥
∥ϕl∥

< ϵ.

During perception, the network is driven by the input image in LGN. While the LGN is set to
the image, the VC and EC converge to hierarchical predictive representations of the image. The
representation in VC is predictive of the image, as the prediction W2ϕ1 is a reconstruction of the
image. The representations in EC can be stored by the hippocampus (not explicitly modelled in this
paper) and later replayed during experience replay.

During memory replay, the network is driven by the representation in EC, which is either a represen-
tation of an image stored by the hippocampus in the case of experience replay or a sample generated
in the latent space of EC in the case of generative replay. While the EC is set to the stored repre-
sentation, the VC converges to the replayed representation. This representation is protected from
ascending input in LGN by setting the precision Σ−1

2 in the LGN to 0, preventing the prediction
errors in LGN to influence the activity in VC. In this way, attention is focused on the replay, and not
on the current input. Then, the prediction W2ϕ1 based on the replayed representation ϕ1 in VC
corresponds to the replayed image.

Sampling of the latent space of EC is class-conditioned. Indeed, we fit a multivariate Gaussian dis-
tribution to each class in the latent space of EC, by estimating the mean and covariance of training
samples in each class. Then, samples from a given class can be generated by sampling the corre-
sponding Gaussian distribution.

4.4 EXPERIMENTS

The model is trained on the MNIST dataset, which contains images of handwritten digits from 0
to 9. The original training set of 60,000 images is split into a training set of size 50,000 and a
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validation set of size 10,000. The validation set is used to evaluate the model during training and
hyperparameter tuning. After training, we evaluate the model on the original test set of 10,000
images.

Hyperparameter values are chosen based on empirical trials informed by the predictive coding liter-
ature and summarized in Table 1 in the appendix. In addition, the number of hidden units in level
1 is obtained by minimizing the variational free energy on the validation set for a PCN with L = 1
using grid search, as shown in Figure 6 in the appendix. The choice of the number of hidden units
in level 2 is more complex and results from a trade-off between different metrics, described in the
next subsection.

In our simulations, we study the influence of the number of hidden units in level 0 on the learned
representations and on memory replay, both quantitatively and qualitatively. Quantitatively, we
evaluate the predictive performance of the model and the quality of the experience replays using the
reconstruction and replay errors, based on the root mean squared error (RMSE). The RMSE between
two flattened images x and x̂ is

RMSE(x, x̂) =

√√√√ 1

Npixels

Npixels∑
i=1

(xi − x̂i).

The reconstruction error is computed between the original and reconstructed images, averaged over
the validation set, whereas the replay error is computed between the original and replayed images,
averaged over the training set. In addition, we evaluate the linear separability of the latent manifolds
corresponding to the different classes in level 0 of the model using the classification accuracy of
a simple multinomial logistic regression. On the qualitative side, we examine examples of recon-
structions of images from the validation set and of experience replay corresponding to images from
the training set. Additionnally, we show examples of images generated by generative replay and
visualize their hierarchical representations.

5 RESULTS

The reconstruction error, replay error and classification accuracy are plotted against the number of
hidden units in level 0 in Figure 3. These measures are evaluated after training the model until
convergence of all layers, as shown in Figure 7 in the appendix. This figure shows that the second
hidden level (counted from the bottom level) in our model does not improve the predictive power
of its representations. On the contrary, the reconstruction error increases with the number of units
in the second hidden level. However, the quality of replay and the linear separability of the classes
in the second hidden level increases with the number of units in that level. Therefore, choosing the
number of units in level 0 based on these metrics is not straightforward, and we will turn to the
qualitative evaluation.

In Figure 4, we visualize examples of experience replay obtained with models of different widths.
As shown in Fontaine & Alexandre (2025), setting the width of the top level to the number of
classes (i.e. n0 = 10) results in replayed images that are blurry and that do not retain the details of
the original images. This issue is solved by increasing the width of the top level to 30. Increasing it
further to 100 improves the sharpness of the replayed images.

However, visual inspection of the reconstructions of images from the validation set and generative
replays does not differentiate the models with different widths. Indeed, the difference in reconstruc-
tion errors between the different models is imperceptible in the reconstructed images. Similarly, the
latent spaces and the quality of the images generated by replay are similar in the different models,
despite the difference in replay error and classification accuracy. Therefore, we only show the cor-
responding plots for a model with n0 = 30 units in level 0 in Figure 5. It can be seen from Figure
5a that the representations learned by the model are perfectly predictive of images it has never seen
during training. In addition, according to Figure 5c for the validation set and Figure 8 in appendix
for the training set, the representations of the different classes are well separated in all three lev-
els, including the top level which was found to have overlapping clusters in Fontaine & Alexandre
(2025). Furthermore, the representations generated by replay mostly fall within the right clusters in
all levels. This is confirmed by looking at the generated images in Figure 5b. Most of the images
generated for each class are realistic examples of their classes, even though some of them are blurry.

7
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Figure 3: Quantitative evaluation of our model according to different metrics, depending on the
number of hidden units in level 0. The dotted lines correspond to the same model but with L = 1.

Figure 4: The same minibatch of images from the training set is replayed in PCNs with different
widths n0 at the top level.

6 DISCUSSION

Predictive coding provides a comprehensive account of memory replay, both in the framework of
experience replay and generative replay. Generative replay should in practice encompass experience
replay as a generative process which samples both existing episodic memories and imagined ones.
In this paper, we only provide a proof of concept that predictive coding can account for these two
types of replay as we did not completely model the hippocampal formation, but only the entorhinal
cortex. Some of the images generated by our model were found to be out-of-distribution, probably
because the simple Gaussian distribution we used does not capture the complex, non-linear geometry
of the latent manifolds. This issue could be solved using a Riemannian metric (Arvanitidis et al.,
2021). However, to provide a more complete, mechanistic account of memory replay, future work
should aim at modelling the hippocampal formation with its different components and generating
replay from it. In this way, realistic in-distribution samples will naturally be generated thanks to the
learned connection between the entorhinal cortex and the hippocampus. Finally, one element that
has been left unresolved in this work and that will be important when the hippocampal formation
will be connected to the neocortex is the size of the entorhinal layer in the model. Given that the
entorhinal cortex is thought to contain a compressed representation combining different sensory
modalities and that replay is phenomenologically not an exact copy of episodic memories but is
often blurry, a limited width of n0 = 30 could be sufficient.
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(a) Reconstructions

(b) Generative replay (c) Latent and input space

Figure 5: Visualizations for a model with n0 = 30 units in the top level. (a) Images reconstructed
(right) by a PCN with n0 = 30 units in the top level for a random mini-batch of images from the
validation set (left). (b) Images generated by replay for each class. (c) Hierarchical representations
of the images generated by replay (star-shaped markers) and of the images of the validation set
(transparent circle markers), visualized in 2D using t-SNE. Each image is represented as one data
point in each of the three subplots, colored according to the class.
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A APPENDIX

A.1 ALGORITHM

The algorithm described in section 4.2 is summarized in algorithm 1 where α, β are the inference
and learning rates. The constant N

M from equation 7 is factorized in the learning rate β. To prevent
instabilities which occured systematically during training, we propose an exponential learning rate
scheduler

βepoch = γ × βepoch−1

which decays the learning rate β by a multiplicative factor γ at each epoch.

Initialization parameters include the standard deviations σW and σϕ and the number of dimensions
of latent state ϕ0.

Algorithm 1 Model training with minibatches

W1,W2 ← Sample from N (0, σW )
b1 ← U(− 1

n0
, 1
n0

)
repeat

for k = 1 to nbatches do
XM ← Random minibatch of M datapoints drawn from X
for i = 1 to M do

ϕ
(i)
2 ← x(i)

ϕ
(i)
0 ,ϕ

(i)
1 ← Sample from N (0, σϕ)

ξ
(i)
0 , ξ

(i)
1 , ξ

(i)
2 ← Calculate the corresponding errors (equation 4)

for t = 1 to T do
ϕ

(i)
1 ← ϕ

(i)
1 + α(W⊤

2 ξ
(i)
2 − ξ

(i)
1 )

ϕ
(i)
0 ← ϕ

(i)
0 + α(W⊤

1 diag
[
f ′(W1ϕ

(i)
0 + b1)

]
ξ
(i)
1 − ξ

(i)
0 )

ξ
(i)
0 , ξ

(i)
1 , ξ

(i)
2 ← Calculate the corresponding errors (equation 4)

end for
end for
W2 ←W2 + β

∑M
i=1 ξ

(i)
2 ϕ

(i)⊤
1

W1 ←W1 + β
∑M

i=1

[
ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

]
ϕ

(i)⊤
0

b1 ← b1 + β
∑M

i=1 ξ
(i)
1 ⊙ f ′(W1ϕ

(i)
0 + b1)

end for
until variational free energy L(θ;X) is minimized

A.2 EXPERIMENTS
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Table 1: Hyperparameter values

Parameter Value

Activation function f tanh
Batch size 64
Standard deviation σW 0.01
Standard deviation σϕ 0.05
Number of iterations Ttrain 50
Number of iterations Tvalid 200
Maximum number of iterations Tmax 20000
Convergence threshold ϵ 2× 10−4

Inference rate α 0.01
Inference optimizer SGD
Initial learning rate β0 10−5

Learning rate decay factor γ 0.99
Learning optimizer Adam

Figure 6: RMSE between original and reconstructed images averaged over the validation set for a
PCN with L = 1.
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Figure 7: Mean prediction errors in level 1 and 2 of a model with 30 units in level 0, averaged over
the whole training set (blue line) and a random minibatch from the validation set (orange line) at
each epoch. The model converges after 2000 epochs thanks to the learning rate scheduler.
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Figure 8: Hierarchical representations of the training images visualized using t-SNE. Each image
from the training set is represented as one data point in each of the three subplots, colored according
to the class.
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