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ABSTRACT

This work studies an extension of the singular value decomposition to infinite-
dimensional spaces by considering neural networks as basis elements. In contrast
to the classical finite-dimensional singular value decomposition, this approach is
grid-less and can be used in cases where only irregularly sampled data are avail-
able and evaluation at arbitrary sample points is required. To the best of our
knowledge, we are the first work to propose a neural rank reduction method that
is capable of handling irregularly sampled data. Our approach is based on a reg-
ularized least-squares formulation that fits the neural network to the given data
while enforcing normalization for each function and orthogonality between pairs
of functions. Performing rank reduction for infinite-dimensional operators is par-
ticularly interesting for scientific machine learning with focus on predicting the
solution of partial differential equations given some boundary condition. In this
context, the learned neural basis functions form a linear and finite-dimensional ap-
proximation of the image of the solution operator. We demonstrate the efficacy of
our algorithm by first learning this approximation based on given irregularly sam-
pled data. In a second stage, we train an artificial neural network as a coefficient
functional for the previously learned basis.

1 INTRODUCTION

Deep learning has seen remarkable success in a large variation of different tasks, ranging from
computer vision (Krizhevsky et al., 2012), natural language processing (Brown et al., 2020), or
playing games (Silver et al., 2016). Recently, neural networks have also found their way into the
domain of scientific computing tackling challenging problems in fields such as Earth systems science
(Reichstein et al., 2019) or protein folding (Jumper et al., 2021).

A central task in computational science is to solve partial differential equations (PDEs) where, his-
torically, finite difference methods and finite element methods have been dominant (Brenner & Scott,
2008). However, in recent years, there has been significant focus on machine learning methods in
order to augment the pool of available methods (Beck et al., 2023; Gonon et al., 2024). One notable
approach in this area has been physics-informed neural networks (Raissi et al., 2019), which uses the
residual of the PDE as part of the loss function together with some available measurements in order
to train a neural network as Ansatz for the PDE. A second direction is to use a variational formulation
such as in the DeepRitz method (E & Yu, 2018) to minimize an energy functional, which was fur-
ther developed into methods for solving high-dimensional PDEs such as the electronic Schrödinger
equation (Pfau et al., 2020; Hermann et al., 2020; Scherbela et al., 2022). In a similar vein, the
Feynman-Kac formula relates the solution of a Kolmogorov PDE to the minimization of an expecta-
tion value, which was utilized by (Han et al., 2018; Beck et al., 2021) to solve very high-dimensional
problems in mathematical finance such as option pricing by the Black-Scholes formula.

The most interesting topic for the present work is the field of operator learning. In this field, avail-
able simulation and measurement data are used to directly learn to predict the solution of PDEs by
learning the infinite-dimensional solution operator (Li et al., 2021; Lu et al., 2021; Boullé et al.,
2024; Nelsen & Stuart, 2024).
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These methods all share the same underlying rationale: the data is modeled as elements in an infinite-
dimensional vector space. This is sensible due to the fact, that much of the data we encounter are
naturally modeled as continuous objects, functions over a domain, hence infinite-dimensional in
principle. Since computers always have finite memory, practical implementations of algorithms
for infinite-dimensional data require embedding the data in some finite-dimensional representation.
This embedding into a latent space can be seen as using encoders and decoders (Bhattacharya et al.,
2021; Lanthaler et al., 2022). Note that these finite representations of infinite-dimensional models
are different from directly using a finite model, as we assume the model to have potentially infinite
resolution and being sampling invariant.

Most state-of-the-art models make the assumption that the finite-dimensional training data are ob-
tained by point sampling on regular sample points, that is, the same set of evaluation points for each
function in the training data (Li et al., 2021; Lu et al., 2022). In practice, however, output data are
often irregularly sampled: each training instance is observed at its own set of sensor locations due
to heterogeneous meshes, moving probes, or measurement constraints.

We address this setting with a neural functional singular value decomposition (nfSVD) where we
focus on finding a low-rank approximation of infinite-dimensional data with irregular point samples.
We learn a continuous, orthonormal range basis directly from scattered output samples via a single
regularized least-squares objective evaluated only at the observed points. To obtain a deployable
surrogate, we then train a coefficient functional that maps inputs to basis coefficients. In our ex-
periments this is instantiated with either a fully-connected feedforward network or a convolutional
neural network.

Our contributions include:

• A neural singular value decomposition method for representing infinite-dimensional data.
In contrast to existing methods, our method allows for multi-dimensional inputs and pro-
vides a grid-free representation.

• A novel training scheme for the neural network basis functions which guarantees orthogo-
nality and normalization via soft penalty constraint.

• Numerical validation that our method is indeed capable of learning basis functions from
both regularly and irregularly sampled data over one- and two-dimensional domains. The
obtained basis functions furthermore perform well in the downstream task of operator learn-
ing.

• Simulation results on regularly sampled data show that our method achieves a performance
that is comparable to the provably optimal basis of finite-dimensional proper orthogonal
decomposition basis. In our simulations on irregularly sampled data, our method indeed
uniformly outperforms existing state-of-the-art methods.

2 RELATED WORK

The main motivation for our work stems from the task of building operator surrogates. Founda-
tional theoretical work in operator learning was done by (Chen & Chen, 1995), who proved that
the universal approximation property of neural networks also holds for mappings between infinite-
dimensional spaces. The goal here is to approximate some non-linear operator G : U → V between
Banach spaces U and V . We write v(y) = G[u](y) to indicate that the operator G acts on the function
u ∈ U and the resulting function v ∈ V is evaluated at the point y ∈ domV .

Building on this foundation, the deep operator network (DeepONet) (Lu et al., 2021) was the first
widely used operator learning architecture, which extends the shallow architectural design proposed
by Chen & Chen (1995) to deep networks. To approximate the operator G : U → V , the approach is
to consider a sequence of sampling points {xi}i∈N and the architecture

v̂(y) = Ĝ[u; {xi}i∈N](y) =
∑
n∈N

Φn({u(xi)}i∈N)Ψn(y), (2.1)

where Ψ is a basis for the infinite-dimensional output space and Φ are the corresponding coefficient
functionals. For practical applications, however, such a system of infinite size cannot be realized
and the coefficient representations have to be truncated after finitely many elements.
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In the case of regularly sampled data Lu et al. (2022) proposed the POD-DeepONet, which first
approximates the covariance matrix of the training data and then uses the first N -dominant eigen-
vectors of that matrix as a low-rank approximation of the range space of the operator, that is, as the
basis from 2.1. Notice that this approach, while computationally efficient, comes with the drawback
of being valid only on the fixed regular sample points of the dataset.

An extension of low-rank approximation to the infinite-dimensional setting is not straightforward.
Constructing the full covariance function, such as it is done in the functional principal component
analysis Ramsay & Silverman (2005), is expensive and requires a lot of data (see (Tan et al., 2025)).
Lee & Shin (2024) approximate the image of the operator via a non-orthogonal neural network
basis. Subsequently, they perform a finite-dimensional QR-decomposition on the functions sampled
on regular sample points. However, this being done as post-processing after the training bears the
risk of raising generalization error as now the basis does not necessarily form a good approximation
of the distribution of functional data. Note that the method as proposed in (Lee & Shin, 2024) relies
on regularly sampled data.

Tan et al. (2025) developed an approach that uses elements from a reproducing kernel Hilbert space
(RKHS) to perform a functional singular value decomposition for infinite-dimensional data from
heterogeneous sources. For an RKHS HK , sampling points {Tij |j ∈ [Ji]}, and hidden functions
X1, . . . , XN ∈ HK with noisy observations Yij = Xi(Tij) + εij , their algorithm iteratively finds
the functional singular value decomposition up to rank R by finding the current leading singular
component via

argmin
a1∈RN ,ϕ1∈HK

N∑
i=1

1

Ji

Ji∑
j=1

(Yij − ai1ϕ1(Tij))
2
+ ν∥a∥2 · ∥Pϕ1∥H. (2.2)

Here, ν > 0 is a tuning parameter, and P is a projection operator from HK onto its subspace.
The subspace corresponding to ϕ1 is then removed from the data, and they continue sequentially
for the next singular component. This approach operates in a kernel regime and is limited to one-
dimensional input data.

3 NEURAL FUNCTIONAL SINGULAR VALUE DECOMPOSITION

In this section, we present a nfSVD tailored to operator learning with irregularly sampled outputs.
Unlike RKHS-based variants, we work with a neural hypothesis class Fd,N ⊂ L2(D), a grid-free
least-squares objective, and enforce L2(D) orthonormality via Monte-Carlo inner products. The
result is a finite-rank, mesh-independent range basis suitable for multi-dimensional domains and
heterogeneous sensors. In the following we now formalize the objective and its discretization.

In the conventional finite-dimensional setting, the singular value decomposition (SVD) is a method
for factorizing a matrix X ∈ CJ×M into X = UΣV T , where U ∈ CJ×J , and V ∈ CM×M are
unitary matrices and Σ ∈ RJ×M is a rectangular matrix with decreasing non-negative entries on the
diagonal. By restricting this factorization only to the first N < J columns of U and V it is known
to be the best possible low-rank approximation of X by the Eckart-Young-Theorem (see (Golub &
Van Loan, 2013, Theorem 2.4.8)).

In this work, we restrict to real-valued spaces and consider an extension of this to the infinite-
dimensional setting. That is, instead of a matrix, we consider a linear operator X ∈ L(RM ,H)
from the M -dimensional Euclidean space to some separable Hilbert space H. In this setting, we can
then uniquely identify X with an M -tuple (x1, . . . , xM ) ⊂ H such that X : RM → H is the map
v 7→

∑M
m=1 vnxm. As orthonormal basis in H for a rank N approximation of the operator X with

N ≤ M we then consider the solution of the constrained least-squares problem

(r∗1 , . . . , r
∗
N ),A∗ ∈ argmin

(r1,...,rN )∈HN ,

A∈RN×M

M∑
m=1

∥∥∥∥∥xm −
N∑

n=1

An,mrn

∥∥∥∥∥
2

H

(3.1)

s.t. ⟨rm1
, rm2

⟩H = 1m1=m2
, ∀m1,m2 ∈ [M ].

For a practical implementation of this problem, we consider the Hilbert space L2(D) with compact
domain D ⊂ Rd and make the following observations:
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• We do not have access to the infinite-dimensional operator X but only to point samples of
the data {x1, . . . , xM} and need to reformulate the minimization.

• Optimization over the full space L2(D) (or even its unit sphere) is impossible and we need
to restrict to some parametrized hypothesis class F.

• For non-linearly parametrized hypothesis classes, it is infeasible to enforce the orthonor-
mality as a hard constraint and we need to resort to regularization instead.

3.1 DISCRETIZED FUNCTION DATA

We consider the setting, where for each function xm we have access to a certain number Tm ∈ N of
sample points

s(m) := (s
(m)
1 , . . . , s

(m)
Tm

) ∈ DTm (3.2)

and the corresponding function values

x(m) := (xm(s
(m)
1 ), . . . , xm(s

(m)
Tm

)) ∈ RTm . (3.3)

Based on the sample points, we then also define for the basis functions r1, . . . , rN ∈ L2(D) the
representation

R(m) := (rn(s
(m)
t ))t∈[Tm],n∈[N ] ∈ RTm×N . (3.4)

We consider two major cases: regularly sampled data and irregularly sampled data. Here, regular
sampling means that the sample points stay constant over different data functions, that is, Tm1 =
Tm2

and s(m1) = s(m2) for all m1,m2 ∈ [M ]. Note, however, that this does not necessarily mean
that the sample points lie on a regular grid. Contrary to that, irregular sampling means, that the
sample points vary for different data functions.

Based on the data discretization, the loss function will also be discretized to∥∥∥∥∥xm −
N∑

n=1

An,mrn

∥∥∥∥∥
2

L2(D)

≈ |D|
Tm

∥∥∥x(m) −R(m)A:,m

∥∥∥2
2
, (3.5)

which is a statistically unbiased estimator, given that the sample points are i.i.d. uniform in D or on
a regular grid.

Similarly to that, we also approximate the inner product. To do so, we build the union over all
available sample points and the corresponding matrix representation of the basis functions

s̄ := (s(1), . . . , s(M)) ∈ DT , and R̄ := (rn(s̄t))t∈[T ],n∈[N ], (3.6)

respectively, with T =
∑M

m=1 Tm. The resulting approximation is then

⟨rn1
, rn2

⟩L2(D) ≈
|D|
T

R̄T
:,n2

R̄:,n1
, (3.7)

which is again unbiased if the sample points are i.i.d. uniform in D or on a regular grid.

3.2 HYPOTHESIS CLASS AND ORTHONORMAL REGULARIZATION

As hypothesis class for the basis functions, we consider artificial neural networks (ANNs) with d
input neurons and N output neurons and a fixed hidden architecture, which we denote by Fd,N .
The hidden architecture is not important for the current discussion and will be specified later in the
experiments in Section 4. Note here, that f ∈ Fd,N is not necessarily a tuple of N functions with
d-dimensional input but rather a functions f : Rd → RN . However, it is clear that Fd,N ⊂ L2(D)N .

Unlike kernel methods, which are naturally formulated in a Hilbert space, ANNs do not have a
canonic way of forcing the orthogonality of individual functions rn in the parameter space. En-
forcing the orthogonality a posteriori bears the risk of worsening performance due to the non-linear
nature of neural network parametrization. Thus, directly enforcing the constraint ⟨rn1 , rn2⟩L2(D) =

4
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1n1=n2
is practically infeasible. Instead, we reformulate the constraint into regularization terms of

the form (⟨rn1
, rn2

⟩L2(D) −1n1=n2
)2, which are weighted by regularization parameters τN for nor-

malization (i.e., n1 = n2) and τO for orthogonalization (i.e., n1 ̸= n2). Notice that we also enforce
normality of the neural basis functions to avoid individual functions collapsing to zero or individ-
ual modes becoming too dominant. In this way, we can ensure that the basis has a more equitable
weight across the spectrum. Here, directly enforcing the constraint would be possible by rescaling
the last layer. However, since gradient methods for neural network training such as ADAM (Kingma
& Ba, 2017) are based on moment estimation, this kind of additional projection step would worsen
optimization results.

Overall, the final learning problem is given by

(r∗1 , . . . , r
∗
N ),A∗ ∈ argmin

(r1,...,rN )∈Fd,N

A∈RN×M

M∑
m=1

1

Tm

∥∥∥x(m) −R(m)A:,m

∥∥∥2
2

(3.8)

+ τN
|D|
T 2N

N∑
n=1

(
∥R̄:,n∥22 − 1

)2
+ τO

|D|
T 2N(N − 1)

N∑
n1=1
n1 ̸=n2

(R̄T
:,n2

R̄:,n1
)2.

4 EXPERIMENTS

For the experimental analysis of our algorithm we look at the downstream task of learning infinite-
dimensional operators (see Section 2). That is, we assume that we are given the initial condition or
some parameters (the input) of the PDE and aim to predict the solution (the output). In this setting,
the training data are composed of point samples taken from M pairs of input- and output-functions
k : DI → RdI and x : DO → RdO , respectively. Here, DI , DO, dI , dO represent the input and output
domain and the dimensions of the input and output functions, respectively. In all our experiments
we will assume that dI = dO = 1 and DI = DO = [0, 1]d =: D. For each input function km with
m ∈ [M ] we are then given a set of Sm ∈ N sample points y(m) ∈ DSm with the corresponding
function samples k(m) ∈ RSm . Analogously, for the output functions xm, we are given Tm ∈ N
sample points s(m) ∈ DTm with the corresponding function samples x(m) ∈ RTm .

For the operator learning task, we then assume that the input data is regularly sampled, that is,
y(m1) = y(m2) =: y with Sm1

= Sm2
=: S, while we consider both cases of regularly and

irregularly sampling for the output functions.

In all our experiments, we consider a set of 1000 pairs of input output functions for training and
a set of 200 pairs for testing. As parameters, we set the regularization parameters to τO = 10−3,
τN = 10−5, an initial learning rate (for both steps) of 10−3, and a weight decay regularization of
magnitude 10−4. The learning rate is reduced with a geometric decay starting after 20000 epochs
for the basis functions and with an inverse time decay for the coefficient functionals, both at a rate
of 10−4. Differences to this standard setting will be mentioned when necessary.

Our main error metric will be the relative L2(D)-error which is averaged over five independent
initializations of the neural networks. Note, that the random sampling of our data is kept constant
over these individual runs such that the statistics of the L2(D)-error solely reflect the variations in
the model and not the variations in the dataset.

4.1 OPERATOR LEARNING VIA NFSVD

In order to apply our algorithm to the operator learning task, we identify the collection of output
functions (x1, . . . , xM ) with the operator X : RM → L2(D). We then use our algorithm (3.8) in
order to find a neural network Ψ∗ which provides a low-rank approximation for the span of X . For
this learned basis and the corresponding coefficient matrix A∗, we train another network Φ, with
the aim that each Φn is the coefficient functional for the n-th basis function. These functionals are
trained to fit the data given by the samples of the input functions and the corresponding coefficients
in the matrix A∗ of (3.8) in a least-squares sense, thus conforming to the operator learning formalism
of (2.1).
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A similar two-stage training method to learn an orthonormal basis of neural networks was proposed
in form of the QR-DeepONet (Lee & Shin, 2024), which aims to reduce the complexity of the
training procedure for DeepONets. In this approach, the first step is to train a neural network Ψ ∈
Fd,N on the output data using a least-squares objective. In a second stage, the network is transformed
into a matrix representation by evaluating on the sampling points. By means of a QR-decomposition
of the matrix representation the approach obtains a reweighting matrix R, whose inverse is applied
to the neural network Ψ such that the basis functions are orthonormal. Note, that in the original
description of Lee & Shin (2024), the approach is limited to regularly sampled data. We extend this
formulation to irregularly sampled data, by considering the matrix representation R̄ on the union of
all sample points as we have done in our approach in (3.6).

Furthermore, we compare to the predecessors of QR-DeepONet, namely the Vanilla DeepONet Lu
et al. (2021) and the POD-DeepONet Lu et al. (2022) where the network Ψ is replaced by a matrix
P ∈ RT×N . In order to ensure a fair comparison between the different models, we use the same
hyperparameters for training whenever possible. For example, our approach and QR-DeepONet
use the same optimizer, initial learning rate and learning rate scheduler for the training of the basis
functions in Ψ. Furthermore, the output functions are rescaled by

√
N according to the second order

analysis of (Lu et al., 2022).

4.2 PROBLEM SETUP

For the experiments we resort to some of the commonly used test settings of the operator learning
literature. Namely, the one dimensional viscous Burgers equation (Li et al., 2021; Lu et al., 2022),
Darcy flow on a rectangular domain with continuous permeability field (Lu et al., 2022), and Darcy
flow on a rectangular domain with piecewise constant permeability field (Li et al., 2021; Lu et al.,
2022). In the following we proceed with a detailed description of our datasets and method of random
sampling. 1

4.2.1 BURGERS DATA

We consider the one dimensional viscous Burgers equation

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1] (4.1)

u(x, 0) = u0(x), x ∈ (0, 1) (4.2)

with periodic boundary conditions and viscosity ν = 0.1. This dataset originates from (Li et al.,
2021), where initial condition u0 was sampled from N (0, 625(−∆ + 25I)−2) and the data was
generated with a spatial resolution of 213 points. The task of operator learning is then to consider
the input k = u0 and predict the solution x = u(·, 1) at time t = 1.

For our simulations on regularly sampled data, we subsample all data to a spatial resolution of 128
points with uniform spacing. For irregularly sampled output data, we perform a random subsampling
of the output data, which means, a subset of 128 unique sample points is picked uniformly from the
original 213 points. Examples of input-output pairs for both regular and irregular sampling are shown
in Fig. 1.

In order to enforce the periodic boundary conditions, we adopt the approach of (Lu et al., 2022) to
transform the spatial variable

s 7→ (cos(2πs), sin(2πs), cos(4πs), sin(4πs))

at the input of Ψ. The architecture of our networks for this case is that both Ψ and Φ have 3 hidden
layers with 128 neurons and tanh activation function, and we consider N = 32 basis functions. We
train the basis functions for 50000 epochs and the coefficient functionals for 1000000 epochs.

4.2.2 DARCY CONTINUOUS PERMEABILITY FIELD

An example for a two-dimensional problem for operator learning is given by the Darcy-Flow prob-
lem on a rectangular domain with a log-normal random field as permeability field, constant one
Dirichlet boundary condition on the left, zero Dirichlet boundary condition on the right, and zero

1A link to the source code will be made available upon publication
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Figure 1: Examples of input-output pairs of the Burgers dataset for regularly sampled output (left)
and irregularly sampled output (right).

Table 1: Results for Burgers equation with regular sampling and irregular sampling

regular sampling irregular sampling
rel. L2 proj. rel. L2 rel. L2 proj. rel. L2

nfSVD 1.39± 0.14% 0.19% 1.46± 0.09% 0.18%
POD (Lu et al., 2022) 1.39± 0.04% 0.21% N/A N/A
QR (Lee & Shin, 2024) 1.58± 0.23% 0.17% 1.62± 0.19% 0.15%
VAN (Lu et al., 2021) 1.70± 0.04% 0.36± 0.01% 1.80± 0.05% 0.41± 0.01%

Neumann boundary condition on the top and bottom boundary of the domain. That is, we consider
the problem

−∇ · (k(s)∆x(s)) = 0, s ∈ (0, 1)2, (4.3)
x(s) = 1− s1, s1 ∈ {0, 1}, s2 ∈ (0, 1), (4.4)

∂nx(s) = 0, s1 ∈ (0, 1), s2 ∈ {0, 1} (4.5)

with the permeability field k(s) = exp(f(s)) where f is a two dimensional Gaussian process with
covariance kernel exp

(
∥s∥22/0.52

)
. For this dataset we could not reuse the data of (Lu et al., 2022)

as we needed a higher resolution available for random subsampling. Instead, we use the FEniCS
finite element simulation tool (Alnæs et al., 2015) to simulate the PDE with a resolution on a grid
with 401 × 401 points. For the regularly sampled case, we then subsample this to a resolution of
21× 21 points, resulting in 441 points. For the irregularly sampled case, we then subsampled from
the two-dimensional data by randomly selecting 441 unique sample points. An example is given in
Fig. 2.

The architecture of our networks for this case is that Ψ has 3 hidden layers of width 40 with tanh
activation function, Φ is a convolutional neural network with tanh activation function, and we
consider N = 10 basis functions. We train the basis functions for 50000 epochs and the coefficient
functionals for 100000 epochs.

Figure 2: Example of input-output pair for Darcy flow on a rectangular domain with regularly
sampled input and irregularly sampled output. The plots on the left show one example of for the
continuous permeability field and the plots on the right show one example of a piecewise constant
permeability field.
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Table 2: Results for Darcy flow with continuous permeability field with regular sampling and irreg-
ular sampling

regular sampling irregular sampling
rel. L2 proj. rel. L2 rel. L2 proj. rel. L2

nfSVD 1.12± 0.02% 0.79% 1.48± 0.03% 0.98± 0.03%
POD (Lu et al., 2022) 1.13± 0.02% 0.78% N/A N/A
QR (Lee & Shin, 2024) 1.14± 0.04% 0.78% 1.51± 0.03% 0.92%
VAN (Lu et al., 2021) 1.15± 0.02% 0.79± 0.01% 1.56± 0.12% 0.97± 0.04%

Table 3: Results for Darcy flow with piecewise constant permeability field with regular sampling
and irregular sampling

regular sampling irregular sampling
rel. L2 proj. rel. L2 rel. L2 proj. rel. L2

nfSVD 2.27± 0.01% 1.06% 2.79± 0.17% 1.38± 0.21%
POD (Lu et al., 2022) 2.26± 0.01% 0.92% N/A N/A
QR (Lee & Shin, 2024) 2.25± 0.01% 0.93% 15.12± 25.04% 0.98± 0.06%
VAN (Lu et al., 2021) 2.61± 0.02% 1.15± 0.01% 2.98± 0.03% 1.05%

4.2.3 DARCY PIECEWISE CONSTANT PERMEABILITY FIELD

We also tested our method for another instantiation of the Darcy flow problem in two dimensions.
Here, we chose homogeneous Dirichlet boundary condition of zero and a piecewise constant perme-
ability field given by

k(s) =

{
12, if T > 0

3, otherwise

where T was sampled by a Gaussian random field with a kernel of N (0, (−∆ + 9I)−2) and zero
Neumann boundary condition. This problem poses an interesting challenge as the spectrum of the
covariance operator is decaying very slowly. This then also accounts for the generally high number
of basis functions needed for a good approximation. The original data has a resolution of 421×421,
which we subsampled to a grid 29 × 29 points in the regular case and 841 randomly selected but
unique points in the irregular case. We used the raw data from the repository of (Lu et al., 2022).

The architecture of our networks for this case is that Ψ has 4 hidden layers with 256 neurons and
tanh activation function, Φ is a convolutional neural network with tanh activation function, and
we consider N = 115 basis functions. The hyperparameters in this experiments deviate from the
standard setting in the sense that τO = 10−2, τN = 10−4 and the learning rate decay for the training
of the basis functions has a rate of 5 · 10−5. We train the basis functions for 50000 epochs and the
coefficient functionals for 100000 epochs.

4.3 DISCUSSION

The resulting relative L2(D) error for both sampling methods is presented in Tables 1 to 3 alongside
the resulting relative L2(D) error of the projection of the output functions onto the learned basis Ψ
for nfSVD, QR-DeepONet, and DeepONet and P for the POD-DeepONet. We observe that the rel-
ative L2(D) error of our model consistently shows the best results in the irregularly sampled output
case, while achieving the performance of the POD-DeepONet for the regularly sampled case. It is
important to note that while the proper orthogonal decomposition used as basis in this architecture
is provably optimal for rank reduction, both the QR-DeepONet and nfSVD network achieve lower
projection error in our experiments on the Burgers data. The reason for that lies that we take the rel-
ative L2(D) projection error and both networks are trained on normalized function samples, whereas
the POD-DeepONet architecture is build upon unnormalized data.

An interesting question arises from the projection error of the modified QR-DeepONet being gen-
erally lower than from the architecture based on nfSVD. This fact is however not surprising as the
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Figure 3: Convergence of nfSVD for irregularly sampled data on Burgers data (left), Darcy flow
with continuous permeability field (middle) and Darcy flow with piecewise constant permeability
field (right).

QR-DeepONet does not possess regularization terms, leaving data fit to be the sole objective. The
generalization loss, on the contrary, shows better results for the regularized nfSVD approach, high-
lighting the possible advantage of such constraints. This is also visible in the last problem (see
Table 3), where the unregularized approach failed to converge in some of the runs resulting in very
high error.

Using a soft penalty constraint for orthonormality opens up the question to which degree we can
actually achieve this in our neural network basis. As can be seen from Fig. 3, the normalization
loss experiences a step-wise behavior which culminates in a one-time sharp drop at which also the
orthogonality loss shows a significant drop. This behavior is explained by the fact that throughout
our simulations we set the orthogonality parameter τO to be two orders of magnitude larger than
the normality parameter τN . With this setting, the network Ψ is initially close to the zero function
and whenever one of its outputs opens up a new linearly independent direction in L2(D), this output
converges quickly to unit norm, resulting in the step of the normalization loss. The single significant
drop then indicates that the last output converged to unit norm. As a consequence of our choice of
τO and τN the normalization loss is generally higher than the orthogonality loss, however, we see
that we indeed achieve the initial goal of learning orthonormal functions up to numerical inaccuracy
(see Appendix B).

5 CONCLUSION

In this work, we introduced the neural functional singular value decomposition and applied it to
learning operator surrogates. We have shown empirically that this method produces stable, accu-
rate orthonormal approximations of the range space of different relevant PDE solution operators.
The nfSVD consistently shows superior results on irregularly sampled data, while achieving results
identical to the provably optimal row-rank approximation on shared grids.

There are several avenues of research going from here. A straightforward extension could be to uti-
lize the nfSVD for encodings of the input space, either on its own or in combination with an output
space encoding. Sequential training of neural basis functions could bring the benefit of finding the
dominant modes first and lead to greater similarity of the learn basis with a proper orthogonal de-
composition in the discrete space. Solving the least-squares problem for the basis coefficients could
lead to a potentially even faster convergence at the price of a much more costly backpropagation.
Additionally, exploring natural gradient descent or subspace methods for the basis coefficients could
prove viable. An extension in a new direction outside the scope of this paper is given by non-linear
low rank approximations. Instead of approximating the range space with a linear approximation
given by an N -dimensional vector space, one might use non-linear elements parameterizing an N -
dimensional manifold potentially leading to better or more efficient approximation of the structure
of, for example, a non-linear operator.

9
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Figure 4: Loss curves for different choices of the regularization parameters τO and τN . From top to
bottom we vary τO ∈ {10−2, 10−3, 10−4} and from left to right we vary τN ∈ {10−4, 10−5, 10−6}.

A BURGERS REGULARIZATION PARAMETERS

In this section we want to provide a short ablation study on the influence of differing regularization
parameters for the problem of solving the Burgers equation 4.2.1. We tested the parameters τO and
τN at different orders of magnitude, among which we show all combinations for the orthogonality
parameter τO ∈ {10−2, 10−3, 10−4} and the normality parameter τN ∈ {10−4, 10−5, 10−6} in
Fig. 4. It is clearly visible that the smallest choice τO = 10−4 results in non-convergence of the
orthogonalization loss within 50000 epochs, while the smallest choice τN = 10−6 results in non-
convergence of the normalization loss. We observe that higher regularization parameters result in
faster convergence, however, the combination τO = 10−3 and τN = 10−5 results in the lowest
possible least squares loss. This justifies our specific choice of parameters in our experiments.
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Figure 5: Correlation matrices (upper row) for basis functions and the corresponding error matrices
(bottom row). The matrices are obtained from irregularly sampled data on the three datasets consid-
ered in our experiments.

B ORTHOGONALITY VISUALIZATION

In Fig. 5 we visualize the orthogonality and error in orthogonality in order to demonstrate the quality
of our solutions. We do this by computing the correlation matrix |D|

T R̄T R̄ with |D| = 1 and the
absolute deviation of this matrix from the identity matrix. Orthogonality is an important property
of a low-rank approximation, as it guarantees efficiency in the number of modes used. As functions
are orthogonal exactly then, when their inner product is zero, a pure penalty of correlation tends to
give outputs that are very small in norm. It is well known in machine learning, that optimization
tends to work better on normalized functions, as such, building operator surrogates with a coefficient
functional would prove much more unstable and error-prone.
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