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ABSTRACT

While self-supervised contrastive learning has made continuous progress utiliz-
ing big models, the performance lags far behind when the model size decreases.
A common practice to address this problem requires a two-stage training proce-
dure, where a larger model is pretrained in a self-supervised manner first, then its
representational knowledge is transferred to a smaller model in the second stage.
Despite its effectiveness, this method is highly time-consuming and is inapplica-
ble to some resource-limited scenarios. In this work, we are aiming at directly
training a lightweight contrastive model with satisfactory performance in the ab-
sence of a pretrained teacher model. Specifically, by incorporating some training
techniques (e.g., MLP, lower temperature, et al.), we boost the accuracy of differ-
ent lightweight models by a large margin. Besides, we observe a common issue
in contrastive learning that either the positive views or the negative views can be
noisy, and propose a smoothed version of InfoNCE loss to alleviate this problem.
With these combined techniques, we successfully improve the linear evaluation
results from 36.3% to 62.3% of MobileNet-V3-Large and from 42.2% to 65.8%
of EfficientNet-B0 on ImageNet, closing the accuracy gap to ResNet-50 which
contains 5× parameters. These results suggest the feasibility to train lightweight
self-supervised models without distillation.

1 INTRODUCTION
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Figure 1: Linear probe top-1 accuracy
of Light-MoCo and MoCo v2 on Ima-
geNet. Green dash line is the ResNet-
50 result trained by MoCo v2. Our
method dramatically boosts the perfor-
mance based on MoCo v2 without a
teacher model. We bridge the gap be-
tween lightweight models and the larger
ones.

Self-supervised contrastive learning targets at learning se-
mantic representation of instances through pretraining on
the instance discrimination pretext task, where a model is
trained to align augmented views from the same instance,
while pushing away from those of others in the represen-
tation space. The leading contrastive learning methods
utilizing large models have already shown the superiority
to the supervised counterpart, after fine-tuning the pre-
trained models on downstream tasks (Chen et al., 2020a;
He et al., 2020; Grill et al., 2020; Chen & He, 2021).

However, their performance all suffers a cliff fall when
the model size decreases. For example, the supervised
top-1 accuracy on ImageNet of ResNet-50/EfficientNet-
B0 is 76.1%/77.1%, but the corresponding linear evalua-
tion counterpart applying MoCo-V2 (Chen et al., 2020c)
is 67.5%/42.2%, showing a large gap. To rescue the per-
formance of small models, a widely adopted practice is to
leverage a large pretrained model to transfer the represen-
tational knowledge through knowledge distillation (Hin-
ton et al., 2015). It first pretrains a large model in the
self-supervised contrastive manner serving as a teacher
model, and then let the smaller student model mimic the
representation distribution of the teacher (Abbasi Koohpayegani et al., 2020; Fang et al., 2020;
Xu et al., 2021; Gao et al., 2021). In spite of the effectiveness, this two-stage training pipeline is
time-consuming and resource-consuming, especially for contrastive learning which requires a higher
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training cost. What is worse, it is inapplicable to simultaneously load the student model as well as
the teacher model when memory resource is limited. Recently, Shi et al. (2022) attempt to train
small self-supervised models without distillation signals. They eventually improve the baselines by
a considerable margin, but the performance gap still exists. Moreover, a pretrained large model is
still required to guild the lightweight model to a better initialization.

In this work, we endeavor to enhance the performance of lightweight contrastive models with-
out resorting to a pretrained powerful teacher model. To begin with, we ask two straightforward
questions that have not been answered yet: (1) Besides the canonical contrastive methods, are other
line of self-supervised methods (e.g., only-positive-view methods, clustering-based methods) also
suffer from the performance degeneration with lightweight models? (2) Is the degenerative perfor-
mance of lightweight self-supervised models simply caused by suboptimal choice of hyperparame-
ters? To answer the former question, we benchmark a few representative self-supervised methods on
ImageNet, and observe that the performance degradation phenomenon exists in all of these methods.
This result suggests the necessity to accommodate self-supervised learning (SSL) for models with
fewer parameters. For the latter, the answer is partially yes. We extensively explore the best recipe
for lightweight contrastive models and largely boost their evaluation accuracy in downstream tasks.
Among the explored training techniques, a larger learning rate and a wider MLP head contribute
most to reduce the performance gap to large self-supervised models.

To finally close the gap, we further make an investigation on the representation space of the small
models. The empirical result is in accordance with the observation from Shi et al. (2022), that
smaller models hold weaker intra-class alignment compared to larger models (See the detail in (Shi
et al., 2022)). In other words, different instance of images are aggressively allocated into separate
clusters, regardless of their semantic similarities. We hypothesize that it is caused by susceptibil-
ity to noisy views (i.e., false positive views and false negative views) during self-supervised train-
ing for tiny models (Kalantidis et al., 2020; Chen et al., 2021; Huynh et al., 2022; Chuang et al.,
2022). To alleviate this problem, we propose SoftNCE, a novel loss generalizing the widely used
InfoNCE loss to a smoothed one. Instead of aligning with a one-hot distribution in InfoNCE, our
loss boosts the instance discrimination objective to match a softened probability distribution, by as-
signing some weight to similar instances. The proposed smoothing technique prevents models from
over-confidence, thus is more robust to noisy labels and generalize better.

Our main contributions are summarized as below:

• We benchmark some representative contrastive learning methods with ResNet-18 on Ima-
geNet, and observe that the inferior performance is not rescued by other line of paradigm
like only-positive-view methods or clustering-based methods.

• We empirically show that the default training setting is far from optimal for lightweight
models in contrastive learning, which is inappropriately adopted as a weak baseline in
previous research (Fang et al., 2020; Gao et al., 2021; Xu et al., 2021; Zheng et al., 2022).
We thus provide a better recipe for training lightweight contrastive models.

• We propose a novel loss, SoftNCE to mitigate the side effect from noisy views. We even-
tually show the feasibility to train lightweight contrastive models without the help from
large models. For example, the linear evaluation accuracy of EfficientNet-B0 is improved
from 42.2% to 65.8%, which is pretty close to ResNet-50 (67.4%), with only 16.3% of
the number of parameters. Our method even yields better transferability than distillation
counterpart SEED (Fang et al., 2020).

2 RELATED WORK

2.1 SELF-SUPERVISED REPRESENTATION LEARNING

There is a surge in research on self-supervised contrastive learning in recent years. Dosovitskiy et al.
(2014) first introduce the instance-level discrimination pretext task into self-supervised learning. It
encourages a model to learn invariance to augmented views from an instance. Following research
based on this pretext task continuously pushes the limit of self-supervised learning, even surpasses
the supervised counterpart in downstream tasks (He et al., 2020; Chen et al., 2020c;a;b). These
methods all require a large amount of negative pairs. To relieve the burden, algorithms are designed
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Table 1: 20-NN and linear probe benchmarking results of ResNet-18 on ImageNet-1K with 512-
batch self-supervised training. All the self-supervised learning methods are trained for 200 epochs.

Method
ResNet-50 ResNet-18

20-NN Top-1 20-NN Top-1

MoCo v2 (Chen et al., 2020c) - 67.5 44.6 52.5
SimCLR v2 (Chen et al., 2020b) - 71.7 43.8 51.9
SimSiam (Chen et al., 2020a) - 70.0 23.0 32.7
BYOL (Grill et al., 2020) 59.2 69.3 44.8 52.6
PCL v2 (Li et al., 2021) - 67.6 44.2 52.1
MSF (Koohpayegani et al., 2021) 64.9 72.4 22.1 29.7

Supervised - 76.1 - 70.2

with competitive performance even without negative views Grill et al. (2020); Chen & He (2021);
Zbontar et al. (2021). Apart from them, another line of methods, namely clustering-based methods,
learn visual representations through clustering semantically similar instances based on the embed-
ding space of the models (Caron et al., 2018; Asano et al., 2019; Caron et al., 2020; Li et al., 2021;
Koohpayegani et al., 2021).

2.2 LIGHTWEIGHT CONTRASTIVE LEARNING

Although self-supervised learning leveraging large models has gained a great success, it seems to
lose the magic equipped with lightweight models. To address this problem, Abbasi Koohpayegani
et al. (2020) and Fang et al. (2020) introduce a pretrained self-supervised large model to transfer rep-
resentation knowledge to the small models, and greatly boost their performance. Gao et al. (2021)
further promote it by letting the student model perform ℓ2 regression on the teacher’s embedding
space after the linear projector. Xu et al. (2021) fully exploit the representation knowledge by pack-
ing related instances together according to similarities calculated by the teacher. These methods
share the same two-stage training procedure. In contrast, Choi et al. (2021) design one-stage online
distillation for self-supervised training, and Shi et al. (2022) move forward to relax the need for dis-
tillation. However, they either bear a heavy resource burden by co-training two models concurrently,
or show a lag in performance while still require a teacher for better initialization. In this work, we
completely get rid of any help from a larger model, whilst exhibiting a competitive performance.

2.3 CONTRASTIVE LEARNING WITH NOISY LABELS

Contrastive learning treats augmented views as positive pairs and any views from other instances
as negative views. Although effective, this treatment can be unreliable. The augmented views can
be semantically unrelated or distorted ones, and other instances may contain related views (Chuang
et al., 2020). Recent research sees quality benefits for representation from resisting this noise. Kalan-
tidis et al. (2020) draw inspiration from data mixing technique to mix hard negative samples in the
embedding space. Chuang et al. (2022) modify the InfoNCE to a symmetric loss, demonstrating that
the symmetric form is more robust to noisy labels. Chen et al. (2021) and Huynh et al. (2022) seek
to identify false negatives, and then either recognize them as positives or directly remove them. In
our work, we propose a simple and effective strategy, to soften the one-hot distribution in InfoNCE
objective according to the hardness of negative samples. Our method is supplementary to that of
Kalantidis et al. (2020)’s and Chuang et al. (2022)’s, while transcending methods proposed by Chen
et al. (2021) and Huynh et al. (2022).

3 ESTABLISHING A STRONGER BASELINE

In this section, we ask two questions: (1) Is the much lower performance of lightweight models
already rescued by existing self-supervised algorithms, just that we do not know? (2) Is the problem
simply the result of uncurated hyperparameters? We answer the questions as follows.
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Table 2: Extensive hyperparameters searching results on ResNet-18. We report 20-NN evaluation
accuracy on ImageNet after 100-epoch self-supervised training. We perform hyperparameters tuning
additively. “Mom.”: momentum, “Cos.”: cosine, “Sym.”: symmetric.

Setting Wide τ LR Warmup Mom. Cos. Sym. 20-NN ∆
MLP Mom. Loss

Base × 0.2 0.06 × 0.999 × × 42.9 -

+ Wide MLP ✓ 0.2 0.06 × 0.999 × × 43.1 +0.2
+ Lower τ ✓ 0.1 0.06 × 0.999 × × 43.7 +0.6

✓ 0.07 0.06 × 0.999 × × 42.9 -0.2
+ Larger LR ✓ 0.1 0.12 ✓ 0.999 × × 44.7 +1.0

✓ 0.1 0.2 ✓ 0.999 × × 43.3 -0.4
+ Lower Mom. ✓ 0.1 0.12 ✓ 0.998 × × 44.7 +0

✓ 0.1 0.12 ✓ 0.996 × × 44.7 +0
✓ 0.1 0.12 ✓ 0.993 × × 45.2 +0.5
✓ 0.1 0.12 ✓ 0.99 × × 45.2 +0.5

+ Cos. Mom. ✓ 0.1 0.12 ✓ 0.99 ✓ × 45.3 +0.1
+ Sym. Loss ✓ 0.1 0.12 ✓ 0.99 ✓ ✓ 46.2 +0.9

3.1 BENCHMARKING REPRESENTATIVE CONTRASTIVE METHODS

To answer the first question, since most of the related research does not report the results with
lightweight models, we fill the gap to benchmark contrastive learning methods with ResNet-18
on ImageNet. However, considering the exploding development of self-supervised learning, it is
infeasible to test them all. We thus select a few representative methods mainly categorized as fol-
lows: canonical contrastive methods (MoCo v2 (Chen et al., 2020c), SimCLR v2 (Chen et al.,
2020b)), only-positive-view methods (BYOL (Grill et al., 2020), SimSiam (Chen et al., 2020a)), and
clustering-based methods (PCL v2 (Li et al., 2021), MSF (Koohpayegani et al., 2021)). We bench-
mark all the methods using their official codes with default hyperparameters, except for scaling the
learning rate linearly with batch size.

The results are shown in Table 1, suggesting that the performance degeneration problem is ubiq-
uitous in SSL methods, and is not rescued by any of the tested methods. Among them, SimSiam
and MSF get worse accuracy. We hypothesize it is due to the instability of training lightweight SSL
model.

3.2 A BETTER RECIPE FOR TRAINING LIGHTWEIGHT SSL METHOD

In this part, we comprehensively search for the best training setting on lightweight models based
on MoCo v2. We first tune the hyperparameters based on ResNet-18, and then verify them on
EfficientNet-B0. Following Fang et al. (2020), we set the weight decay as 0.0001 for ResNet and
0.00001 for EfficientNet. The results are shown in Table 2 and Table 3 respectively. We mainly
consider the following settings:

Wider MLP We follow Shi et al. (2022)’s suggestion to adopt a wider MLP. Specifically, We
set the dimension of the two-layer MLP projector to [2048,128]. On ResNet-18, we see minor
improvement, but on EfficientNet-B0, the accuracy increase is drastic. This is due to the fact that
previous work only add one-layer projection head on EfficientNet-B0 (Fang et al., 2020).

Lower τ A τ closer to 0 results in larger gradients, and may enable faster training (Zhang et al.,
2021). We test different values of τ , 0.2, 0.1 and 0.07 on ResNet-18. The selection of value 0.1
brings 0.6% and 1.5% absolute accuracy increase to ResNet-18 and EfficientNet-B0 separately.

Larger learning rate (LR) According to Shi et al. (2022), small models tend to have slow con-
vergence in SSL. An immediate thought is to enlarge the learning rate. However, we observe the
training instability phenomenon when directly increasing the LR. The problem is addressed after
introducing warmup technique. We linearly increase the LR from 0 to the setting value for 5 epochs.
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Table 3: Results of additive study on EfficientNet-B0. We report linear probe top-1 accuracy on
ImageNet after 200-epoch self-supervised training. “Mom.”: momentum, “Sym.”: symmetric. The
final result shows an absolute accuracy increase of 17.9% in total.

Setting MLP LR Warmup τ Mom. Sym. Loss Top-1 ∆

Base × 0.06 × 0.2 × × 42.2 -

+ MLP ✓ 0.06 × 0.2 0.999 × 53.3 +11.1
+ Lower τ ✓ 0.06 × 0.1 0.999 × 54.8 +1.5
+ Larger LR ✓ 0.12 ✓ 0.1 0.999 × 58.4 +3.6
+ Mom. ✓ 0.12 ✓ 0.1 0.99 × 57.8 -0.6
+ Symmetric Loss ✓ 0.12 ✓ 0.1 0.99 ✓ 60.1 +2.3

Apart from faster convergence, a larger learning rate also takes a bias towards converging to a flatter
minimum, which is the key to generalize (Lewkowycz et al., 2020; Li et al., 2019). In our experi-
ments, the most significant improvement comes along this strategy.

Lower momentum for the moving average encoder MoCo updates the momentum encoder by:
θk ← mθk + (1 − m)θq, where θk are the parameters of the momentum encoder k, and θq are
updated by back-propagation. A smaller m enables quicker evolution of k, and may lead to faster
convergence. We also follow the good practice to incorporate cosine momentum strategy (Grill
et al., 2020). While this strategy benefits ResNet-18, on EfficientNet-B0, it slightly decreases the
accuracy.

Symmetric loss In self-supervised learning, symmetric loss has demonstrated improved perfor-
mance by swapping two augmented views as key and query views respectively. Inspired by BYOL
(Grill et al., 2020), we exchange the roles of the augmented views, and then pass them to encoder q
and k separately to form a symmetric loss. This technique reuses the input images and further lifts
the results.

To summarize, we systematically test a few factors that may influence the final results, and provide
a better practice to train lightweight models based on MoCo v2 (See the last row in Table 2 and 3).

4 TOWARDS CLOSING THE PERFORMANCE GAP

Our previous empirical study improves the performance of lightweight SSL models to some extent.
In this section, we are aiming towards finally reach the performance of ResNet-50 trained by MoCo
v2, which has 67.5% top-1 linear probe accuracy evaluated on ImageNet.

We first turn to inspect the representation space learned by lightweight models and large models.
Wang & Isola (2020) demonstrate that a good representation should possess two qualities, well
uniformity and well alignment. Wang & Liu (2021) supplement another factor, namely intra-class
alignment, indicating that a model should cluster same-class instances. We conduct primary experi-
ments to analyze these three factors. The conclusion is the same with that of Shi et al. (2022), that a
lightweight model holds weaker intra-class alignment compared to large models.

We conjecture that it is due to the susceptibility to noisy views in contrastive learning. We visualize
the augmented views and find the common existence of unwanted views, i.e., false positive views
and false negative views. See the example in Figure 2. The original picture is describing a goose
on the grass. While we are interested in the goose in the downstream task, the SSL framework
treat another augmented view focusing on the background grass as the positive, whilst contrasting
negative views including the goose falsely. We propose to smooth the one-hot labels in accordance
with the model’s representation.
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Figure 2: Illustration of noisy views and similarity distribution compared between InfoNCE and our
SoftNCE. In this example, Two augmented views are generated from a given instance labelled as
“goose”. The positive view is a false positive, and Negative 1 and Negative 2 are false negatives.
Our SoftNCE smooths the hard labels of InfoNCE, by assigning some weight to K hardest negatives.

4.1 INFONCE

Before describing the detail, we start by introducing the InfoNCE loss. Instance-wise contrastive
learning commonly uses the InfoNCE loss as the contrastive loss function, which is defined as:

LInfoNCE
i = − log

exp (zi · z′i/τ)
exp (zi · z′i/τ) +

∑N
n=0 exp (zi · z′n/τ)

, (1)

where z′i is a positive embedding for an embedded sample zi, and z′n is one of the N negative
embeddings from other samples. τ denotes a temperature hyperparameter. The number of N is large
to approximate the distribution in the whole dataset. This is implemented either by a large batch size
in SimCLR (Chen et al., 2020a) or a momentum queue in MoCo (He et al., 2020).

Mathematically, the training objective can be viewed as a cross entropy loss, by assigning probability
1 to align two augmented views for an instance, i.e., zi ·z′i, and probability 0 to all the other instances,
i.e., zi · z′n. We call the traditional InfoNCE loss as a “hard” one.

4.2 SOFTNCE

For dealing with noisy labels, smoothed labels have already been demonstrated to be more robust
compared with hard labels, and label smoothing is shown to be simple yet very competitive to other
techniques (Szegedy et al., 2016; Song et al., 2022; Lukasik et al., 2020). Inspired by this fact,
we attempt to transfer the success from supervised learning to self-supervised learning with simple
modification. The definition of our proposed SoftNCE is given as follows:

LSoftNCE
i = −α log

exp (zi · z′i/τ)
Z

−
∑
n

βn log
exp (zi · z′n/τ)

Z
, (2)

where α+
∑

n βn = 1, and Z acts as a normalizing item, Z = exp (zi · z′i/τ)+
∑

n exp (zi · z′n/τ).
We will discuss different strategies of assigning values of α and β as follows.

Label Smoothing without Accommodation The original label smoothing technique is designed
for supervised learning. Assume a cross-entropy loss between the true labels yt and the network’s
outputs pt, as L(y, p) =

∑
t−ytlog(pt). Label smoothing technique assign yt = α for the correct

class and yt = (1− α)/(T − 1) for total T classes. In self-supervised learning, the discrimination
task is performed in instance level, constituting a very large number of “classes”. In MoCo, the size
of negatives N can be very large, e.g., 65536. directly dividing the number of class leads to a value
diminishing to zero.
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Label Smoothing with Hard Negative Mining Dwibedi et al. (2021); Koohpayegani et al. (2021)
avoid directly attracting augmented views, instead, they utilize the momentum queue to sort the most
similar images according to the model’s embedding to be positive views. The success suggests that
the model to some extent is able to distinguish semantic relation between instances. Motivated by
this fact, we propose to only smooth the top-K nearest negative instances in the momentum queue.
In this way, βn = 0, if z′n /∈ KNN(zi). But how about z′n ∈ KNN(zi)? We come up with three
different patterns, the simplest average pattern, the exponential weight decay pattern, and the weight
decay with range pattern.

Average Pattern The average pattern denoted as Strategy 1 takes the simplest form similar to label
smoothing:

βk =
1− α

K
, z′n ∈ KNN(zi).

Exponential Weight Decay Pattern The exponential weight decay pattern denoted as Strategy 2
takes the following definition:

βk =
1− α

2k
, z′n ∈ KNN(zi),

where k is the ranking of embedding similarity.

Weight Decay with Range Pattern The weight decay with range pattern denoted as Strategy 3 is
defined as:

βk =
1− α

3 ·Dj
, z′n ∈ KNN(zi),

∑
j

Dj = K,

where Dj is the length of the range. Take an example, when K = 10, when k locates in a range (0,1],
or (1,4], or (4,10], its corresponding βk equals to (1 − α)/3, (1 − α)/9, (1 − α)/18, respectively.
These ranges are set heuristically, but we do not perform any tuning on them. Just try, and work. We
scale all the range accordingly with different K, e.g., (0,2], (2,8], (8,20] for K = 20. The principle
behind the heuristics is to smoothly decay the weight for farther instances in the embedding space.
Our experiments suggest that the weight decay with range pattern work out the best, so we adopt it
as our default setting.

Static Smoothing vs. Incremental Smoothing For now, we have discussed on the value β. As
for the α, things become simpler. We propose two mechanisms. The first is just using a static α,
the second, which is more intuitive, is to increasingly smooth the labels, i.e., gradually decrease α
with longer training, scheduled by a cosine function. The idea is that in the initial state, the model
possesses no discriminative ability, but with longer training, the model learns something useful, so
more smoothing may help to resist noisy labels. Intriguingly, the experiments suggest that static
smoothing performs slightly better. We assume it is because the model already learns semantic
information very early after the first few epochs. We adopt the static smoothing as the default
setting. We suggest setting α as a value between 0.6 and 0.9.

4.3 TRAINING COST

Our SoftNCE loss introduces only a little extra training cost. We find a larger momentum queue
works better, and set the queue size as 256K. It costs about 3% of the total memory. Another extra
cost comes from the top-K sorting of the queue with O(N) complexity, costing less than 1% of the
total computation. Indeed, we investigate the training time, but observe no significant difference
in our experiments, all around 50 hours for 200-epoch training on ResNet-18 with an 8-card V100
server.

4.4 HARD NEGATIVE VS. FALSE NEGATIVE

The InfoNCE loss is shown to have a hardness-aware property, that negative examples located closer
to the anchor point in the embedding space contribute more gradients during training (Wang & Liu,
2021). That is to say, harder negatives are more useful in contrastive learning. However, if the
negative samples are extremely hard, they otherwise hinder the final performance of the model. It
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Table 4: Evaluation of lightweight models on ImageNet-1K.

Method
EfficientNet-B0 EfficientNet-B1 MobileNet-V3 ResNet-18

20-NN Top-1 20-NN Top-1 20-NN Top-1 20-NN Top-1

MoCo V2 - 42.2 - 50.7 - 36.3 44.6 52.5
Light-MoCo 54.8 65.8 57.0 66.9 51.3 62.3 48.8 57.6

Table 5: Object detection and instance segmentation results of ResNet-18.

Method
VOC Obj. Det. COCO Obj. Det. COCO Inst. Segm.

AP bb AP bb
50 AP bb

75 AP bb AP bb
50 AP bb

75 AP bb AP bb
50 AP bb

75

MoCo V2 46.1 74.5 48.6 35.0 53.9 37.7 31.0 51.1 33.1
SEED 46.1 74.8 49.1 35.3 54.2 37.8 31.1 51.1 33.2

MoCo V2 (repr.) 50.5 77.3 54.4 35.1 54.0 37.7 31.1 51.0 33.3
Light-MoCo 51.6 77.9 56.2 35.4 54.0 37.8 31.5 51.3 33.6

is because that the model is able to gradually learn to capture semantic similarity during training,
so the hardest negatives are likely to be semantically positive ones, i.e., false negatives. So there is
a false&hard dilemma. Previous methods dealing with the hardest negatives by directly removing
them or directly treat them as positives (Chen et al., 2021; Huynh et al., 2022). We argue the impor-
tance of the smoothing technique by finding a sweet point to benefit the model to learn from hard
negatives, as well as cancel the side effect from false views. Our ablation studies on the smoothing
factor also suggest the importance to take a softened weight.

5 EXPERIMENTS

5.1 SETTINGS

We utilize ResNet-18, EfficientNet-B0/B1, and MobileNet-V3-Large as our backbones. Based on
MoCo-V2, we deploy the SGD optimizer with learning rate as 0.2 and weight decay as 1e-4 for
ResNet-18 and 1e-5 for the rest of backbones. All the networks are pre-trained on 8 Nvidia-32G-
V100 GPUs with a batch size of 512 for 200 epochs, with 5-epoch warm-up. The K in SoftNCE is
20. For the momentum queue, we set the queue size as 256K, m = 0.99 and temperature as 0.1.
We utilize a two-layer MLP projector with dimension [2048,128]. We follow the data augmentation
strategy of MoCo v2.

5.2 LINEAR AND KNN EVALUATION ON IMAGENET.

Following SimSiam (Chen et al., 2020a), we finetune the pretrained networks for 90 epochs with a
batch size of 4096 on ImageNet-1K. We utilize LARS as an optimizer with initial learning rate 0.1.

Results are reported in Table 4. In terms of Top-1 accuracy, Light-MoCo outperforms MoCo V2 by
an average of 17.72% in accuracy. The application of SoftNCE finally close the performance gap
between lightweight models and large models like ResNet-50. Our SoftNCE brings an improvement
with 3.5% in accuracy.

5.3 TRANSFERRING TO DETECTION AND SEGMENTATION.

Following the previous work Fang et al. (2020), we explore the effectiveness of Light-MoCo on two
downstream tasks, object detection on VOC (Everingham et al., 2010) and instance segmentation on
COCO(Lin et al., 2014). As shown in Table 5, Light-MoCo performs competitively on COCO and
outperforms both the original reported MoCo V2 and the results reproduced by us in the settings
mentioned above.
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Table 6: Ablation study of the strategy, smoothing value α and K in SoftNCE. We report top-1
linear probe accuracy on ImageNet.

Strategy Stra. 3 Stra. 3 Stra. 3 Stra. 3 Stra. 3 Stra. 3 Stra. 1 Stra. 2

K 5 10 20 30 20 20 20 20
α 0.8 0.8 0.8 0.8 0.95 0.6 0.8 0.8

Top-1 56.5 56.6 57.6 57.2 55.6 55.0 56.5 56.7

SoftNCE: 
0.112

SoftNCE: 
0.104

SoftNCE: 
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Figure 3: Qualitative comparison between SoftNCE and InfoNCE with ResNet-18 as the backbones.

5.4 ABLATION STUDY

We make ablation studies on the performance of our proposed SoftNCE. The results are shown in
Table 6. The results suggest the importance of choosing a proper smoothing value. When α is close
to 1, our Light-MoCo degenerates to MoCo v2, without using any smoothing term. When α = 0.95,
the performance decreases from 57.6% to 55.6%. We also examine our SoftNCE on bigger model
ResNet-50. Our primary experiments indicate the same trend. We eval ResNet-50 trained for 150
epochs. The 20-NN accuracy is 59.8% (SoftNCE trained) and 56.1% (MoCo v2 baseline).

6 LIMITATION

Although Light-MoCo closes the performance gap between cumbersome and lightweight contrastive
models, limitations remain in this paper. First, we only adapt our approach on MoCo-v2 and it is still
worthwhile to explore how it can be applied with other methods. Second, Figure 1 demonstrates that
performance of ResNet-18 is not noticeably improved than the others. We leave these two limitations
to future work.

7 CONCLUSION

Despite its thriving development, the performance of self-supervised learning suffers a dramatic fall
as the size of model declines. In this paper, we demonstrate the prevalence of this phenomenon
across all lines of the contrastive learning paradigm. Besides, for the lightweight models in con-
trastive learning, we empirically show how inadequate the existing recipe is and provide a better
one. Based on these two issues, we propose SoftNCE, a self-supervised contrastive learning loss
mitigating the side effect from noisy views. Extensive experiments show the effectiveness in bridg-
ing gap between lightweight and cumbersome models.
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