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Abstract—Multimodal medical image fusion, as a powerful tool
for the clinical applications, has developed with the advent of var-
ious imaging modalities in medical imaging. The main motivation
is to capture most relevant information from sources into a single
output, which plays an important role in medical diagnosis. In
this paper, a novel fusion framework is proposed for multimodal
medical images based on non-subsampled contourlet transform
(NSCT). The source medical images are first transformed by
NSCT followed by combining low- and high-frequency compo-
nents. Two different fusion rules based on phase congruency and
directive contrast are proposed and used to fuse low- and high-fre-
quency coefficients. Finally, the fused image is constructed by the
inverse NSCT with all composite coefficients. Experimental results
and comparative study show that the proposed fusion framework
provides an effective way to enable more accurate analysis of
multimodality images. Further, the applicability of the proposed
framework is carried out by the three clinical examples of persons
affected with Alzheimer, subacute stroke and recurrent tumor.

Index Terms—Multimodal medical image fusion, non-subsam-
pled contour transform, phase congruency, directive contrast.

I. INTRODUCTION

N the recent years, medical imaging has attracted increasing

attention due to its critical role in health care. However, dif-
ferent types of imaging techniques such as X-ray, computed to-
mography (CT), magnetic resonance imaging (MRI), magnetic
resonance angiography (MRA), etc., provide limited informa-
tion where some information is common, and some are unique.
For example, X-ray and computed tomography (CT) can pro-
vide dense structures like bones and implants with less distor-
tion, but it cannot detect physiological changes [1]. Similarly,
normal and pathological soft tissue can be better visualized by
MRI image whereas PET can be used to provide better infor-
mation on blood flow and flood activity with low spatial resolu-
tion. As a result, the anatomical and functional medical images
are needed to be combined for a compendious view. For this
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purpose, the multimodal medical image fusion has been iden-
tified as a promising solution which aims to integrating infor-
mation from multiple modality images to obtain a more com-
plete and accurate description of the same object. Multimodal
medical image fusion not only helps in diagnosing diseases, but
it also reduces the storage cost by reducing storage to a single
fused image instead of multiple-source images.

So far, extensive work has been made on image fusion tech-
nique [2]-[19] with various techniques dedicated to multimodal
medical image fusion [20]-[28]. These techniques have been
categorized into three categories according to merging stage.
These include pixel level, feature level and decision level fu-
sion where medical image fusion usually employs the pixel level
fusion due to the advantage of containing the original mea-
sured quantities, easy implementation and computationally ef-
ficiency [17]. Hence, in this paper, we concentrate our efforts to
pixel level fusion, and the terms image fusion or fusion are in-
tently used for pixel level fusion. The well-known pixel level fu-
sion are based on principal component analysis (PCA), indepen-
dent component analysis (ICA), contrast pyramid (CP), gradient
pyramid (GP) filtering, etc. Since, the image features are sensi-
tive to the human visual system exists in different scales. There-
fore, these are not the highly suitable for medical image fusion
[22]. Recently, with the development of multiscale decompo-
sition, wavelet transform has been identified ideal method for
image fusion. However, it is argued that wavelet decomposition
is good at isolated discontinuities, but not good at edges and
textured region. Further, it captures limited directional informa-
tion along vertical, horizontal and diagonal direction [23]. These
issues are rectified in a recent multiscale decomposition con-
tourlet, and its non-subsampled version. Contourlet is a “true”
2-D sparse representation for 2-D signals like images where
sparse expansion is expressed by contour segments. As a result,
it can capture 2-D geometrical structures in visual information
much more effectively than traditional multiscale methods [29].

In this paper, a novel fusion framework is proposed for mul-
timodal medical images based on non-subsampled contourlet
transform. The core idea is to perform NSCT on the source im-
ages followed by the fusion of low- and high-frequency coeffi-
cients. The phase congruency and directive contourlet contrast
feature are unified as the fusion rules for low- and high-fre-
quency coefficients. The phase congruency provides a contrast-
and brightness-invariant representation of low-frequency coef-
ficients whereas directive contrast efficiently determines the fre-
quency coefficients from the clear parts in the high-frequency.
The combinations of these two can preserve more details in
source images and further improve the quality of fused image.
The efficiency of the proposed framework is carried out by the
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extensive fusion experiments on different multimodal CT/MRI
dataset. Further, visual and quantitative analysis show that the
proposed framework provides a better fusion outcome when
compared to conventional image fusion techniques. The salient
contributions of the proposed framework over existing methods
can be summarized as follows.

* This paper proposes a new image fusion framework for
multimodal medical images, which relies on the NSCT
domain.

* Two different fusion rules are proposed for combining low-
and high-frequency coefficients.

* For fusing the low-frequency coefficients, the phase con-
gruency based model is used. The main benefit of phase
congruency is that it selects and combines contrast- and
brightness-invariant representation contained in the low-
frequency coefficients.

* On the contrary, a new definition of directive contrast in
NSCT domain is proposed and used to combine high-fre-
quency coefficients. Using directive contrast, the most
prominent texture and edge information are selected from
high-frequency coefficients and combined in the fused
ones.

* The definition of directive contrast is consolidated by in-
corporating a visual constant to the SML based definition
of directive contrast which provide a richer representation
of the contrast.

 Further, the proposed scheme is also extended for multi-
spectral fusion in {3 color space which essentially recti-
fies the THS color space undesirable cross-channel artifacts
and produce best quality output with natural spectral fea-
tures and improved the color information.

The rest of the paper is organized as follows. NSCT and phase
congruency are described in Section II followed by the proposed
multimodal medical image fusion framework in Section III. Ex-
perimental results and discussions are given in Section IV and
the concluding remarks are described in Section V.

II. PRELIMINARIES

This section provides the description of concepts on which
the proposed framework is based. These concepts include NSCT
and phase congruency and are described as follows.

A. Non-Subsampled Contourlet Transform (NSCT)

NSCT, based on the theory of CT, is a kind of multi-scale and
multi-direction computation framework of the discrete images
[29]. It can be divided into two stages including non-subsam-
pled pyramid (NSP) and non-subsampled directional filter bank
(NSDFB). The former stage ensures the multiscale property by
using two-channel non-subsampled filter bank, and one low-fre-
quency image and one high-frequency image can be produced
at each NSP decomposition level. The subsequent NSP decom-
position stages are carried out to decompose the low-frequency
component available iteratively to capture the singularities in
the image. As a result, NSP can result in & + 1 sub-images,
which consists of one low- and k high-frequency images having
the same size as the source image where & denotes the number
of decomposition levels. Fig. 1 gives the NSP decomposition
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Fig. 1. Three-stage non-subsampled pyramid decomposition.
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Fig. 2. Four-channel non-subsampled directional filter bank.

with & = 3 levels. The NSDFB is two-channel non-subsam-
pled filter banks which are constructed by combining the direc-
tional fan filter banks. NSDFB allows the direction decomposi-
tion with [ stages in high-frequency images from NSP at each
scale and produces 2" directional sub-images with the same size
as the source image. Therefore, the NSDFB offers the NSCT
with the multi-direction property and provides us with more
precise directional details information. A four channel NSDFB
constructed with two-channel fan filter banks is illustrated in
Fig. 2.

B. Phase Congruency

Phase congruency is a measure of feature perception in the
images which provides a illumination and contrast invariant fea-
ture extraction method [30], [31]. This approach is based on the
Local Energy Model, which postulates that significant features
can be found at points in an image where the Fourier compo-
nents are maximally in phase. Furthermore, the angle at which
phase congruency occurs signifies the feature type. The phase
congruency approach to feature perception has been used for
feature detection. First, logarithmic Gabor filter banks at dif-
ferent discrete orientations are applied to the image and the local
amplitude and phase at a point (2, ) are obtained. The phase
congruency, P . is then calculated for each orientation o as
shown in (1) at the bottom of the next page, where W7 is the
weight factor based on the frequency spread, A7 ang ¢y 7 are
the respective amplitude and phase for the scale n, ¢5 , is the
weighted mean phase, T is a noise threshold constant and ¢ is a
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small constant to avoid divisions by zero. The symbol [] de-
notes that the enclosed quantity is equal to itself when the value
is positive, and zero otherwise. Only energy values that exceed
T, the estimated noise influence and are counted in the result.
The appropriate noise threshold, 7" is readily determined from
the statistics of the filter responses to the image. For details of
this phase congruency measure and its implementation see [31].
The main properties, which acted as the motivation to use phase
congruency for multimodal fusion, are as follows.

* The phase congruency is invariant to different pixel inten-
sity mappings. The images captured with different modali-
ties have significantly different pixel mappings, even if the
object is same. Therefore, a feature that is free from pixel
mapping must be preferred.

e The phase congruency feature is invariant to illumina-
tion and contrast changes. The capturing environment of
different modalities varies and resulted in the change of
illumination and contrast. Therefore, multimodal fusion
can be benefitted by an illumination and contrast invariant
feature.

* The edges and corners in the images are identified by
collecting frequency components of the image that are in
phase. As we know, phase congruency gives the Fourier
components that are maximally in phase. Therefore, phase
congruency provides the improved localization of the
image features, which lead to efficient fusion.

III. PROPOSED MULTIMODAL MEDICAL
IMAGE FUSION FRAMEWORK

In this section, we have discussed some of the motivating fac-
tors in the design of our approach to multimodal medical image
fusion. The proposed framework realizes on the directive con-
trast and phase congruency in NSCT domain, which takes a pair
of source image denoted by A and B to generate a composite
image F'. The basic condition in the proposed framework is that
all the source images must be registered in order to align the
corresponding pixels. The block diagram of the proposed frame-
work is depicted in Fig. 3 but before describing it, the definition
of directive contrast is first described, which is as follows.

A. Directive Contrast in NSCT Domain

The contrast feature measures the difference of the intensity
value at some pixel from the neighboring pixels. The human
visual system is highly sensitive to the intensity contrast rather
than the intensity value itself. Generally, the same intensity
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Fig. 3. Block diagram of proposed multimodal medical image fusion
framework.

value looks like a different intensity value depending on inten-
sity values of neighboring pixels. Therefore, local contrast is
developed and is defined as [8]

L-Lp Ly

C= Sl 4
Lp In

2)
where L is the local luminance and L g is the luminance of the
local background. Generally, L g is regarded as local low-fre-
quency and hence, L — Lg = Ly is treated as local high-fre-
quency. This definition is further extended as directive contrast
for multimodal image fusion [10]. These contrast extensions
take high-frequency as the pixel value in multiresolution do-
main. However, considering single pixel is insufficient to de-
termine whether the pixels are from clear parts or not. There-
fore, the directive contrast is integrated with the sum-modi-
fied-Laplacian [32] to get more accurate salient features.

In general, the larger absolute values of high-frequency co-
efficients correspond to the sharper brightness in the image and
lead to the salient features such as edges, lines, region bound-
aries, and so on. However, these are very sensitive to the noise
and therefore, the noise will be taken as the useful informa-
tion and misinterpret the actual information in the fused images.
Hence, a proper way to select high-frequency coefficients is nec-
essary to ensure better information interpretation. Hence, the
sum-modified-Laplacian is integrated with the directive contrast
in NSCT domain to produce accurate salient features. Mathe-
matically, the directive contrast in NSCT domain is given by

SML; ¢(i,5) i o
Digtingy={ nwp - HHGDZ0 )

where SML; ¢ is the sum-modified-Laplacian of the NSCT fre-
quency bands at scale [ and orientation #. On the other hand,

PO

Wwe o,n on _ 1o _
§ : @y [Aw,:u (COS< @,y QJ)%U)
_ n

- 7.)) 1],

Ty T n
E Agly +e

n

(1



BHATNAGAR et al.: DIRECTIVE CONTRAST BASED MULTIMODAL MEDICAL IMAGE FUSION IN NSCT DOMAIN

I;(i, 7) is the low-frequency sub-band at the coarsest level ().
The sum-modified-Laplacian is defined by following equation

i+m  Jitn
SMLig(ij) = > > Viel(ay) ©)
r=i—my=j—n
where
Viel(i,i) = [2116(i, 5) — Teli — step, 5)

— L1,0(i + step, j)|
+ [20y,6(4, 5) — I1,6(i, j — step)
— I;0(i, j + step)] %)

In order to accommodate for possible variations in the size of
texture elements, a variable spacing (step) between the pixels
is used to compute partial derivatives to obtain SML and is
always equal to 1 [32]. Further, the relationship between the
contrast sensitivity threshold and background intensity is non-
linear, which makes the human visual system highly sensitive
to contrast variation [33]. Hence, the above integration must
be improved to provide better details by exploiting visibility of
low-frequency coefficients in the above-mentioned definition.
Hence, the directive contrast in NSCT domain is given as

() i) # 0
SML; 6(%, 7). ifn(i,7)=0

SML; g (4,5)
L5

Dl,@(ivj) = {
(6)

where « as a visual constant representing the slope of the best-
fitted lines through high-contrast data, which is determined by
physiological vision experiments, and it ranges from 0.6 to 0.7
[33]. The proposed definition of directive contrast, defined by
(6), not only extract more useful features from high-frequency
coefficients but also effectively deflect noise to be transferred
from high-frequency coefficients to fused coefficients.

B. Proposed Fusion Framework

In this subsection, the proposed fusion framework will be dis-
cussed in detail. Considering, two perfectly registered source
images A and B the proposed image fusion approach consists
of the following steps:

1. Perform £-level NSCT on the source images to obtain one

low-frequency and a series of high-frequency sub-images
at each level and direction 6, i.e.,

Q)

where C; are the low-frequency sub-images and C;' rep-
resents the high-frequency sub-images at level / € [1,] in
the orientation 8.

2. Fusion of Low-frequency Sub-images: The coefficients in
the low-frequency sub-images represent the approximation
component of the source images. The simplest way is to use
the conventional averaging methods to produce the com-
posite bands. However, it cannot give the fused low-fre-
quency component of high quality for medical image be-
cause it leads to the reduced contrast in the fused images.
Therefore, a new criterion is proposed here based on the

A-{c}.cfy} and B: {CP.Cl}
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phase congruency. The complete process is described as
follows.
» First, the features are extracted from low-frequency
sub-images using the phase congruency extractor (1),
denoted by PC 4 and PcB respectively.
» Fuse the low- frequency sub-images as

Cit (), if Pea(w,y) > Pep(r,y)
F CEB('Ly)ﬂ lfPCf(*Lg)<PCF('Ly)
C/. (Tay) = Z Cg(L )
keA’BQ if Pea (r,y) = FPes (z,9)
®

3. Fusion of High-frequency Sub-images: The coefficients
in the high-frequency sub-images usually include details
component of the source image. It is noteworthy that the
noise is also related to high-frequencies and may cause
miscalculation of sharpness value and therefore effect the
fusion performance. Therefore, a new criterion is proposed
here based on directive contrast. The whole process is
described as follows.

» First, the directive contrast for NSCT high-fre-

quency sub-images at each scale and orientation using

(3)—(5), denoted by D% and Dclﬁ_eg at each level
€ [1,£] in the direction 6. '

» Fuse the high-frequency sub-images as

CF (ZL‘ y) _ CIAH(J’.y)v if DC]/}G (m7y)ZDC]’?9 (’[,‘7:1/)
1,6\, Cl‘?ﬁ(:l:7y), if Dci?e (w’y)<DCf9 (»b,y)

4. Perform {-level inverse NSCT on the fused low-frequency
(CF') and high-frequency (Cl o) subimages, to get the fused
image (F).

C. Extension to Multispectral Image Fusion

The IHS transform is a widely used multispectral image fu-
sion methods in the research community. It works on a simple
way to convert multispectral image from RGB to IHS color
space. Fusion is then performed by fusing I component and
source panchromatic image followed by the inverse IHS con-
version to get the fused image. The IHS based process can pre-
serve the same spatial resolution as the source panchromatic
image but seriously distort the spectral (color) information in
the source multispectral image. Therefore, IHS model is not a
suitable for multimodal medical image fusion because a little
distortion can leads to wrong diagnosis.

The aforementioned drawback can be avoided by incorpo-
rating different operations or different color-space such that un-
desirable cross-channel artifacts will not occur. Such a color-
space is developed in [34]. This space is called [«3-space and
is based on the human perception research which assumes that
the natural image processing is ideally done by human visual
system. The RGB to [a/3 color space conversion can be sum-
marized as follows. First, the RGB color space is converted to
LMS cone space as

L 0.3811 0.5783 0.0402 R
M| =10.1967 0.7244 0.0782 G (10)
S 0.0241 0.1288 0.8444 B
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Fig. 4. Block diagram for the multispectral image fusion: synchronization of proposed fusion algorithm in /cx3 color space.

The data in LMS cone space show a great deal of skew and this
can be eliminated by converting LMS cone space channels to
logarithmic color space, i.e.,

T=1gL, Q=IgM, T=1gS (11)

The logarithmic color space is further transformed in three or-
thogonal color-space (lex/3) as
1
l [ v ] 1 1 11[r
1

s _ I
f 0 0 7
In {af3 color space, | represents an achromatic channel whereas
a and 3 are chromatic yellow-blue and red-green channels and
these channels are symmetrical and compact. The inversion,
laf3 to RGB space, is done by the following inverse operations.

1
r 11 17lm Y 0y
- 1
fﬁ = 1 12 -1 0 (1) o (13)
-2 0 0 0 = e
and
{RW { 44679 —3.5873  0.1193 W [10F]
G| =1]-1.218 23809 —0.1624 | | 109 | (14)
[BJ L 0.0497  —0.2439  1.2045 J [10q’

The proposed fusion algorithm can easily be extended for the
multispectral images by utilizing proposed fusion rules in l«/3
color space (see Fig. 4). The core idea is to transform multi-
spectral image from RGB color space to the [« 5 color space
using the process given above. Now, the panchromatic image
and the achromatic channel (/) of the multispectral image are
fused using proposed fusion algorithm followed by the inverse
la3 to RGB conversion to get the final fused image.

IV. RESULTS AND DISCUSSIONS

Some general requirements for fusion algorithm are: (1) it
should be able to extract complimentary features from input
images, (2) it must not introduce artifacts or inconsistencies ac-
cording to Human Visual System and (3) it should be robust and
reliable. Generally, these can be evaluated subjectively or objec-
tively. The former relies on human visual characteristics and the
specialized knowledge of the observer, hence vague, time-con-
suming and poor-repeatable but are typically accurate if per-
formed correctly. The other one is relatively formal and easily
realized by the computer algorithms, which generally evaluate

the similarity between the fused and source images. However,
selecting a proper consistent criterion with the subjective assess-
ment of the image quality is rigorous. Hence, there is a need
to create an evaluation system. Therefore, first an evaluation
index system is established to evaluate the proposed fusion algo-
rithm. These indices are determined according to the statistical
parameters.

A. Evaluation Index System

1) Normalized Mutual Information: Mutual information (MI)
is a quantitative measure of the mutual dependence of two
variables, It usually shows measurement of the information
shared by two images. Mathematically, MI between two
discrete random variables U and V is defined as

MU, V) = Z Z p(u, v)log, pp(“i”)

(15)

uel velV (U)p('U)
where p(u, v) is the joint probability distribution function
of U and V whereas p(u) are the marginal probability dis-
tribution function of U and V' respectively. Based on the
above definition, the quality of the fused image with re-
spect to input images A and B can be expressed as

MI(A, F) MI(B, F)

Qmr = 2 H(A)+ H(F) " H(B)+ H(F)

(16)

where H(A), H(B) and H(F) is the marginal entropy of
images A, B and F' respectively.

2) Structural Similarity based Metric: Structural similarity
(SSIM) is designed by modeling any image distortion as
the combination of loss of correlation, radiometric and con-
trast distortion. Mathematically, SSIM between two vari-

ables U and V is defined as

IR Ve 2 T 7 2 T Ve
SSIM(U, V) = 2V SHURV. 20U

ooy Ui+ /1,%, cr%,- + 0‘2/—

(17

where ppr, py are mean intensity and oy, oy, oy are
the variances and covariance respectively. Based on the
definition of SSIM, a new way to use SSIM for the image
fusion assessment is proposed in [35] and is defined as

Aw)SSIM(A, Flw) + (1 — A(w))SSIM(DB, F|w),
if SSIM(A, B|w) > 0.75
max [SSIM(A, F|w), SSIM(B, F|w)],
if SSIM(A, B|w) < 0.75
(18)

Qs =
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Fig. 5. Multimodal medical image data sets: (a), (¢) CT image (b), (f) MRI image (c), (g) MR-T1 image (d), (h) MR-T2 image.

where w is a sliding window of size, which moves pixel
by pixel from the top-left to the bottom-right corner and
A{w) is the local weight obtained from the local image
salience. See [35] for the detailed implementation of the
aforementioned metric.

3) Edge Based Similarity Measure: The edge based similarity
measure gives the similarity between the edges transferred
in the fusion process. Mathematically, Q*Z/¥" is defined
as

M N

AF, @ BF, Y
> > QM wi; + QFFw! ]

QAB/F _ i=1j=1
M N

St 4]

i=1j=1

19

where A, B and F' represent the input and fused images
respectively. The definition of Q4% and QZ* are same and

given as
AF _ AF AF
2 = Wi iWais
BF __ BF BF
i = QgiiQuij (20)

where Q;F and QT are the edge strength and orientation
preservation values at location (4, j) respectively for im-
ages A and B. The dynamic range for Q*Z/F is[0,1] and
it should be as close to 1 as possible for better fusion.

B. Experiments on CT/MRI Image Fusion

To evaluate the performance of the proposed image fusion
approach, four different datasets of human brain are consid-
ered (see Fig. 5). These images are characterized in two dif-
ferent groups 1) CT-MRI and 2) MR-T1-MR-T2. The images
in Figs. 5(a),(e) and (b),(f) are CT and MRI images whereas
Fig. 5(c,g) and (d),(h) T1-weighted MR image (MR-T1) and
T2-weighted MR image (MR-T2). The corresponding pixels of

€ 19s ByR( 9SeW]

39S BjR(q 93eW]

two input images have been perfectly co-aligned. All images
have the same size 0f 256 x 256 pixel, with 256-level gray scale.
The proposed medical fusion technique is applied to these image
sets.

It can be seen that due to various imaging principle and en-
vironment, the source images with different modality contain
complementary information. For all these image groups, results
of proposed fusion framework are compared with the traditional
PCA (MS rule), Contrast Pyramid [5], Gradient Pyramid [6],
wavelet [20], contourlet [22] and non-subsampled contourlet
(NSCT-1[11]and NSCT-2 [12]) based methods. {In order to do
a fair comparison, the same experimental images are used for all
existing methods. The level of decomposition is set to 3 for all
the pyramid, wavelet and countourlet based methods, including
proposed. For wavelet based method [20], images are decom-
posed using the ‘db4’ wavelet since it has used frequently in
the existing wavelet based methods. For implementing NSCT,
maximally flat filters and diamond maxflat filters are used as
pyramidal and directional filters respectively.

The comparison of statistical parameters for fused images
according to different fusion algorithms are shown in Table I
and visually in Fig. 6. From figure and table, it is clear that the
proposed algorithms not only preserve spectral information but
also improve the spatial detail information than the existing al-
gorithms (highlighted by red arrows), which can also be justi-
fied by the obtained maximum values of evaluation indices (see
Table I). The PCA algorithm gives baseline results. For all ex-
perimental images, PCA based methods give poor results rela-
tive to other algorithms. This was expected because this method
has no scale selectivity therefore it cannot captures prominent
information localized in different scales. This limitation is rec-
tified in pyramid and multiresolution based algorithms but on
the cost of quality i.e., the contrast of the fuse image is re-
duced which is greater in pyramid based algorithms and com-
paratively less in multiresolution based algorithms.
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Proposed Method

(e4)

Fig. 6. The multimodal medical image fusion results of different fusion algorithms: Fused images from (al), (a2), (a3), (a4) PCA based technique; (b1), (b2),
(b3), (b4) Contrast Pyramid based technique; (c1), (c2), (c3), (c4) Gradient Pyramid based technique; (d1), (d2), (d3), (d4) Wavelet based technique; (el), (e2),
(e3), (e4) Contourlet based technique; (f1), (f2), (£3), (f4) NSCT based technique 1; (g1), (g2), (g3), (g4) NSCT based technique 2; (h1), (h2), (h3), (h4) proposed

technique.

TABLE 1
EVALUATION INDICES FOR FUSED MEDICAL IMAGES

Images Modalities Indices PCA Contrast [5]  Gradient [6] Wavelet [20]  Contourlet [22]  NSCT-1 [11] NSCT-2 [12]  Proposed
Qumr 15645 1.0372 0.9417 0.8812 1.0380 1.0367 1.0471 1.0813
:K‘&glealzgtzg% ! Qs 0.8415 0.8059 0.7495 0.7551 0.7968 0.7965 0.8166 0.8726
QAB/F 05226 0.6863 0.7055 0.6669 0.7424 0.7457 0.7538 0.7560
Image Dataset 2 Qumr 09436 0.9412 0.8466 0.8340 0.9463 0.9537 0.9517 0.9681
(MRI and CT) Qs 0.7357 0.7545 0.6253 0.7247 0.7663 0.7695 0.7727 0.7795
QAB/E  (.5545 0.5922 0.7235 0.7038 0.7776 0.7781 0.7796 0.7825
, Qi1 1.0259 1.1723 0.8688 1.0286 1.1405 1.7824 1.1816 1.1865
m‘;‘{gﬁr?zﬁe{\&_m Qs 09054 0.9068 0.8083 0.9043 0.9259 09262 0.9401 0.9527
QAB/E 06730 0.5909 0.6655 0.6403 0.6916 0.6924 0.6958 0.6991
, Qumr 14094 1.0672 0.9556 0.9535 1.0684 1.6949 1.0694 1.0695
zﬁ;gg'l)jf;el‘\&_m Qs 07945 0.8389 0.7815 0.7497 0.8112 0.8107 0.8112 0.8117
QAB/E  0.4408 0.4301 0.5636 0.5326 0.6780 0.6780 0.6785 0.6783

Among multiresolution based algorithms, the algorithms
based on NSCT performs better. This is due to the fact that
NSCT is an multi-scale geometric analysis tool which uti-
lizes the geometric regularity in the image and provide a
asymptotic optimal representation in the terms of better lo-
calization, multi-direction and shift invariance. This is also
justified by the fact that shift-invariant decomposition over-
comes pseudo-Gibbs phenomena successfully and improves
the quality of the fused image around edges. If the NSCT based
methods have been compared then it can be observed that the
performance of the proposed method is better than existing
NSCT based methods [11], [12]. The algorithm in [11] gives
poor results with respect to other NSCT methods. This algo-
rithm uses a directional vector, obtained from high frequency

sub-bands, to fuse low-frequency sub-bands. This directional
vector essentially defines the clarity factor and is used to collect
pixels from blur and clear regions. This algorithm performs
somewhat good in the case of multifocus images but the per-
formance degraded when it is applied to the medical images.
This is because this algorithm is not able to utilize prominent
information present in the low-frequency efficiently and results
in the poor quality. Here, it is important to mention that the
method in [11] still perform better than other multiresolution
based algorithms. The performance of the proposed and the
method in [12] is close to each other, providing the good quality
fused images compared to others. However, looking carefully
at the results, clearly the output from [12] suffer considerably
from less contrast and less visibility in the corpus callosum,
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Fig. 7. Brain images of the man affected with Alzheimer: (a) MRI image (b) PET image; Fused images by (c) wavelet (d) contourlet (¢) NSCT-1 (f) NSCT-2

(g) proposed method.

septum pellucidum, sulcus, flax cerebri and other structures
which is quiet better in the output of the proposed method (see
the regions highlighted by red arrows in the Fig. 6). The main
reason behind the better performance is the proposed fusion
rules for low- and high-frequency coefficients which extract
all prominent information from the images and provide more
natural output with increased visual quality. Therefore, it can
be concluded from Fig. 6 and Table I that both the visual and
statistical evaluation proves the superiority of the proposed
method over existing methods.

C. Clinical Examples on PET/MRI and SPECT/MRI Image
Fusion

Despite the great success of the MRI-CT fusion, its role
in neuroscience is considered to be limited compared with
the potential of PET-MRI and SPECT/MRI fusion. PET can
provide functional eloquent brain areas such as motor or speech
regions by using specific activation tasks. On the other hand,
single-photon emission computed tomography (SPECT) im-
ages reveal the metabolic change that has significant clinical
values. Therefore, in modern era PET/MRI and SPECT/MRI
fusion are analyzed over MRI-CT fusion for the better diag-
nosis in different diseases. In order to demonstrate the practical
value of the proposed scheme in medical imaging, three clin-
ical cases are considered where PET/MRI and SPECT/MRI
medical modalities are used. These includes the case of
Alzheimer, subacute stroke and brain tumor respectively. The
images have been downloaded from the Harvard university site
(http://www.med.harvard.edu/AANLIB/home.html).

The first case is of a 70 year-old man who began experiencing
difficulty with memory about 9 months prior to imaging. He
had a history of atrial fibrillation and was taking warfarin. He
had become lost on several occasions, and had difficulty ori-
enting himself in unfamiliar circumstances. This man is affected
by the diseases namely Alzheimer (highlighted by red arrows).
Fig. 7(a)—(b) shows the MRI and PET images the person. MRI

image showed a globally widened hemispheric sulci, which is
more prominent in parietal lobes. Regional cerebral metabolism
is markedly abnormal, with hypometabolism in anterior tem-
poral and posterior parietal regions. These changes are bilateral,
but the right hemisphere is slightly more affected than the left,
and the posterior cingulate is relatively spared.

Fig. 8 shows the subacute stroke case of a 65 year old man
who suddenly experienced tingling in the left hand and arm, and
on examination had a syndrome of left neglect: he failed to ex-
plore the left half of space, and extinguished both left tactile and
left visual stimuli when presented on both sides simultaneously.
The MRI study revealed that the frontal pole in the old infract
is replaced with the high signal of cerebrospinal fluid left after
liquifaction necrosis (highlighted by red arrow). The beginning
of new symptoms corresponds to the right parietal infarction
with hyperperfusion. There is a subtle abnormality in the MRI
image and a luxury hyperperfusion in the SPECT image (high-
lighted by red arrow).

Fig. 9 shows the recurrent tumor case of a 51 year old woman
sought medical attention because of gradually increasing right
hemiparesis (weakness) and hemianopia (visual loss). At
craniotomy, left parietal anaplastic astrocytoma was found. A
right frontal lesion was biopsied. The evolution of high tumor
Thallium uptake, indicating astrocytoma recurrence is revealed
by the SPECT study, which is pointed by an red arrow in
the SPECT image whereas a large region of mixed signal on
MRI image gives the signs of the possibility of active tumor
(encircled).

Here, the results are compared with the best four algorithms
obtained with the earlier analysis, i.e., Guihong et al. [20], Yang
et al. [22], Zhang and Guo [11] and Chai ef al. [12]. From
Figs. 7-9, it can be observed that all the fusion algorithms have
fairly good spatial information but the spectral distortions are
somewhat high in the existing algorithms, i.e., spectral infor-
mation is lost in the case of existing algorithms which is greater
in the case of [20] and comparatively lesser in [11], [12], [22].
The color information is also distorted in the existing algorithms
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Fig. 8. Brain images of the man affected with Subacute Stroke: (a) MRI image (b) SPECT image; Fused images by (c) wavelet (d) contourlet (¢) NSCT-1

(f) NSCT-2 (g) proposed method.

Fig. 9. Brain images of the man with Recurrent Tumor: (a) MRI image (b) SPECT image; Fused images by (c) wavelet (d) contourlet (¢) NSCT-1 (f) NSCT-2

(g) proposed method.

TABLE 11
EVALUATION INDICES FOR FUSED MEDICAL IMAGES IN CLINICAL EXPERIMENTS

Disease Indices Wavelet [20]  Contourlet [22] NSCT-1 [11] NSCT-2 [12]  Proposed
Qumr 1.3249 1.4444 1.3425 1.4834 1.5017
Alzheimer Qs 0.6972 0.7521 0.7537 0.7576 0.7972
QAB/F 0.5165 0.6505 0.6535 0.6548 0.6722
Qumr 1.2232 1.2788 1.2816 1.2853 1.3740
Subacute Stroke Qs 0.8427 0.8664 0.8675 0.8842 0.8907
QAB/F 0.5066 0.6086 0.6133 0.6126 0.6278
Qumr 0.9903 1.0112 1.7984 1.8116 1.9809
Recurrent Tumor Qs 0.7845 0.7988 0.8047 0.8175 0.8248
QAB/F 0.5440 0.6778 0.6791 0.6819 0.6875

(shows with the white arrows). On the contrary, the color in-
formation is least distorted and the spatial details are as clearer
as the original MRI image, and the spectral features are also
natural. This fact is also justified from the Table II, where the
proposed method are with higher evaluation indices among all
methods. These evaluation indices are defined for gray-scale im-

ages and the PET image is a color image. Therefore, these met-
rics are evaluated with each color channel in turn and then take
the average of all values as the final result. Therefore, the pro-
posed method not only preserve the crucial features exist in both
original images but also improves the color information when
compared to existing methods.
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V. CONCLUSION

In this paper, a novel image fusion framework is proposed
for multi-modal medical images, which is based on non-sub-
sampled contourlet transform and directive contrast. For fusion,
two different rules are used by which more information can be
preserved in the fused image with improved quality. The low-
frequency bands are fused by considering phase congruency
whereas directive contrast is adopted as the fusion measure-
ment for high-frequency bands. In our experiment, two groups
of CT/MRI and two groups of MR-T1/MR-T2 images are fused
using conventional fusion algorithms and the proposed frame-
work. The visual and statistical comparisons demonstrate that
the proposed algorithm can enhance the details of the fused
image, and can improve the visual effect with much less infor-
mation distortion than its competitors. These statistical assess-
ment findings agree with the visual assessment. Further, in order
to show the practical applicability of the proposed method, three
clinical example are also considered which includes analysis of
diseased person’s brain with alzheimer, subacute stroke and re-
current tumor. A MATLAB implementation of the proposed al-
gorithm is available online at sites.google.com/site/goravdma/
Home/code/projectl.
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