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Abstract
Several applications in time series forecasting
require predicting multiple steps ahead. De-
spite the vast amount of literature in the topic,
both classical and recent deep learning based ap-
proaches have mostly focused on minimising per-
formance averaged over the predicted window.
We observe that this can lead to disparate distri-
butions of errors across forecasting steps, espe-
cially for recent transformer architectures trained
on popular forecasting benchmarks. That is, op-
timising performance on average can lead to un-
desirably large errors at specific time-steps. In
this work, we present a Constrained Learning ap-
proach for long-term time series forecasting that
aims to find the best model in terms of average
performance that respects a user-defined upper
bound on the loss at each time-step. We call
our approach loss shaping constraints because
it imposes constraints on the loss at each time
step, and leverage recent duality results to show
that despite its non-convexity, the resulting prob-
lem has a bounded duality gap. We propose a
practical Primal-Dual algorithm to tackle it, and
demonstrate that the proposed approach exhibits
competitive average performance in time series
forecasting benchmarks, while shaping the distri-
bution of errors across the predicted window.

1. Introduction
Predicting multiple future values of time series data,
also known as multi-step forecasting (Bontempi et al.,
2013), has a myriad of applications such as forecasting
weather (Wang et al., 2016), electricity demand (Yi et al.,
2022), prices (Chen et al., 2018), and passenger demand
(Bai et al., 2019). Several approaches to generating predic-
tions for the next window have been proposed, including di-
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Figure 1. Test Mean Squared Error (MSE) computed at individual
time steps on the forecasting window for Autoformer (Wu et al.,
2021) on exchange rate data using ERM and our approach.

rect (Chevillon, 2007; Sorjamaa et al., 2007), autoregressive
or recursive (Hill et al., 1996; Tiao & Tsay, 1994; Hamzaebi
et al., 2009) and MIMO techniques (Kline, 2004; Bontempi,
2008; Bontempi & Ben Taieb, 2011; Kitaev et al., 2019;
Zhou et al., 2021; Wu et al., 2021; Liu et al., 2021; Zhou
et al., 2022b; Nie et al., 2022; Zeng et al., 2023; Garza &
Mergenthaler-Canseco, 2023; Das et al., 2023b; Liu et al.,
2024; 2022). Moreover, a plethora of learning parametriza-
tions exist, ranging from linear models (Box & Jenkins,
1976; Zeng et al., 2023) to recent transformer (Kitaev et al.,
2019; Zhou et al., 2021; Wu et al., 2021; Liu et al., 2021;
2024; 2022) and custom (Zhou et al., 2022a) architectures.

Regardless of the model and parametrization, most ap-
proaches optimize a performance, risk or model fit func-
tional (usually MSE), averaged over the predicted window.
Therefore, the distribution of errors across the window –
without any additional assumptions – can vary depending
on the model and data generating process. In practice, this
can lead to uneven performance across the different steps of
the window.

Recent works using transformer based architectures focus
on aggregate metrics, see for example (Kitaev et al., 2019;
Wu et al., 2021; Nie et al., 2022), while addressing errors
at different time steps has recieved little attention (Cheng
et al., 2023).
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However, having no control on the error incurred at each
time step in the predicted window can be detrimental in sce-
narios that can be affected by this variability. For example,
analysing average behaviour is insufficient to assess finan-
cial risks in econometrics (Chavleishvili & Manganelli,
2019) or to ensure stability when using the predictor in a
Model Predictive Control framework (Terzi et al., 2021).

Therefore, our first contribution is addressing this problem
through constrained learning.

(C1) We formulate multi-step series forecasting as a con-
strained learning problem, which aims to find the best
model in terms of average performance while impos-
ing a user-defined upper bound on the loss at each
time-step.

Since this constrains the distribution of the loss per time
step across the window, we call this approach loss shaping
constraints. Due to the challenges in finding appropriate
constraints, we leverage a recent approach (Hounie et al.,
2023) to re-interpret the specification as a soft constraint
and find a minimal norm relaxation while jointly solving the
learning task. We leverage recent duality results (Chamon &
Ribeiro, 2020) to show that, despite being non-convex, the
resulting problem has a bounded duality gap. This allows
us to provide approximation guarantees at the step level.

We then propose an alternating Primal-Dual algorithm to
tackle the loss shaping constrained problem. Our final con-
tribution is the experimental evaluation of this algorithms in
a practical setting:

(C2) We evaluate our algorithms for different constraints
using state-of-the-art transformer architectures (Kitaev
et al., 2019; Zhou et al., 2021; Wu et al., 2021) in
popular forecasting benchmarks.

Our empirical results showcase the ability to alter the shape
of the loss by introducing constraints, and how this can lead
to better performance in terms of standard deviation across
the predictive window.

1.1. Related work

There is little prior work in time series prediction on promot-
ing or imposing a certain distribution of errors across the
predicted window, i.e., at specific timesteps. Works that pro-
pose reweighting the errors at different steps of the window
mostly aim to improve average performance by leveraging
the structure of residuals (Chevillon, 2007; Guo et al., 1999;
Hansen, 2010) and rely on properties of the data generat-
ing process and predictive model class. On the other hand,
works that address the empirical distribution of forecasting
errors and robustness in non-parametric models (Spiliotis

et al., 2019; Taleb, 2009) do not analyse the distribution
of errors across multiple steps. Similarly, Multiple output
Support Vector Regression for multi-step forecasting (Bao
et al., 2014), which also tackles a constrained problem, has
only addressed aggregate errors across the whole window.

Although our method is related to other loss shaping ap-
proaches (Park et al., 2023; Wang et al., 2024; Cheng et al.,
2023) in the sense that it alters the weighting given to each
time step on the loss, both the motivation and the problems
that these approaches address differ from our work. (Park
et al., 2023) aim to downweight the impact of large errors
as long as they have low probability, regardless of their
position in the predictive window. Our approach aims to
control average errors at each step and can thus go in the
opposite direction of sacrificing performance in order to
reduce undesirably large errors at specific steps. (Wang
et al., 2024) gives each time-step a fixed weighting that is
inversely proportional to their position in the window, thus
aiming to discount the impact of far-future errors and give a
higher weighting to closer steps. However, imposing a fixed
weighting does not take into account the difficulty of fitting
an error at a certain time-step, which will depend also on the
model and the data. That is, imposing a certain weighting
across the window need not result in the desired distribution
of errors.

Lastly, recent works in generative time series models have
also sought to impose constraints using penalty based meth-
ods (Coletta et al., 2023), but the nature of the constraints
and proposed approach also differs from ours.

2. Multi-Step Time Series Forecasting
Let xt ∈ X ⊆ Rdx denote the in feature vector and yt ∈
Y ⊆ Rdy its associated output or measurement at time step
t. The goal in multi-step time series forecasting is to predict
Tp future values of the output, i.e., yp := y[t+1:t+Tp] given a
window of length Tc of input features, i.e., xc := x[t−Tc:t].
The quality of the forecasts can be evaluated at each time-
step using a non-negative loss function or metric ℓ : Y ×
Y → R+, e.g., the squared error or absolute difference.

The most common approach in supervised multi-step fore-
casting is to learn a predictor that minimizes the expected
loss averaged over the predicted window:

min
θ∈Θ

E(xc,yp)∼D

 1

Tp

Tp∑
i=1

ℓi(fθ(xc), yp)

 , (ERM)

where ℓi := ℓ([fθ(xc)]i, [yp]i) denotes the loss evaluated
at the i-th time step, D a probability distribution over data
pairs1 (xc, yp) and fθ : X Tc → YTp is a predictor associ-

1Our approach is distribution agnostic, i.e. we impose no
additional structure or assumptions on D.
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ated with parameters θ ∈ Θ ⊂ Rk, for example, a trans-
former based neural network architecture.

However, this choice of objective does not account for the
structure or distribution of the errors across different time
steps, which can lead to disparate behaviour across the pre-
dicted window as depicted in Figure 1. In particular, we
observe empirically that state-of-the-art transformer archi-
tectures (Kitaev et al., 2019; Zhou et al., 2021; Wu et al.,
2021; Liu et al., 2021; Zhou et al., 2022a) can yield highly
varying loss dynamics, including non-monotonic, flat and
highly non-linear landscapes, as presented in Appendix D

In order to control or promote a desirable loss pattern, a
weighted average across time steps could be employed.
However, since the realised losses will depend not only
on the data distribution but also on the model class and
learning algorithm. As a result, such penalization coeffi-
cients would have to be tuned in order to achieve a desired
loss pattern, which in contrast can be naturally expressed as
a requirement, as presented next.

3. Loss Shaping Constraints
In order to control the shape of the loss over the time win-
dow, we require the loss on timestep i to be smaller than
some quantity ϵi. This leads to the constrained statistical
learning problem:

P ⋆(ϵ) =min
θ∈Θ

E(xc,yp)∼D

 1

Tp

Tp∑
i=1

ℓi(fθ(xc), yp)


s. to : E(xc,yp)∼D [ℓi(fθ(xc), yp)] ≤ ϵi

i = 1, . . . , Tp. (P-LS)

An advantage of (P-LS) is that it is interpretable in the sense
that constraints – unlike penalty coefficients – make explicit
the requirement that they represent. That is, the constraint
is expressed of terms of the expected loss at individual time-
steps, and thus prior knowledge about and the underlying
data distribution and model class can be exploited.

In Section 5, we focus on simply imposing a constant upper
bound for all time steps, which we set using the performance
of the (unconstrained) ERM solution. By upper bounding
the error, we prevent errors from being undesirably large
irrespectively of their position in the window, effectively
limiting the spread of the errors across the whole window.
Since we still minimize the mean error across the window,
this approach is not as conservative as minimax formula-
tions (Liu & Taniguchi, 2021), which only focus on the
worst error.

It is worth pointing out that many other constraint choices
are possible. For instance, it is often reasonable to assume

errors increase monotonically along the prediction window.
In this case, ϵi could take increasing values based on prior
knowledge of the learning problem. We provide further
discussions about such configurations in Appendix B.1.

Nonetheless, which loss patterns are desirable and attainable
will depend ultimately on the model, data and task at hand.
In the next section we explore how to automatically adapt
constraints during training, so that the problem is more
robust to their mis-specification.

3.1. Adapting Constraints: Resilient Constrained
Learning

In the unconstrained risk minimization problem (ERM) an
optimal function θ⋆ always exists. This is not the case of
the constrained learning problem in (P-LS) in which there
may be no parameters in Θ that satisfy all the requirements
if the target losses ϵi are too restrictive.

In practice, landing on satisfiable loss shaping requirements
may necessitate the relaxation of some constraints –i.e.,
the values of ϵi in (P-LS)–. This is challenging because
assessing the impact of tightening or relaxing a particular
constraint can have intricate dependencies with the model
class, the unknown data distribution, and learning algorithm,
which are hard to determine a priori.

Thus, the point at issue is coming up with reasonable con-
straints that achieve a desirable trade-off between control-
ling the distribution of the error across the predictive win-
dow and attaining good average performance. That is, for
larger constraint levels the average performance improves,
although the constraints will have less impact on the optimal
function fθ⋆ .

In order to do so, we introduce a non negative perturbation
ζt ∈ R+ associated to each time step, and consider relaxing
the i− th constraint in the original problem by ζi. Explic-
itly, we impose E(xc,yp)∼D [ℓi(fθ(xc), yp)] ≤ ϵi + ζi. We
also introduce a differentiable, convex, non-decreasing cost
h : RTp

+ → R+, that penalizes deviating from the original
specification, e.g., the squared L2 norm h(ζ) ∝ ∥ζ∥22.Thus,
we seek a relaxation ζ⋆ that achieves a desirable trade-off by
equating marginal decrease in the objective and the marginal
increase in relaxation cost. Explicitly,

− ∂h(ζ⋆) ∈ ∂P ⋆(ϵ+ ζ⋆), (1)

where ∂P ⋆ denotes the subdifferential of P ⋆.

This allows us to re-interpret the initial constraint levels
ϵ as a soft constraint, and learn a relaxation that makes
the problem easier to solve. As shown by (Hounie et al.,
2023) this relaxation can be found while jointly solving the
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learning task by solving the problem

min
ζ∈RTp

P ⋆(ϵ+ ζ) + h(ζ) . (R-LS)

Further discussion on equivalent formulations that provide a
straightforward way to compute the resilient relaxation are
discussed in Appendix B.2. In the next section, we introduce
practical primal-dual algorithms that enable approximating
the constrained (P-LS) and resilient (R-LS) problems based
on samples and finite (possibly non-convex) parametriza-
tions such as transformer architectures.

4. Empirical Dual Resilient and Constrained
Learning

A challenge in solving (P-LS) and (R-LS) is that in general,
(i) no closed form projection into the feasible set or prox-
imal operator exists, and (ii) it involves an unknown data
distribution D. In what follows, we describe our approach
for tackling the Resilient problem, noting that Primal-Dual
algorithms tackling the original constrained problem can be
similarly derived by simply excluding the slack variables.

To undertake R-LS, (i) we replace expectations by sample
means over a data set {(xn

c , y
n
p ) : n = 1, · · · , N}, as

typically done in (unconstrained) statistical learning, and
(ii) resort to its Lagrangian dual.

These modifications lead to the Empirical Dual problem

D̂⋆ =max
λ≥0

min
θ∈Θ, ζ∈RTp

+

L̂(θ,λ, ϵ, ζ), (ED-LS)

where L̂ is the empirical Lagrangian of (R-LS), defined as

L̂(θ,λ, ϵ, ζ) :=
1

2
h(ζ)+

1

N

N∑
n=1

Tp∑
i=1

(
λi +

1

Tp

)[
ℓi([fθ(x

n
c )], y

n
p )
]
− λi(ϵi + ζi),

and λi is the dual variable associated to the constraint on
the i-th time step loss ℓi.

The Empirical Dual problem (ED-LS) is an approximation
of the Dual problem associated to R-LS based on training
samples. The dual problem itself can be interpreted as
finding the tightest lower bound on the primal. Although
the estimation of expectations using sample means and non-
convexity of the hypothesis class can introduce a duality
gap, i.e., D̂⋆ < P ⋆, under certain conditions this gap can be
bounded.

Unlike unconstrained statistical learning bounds, these ap-
proximation bounds depend not only in the sample com-
plexity of the model class and loss but also on the optimal
dual variables or slacks associated to the constraint problem.

These reflect how challenging it is to meet the constraints.
This aspect is crucial, as applying overly stringent loss shap-
ing constraints in a given learning setting may be detrimental
in terms of approximation and lead to sub-optimal test per-
formance. We include a summary of these results as well
as a discussion on their implications in this setting in Ap-
pendix A, and refer to (Chamon & Ribeiro, 2020; Hounie
et al., 2023) for further details.

The advantage of tackling the the empirical dual problem
D̂⋆ is that it can be solved using saddle point methods
presented in the next section.

4.1. Algorithm

In order to solve problem (ED-LS), we resort to dual ascent
methods, which can be shown to converge even if the inner
minimization problem is non-convex (Chamon et al., 2022).
The saddle point problem (ED-LS) can then be undertaken
by alternating the minimization with respect to θ and ζ with
the maximization with respect to λ (K. J. Arrow & Uzawa,
1960), which leads to the Primal-Dual constrained learning
procedure in Algorithm 1.

Although a bounded empirical duality gap does not guar-
antee that the primal variables obtained after running Al-
gorithm 1 are near optimal or approximately feasible in
general, recent constrained learning literature provides
sub-optimality and near-feasibility bounds for primal it-
erates (Elenter et al., 2024) as well as abundant empirical
evidence (Robey et al., 2021; Gallego-Posada et al., 2022;
Elenter et al., 2022) that good solutions can still be obtained.

Algorithm 1 Primal Dual Loss Shaping.
Input: Dataset {xi, yi}i=1,··· ,N , primal learning rate ηp,
dual learning rate ηd, perturbation learning rate ηϵ, num-
ber of epochs Te, number of batches Tb, initial constraint
tightness ϵα0

.
Initialize: θ, λ1, . . . , λTpred ← 0
for epoch = 1, . . . , Te do

for batch = 1, . . . , Tb do
Update primal variables

θ ← θ − ηp∇θL̂(θ,λ, ϵ, ζ)
Evaluate constraints.

si ←
(

1
Nb

∑Nb

n=1 ℓi([fθ(x
n
c(t))], y

n
p(t))

)
− (ϵi + ζi)

Update slacks.
ζ ←

[
ζ − ηζ

(
∇h

(
ζ
)
− λ

)]
+

Update dual variables.
λ← [λ+ ηds]+

end for
end for
Return: θ, λ, ζ.
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Figure 2. Test MSE at each prediction step for two datasets across different models, datasets and predictive windows. The top row shows
results for the Weather dataset with a predictive window length of 96 steps, and the second row corresponds to the Exchange Rate dataset
with a predictive window length of 720 steps. Each column corresponds to a different architecture, and each curve represents a different
training algorithm, we include both the ERM baseline and our method using a constant constraint across the window for all models.

5. Experiments
We conduct extensive evaluations comparing constrained
and resilient constrained learning against the customary
unconstrained training pipeline across eight model architec-
tures and nine popular datasets. For each dataset, we train
models with four different predictive window lengths to eval-
uate the impact of constraints as the forecasting horizons
extended. In total, this amounts to 288 different experiment
settings.

Explicitly, the datasets are: Electricity Consumption Load
(ECL), Weather, Exchange Rate (Lai et al., 2018), Traffic,
Electricity Transformer Temperature (ETT) (two hourly
datasets and two every 15 minutes) (Zhou et al., 2021),
and Influenza Like Illness (ILI). Following the literature,
we train with predictive window lengths of 96, 192, 320,
and 720 for each dataset, except for Illness, which is trained
to predict with lengths of 24, 36, 48, and 60. For a more
detailed explanation of the datasets’ contents and source,
refer to the Appendix C.1.

We also include a wide variety of time series prediction mod-
els comprising seven transformer-based architectures and
one non-transformer architecture. Namely, the transformer
models are: Reformer (Kitaev et al., 2019), Autoformer (Wu
et al., 2021), Informer (Zhou et al., 2021), Pyraformer (Liu
et al., 2021), iTransformer (Liu et al., 2024), Nonstation-
ary Transformer (Liu et al., 2022) and a vanilla transformer
architecture (Vaswani et al., 2017). The non-transformer
model is FiLM (Zhou et al., 2022a).

We follow the same setup, including preprocessing, hyperpa-
rameters and implementation, as described in (Kitaev et al.,
2019; Wu et al., 2021; Liu et al., 2021; Zhou et al., 2021;
Liu et al., 2022; Zhou et al., 2022a). For our method, we

only perform a grid search over six values of the constraint
level ϵ. The constrained and resilient loss shaping results
presented in this section correspond to the best performing
constraint level. We provide an additional ablation analysis
on one dataset in Appendix D.5.

Data is split into train, validation, and test chronologically
with a ratio of 7:1:2. For each data split we extract every pair
of consecutive context and prediction windows of length Tc

and Tp. That is, we use rolling (overlapping) windows for
both training and testing. 2 Additional experiment details
can be found on Appendix C.

5.1. Loss Shaping

In this section, we demonstrate that our approach effectively
reduces performance fluctuations across the window while
maintaining comparable average performance. We compute
the mean squared errors (MSE) at each predicted timestep
and report both the average MSE and the standard deviation
across the window, referred to as Window STD.

To ease interpretation and facilitate comparisons across dif-
ferent experimental settings, we normalize errors using the
unconstrained ERM baseline. For complete result tables
with unnormalized MSE values and additional example
cases, refer to Appendix D.

We do not to use constraint violation as a metric because it
can be uninformative when the loss landscape is consistently
infeasible due to a large generalization gap and constraint
levels are constant. In such cases, constraint violation is as
informative as MSE, even when the error distribution over

2We also fix a known bug (reported in (Das et al., 2023a))
from (Wu et al., 2021) and followup works, where the last Tp

samples where discarded.
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Figure 3. Box plots of percentual changes across all experiments. The left column contains plots of MSE across experiments, and the right
column is Window STD. We segment experiments by model and prediction length. The x axes of each box plot are sorted by the mean
ERM MSE (better models and easier datasets to the left). The full table with the results for each ERM, constrained and resilient setting
can be found in Appendix D.

time changes.

Due to the large number of experimental setups, we sum-
marize quantitative results in Figure 4, which illustrates
the relative differences in MSE and Window STD between
ERM and constrained runs. It shows that loss shaping con-
strained models typically achieve reductions in Window
STD while preserving or even improving average MSE.

We then analyze how the performance of our method varies
across setups, by grouping results by prediction length,
model architecture and dataset. First, it varies significantly
across models, as shown in the second row of Figure 3. We
conjecture that this variability can be attributed to the induc-
tive biases of certain architectures, which makes it harder to
impose the desired loss landscape. Second, the relative ef-
fect of our method on both MSE and Window STD remains
largely unchanged as the prediction window increases, as
shown in the third row of box plots in Figure 3. Since both
average MSE and Window STD increase with prediction
length, a constant relative effect means that the absolute
change increases with prediction length. Appendix D.1
shows several concrete examples of this phenomenon.

To qualitatively assess the impact of our method on the er-
ror distribution, we include plots of per time-step losses
comparing models trained with ERM and our method in
Figure 2. In these settings, our approach effectively affects
the distribution of losses across the prediction windows. For
example, in the Weather dataset (first row), Autoformer and
Pyraformer are trading off overall MSE for a flatter error
across the window. In other cases, like the Exchange Rate
dataset for the Informer and Transformer models, in addi-
tion to showing flatter landscapes, the constrained models
perform better than their ERM counterparts overall.

While we observe that in many cases imposing constraints
is beneficial, we also distinguish two failure modes where
we are unable to change test loss as desired. The first is
when constraints are not feasible at the end of training, as
seen in the first row of Figure 5. This is the motivation
behind the resilient approach, presented in the next section.
A second failure mode is due to the inherent generalization
gap, which results in feasible constraints during training,
but no effective loss shaping in test data, such as in the
second row of Figure 5. We defer to Appendix D.1 for more
in-depth comparisons of ERM and constrained runs.

Another advantage of our primal-dual approach is that mul-
tipliers indicate the difficulty of satisfying each constraint.
Therefore, we can examine the impact of constraints on loss
landscapes on a run by analyzing the loss distributions and
multipliers in Figure 6. In this experiment, the training loss
increases approximately monotonically over the prediction
window. The final solution is infeasible, as the MSE con-
straints are violated beginning at step 341. Consequently,
the optimal multipliers are also high, reflecting the difficulty
of satisfying the constraints in the latter part of the window.
Despite the growth of the multipliers, the model still fails
to satisfy the constraints. This infeasibility during training
results in ineffective loss shaping during testing.

5.2. Resilience

Resilient constrained learning can effectively overcome fea-
sibility issues in training –like those mentioned in the previ-
ous section– by relaxing the most difficult constraints. As
shown in Figure 7, when comparing hard constraints with
resilient constraints using the same setting as the previous
section, the resilient approach not only leads to smaller
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ing and testing errors of Autoformer on Weather data with window
length of 336. The second row is Informer on ECL data with
window length of 720. The gray lines are the values of ϵ used
during training.

multipliers by relaxing some constraints, but also yields a
solution that is more feasible overall.

In addition, we find that the solutions achieved by the re-
silient approach can also have better generalization when
compared to hard constraints, as seen in Figure 8. The
resilient model reduces the peak around step 150. This illus-
trates how resilient learning effectively mitigates the failure
mode mentioned in the previous section.

As a result of relaxing constraints and solving feasibility
issues during training, resilient models are effective in re-
ducing Window STD in a wide variety of settings. This is
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Figure 6. Training MSE and multipliers of a constrained model,
with the ERM curve for reference. The setting is an Autoformer
model for the Exchange Rate dataset, with a predictive window
length of 720 steps. The gray line is the constraint, with a value of√
ϵ = 0.484.

supported by our empirical results in Tables 6 and 7. For
instance, resilient FiLM achieves the lowest Window STD
when compared to constrained and ERM-trained models.
Models such as Autoformer, Pyraformer and iTransformer
also achieve its lowest Window STD when using Resilient
constraints.

Furthermore, we find that some settings also achieve its low-
est MSE when using resilient constraints. Such is the case
of iTransformer on datasets ETTh2,ETTm1 and ETTm2,
where the resilient model has the best overall error in almost
all predictive window lengths, as shown in the full MSE
results, Tables 4 and 5 in Appendix D.

5.3. Monotonically Increasing Constraints

The results of the previous sections all use ϵi set to a con-
stant value derived from the statistics of training or valida-
tion ERM errors. As discussed in Section 3, an alternative is
to have the constraints take monotonically increasing values,
for instance, from a linear or exponential fit. Having in-
creasingly looser constraints is only logical in the common
scenario where errors are expected to grow as we predict
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Figure 7. Training MSE and multipliers of constrained and re-
silient models. Resilience finds a feasible solution by relaxing the
harder constraints. The setting is the same as in Figure 6.

farther into the future. Note that we call these constraints
exponential because they were set from an exponential fit,
but they are linear in the optimization variable.

An empirical evaluation on the ECL dataset with three differ-
ent models shows this is a viable constraint design. Table 1
contains the MSE for each of the three models: in two cases,
exponential achieves the lowest MSE across all windows.
With respect to Window STD, Table 2 shows that exponen-
tial does not always find the most stable shape. However,
this is expected, because the monotonically increasing con-
straint will not necessarily enforce a reduction in variance
across the window.

6. Conclusion
This paper introduced a time series forecasting constrained
learning framework that aims to find the best model in terms
of average performance while imposing a user-defined upper
bound on the loss at each time-step. Given that we observed
that the distribution of loss landscapes varies considerably,

0 200 400 600

Step

0.4

0.6

0.8

1.0

Train RMSE

Constrained

Resilience

0 200 400 600

Step

Test RMSE

Figure 8. Train and test MSE of constrained and resilient models.
By finding a feasible solution in training, generalization improves.
The setting is the same as in Figure 6.

we explored a resilient constrained learning approach to
dynamically adapt individual constraints during training.
We analyzed the properties of this problem by leveraging
recent duality results and developed practical algorithms to
tackle it. We empirically corroborated that our approach
can effectively alter the loss distribution across the forecast
window.

Although we have focused on transformers for long-term
time series forecasting, motivated by the empirical finding
that their loss varies considerably, the loss shaping con-
strained learning framework can be extended to other set-
tings. This includes a plethora of other models, datasets
and tasks where losses are distributed across different time
steps or grids. Furthermore, in this work, we focused on
constraints characterized by a constant value across all
timesteps, but other types of constraints, such as exponen-
tially increasing stepwise constraints that we briefly pre-
sented, could also be explored in the future.

Nonstationary Transformer Pyraformer Reformer
ERM Constant Exp ERM Constant Exp ERM Constant Exp

E
C

L

96 0.178 0.182 0.170 0.287 0.278 0.274 0.299 0.297 0.298
192 0.186 0.191 0.180 0.294 0.292 0.289 0.332 0.326 0.324
336 0.204 0.204 0.196 0.313 0.302 0.295 0.359 0.365 0.364
720 0.233 0.229 0.228 0.310 0.298 0.296 0.316 0.316 0.318

Table 1. Test MSE of ERM, constant-constrained and exponentially-constrained settings in the ECL dataset, for three model architectures

Nonstationary Transformer Pyraformer Reformer
ERM Constant Exp ERM Constant Exp ERM Constant Exp

E
C

L

96 0.017 0.014 0.016 0.019 0.015 0.015 0.011 0.011 0.012
192 0.026 0.019 0.020 0.022 0.017 0.022 0.020 0.020 0.018
336 0.031 0.024 0.025 0.034 0.023 0.028 0.022 0.023 0.023
720 0.040 0.037 0.038 0.015 0.016 0.016 0.007 0.007 0.007

Table 2. Window STD of ERM, constant-constrained and exponentially-constrained settings in the ECL dataset, for three model architec-
tures.

8



Loss Shaping Constraints for Long-Term Forecasting

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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A. Approximation Guarantees
The functional space induced by the parametrization, which

we will denoteFθ = {fθ : θ ∈ Θ} can be non-convex, as in
the case of transformer architectures. However, it has been
shown (Chamon & Ribeiro, 2020; Hounie et al., 2023) that
as long as the distance to its convex hull Fθ = conv(Fθ)
is bounded, then we can leverage the strong duality of the
convex variational program defined over Fθ together with
uniform convergence bounds to provide approximation guar-
antees. That is, the values of (R-LS) and (ED-LS) are close.
This holds both for the constrained and resilient formulation,
although as discussed next, the resilient problem requires
milder assumptions.
Assumption A.1. There exist a function ϕ ∈ F such
that all constraints are met with margin c > 0, i.e.,
EDi

[
ℓi(ϕ(x), y)

]
≤ c, for all i = 1, . . . ,m.

Assumption A.1.′ There exist a finite relaxation ζ ⪯ ∞
and a function ϕ ∈ F such that all constraints are met
with margin c > 0, i.e., EDi

[
ℓi(ϕ(x), y)

]
≤ ζ − c, for

all i = 1, . . . ,m.
Assumption A.2. The loss functions ℓi, i = 0 . . .m, are
convex and M -Lipschitz continuous.
Assumption A.3. For every ϕ ∈ F , there exists θ† ∈ Θ
such that EDi

[
|ϕ(x)− fθ†(x)|

]
≤ ν, for all i = 0, . . . ,m.

Assumption A.4. There exists ξ(N, δ) ≥ 0 such that for
all i = 0, . . . ,m and all θ ∈ Θ,∣∣∣∣EDi

[
ℓi(fθ(xc), yp)

]
− 1

N

N∑
n=1

ℓi
(
fθ(x

n
c ), y

n
p

)∣∣∣∣ ≤ ξ(N, δ)

with probability 1− δ over draws of {(xn
i , y

n
i )}.

Note that the constraint qualification in Assumption A.1
(known as Slater’s condition (Boyd et al., 2004)), which
is required for the constrained problem, can be relaxed to
the milder qualification given in Assumption A.1.′ for the
resilient problem.

Assumption A.2 holds for commonly used objectives in
Time-Series forecasting, including Mean Squared Error,
Mean Absolute Error and Huber-loss, among others.

Assumption A.3 will hold if the parametrized function space
is rich in the sense that the distance to its convex hull is
bounded. Since neural networks and transformers have
universal approximation properties (Hornik et al., 1989;
Yun et al., 2019), we posit that given a parametrization with
enough capacity, this assumption holds.

Assumption A.4 – known as uniform convergence – is cus-
tomary in statistical learning theory. This includes gen-
eralization bounds based on VC dimension, Rademacher
complexity, or algorithmic stability, among others (Mohri
et al., 2018). Unlike generalization bounds for the uncon-
strained problem (ERM), this assumption bounds the loss

at each step, and not the aggregated loss throughout the
window.

We now state the main theorems that bound the approxima-
tion errors.

Theorem 1 (Hounie et al., 2023) Let ζ⋆ be an optimal
relaxation for problem (R-LS). Under Ass. A.1′–A.4, it
holds with probability of 1− (3m+ 2)δ that∣∣P ⋆−D⋆

∣∣ ≤ h(ζ⋆+1·Mν)−h(ζ⋆)+Mν+(1+∆)ξ(N, δ).

Theorem 2 (Chamon & Ribeiro, 2020) Let λ⋆ be an opti-
mal relaxation for the constrained problem (P-LS) defined
over Fθ with constraints ϵi −Mν. Under Ass. A.1–A.4, it
holds with probability of 1− (3m+ 2)δ that∣∣P ⋆ −D⋆

∣∣ ≤ (1 + λ⋆)Mν + (1 +∆)ξ(N, δ).

Note that unlike in unconstrained statistical learning, opti-
mal dual variables λ⋆ or relaxations ζ⋆ play an important
role in these approximation bounds. This is because, intu-
itively, they represent the difficulty of satisfying constraints.

B. Monotonic Loss constraints
A less restrictive constraint that accounts for error com-

pounding is to only require errors to be monotonically
increasing. That is, that there exists some ϵ such that
ϵt+1 ≥ ϵt for all t. Instead of searching for such an ϵ,
we can directly impose monotonicity, which requires only a
small modification in (P-LS), as discussed in Section B.1.

B.1. Formulation

We can require the loss on each timestep i to be smaller
than the loss step at the following i + 1. This leads to the
constrained statistical learning problem:

min
θ∈Θ

E(xc,yp)∼D

 1

Tp

Tp∑
i=1

ℓi(fθ(xc), yp)


s. to: E(xc,yp)∼D [ℓi(fθ(xc), yp)]

≤ E(xc,yp)∼D [ℓi+1(fθ(xc), yp)]

i = 1, . . . , Tpred−1. (P-M)

Because of linearity of the expectation, the constraint can
be re-written as a single expectation of a (non-convex) func-
tional, explicitly,

E(xc,yp)∼D [ℓi(fθ(xc), yp)

−ℓi+1(fθ(xc), yp)] ≤ 0.

Despite the lack of convexity, the bounds presented in Ap-
pendix A still hold under additional assumptions on the
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distribution of the data and model class, as shown in The-
orem 1 and Proposition B.1 (Chamon et al., 2022). We
include these assumptions here for completeness.

Assumption B.1. The functions y 7→ ℓi(ϕ(·), y)fi(· |
y), i = 1, . . . ,m, are uniformly continuous in the total vari-
ation topology for each ϕ ∈ H, where fi(x | y) denotes
the density of the conditional random variable induced by
Di. Explicitly, for each ϕ ∈ H and every ϵ > 0 there exists
δϕ,i > 0 such that for all |y − ỹ| ≤ δϕ,i it holds that

sup
Z∈B

∫
Z
|ℓi(ϕ(x), y)fi(x | y)− ℓi(ϕ(x), ỹ)fi(x | ỹ)| dx ≤ ϵ

Assumption B.2. The conditional distribution x | y in-
duced by D are non-atomic.

Note that the epigraph formulation of (P-M) resembles that
of the original los schaping constrained problem (P-LS),
with the difference that ϵ is an optimization variable, now
constrained to be monotonically increasing:

min
θ∈Θ

E(xc,yp)∼D

 1

Tp

Tp∑
i=1

ℓi(fθ(xc), yp)


s. to : E(xc,yp)∼D [ℓi(fθ(xc), yp)] ≤ ϵi

ϵi ≤ ϵi+1

i = 1, . . . , Tp − 1. (P-M-epi)

B.2. Equivalent Resilient formulations

The resilient relaxation, as defined in Equation 1 can
be found by solving the Resilient Constrained Learning
problem R-LS. Note that evaluating P ⋆(ϵ + ζ) amounts
to solving the a constrained learning problem. As shown
by (Hounie et al., 2023) the relaxation and model can be
found jointly by solving:

min
θ∈Θ

E(xc,yp)∼D

 1

Tp

Tp∑
i=1

ℓi(fθ(xc), yp)

+ h(ζ)

s. to : E(xc,yp)∼D [ℓi(fθ(xc), yp)] ≤ ϵi + ζi

i = 1, . . . , Tp. (R-LS)

The Lagrangian associated with this problem is

L(θ,λ, ϵ, ζ) :=h(ζ)

+

Tp∑
i=1

(
λi +

1

Tp

)
E(xc,yp)∼D [ℓi (fθ(xc), yp)]

− λi(ϵi + ζi).

Since it is separable in θ and ζ, we can re-write the joint
minimization as

min
ζ∈RTp ,θ∈Θ

L(θ,λ, ϵ, ζ) = min
ζ∈RTp

Lζ(λ, ζ) (2)

+min
θ∈Θ

Lθ(θ,λ, ϵ),

where

Lζ(λ, ζ) = h(ζ)− λT ζ,

and

Lθ(θ,λ, ϵ) =

Tp∑
i=1

(
λi +

1

Tp

)
E(xc,yp)∼D [ℓi (fθ(xc), yp)]

− λT ϵ.

Since the minimization over ζ in Equation 2 yields−h∗(λ),
where −h∗ is the convex conjugate of h, we can re-write
the Lagrangian minimization as

min
ζ∈RTp ,θ∈Θ

L(θ,λ, ϵ, ζ) = min
θ∈Θ

Lθ(θ,λ, ϵ)− h∗(λ).

Then the dual problem associated to R-LS is equivalent to

D⋆ =max
λ≥0

min
θ∈Θ

Lθ(θ,λ, ϵ)− h∗(λ),

which corresponds to the original dual problem with a regu-
larization on dual variables given by −h∗(λ).

Although this equivalent formulation was not used directly
in this work, which instead solves for ζ using gradient de-
scent as described in the next section, it helps to interpret
how the resilient approach makes the problem easier to solve
by regularizing the dual function.

B.3. Algorithm development

Algorithm 1 aims to find a saddle-point of the empirical
Lagrangian

L̂(θ,λ, ϵ, ζ) := h(ζ)+

1

N

N∑
n=1

Tp∑
i=1

(
λi +

1

Tp

)[
ℓi([fθ(x

n
c )], y

n
p )
]
− λi(ϵi + ζi),

The updates in Algorithm 1 use gradient descent for ζ and
stochastic sub-gradient ascent for λ. However, nothing
precludes our method from using other optimization algo-
rithms.

To obtain the gradients of the Lagrangian with respect to the
primal variables, we exploit the fact that the minimization
of the Lagrangian can be separated into two parts, each
depending on only one primal variable, as described in the
previous section.

13



Loss Shaping Constraints for Long-Term Forecasting

The gradient with respect to ζ is

dζ =
∂L(λ, ζ)

∂ζ
= ∇h(ζ)− λ.

For dual variables, stochastic supergradient ascent updates
the dual variable λ using a batch of B samples

dλi =
1

B

B∑
n=1

ℓi(fθ(xn), yn)− ζi for i = 1 . . . Tp.

Lastly, finding the parameters θ that minimize the La-
grangian amounts to solving an empirical risk minimization
problem with a time weighted loss, with weights given by
the current multipliers λ.

C. Experiment Setup
Early Stopping While the common practice in trans-

formers for forecasting is to train with early stopping, we
disable it for the constrained approach and train for a full
10 epochs, due to the slower convergence. Note that in the
results presented in this work we keep early stopping for
ERM.

Tuning of dual learning rate and initialization parame-
ters. Preliminary exploration yielded consistently superior
results with dual learning rate set to 0.01 and duals initial-
ized to 1.0. All experiments reported in the paper were
performed with this parameterization.

Choice of ϵ. To choose an appropriate upper bound con-
straint for the stepwise losses, we perform a grid search of
six values for every setting of dataset, model and prediction
window, optimizing for validation MSE. The values for the
search are the 25, 50, and 75th percentile of the training
and validation errors of each model trained with ERM. The
values reported in Tables 4, 5, 6 and 7 are for the optimal
values of this grid search.

Alternative choices of epsilon. During preliminary experi-
ments, we explored

C.1. Datasets

We use commmon multivariate, long-term forecasting
benchmarks from the transformer time series literature.
Here we provide a brief summary of each dataset. For
more details about the data, refer to their respective sources
cited in the main body.

Weather: Contains local climatological data for around
1,600 U.S. locations from 2010 to 2013. It includes 11
climate features, and the target is “Wet Bulb Temp”. The
data is available at https://www.ncei.noaa.gov/
data/local-climatological-data/.

ETT(Electricity Transformer Temperature): Records of
transformer oil temperature and six power load features
at 1-hour and 15-minute intervals across two years from
two separated counties in China. The data was collected
by (Zhou et al., 2021).

ECL (Electricity Consuming Load): Includes hourly elec-
tricity consumption of 321 clients over two years, with the
target being the ’MT 320’ consumption value. The data is
available at https://archive.ics.uci.edu/ml
/datasets/ElectricityLoadDiagrams20112
014.

Exchange Rate: Contains the daily exchange rates of Aus-
tralia, British, Canada, Switzerland, China, Japan, New
Zealand and Singapore from 1990 to 2016. The data was
collected by (Lai et al., 2018).

ILI (National Illness): Contains weekly influenza-like ill-
ness (ILI) patients’ data, showing the ratio of ILI patients to
the total number of patients from 2002 to 2021. The data is
available at https://gis.cdc.gov/grasp/fluv
iew/fluportaldashboard.html.

Traffic: Contains hourly road occupancy rates measured by
sensors in San Francisco Bay area freeways. The data is
available at https://pems.dot.ca.gov/.

D. Extended Experiment Results
The unnormalized results used to compute the relative met-
rics presented in Section 5 are presented in Tables 4 and 5,
containing the MSE of ERM, constrained and resilient runs,
and Tables 6 and 7 contain Window STDs. While the overall
effect can be better appreciated across all settings in Fig-
ures 4 and 3, the detailed tables also showcase how the loss
shaping effect is observed across a wide variety of dataset
and model combinations.

0 100 200 300 400 500 600 700
Prediction Step

0.4

0.5

0.6

0.7

0.8
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Figure 9. The anomaly of Figure 4. Test MSE of ERM, constrained
and resilient runs.
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Features Length Target Mean Target STD Target Min Target Max

ETTh1 6 17420 13.32 8.57 -4.08 46.01
ETTh2 6 17420 26.61 11.89 -2.65 58.88
ETTm1 6 69680 13.32 8.56 -4.22 46.01
ETTm2 6 69680 26.61 11.89 -2.65 58.88

Electricity 320 26304 3335.88 552.75 0.00 6035.00
Exchange Rate 7 7588 0.65 0.12 0.39 0.88

ILI 6 966 651497.46 349018.89 64699.00 1640587.00
Traffic 861 17544 0.03 0.02 0.00 0.22

Weather 20 52696 417.80 321.57 -9999.00 524.20

Table 3. Summary statistics for the benchmark datasets

D.1. Loss Shape Visualization

In this section, we take a closer look at some examples
of loss distributions. As was shown in Section 5.1, the
loss shaping effect is consistent as the predictive window
increases. This is illustrated in Figure 10, where we plot
the loss landscapes of three architectures tested on differ-
ent datasets with increasing predictive window lengths. In
all settings, a significant loss shaping effect is observed
throughout the window, with the exception of the longest
Pyraformer window (720), where the change is less pro-
nounced.

The particular loss shape remains idiosyncratic to each
dataset, model, and predictive window length combination.
In settings (a) and (b) of Figure 10, a similar distribution pat-
tern can be observed as the predictive window grows longer,
while, in setting (c), the shape generated by the constrained
model slightly varies with the window length.

Finally, we also observe that, more often than not, loss
landscapes are not linear, let alone constant. Moreover,
in rare cases, such as Reformer on Exchange Rate with
prediction window of 192 steps (Figure 12), the stepwise
loss surprisingly trends downwards. This motivates further
experimentation on different kinds of constraints that are
better suited for a particular learning problem.

D.2. Resilient Loss Shape Plots

We have presented extensive evidence that the resilient loss
shaping effect is also consistent across different settings
and predictive window lengths, and often times finds better
shapes than non-resilient constrained learning. In Figure 11,
we present three more loss distributions to illustrate this. In
all window lengths of the three cases, except for Nonstation-
ary Transformer (336), resilient learning results in flatter
loss shapes or lower MSEs. Case (a) is worth noting: by
finding the optimal relaxation of constraints, resilient is able
to trade off a higher error in the first timesteps for a more
stable error throughout the rest of the window. This case is
also notable because the most pronounced loss shaping oc-
curred in the setting with longest predictive window, which

is in line with our analysis of effect size by window length
in Section 5.1.

D.3. Correlation Between Training and Test Errors.

We compute the Spearman correlation between mean step-
wise errors computed on the training and test sets for models
trained with constant constraint levels. Compared to the
values reported for ERM in Table 8, we observe weaker
correlations for our method. This can indicate that, while
imposing a constraint on the training loss, our approach
increasingly overfits to training data.

D.4. Correlations Between Prediction Lengths

In order to quantify the degree of similarity between er-
ror patterns across various prediction lengths, we compute
Pearson correlation coefficients between step-wise errors,
as shown in Figure 13. We achieve this by first re-sampling
shorter prediction windows using linear interpolation to
match the number of steps. Notably, some setups present
high correlations for several prediction lengths, which we
interpret as the error distributions being similar.

D.5. Ablation Analysis for Constant Constraints

By examining the loss landscape across varying values of
ϵ used on the Exchange Rate dataset, we find that our con-
strained method is not overly sensitive to the choice of
hyperparameters. In Table 9, we can observe each model’s
relative changes in MSE. Pyraformer, Reformer, Informer
and Nonstationary Transformer exhibit a biphasic behavior:
the loss shape changes drastically only after the ϵ is set to a
parameter much higher than ERM’s average training loss,
which results in a trivial constraint. In the cases of FiLM and
iTransformer, the shape remains relatively consistent across
all values, while Autoformer exhibits larger variations. The
Resilient approach is less sensitive to the constraint level, in
some cases allowing for better generalization with the same
value of epsilon compared to the constrained run.

Figure 14 illustrates the effect of the ϵ parameter on various
models on the Exchange Rate dataset. We choose ϵ to be
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Figure 10. Test MSE for ERM and constrained runs for three different settings: (a) Model: Reformer, Dataset: ETTh2, (b) Model: FiLM,
Dataset: Traffic, and (c) Model: Pyraformer, Dataset: Traffic. Each plot column shows a different predictive window length, each row
shows a different dataset-model selection.

Autoformer Informer Reformer Transformer

E
C

L

96 0.38 0.34 0.60 0.18
192 0.42 0.17 0.37 -0.06
336 0.17 0.17 -0.19 -0.16
720 0.30 0.20 0.07 0.19

E
xc

ha
ng

e 96 0.76 0.20 0.67 -0.15
192 0.32 0.08 0.19 -0.55
336 0.24 -0.44 0.17 0.43
720 0.69 -0.63 0.12 -0.69

W
ea

th
er 96 0.01 0.23 0.14 -0.30

192 0.43 -0.08 -0.43 0.33
336 0.46 -0.22 0.55 0.25
720 0.83 0.45 0.69 0.64

Table 8. Spearman correlation for step-wise Mean Train and Test
errors, for models trained with constant constraints.

the quartiles of the train and test error taken from an ERM
run. Notably, for several models, including the Informer, Re-
former, and Transformer, the loss landscape exhibits relative
invariance across similar ϵ values. This suggests a plateau in

sensitivity within this parameter range. Conversely, in some
cases, a critical ϵ threshold seems to exist, after which the
shape significantly changes and then stabilizes again as we
relax ϵ further. Specifically, for Autoformer, Informer, and
Transformer, optimal performance is achieved subsequent to
a degree of ϵ, underscoring the benefit of exploring multiple
constraint levels.

We have shown that our method is reasonably robust to the
choice of the constraint hyperparameter. However, we note
that performing a parameter search with different values
of ϵ may still be valuable. When the generalization gap is
high, training with constraints higher than all of the training
values is often more effective. For example, Reformer’s
test MSE is 2.9x higher than its train MSE, and Table 9
shows its MSE can be reduced by up to 50.1% when using
validation-based threshold values, while training-based ones
are not as effective.
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Figure 11. Test MSE for constrained and resilient runs for three different settings: (a) Model: Pyraformer, Dataset: ETTh2, (b) Model:
iTransformer, Dataset: ETTm2, and (c) Model: Nonstationary Transformer, Dataset: Exchange Rate. Each plot column shows a different
predictive window length, each row shows a different dataset-model selection.

D.6. Outlier in STD histogram

In Section 5.1, we showed that on average, using constraints
reduces Window STD. However, we identified some outliers
in Figure 4. In one instance, the constrained Window STD is

371% higher than ERM. It corresponds to Reformer on the
Weather dataset with predictive window length of 720 steps,
shown in Figure 9. Closer inspection reveals that the reason
for this increase is due to the constrained model finding a

Model Train 25% Train 50% Train 75% Val 25% Val 50% Val 75%

Autoformer 48.85 39.92 45.48 17.64 46.98 2.61
FiLM 29.88 29.64 29.61 29.44 29.18 28.87
Informer 0.85 1.54 1.51 56.48 60.50 60.50
Nonstationary Transformer -35.28 -36.45 -39.60 -2.79 4.31 16.54
Pyraformer 7.82 14.63 14.63 15.89 21.22 23.40
Reformer 1.76 1.53 1.72 -41.37 -48.63 -50.12
Transformer -0.73 0.24 0.20 -2.46 53.18 54.38
iTransformer -11.75 -13.02 -13.91 -15.52 -8.76 -8.74

Table 9. MSE % changes of constrained runs relative to ERM for varying values of ϵ, in the Exchange Rate dataset, with window length
720.
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Figure 12. Test MSE of ERM and constrained models for Reformer
on Exchange Rate, with window length of 192

much lower MSE (constrained 0.788 versus ERM 0.963)
in the first part of the window. Interestingly, the resilient
model settles for a middle point, with a lower MSE than
ERM but less variance increase than the constrained model.
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Figure 13. Pearson correlation between test step wise errors for
weather and electricity datasets. Each heatmap shows pairwise
correlations between all prediction lengths for a given model.
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Figure 14. Ablation plots for the ϵ parameter on the Exchange Rate dataset, with predictive window length of 720. Rows are different
models, and columns are increasing values of ϵ. Each plot shows test MSE of Constrained and Resilient runs.
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