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Abstract

Collaborative perception improves task performance by expanding the perception
range through information sharing among agents. Immutable heterogeneity poses
a significant challenge in collaborative perception, as participating agents may
employ different and fixed perception models. This leads to domain gaps in the
intermediate features shared among agents, consequently degrading collaborative
performance. Aligning the features of all agents to a common representation can
eliminate domain gaps with low training cost. However, in existing methods, the
common representation is designated as the representation of a specific agent, mak-
ing it difficult for agents with significant domain discrepancies from this specific
agent to achieve proper alignment. This paper proposes NegoCollab, a hetero-
geneous collaboration method based on the negotiated common representation.
It introduces a negotiator during training to derive the common representation
from the local representations of each modality’s agent, effectively reducing the
inherent domain gap with the various local representations. In NegoCollab, the
mutual transformation of features between the local representation space and the
common representation space is achieved by a pair of sender and receiver. To better
align local representations to the common representation containing multimodal
information, we introduce structural alignment loss and pragmatic alignment loss
in addition to the distribution alignment loss to supervise the training. This enables
the knowledge in the common representation to be fully distilled into the sender.
The experimental results demonstrate that NegoCollab significantly outperforms
existing methods in common representation-based collaboration approaches. The
mechanism of obtaining common representations through negotiation provides a
more reliable and flexible option for common representations in heterogeneous
collaborative perception.

1 Introduction

Collaborative perception has gained significant attention in recent years. By sharing intermediate
features among agents, it expands the perception range and provides more supporting information
for downstream tasks. In autonomous driving, collaborative perception enables vehicles to detect
obstacles in blind spots, thereby preventing traffic accidents and effectively enhancing driving safety.
Heterogeneity is one of the key challenges in practical applications of collaborative perception
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Xu et al.| (2023b); [Lu et al.| (2024)); |Gao et al.| (2025). When there are differences in sensors and
perception models among collaborating agents, it creates domain gaps in the shared intermediate
features. This prevents effective fusion of features from heterogeneous agents and consequently
degrades collaborative performance.

Current research on heterogeneity issues includes approaches that achieve heterogeneous collaboration
by retraining specialized collaborative modules Xiang et al.| (2023) or sharing partial networks
in model [Lu et al.| (2024). However, in practical deployment, perception model are crucial for
autonomous driving safety and tightly coupled with downstream tasks, making it difficult to replace
or retrain. These limitations lead to the challenge of immutable heterogeneous collaborative
perception Xia et al.|(2024). To address this issue, methods like Xu et al.| (2023b); |Luo et al.; Xia
et al.[(2024) employ domain adapters or polymorphic prompts to eliminate domain gaps through
one-to-one adaptation for heterogeneous agents, as is shown in Figure[Th, requiring only single-step
feature transformation but incurring higher training costs. Alternatively, Gao et al.|(2025) aligns the
representations of each modality’s agent to a common representation by training a pair of adapter and
reverter, which has low training cost. However, since the common representation is designated as the
representation of a specific agent, as is shown in Figure[Tp, alignment becomes difficult to achieve
when there exists a large domain gap among the representations of other agents and the designated
agent.

This paper presents NegoCollab, a heterogeneous collaborative framework based on negotiated
common representation. The framework introduces an additional negotiator during training to
generate common representation from local representations of each modality’s agent, as is shown in
Figure[Ik, supervised by a cyclic distribution consistency loss. This design minimizes information
loss during bidirectional transformation between local representations and the common representation,
effectively reducing inherent domain discrepancies between them. During collaboration, NegoCollab
facilitates heterogeneous information exchange through a pair of plug-and-play sender-receiver.
The sender first maps features to the common representation space for sharing with collaborators,
while the receiver subsequently projects the received features back to the local representation space,
thereby eliminating domain gaps with collaborators’ features. Furthermore, to better align local
representations with the common representation containing multimodal information, structural
alignment loss and pragmatic alignment loss are introduced in addition to the commonly used
distribution alignment loss. These losses collectively form a multi-dimensional alignment loss to
supervise the training, enabling the knowledge in the common representation to be fully distilled into
the sender.

The main contributions of this work are summarized as follows:

* Introducing a negotiator to generate the common representation from local representations
of each modality’s agent, effectively reducing the alignment difficulty between the local
representations and common representation while providing more diverse and reliable
options for the common representations required in heterogeneous collaborative perception.

* A multi-dimensional alignment loss comprising distribution alignment loss, structural align-
ment loss, and pragmatic alignment loss is introduced to supervise the training process,
enabling more effective alignment of local representations to the multimodal common
representation.

» Experimental results on collaborative perception datasets demonstrates that NegoCollab
achieves state-of-the-art performance among common representation-based methods, out-
performing even one-to-one adaptation approaches in certain collaborative scenarios.

2 Related Work

2.1 Collaborative Perception

In recent years, collaborative perception has attracted widespread attention due to its potential to
enhance autonomous driving safety. By sharing perception data among agents—including raw sensor
data Rauch et al.[(2012);|Luo et al.| (2023)); Liu et al.|(2024), intermediate features Wang et al.[(2020);
Lietal. (2021);/Chen et al.| (2019);|Hu et al.|(2022), and detection results | Xu et al.|(2023a); Rawashdeh
and Wang| (2018)), collaborative perception effectively expands the perception range and overcomes
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Figure 1: Two paradigms for eliminating domain gaps. The method in (a) eliminates the domain gap
by adapting domain adaptation modules between every pair of collaborating agents. The methods in
(b) and (c) both eliminate domain gaps by unifying the representations of each agent into the common
representation, where the common representation in (b) is designated as the local representation of a
specific agent, and the common representation in (c) is negotiated from the local representations of
each modality’s agent.

blind spots and occlusion issues inherent in single-agent perception. However, in real-world scenarios,
collaborative perception faces multiple challenges including: limited communication bandwidth [Hu
et al.[ (2022} 2023} |2024), location noise |Lu et al.| (2023); [Lei et al.| (2024), communication delay
and computation asynchronously [Lei et al.| (2022); |Wei et al.| (2024a), communication interruptions
Ren et al.|(2024])), heterogeneity |Xu et al.|(2023b); | Xiang et al.|(2023);|Lu et al.|(2024)); Luo et al.;
Gao et al.[(2025); Xia et al.| (2024), security and privacy concerns |Li et al.|(2023); |Zhao et al.| (2023),
and simulation-to-real generalization issues |[Kong et al.| (2023)); Wei et al.| (2024b), all of which
pose challenges to collaboration. This paper focuses on the heterogeneity challenge in collaborative
perception, proposing a negotiated common representation-based approach to achieve common
representation-based heterogeneous collaboration.

2.2 Multi-modal Representation Learning

Multi-modal representation learning [Manzoor et al.|(2023)) enables information fusion and transfor-
mation across different modalities (e.g., images, LiDAR point clouds, text, speech) by learning a
shared representation space. In autonomous driving, approaches like Zhang et al.| (2025)); [Liu et al.
(2023)); [Lu et al.| (2024) employ network designs such as sparse transformers and feature pyramids to
learn fused multi-modal representations from LiDAR point clouds and camera images, significantly
enhancing vehicles’ environmental perception capabilities. Knowledge distillation serves as a com-
mon method for cross-modal knowledge transfer, approaches like Zhou et al.| (2023); Wang et al.
(2024); |Chen et al.| (2022) apply various distillation losses, including dense distillation loss, relative
relation distillation loss, and response distillation loss, between multi-modal features to achieve
mutual enhancement of multi-modal information, thereby improving task performance. This paper
generates the common representation from the local representations of each modality using a feature
pyramid network, while introduces a multi-dimensional alignment loss composed of distribution
alignment loss, structural alignment loss, and pragmatic alignment loss during training to enable
more effective alignment of local representations to the multi-modal common representation.

3 Method

3.1 Framework

NegoCollab achieves heterogeneous collaboration through the negotiated common representation. As
is shown in Figure[2] by introducing plug-and-play sender-receiver pairs for each agent, the mutual
conversion of features between the local representation space and the common representation space

is achieved, thereby eliminating domain gap. Let HSZ") (+) denote the model used by the agent with
modality m, where * denotes the name of any module in the model, m € {1,2,..., M} and M is
the total number of modalities (specific sensor and perception encoder constitute a modality). The
structures of the sender and receiver, as well as the collaboration process, are described below:
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Figure 2: Overview of NegoCollab. Each agent shares features in the negotiated common represen-
tation space. Through the sender-receiver pairs, the features are mutually converted between local
representation space and the common representation space, thereby enabling the mutual transforma-
tion of features across modalities and eliminating domain gaps.

3.1.1 Sender

The sender’s role is to transform features from the local representation space to the common rep-
resentation space, consisting of two modules: recombiner and aligner. The recombiner employs a
ConvNeXiLiu et al.| (2022) structure to enhance local features beneficial for collaboration. It also
includes a size-channel alignment module to adjust the dimensions and channels of local features to
standard settings. The aligner uses a fused axial attention Xu et al.[(2022) to capture both global and
local dependencies within features, thereby mapping features from the local representation space to
the common representation space.

During collaboration, for agent 7 with modality m in the scene, where [V is the total number of agents,

1ts local observation O; is first encodes by a perception encoder ’Henco der O eXtract initial feature

= Hé;ngoder (O;) . Then the initial feature are transformed into the common representation

sﬁace by the sender and shared with the collaborators, formalized process is as follows:

R§’" = S0 biner (F™) ()
D= S (R) @)

3.1.2 Receiver

The role of receiver is to transform the received features from collaborators from the common
representation space back to the local representation space, consisting of two modules: converter and
recombiner. The converter adopts a fused axial attention to transform features from the common
representation space to the local representation space. The query vector @ in its input comes from the

output R™ of the Sr:Zc))mblner (-) in sender, providing local modality guidance information for the
transformation of collaborative features. The recombiner employs a ConvNeXt architecture to further

reorganize and adjust local feature information, enabling adaptation to the local fusion module.

Let P( ") ; denote the features received from collaborator j € N; with modality n, where N; represents
the set of collaborators for agent ¢. The formalized process of the receiver is as follows:

TJ(ZL')L = ’R’gg;verter (R(m) P](gz) ? (3)
FJ(ZIZ Rizz)mbiner (Tg(zD (4)



Finally, the transformed features Fj(zz from the collaborator and the local initial feature Fi(m) are
fused to obtain the fused feature Gﬁ"‘). The fused feature is then processed by the task head to obtain

the task result ng), completing the process of collaborative perception. Formalized process is as
follows:

e =i (£ ET) )
D™ = (G™)). ©)

3.2 Training

In the heterogeneous collaboration method based on common representations, whether the domain
converter can effectively achieve the mutual conversion of features between local representation space
and the common representation space is of crucial importance to the collaboration performance. To
address this, we introduce a negotiator that generates the common representation from each modality’s
local representations, thereby reducing the inherent domain gap between the common representation
and local representations and consequently decreasing the training difficulty for sender-receiver pairs.
The training process consists of two stages: The objective of the first stage is to negotiate common
representations and to enable the sender-receiver to transform features from the local representation to
and from the common representation. The training loss includes two components: cyclic distribution
consistency loss and multi-dimensional alignment loss. The objective of the second stage is to
adapt the framework to downstream collaborative tasks. This is achieved by fine-tuning the receiver
parameters using the collaborative task loss. Detailed training procedure is described below, diagram
is provided in the appendix.

3.2.1 Pairwise Local Representation Extraction

Since both the distribution cycle-consistent loss and multi-dimensional alignment loss require paired
representations for computation, we provide each modality’s observation encoder with observation
data from the same perspective during training. Let O = {O1, Oa, ..., Oy } denote the observation
data from all NV perspectives in the scene. At the start of training, we first input the observation
data O into each modality’s perception encoder to obtain the initial local representations for each
modality. Then, we use a resizer to align the sizes and channels of these representations to the
standard configuration. The formalized process is as follows:

F(m) = H((ezlc)oder (O) ) (7)
U(m) = Hfgzgzer (F(m)) : (8)

3.2.2 Generates Common Representation by Negotiator

After obtaining the standardized local representations U("), we use the negotiator to generate
the common representation from each modality’s local representations. The main structure of the
negotiator is a feature pyramid network, where each level contains an estimator to evaluate the
contribution of each modality’s representation to the common representation at that level, detailed
illustrations is in appendix. Specifically, a pyramid network is first used to extract multi-level features

U l(m) from U("), and the corresponding estimators at each level is used to evaluate their contribution
weights to the common representation, producing an importance matrix C’l(m). Next, at each level,

the U, l(m) and Cl(m) from all modalities are multiplied and then averaged to obtain the common
representations P for that level. Subsequently, all P, are concatenated after alignment through
upsampling. Afterward, their sizes and channels are restored to standard settings via a shrink header,

yielding the common representation P. Let the input Uém) at level 0 of the pyramid be U("). The



formalized process of the negotiator is as follows:

U™ = Mayer, (U}i’?) . 1=1,2,..,L, )
O™ = Nostimaton (U}m)) L 1=1,2,...L, (10)
P, = sum ({Ul(m) ©) C’l(m)}fzo> /M, (11)

P = contact ([ul (Pl)]lL:O) , (12)

P = Nihrink_header (P) (13)

where [ denotes the pyramid level, m represents the modality of the representation, ® indicates the
Hadamard product, and u; (-) stands for the upsampling operation.

Next, the common representation P is fed into each modality’s receiver and transformed back to the
local representation L(™):

T = R cover (R, P) (14)
L(m) = REZZ::)meiner (T(m)) . (15)

At this stage, the cyclic distribution consistency loss can be computed as follows:

cycle

rm HF(m) _ L(m)Hz + A8 HStd (F(Tn)> — Std (L(m)) HZ (16)

Through the constraint of cyclic distribution consistency loss, the information loss during mutual
transformation between the common representation and local representations is minimized, thereby
effectively reducing the inherent domain gap between them.

3.2.3 Multi-dimensional Information Alignment

We impose a multi-dimensional alignment loss constraint between the common representation
output by senders and the negotiator. This constraint consists of three components: distribution
consistency loss, structural alignment loss, and pragmatic alignment loss. Its purpose is to fully
distill the representational information from the multimodal common representations into the sender,
thereby facilitating the transformation from local representations to the common representation. The
formulation process is as follows:

First, we use the sender to transform the local representations F'™) into common representation:

RO = S0 iner (F)) (7)
P = s (R)). (18)

Next, we compute the multi-dimensional alignment loss between common representations P (™)
output by senders and the common representation P output by the negotiator. This loss enforces
distribution consistency, structural consistency, and pragmatic consistency between P and P.
Here, distribution consistency ensures that the statistical characteristics of the representations match.
This is achieved by applying a distribution alignment loss that constrains P(") and P to have identical
means and standard deviations, computed as follows:

cm HP(m) - PHz +a HStd (Pt) - sta (P)Hz . (19)

Structural consistency ensures that the spatial relationships between scene components remain
coherent across representations. This is achieved by enforcing consistent relative relationships
between different parts of samples. Specifically, for each sample s, where s € {1,2,...,5} and S

is the total number of samples, we consider the interrelationships among 9 key points {(z;, yi)}?zl.
Features of keypoints are collected from samples sampled from the common representations P (™)



and P, and the relative relation matrix of sample is obtained by calculate the similarity between
keypoints:

(m)
Mijj)]? =C (Ps(m) (mzayz) s Ps(m) (xjvyj)) ’ (20)
le,:; =C(Ps (z5,9:) , Ps (xjvyj))v (21)

where 1 < 4,5 < 9, and C (-, -) denotes the cosine similarity between elements. The relative
relationship matrices of all sample pairs in P(") and P are made consistent to achieve structural
consistency. The structural alignment loss is calculated as follows:

S
(m) -3 pim) P,
‘Cuni—stru - |Mz7] - Mi,j

s=1 \1<4,j<9

/81. (22)

Pragmatic consistency refers to the consistent organization of foreground information in the represen-
tation space. It is achieved by training a shared 2D occupancy prediction network for the common
representations P(") and P, which aligns the organization of foreground information through reverse
alignment. Let V' (+) denote the shared 2D occupancy prediction network, and Y be the 2D occupancy
labels corresponding to observation data O. The pragmatic alignment losses for P(™) and P are
computed as follows, respectively:

‘C'E/,TZz?fpragma = Lfocal <N (P(m)> aY) ) (23)
Eg;’)agma = Lfocal (N(P) ’ Y) ’ (24)

where L 4.4 is the focal loss Lin et al.| (2017).

Then, the multi-dimensional alignment loss of modality m is obtained by summing the distribution
consistency loss, the structural consistency loss, and the pragmatic consistency loss:

‘CSZZZ = Adﬁv(j:zfdis + )‘S‘Cv(;rzlgfstru + )‘P’ngzgfpragma' (25)

Finally, the first-stage training loss is calculated as a weighted sum of the distribution cycle-consistent
losses, the multi-dimensional alignment losses from all modalities, and the pragmatic alignment loss
of the common representation P:

M
Latager = AaLBhoma + 3 ALE .+ X L) (26)
m=1

3.2.4 Task Adaption

To enable the receiver to focus on restoring information beneficial for collaboration, we fine-tune
the receivers of each modality using the downstream collaborative task loss for the second stage of
training. During this process, the data loading method and feature flow are identical to those during
inference (Section @, the parameters of the senders are fixed, and the loss is calculated as follows:

N
ACstotge2 = Z Ecollab (Dfm)7 Y;> . (27)
i=1

Here, L o1qp is the collaborative task loss, Dz(m) is derived from Equation @ and represents the task

prediction output by the collaborative model, while Y; denotes the task label for agent <.

4 Experiment

4.1 Settings

We configure four collaborating agents m1, m2, m3, m4 and one protocol agent in the scenario.
Among them, the protocol agent, m1, and m3 are equipped with LiDAR sensors, while m2 and m4



are equipped with cameras. The perception encoders used by m1 and m3, as well as those used by
m?2 and m4, are different. Detailed configurations are provided in the Appendix.

To evaluate the performance of the common representation and its generalization capability to new
agents, we form an initial collaborative alliance between agent m1 and agent m2, from which the
common representation are negotiated. Agents m3 and m4 are newly added agents that align their
features with the common representation. The training process consists of three stages:

Step 0: Homogeneous collaborative training. For each of the 4 agent types, train a homogeneous
collaborative perception model.

Step 1: Initial alliance negotiation. Following the method in Section[3.2] the training is conducted in
two stages. In the first stage, sender-receiver pairs are introduced to m1 and m2, respectively.
A common representation is obtained through training assisted by the negotiator to complete
the training of sender-receiver pairs. In the second stage, the parameters of the receivers for
ml and m?2 are adjusted to adapt to the downstream collaborative task. During the training
process, the parameters of the perception encoder, fusion module, and task head in the
homogeneous collaborative perception model for m1 and m2 are frozen.

Step 2: New agent joins. The training when new agents m3 and m4 join is also divided into two
stages. The loss calculation in the first stage is the same as in Section [3.2] but the common
representation is obtained directly from the perception encoders of m1 and m2 and the
negotiator. The collaborative task loss in the second stage is calculated as the collaborative
task loss of the new agents and the existing agents in the alliance. During the training
process, the parameters of the negotiator, the perception encoders of m1 and m2, and the
parameters of the homogeneous collaborative model for m3 and m4 are frozen. Specific
illustration is provided in the appendix.

Table 1: Performance comparison of heterogeneous collaboration on OPV2V-H. "NegoCollab-P",
"MPDA-P" and "PnPDA-P" after added "-P" are special implementations of the corresponding
methods, which feature sharing is achieved by using the representation of the protocol agent as the
common representation.

Metric AP@0.5 AP@0.7

Agent Types mim2 milm3 m2m4 All | mIlm2 mlm3 m2m4 Al
No Fusion 0482 0.794 0221 0480 | 0.350 0.687 0.106 0.342
One-to-one MPDA 0.815 0922 0520 0512 0692 0.850 0.331 0435
Adaptation PnPDA 0.865 0949 0.532 0494 | 0.755 0903 0351 0424
MPDA-P 0.561 0.811 0.354 0465 | 0409 0.697 0.173 0.353
Align to PnPDA-P 0.552 0.875 0365 0434 | 0447 0805 0.216 0.346
Common STAMP 0.545 0770 0264 0382 | 0448 0.708 0.134 0.286
NegoCollab-P | 0.792  0.772 0.499 0.676 | 0.615 0.710 0.289 0.457
NegoCollab 0.872 0911 0.512 0.745 | 0.765 0.854 0.319 0.555

4.2 Quantitative Analysis

Performance of heterogeneous collaboration. We evaluated each method on the OPV2V-H|Lu et al.
(2024)), V2V4Real | Xu et al.|(2023c), and DAIR-V2X|Yu et al.|(2022) datasets, as shown in Tableﬂ]and
Table@] Since the common representation of MPDA-P, PnPDA-P, and STAMP are all derived from the
single-modality protocol agent, for fair comparison, we implement NegoCollab-P, which derives the
common representation from the protocol agent. In Table[I] the columns m1m2, m1m3, m2m4, and
mlm2m3m4 correspond to the performance of: initial alliance agents, heterogeneous LiDAR agents,
heterogeneous camera agents, and all agent types collaborative, respectively. The results demonstrate
that among heterogeneous collaboration methods based on common representation, NegoCollab
achieves the best performance in all test conditions. Compared with one-to-one adaptation methods,
NegoCollab also maintains optimal collaborative performance when agents m1 and m2 within
the initial alliance collaborated. For collaboration with new agents m3 and m4, although m3 and



Table 2: Performance comparison of heterogeneous collaboration on real-world datasets V2V4Real
and DAIR-V2X, with collaborating agents being m1 and m3, m1 and m2 respectively.

V2V4Real DAIR-V2X
Methods
AP@0.5 AP@0.7 | AP@0.5 AP@0.7

No Fusion 0.504 0.358 0.329 0.219
One to one MPDA 0.613 0.400 0.344 0.235
Adaption PnPDA 0.598 0.385 0.443 0.277
MPDA-P 0.467 0.334 0.258 0.211
. PnPDA-P 0.485 0.324 0.230 0.192

Align to
Common STAMP 0.466 0.345 0.299 0.161
NegoCollab-P 0.482 0.333 0.376 0.195
NegoCollab 0.605 0.397 0.397 0.241
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Figure 3: Robustness Analysis of Localization Errors. Pose  Figure 4: Comparison of domain
noise is set to A (O7 02) on both x,y location and yaw angle.  gaps between local and common
The collaborating agents are m1 and m2. representation.

m4 did not participate in the negotiation process of the common representation, their collaborative
performance is slightly lower than that of one-to-one adaptation methods, but still achieves competitive
results. This strongly demonstrates NegoCollab’s superior performance and the excellent adaptability
of the common representation to new agents. Additionally, the results in Table[2]show that NegoCollab
also has excellent heterogeneous collaboration performance in real-world environments.

Table 3: Comparison of homogeneous collaboration performance when sharing features in the
common representation space. "Local" denotes direct feature sharing through local representation
spaces. Evaluation was conducted on the OPV2V-H dataset.

Metric AP@0.5 AP@0.7
Agent Type ml m2 m3 m4 ml m2 m3 m4
Local 0.952 0.540 0.930 0.497 | 0919 0.378 0.886 0.322

MPDA-P 0.837 0.515 0.804 0439 | 0.712 0305 0.684 0.230
PnPDA-P 0950 0.545 0.926 0.499 | 0910 0.362 0.883 0.309
STAMP 0945 0555 0.925 0.497 | 0.892 0.373 0.868 0.304
NegoCollab-P | 0.951 0.566 0.932 0.513 | 0916 0.378 0.881 0.317
NegoCollab | 0.953 0.570 0.933 0.521 | 0.911 0.385 0.888 0.317

Performance of homogeneous collaboration. Table [3| presents the homogeneous collaboration
performance of different methods when using the common representation to share feature. As shown,
NegoCollab achieves the best performance among all methods. For agents m1, m3, and m4, it even
surpasses the original homogeneous collaboration performance. This improvement stems from the
multi-dimensional alignment loss distilling multi-modal knowledge from common representation
into local senders, thereby enhancing the feature’s representational capacity.

Comparison of domain gaps. To validate the effectiveness of the negotiator in reducing domain gaps,
we employ KL divergence Kullback and Leibler|(1951)) to measure the domain gap between common



representation and local representations of each modality across different methods. Comparision
are illustrated in Figure ] Since MPDA-P, PnPDA-P, and STAMP all use the representation of the
protocol agent as the common representation, they are aggregated as the *Baseline’ in the figure. It
can be seen that the domain gap between the common representation generated by the negotiator and
each local representation is significantly reduced. Compared to the method of directly designating
the representation of the protocol agent as the common representation, the domain gap measured by
KL divergence is reduced by an average of approximately 93.5

Localization error robustness. We introduced Gaussian noise to the accurate poses to evaluate the
noise robustness of each method, as shown in Figure E} The results demonstrate that under various
error conditions, NegoCollab maintained superior performance on the AP@0.5 evaluation metric.

4.3 Ablation Study

Negotiating from different initial alliances. In practical applications, heterogeneous agents form
multiple collaborative groups based on collaboration needs |Gao et al.| (2025), using different com-
mon representations for information sharing within each group. NegoCollab’s negotiation-based
mechanism enables the free selection of agents from a collaborative group to negotiate the common
representation, thereby providing more diverse and reliable common representation. To further
explore how to negotiate a better common representation, we investigate the impact of common
representations negotiated from different initial alliances on collaborative performance. Two key ob-
servations are summarized. with detailed content and experimental results provided in the Appendix.

Training Setting Ablation. We conducted ab-

lation studies on the negotiator and the multi- Table 4: Ablation study of the traning setting. The
dimensional alignment loss within the training  ¢ollaborating agents are m1 and m2.

setup on the OPV2V-H dataset. The results be-

fore adaption for the downstream collaborative uni- uni-
task are presented in Tabled] Under the initial Nego . pragma AP@0.5 AP@0.7
setup, the multi-dimensional alignment loss in-

Co . . 0.617 0.490
cludes only the distribution alignment loss, with- v 0.609 0485
out assistance from the negotiator during train- v O. 627 0' 499
ing. The common representation is obtained by ) ’

v 0.635 0.508

directly constraining the outputs of each modal-

v
ity’s senders to be consistent through the align- v 0.609 0.496
ment loss. A comparison between the upper and v v 0.655 0.532
lower sections of the table demonstrates that v v 0.671 0.538
negotiate common representation by the nego- v v v 0.711 0.566

tiator effectively enhanced the performance in
heterogeneous collaboration. The performance
improvements observed in the "uni-stru" and "uni-pragma" columns indicate that the structural and
pragmatic alignment losses effectively facilitated the transformation of local representations into the
common representation.

5 Conclusion

This paper proposes NegoCollab, a heterogeneous collaboration method based on negotiating com-
mon representation. NegoCollab uses a negotiator to generate the common representation from
the local representations of each modality’s agent, effectively reducing the domain gap between
the common representation and the local representations. Furthermore, by introducing a multi-
dimensional alignment loss, it effectively promotes better alignment of the local representations to
the multi-modal common representation. Evaluation results from both simulated and real-world
environments collectively demonstrate the outstanding heterogeneous collaboration performance of
NegoCollab. A limitation of NegoCollab is that once the common representation is negotiated, it
becomes fixed. Aligning new agents to this pre-negotiated common representation inevitably leads to
greater information loss. We will explore methods to make the common representation generalize
better to new agents in the future.
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A Detailed Setup of Experiment

A.1 Dataset

OPV2V-H. OPV2V-H |Lu et al|(2024) dataset contains 73 scenes covering 6 road types across 9
cities. Each Connected Autonomous Vehicle(CAV) in the scenes is equipped with one 16-channel,
one 32-channel, and one 64-channel LiDAR, along with 4 monocular cameras and 4 depth cameras.
The dataset comprises 36K frames of LiDAR point clouds, 12K frames of RGB camera images, 12K
frames of depth camera images, and 230K annotated 3D bounding boxes.

DAIR-V2X. DAIR-V2X |Yu et al.| (2022)) is a real-world collaborative perception dataset. The dataset
has 9K frames featuring one vehicle and one roadside unit (RSU), both equipped with a LiDAR and
a 1920x1080 camera. RSU’ LiDAR is 300-channel while the vehicle’s is 40-channel.

V2V4Real. V2V4Real |Xu et al.|(2023c) is a real-world Vehicle-to-Vehicle (V2V) cooperative
perception dataset. The dataset includes 20,000 LiDAR scans and 240,000 annotated 3D bounding
boxes across five vehicle classes. It supports benchmarks for three key task: 3D object detection,
object tracking, and Sim2Real domain adaptation-enabling evaluation with state-of-the-art models.

A.2 Training Setup

We conducted testing and training using a single RTX 4090 GPU, with an initial learning rate of
0.001 and Adam optimizer for parameter adjustment. The first training phase required approximately
4-12 GPU hours with about 23GB memory usage, while the second phase took around 2-5 GPU
hours consuming approximately 14GB memory. The exact values depend on the specific agent model
architecture.

A.3 Detailed Configuration of Agents

Section [4.Tmentions 4 types of agents m1, m2, m3, and m4, as well as protocol agents. The detailed
configurations of their sensors and perception encoders are shown in Table 5]

Table 5: Settings for sensors and perception encoders of agents.

Agent Type Sensor Perception Encoder
Protocol LiDAR of 64-channel PointPillars
ml LiDAR of 64-channel PointPillars
m2 Camera, resize img. to height 384 px | Lift-Splat w. EfficientNet as img. encoder
m3 LiDAR of 32-channel SECOND
m4 Camera, resize img. to height 336 px | Lift-Splat w. ResNet50 as img. encoder

B More Experiments

B.1 Negotiating from Different Initial Alliances

We investigate the impact of negotiating common representation from different initial alliances
on collaborative performance, as shown in Table[6] It can be observed that in the heterogeneous
collaboration scenario, for common representations negotiated from different initial alliances, when
the participating agents are consistent with those in their initial alliance, the optimal performance
is achieved in the corresponding collaboration scenario. In homogeneous collaboration, compared
to directly sharing features using local representations, sharing features using different common
representations results in nearly unchanged collaboration performance for agents m1 and m3, and
even better performance for agents m2 and m4. This is because the multi-dimensional alignment loss
effectively distills multimodal knowledge from the common representation into the local senders and
receivers, thereby enhancing the performance of the representations.

Furthermore, we derive two key observations from the results in Table [6b}
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Table 6: Performance comparison when negotiating common representations from different initial
alliances. The "Initial Alliance" column indicates the agents in the initial alliance, while the remaining
agents are new agents. The training process is the same as that described in Section@

(a) Performance of heterogeneous collaboration

Initial AP@(.5 AP@0.7
Alliance | mIm2 m3m4 mlm3 m2m4 All mlm2 m3m4 mlm3 m2m4 All
Protocol | 0.792 0.785 0.772 0.499 0.676 | 0.615 0.564 0.710 0.289 0.457
mlm3 0.869 0.832 0951 0484 0.830 | 0.761 0.720 0904 0.280 0.718
mlm2 0.872 0.770 0911 0.512 0.745 | 0.7539 0578 0.805 0.319 0.555
m3m4 0.727 0840 0914 0506 0.737 | 0.550 0.726 0.840 0.289 0.562
(b) Performance of homogeneous collaboration
Initial AP@0.5 AP@(.7
Alliance ml m2 m3 m4 ml m2 m3 m4

Local 0.952 0540 0.930 0.497 | 0919 0.378 0.886 0.322
Protocol | 0.951 0.566 0.932 0.513 | 0916 0.378 0.881 0.317
mlm3 | 0953 0.568 0932 0.512 | 0913 0378 0.882 0.315
mlm2 | 0953 0570 0.933 0.521 | 0911 0.385 0.888 0.317
m3m4 | 0953 0.575 0932 0.511 | 0914 0391 0.883 0.313

» Common representations negotiated from more types of agents demonstrate superior per-
formance. As shown in rows 1 ("Protocol") and 3 ("m1m2") of Table [6_5], compared to
representation negotiated solely from LiDAR-equipped protocol agent, those obtained from
the initial alliance comprising both LiDAR-equipped agent m1 and camera-equipped agent
m?2 achieve better performance in mlm2, m1m3, m2m4, and all types of agent collaboration
scenarios.

» Common representations negotiated from agents with superior perception encoder perfor-
mance yield better results. As evidenced by rows 4 ("m3m4") and 2 ("m1m3") in Table[@_l—)],
representations negotiated from agents m1 and m2 - which have better perception perfor-
mance when using identical sensors - demonstrate stronger generalization to new agents m3
and m4. Conversely, representations derived from agents m3 and m4 with inferior perception
exhibit degraded performance when collaborating with new agents m1 and m2. Therefore,
when sensors are identical, agents with better-performing perception encoders should be
prioritized to form the initial alliance.

B.2 Comparison with Late Fusion

We further contrast the performance of NegoCollab with late fusion, as shown in Table ?. Late
fusion generally performs better when there is no localization error in different scenario. This is
because, compared to intermediate fusion, late fusion directly merges detection results, which can
mitigate the impact of model heterogeneity on collaboration. As the localization error increases, the
performance of late fusion declines significantly. In contrast, NegoCollab-P and NegoCollab, based
on the intermediate fusion, demonstrate greater robustness and achieve performance substantially
superior to late fusion. This is because feature-level fusion combines the features from collaborative
agents based on semantic similarity, which can mitigate the impact of locaization error to some extent.
Since localization errors are almost unavoidable in practical scenarios, the more robust NegoCollab
exhibits stronger practicality.
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Table 7: Performance Comparison with Late Fusion under different localization error conditions.
The agent positions are perturbed with Gaussian noise, where o represents the standard deviation of
the Gaussian noise. The "Avg. Inc." column corresponds to the increase in the average evaluation
results of NegoCollab and NegoCollab-P across various collaborative scenarios under different noise
conditions, compared to late fusion.

AP@0.5 AP@0.7

Avg. Avg.
o Agent Types | mIm2 mlm3 m2m4 mlm2 Inc. mlm2 mlm3 m2m4 mlm2 Inc.
m3m4 m3m4
Late Fusion 0.873 0952 0482 0.854 - 0.743 0.893 0.290 0.725 -
0.0 | NegoCollab-P | 0.792 0.772 0499 0.676 -13.3% | 0.615 0.710 0.289 0.457 -21.9%
NegoCollab 0.872 0911 0512  0.745 -3.8% 0.765 0.854 0319 0.555 -0.06%
Late Fusion 0.564 0.626 0.299 0.543 - 0.201 0271 0.077 0.197 -
0.3 | NegoCollab-P | 0.676  0.711 0.391 0.591 +16.6% | 0.403 0.527 0.149 0.388  +496.6%
NegoCollab 0.719 0.837 0387 0.616 +259% | 0.425 0582 0.146 0.365 +103.4%
Late Fusion 0.278 0328 0.154 0.264 - 0.115 0.169 0.043 0.106 -
0.6 | NegoCollab-P | 0477 0.574 0.256 0.500 +79.5% | 0.283 0.397 0.099 0353 +161.1%
NegoCollab 0483 0.693 0229 0462 +823% | 0.276 0427 0.086 0.292 +149.7%

B.3 Component Ablation

We conducted ablation experiments on the recombiner and aligner in the sender, the negotiator,
and the local prompt on OPV2V-H, as shown in Table[8] It can be seen that NegoCollab achieves
optimal performance when the recombiner and aligner are set to Convext and FAX(fused axial
attention), respectively. This is because we divide the feature transformation process into two steps:
adjusts local detail information, and transforms global representation style. The characteristics of
Convext and FAX are respectively more suitable for local information adjustment and representation
style transformation. For the Negotiator, the FPN structure adopted in this paper achieves the best
performance with the smallest parameter count, indicating that the FPN structure can better extract
common representation from each modality’s local representation. After using Local Prompt to
guide the transformation from the common representation to local representation, the performance is
significantly improved. The above results fully demonstrate the rationality of the component design
in NegoCollab.

C Additional Illustrations

C.1 Training Process of Initial Alliance Negotiation

Figure [5]illustrates the first-stage training process when the initial alliance negotiates the common
representation as described in Section[3.2] The specific steps are as follows:

* The perception encoder of each modalitiy’s agent is fed with observational data from the
same perspective, encoding them into paired initial local representations F'("™),

* The local representations F(") from each modality’s agent are input into the negotiator for
fusion, producing a common representation P,

* The common representation P is fed into the receiver of each modality’s agent to obtain the
restored local representation L(™),

* The initial local representation F("™) of each modality’s agent is input into its respective
sender to yield a common representation P("™),

* The training loss is calculated, which includes the cyclic distribution consistency loss
Leyele (F (m), L(m)) between the receiver’s output, and the initial local representation F' (m)

the multi-dimensional alignment loss L.;; (P7 P(m)) between the common representation
output by the senders and the negotiator,
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Table 8: Component ablation study. The collaborating agents are m1 and m2, and the results are the
performance without downstream collaborative task adaptation. The component name in bold in the
settings column indicates the default configuration. Column corresponding to #Params# shows the
number of parameters when the module uses the corresponding configuration. ‘M’ standing for ‘MB’.
“ResMIp” is a network with a multi-layer perceptron as its backbone. FANe(Young et al.| (2022)
featuring an encoder-decoder structure, which can be used to adjust the feature space.

Components Settings AP@0.5 AP@(0.7 #Params#
ResMlp 0.633 0.510 0.1M
Recombiner FANet 0.649 0.492 1.7M
Convext 0.711 0.566 0.3 M
FAX 0.596 0.487 02M
ResMlp 0.697 0.527 0.1M
Aligner FANet 0.696 0.563 1.7M
Convext 0.702 0.542 0.3 M
Fused Axial Attention 0.711 0.566 02M
ResMlp 0.705 0.565 1.8 M
Negotiator Convext 0.706 0.566 2.7M
Sparse Transformer 0.706 0.564 21 M
FPN 0.711 0.566 1.2M
w/o 0.672 0.547 -
Local Prompt w 0711 0.566 -

* The parameters of the negotiator, as well as the sender and receiver of each modality’s agent,
are iteratively updated via backpropagation.

The objective of the second-stage training is to adapt the receiver for the downstream collaborative
task. During this training process, the parameters of the negotiator, the perception encoders and
senders of each modality’s agent are frozen. The feature flow is consistent with that during inference.
The loss is computed as the collaborative loss of the agents within the initial alliance.
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Figure 5: Training process of initial alliance negotiation.

C.2 Training Process of New Agent Join

Figure 6] illustrates the training process of the first stage when a new agent joins. This stage aims to
enable the new agent’s sender and receiver to map local representations to and from the negotiated
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Figure 6: Training process of new agent join.

common representation, respectively. The loss calculation for this process is identical to that used
during the common representation negotiation. The key difference is that the common representation
is generated by leveraging the negotiator and the perception encoder of the agents within the initial
alliance. The specific steps are as follows:

* Observational data from the same perspective is fed into the agents within the initial alliance
and the new agent, encoding them into paired local representations (™), (@),

* The local representations of the agents in the initial alliance F("™ are input into the negotiator
to produce the common representation P,

* The common representation P is fed into the new agent’s receiver to obtain the reconstructed
local representation L(“),

* The new agent’s local representation F(®) is input into its sender to yield a common
representation P,

* The training loss is calculated, which includes the multi-dimensional alignment loss
Louni (P, P(“)) between the common representation output by the negotiator and the sender

of the new agent, and the cyclic distribution consistency loss L cie (F (“), L(“)) between
the receiver’s output and the initial local representation,

* The parameters of the new agent’s sender and receiver are iteratively updated via backprop-
agation, while the parameters of the negotiator and the encoders of the agents within the
initial alliance remain frozen during this process.

In the second training stage, only the parameters of the new agent’s receiver are adjusted, while the
parameters of all other modules remain frozen. The feature flow during training is consistent with
that during inference. The loss is calculated as the collaborative detection loss of the new agent and
the agents within the alliance.

C.3 Sender and Receiver

The detailed structure of the sender and receiver is shown in Figure[7} Both the sender and receiver
adopt a hybrid architecture combining Transformer and ConvNeXt. The sender consists of a recom-
biner and an aligner, responsible for transforming local features into the common representation
space. The receiver comprises a recombiner and a converter, which converts collaborators’ features
into the local representation space. The query vector Q in the converter is derived from the output of
the recombiner in the sender.

C.4 Negotiator

Figure [8|illustrates the process of negotiating common representation P from initial local representa-
tions '™ and F(™) of agents with modalities m and n. Agents first extracts local representations
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Figure 7: Detailed structure of the sender and receiver. Both the sender and receiver employ a hybrid
architecture integrating Transformer and ConvNeXt.

F(m) and F(") ysing its native perception encoder, then aligns them to a standard size through the
resizer to obtain U("™) and U("™). Subsequently, the negotiator generates the common representation
P from U™ and U™ through the following steps:
 Extract representations of each scale U, l(m) and U, l(”) from U™ and U™ respectively, using
the pyramid network,

» At each level, employ the corresponding estimator to assess the contribution of U l(m)
and U l(") to the common representation, yielding the importance matrices Cl(m) and C’l(")
respectively,

» For each level, multiply Cl(m) with U, l(m), and C’l(") with U l(”), then average the results to
obtain the level-wise common representation F;,

» Upsample and concatenate all P, then restore the dimensions and channels to the standard
configuration via a shrink header to produce the final common representation P.
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Figure 8: Architecture of negotiator. Layer-x and Estimator-x is the network of pyramid and the
estimator at corresponding level.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:
* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).
The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it

(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions to heterogeneous collaboration perception are outlined in the
concluding section of the abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: It is mentioned in the concluding section of the contribution that there will be
an inevitable loss of information when the new agent is aligned to the negotiated common
representation

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical derivation is involved.

4. Experimental result reproducibility
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10.

11.

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed configuration of experiments has presented in the appendix.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code has been open-sourced on github.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed setup of the experiments has been given in the appendix, and the
division of the optimizer and dataset can be viewed in the code.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: During testing, we observed that the experimental results exhibited minimal
randomness, therefore statistical significance analysis was not performed.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detailed setup of computing resources has been placed in the Appendix.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research in this paper is in accordance with the NeurIPS Code of Ethical
in every respect.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The research in this paper is expected to effectively promote the development
of collaborative perception and the arrival of the L5 era of autonomous driving.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is tested on public datasets, and there is no such risk.
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12.

13.

14.

15.

16.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: It has been referenced at the relevant point.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: No new assets are provided in this paper.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study in this paper does not involve humans

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study in this paper does not involve humans
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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