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Abstract

Model merging offers an effective strategy to combine the strengths of multiple finetuned
models into a unified model that preserves the specialized capabilities of each. Existing
methods merge models in a global manner, performing arithmetic operations across all model
parameters. However, such global merging often leads to task interference, degrading the
performance of the merged model. In this work, we introduce Localize-and-Stitch, a
novel approach that merges models in a localized way. Our algorithm works in two steps: i)
Localization: identify tiny (1% of the total parameters) localized regions in the finetuned
models containing essential skills for the downstream tasks, and ii) Stitching: reintegrate
only these essential regions back into the pretrained model for task synergy. We demonstrate
that our approach effectively locates sparse regions responsible for finetuned performance,
and the localized regions could be treated as compact and interpretable representations of
the finetuned models (tasks). Empirically, we evaluate our method on various vision and
language benchmarks, showing that it outperforms existing model merging methods under
different data availability scenarios. Beyond strong empirical performance, our algorithm
also facilitates model compression and preserves pretrained knowledge, enabling flexible
and continual skill composition from multiple finetuned models with minimal storage and
computational overhead.

1 Introduction

Pretrained models (Devlin et al., 2018; Liu et al., 2019; Raffel et al., 2020; Radford et al., 2021) contain a wealth
of rich and generalizable information, and finetuning these models for specific downstream tasks significantly
enhances performance compared to training from scratch (Chen et al., 2020b). With the growing popularity
of the pretrain-finetune paradigm, a vast array of finetuned models have been made available on platforms
like Hugging Face (Wolf et al., 2020), and many of them originate from the same pretrained models, such as
CLIP (Radford et al., 2021). However, deploying multiple finetuned models independently, each for a different
downstream task, incurs large storage and maintenance cost, and limits knowledge transfer across them.

Model merging offers a viable solution to these challenges by integrating the strengths of multiple finetuned
models into a single model that retains the specialized capabilities of each. The key advantage of model merging
over traditional multi-task learning (MTL) (Caruana, 1997; Zhang & Yang, 2021; Hu et al., 2024; He et al., 2024)
is its efficiency, in that it does not require joint training on data across all tasks, but only involves arithmetic
operations in the weight space. Existing methods merge models by averaging model parameters via arithmetic
mean (Wortsman et al., 2022a; Ilharco et al., 2023), Fisher information (Matena & Raffel, 2022), regression
mean (Jin et al., 2022) or learned merging weights (Yang et al., 2023). Those methods all average the models
in a global manner, meaning that they perform arithmetic operations to all parameters of the finetuned models.
However, similar to the conflicting gradient problem in MTL (Yu et al., 2020; Liu et al., 2021), parameters
in different finetuned models often have interference with each other, leading to suboptimal performance
of the merged model. Recent works find that redundant parameter updates in finetuning are sources of
conflicts (Yadav et al., 2023). Although the majority of model parameters are updated during finetuning, only
very few contribute to improving the performance on downstream tasks (Chen et al., 2020a; Hoefler et al., 2021).

1



Under review as submission to TMLR

Stitch

Localize

Localize

.

..
.
..

𝜃𝑝𝑟𝑒

…

…

…

... ... ...
.
..

…

…

…

... ... ...

…

…

…

... ... ...
…

…

…

... ... ...

…

…

…

... ... ...

…

…

…

... ... ...

𝜃𝑚𝑒𝑟𝑔𝑒𝑑

𝜃𝑓𝑡
(1)

𝜃𝑓𝑡
(𝑛)

𝛾1⊙𝜃𝑓𝑡
(1)

𝛾𝑛⊙𝜃𝑓𝑡
(𝑛)

Figure 1: Localize-and-Stitch: Given n models {θ
(i)
ft }n

i=1 finetuned from θpre, we first localize regions containing
skills acquired during finetuning through per-model binary masks {γi}n

i=1, then stitch the localized regions {γi ⊙θ
(i)
ft }n

i=1
onto the pretrained model, where ⊙ is the element-wise product. Empty nodes after the localization step mean that
the mask is not activated at that position. Since the localized regions are tiny (∼ 1%), we reduce potential task
conflicts and make minimal changes to the pretrained model.

To overcome these limitations, we propose Localize-and-Stitch, an efficient algorithm that merges models
in a localized manner. The algorithm (illustrated in Figure 1) involves two steps: i) Localization: identify
tiny localized regions in the finetuned models containing essential skills for the downstream tasks. ii)
Stitching: reintegrate only these essential regions back into the pretrained model. In the experiments,
we verify that the changes in finetuend parameters are highly redundant, as we can efficiently identify just
1% of the total parameters that recovers over 99% of the finetuned performance. We evaluate our method
on various language and vision tasks, showing that it outperforms existing model merging methods under
different data availability scenarios.

Beyond the superior performance on model merging, our approach has several distinct advantages: i)
Interpretability of task relations: each localized region encapsulates task-specific skills from the
finetuned models, and overlap among them is indicative of knowledge sharing. ii) Model compression:
Our localization method enables compact representation of finetuned models, significantly reducing the
storage space to only 1% of the original without sacrificing performance. This enables flexible integration
of finetuned models’ capabilities with minimal storage and computational overhead. iii) Preservation
of pretrained knowledge: By making minimal and localized changes to the pretrained model, our merged
model maintains its generalizability and achieves superior multi-task performance, effectively mitigating
catastrophic forgetting associated with finetuning.

2 Preliminaries

Notation Given a set of n tasks, we denote the pretrained model parameters as θpre ∈ Rd, the model param-
eters finetuned on the i-th task as θ

(i)
ft ∈ Rd. Note that all θ

(i)
ft are finetuned from the same pretrained model.

Task vectors A task vector is the element-wise difference of the finetuned and pretrained parameters,
denoted as τi = θ

(i)
ft − θpre ∈ Rd. These vectors encapsulate the knowledge acquired during the finetuning

process. This knowledge can be effectively manipulated through task arithmetic (Ilharco et al., 2023), which
involves performing arithmetic operations on task vectors to compose learned skills across tasks.

Model merging The goal of model merging is to efficiently aggregate the parameters of the n finetuned
models into a single multi-task model θmerged without the need to retrain the model on the initial task-specific
data. The resulting merged model should perform well on all the tasks simultaneously.
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Table 1: Baselines for model merging.

Category Method Mathematical expression Note

Global

Simple averaging (Wortsman et al., 2022a) θmerged = 1
n

∑n
i=1 θ

(i)
ft Element-wise mean

Task arithmetic (Ilharco et al., 2023) θmerged = θpre + α
∑n

i=1 τi α tuned on a validation set
Fisher merging (Matena & Raffel, 2022) θmerged =

∑n
i=1 F̂iθ

(i)
ft /

∑n
i=1 F̂i Weighted by Fisher information matrices

RegMean (Jin et al., 2022) θmerged = (
∑n

i=1 X⊤
i Xi)−1 ∑n

i=1(X⊤
i Xiθ

(i)
ft ) Minimizes difference in merged and individual activations

AdaMerging (Yang et al., 2023) {θl
merged}L

l=1 = {θpre +
∑n

i=1 λl
iθ

(i)l

ft }L
l=1 Layer-wise weights learned by entropy minimization

Localized TIES-Merging (Yadav et al., 2023) Trims the parameters in task vectors with small magnitudes, elect a sign at each position
of the task vector and only keep the parameters with the same sign.

Existing methods perform merging in the general form θmerged = θpre +
∑n

i=1 αiτi, and their difference mainly
lies in the way of determining the scaling factors αi. We introduce the baselines in Table 1, and categorize
them into global and localized methods based on whether the algorithm incorporates selection strategies to
identify which parameters to merge. Localized algorithms specifically target sparse and localized regions,
while global algorithms merge parameters indiscriminately. Note that AdaMerging has two variants: one
learns layer-wise weights and another learns task-wise weights. In this work, we refer to AdaMerging as the
layer-wise version because of its superior performance over its task-wise counterpart.

Data requirements Fisher merging (Matena & Raffel, 2022) requires over 256 data points per task
to estimate the Fisher information. RegMean (Jin et al., 2022) requires more than 1600 data points per
task to compute the inner product matrices effectively. AdaMerging (Yang et al., 2023) needs access to the
full unlabeled test set for entropy minimization. In contrast, simple averaging (Wortsman et al., 2022a),
task arithmetic (Ilharco et al., 2023) and TIES-Merging (Yadav et al., 2023) can be implemented without
additional data. However, to achieve the best performance, both task arithmetic and TIES-Merging require
tuning the hyperparameter α on a validation set.

3 Localize-and-Stitch

We now introduce our main algorithm. In Section 3.1, we start by outlining two insights that underpin
effective model merging, accompanied by motivating examples. In Section 3.2 and Section 3.3, we provide a
detailed description of two key components of the algorithm: localization and stitching.

3.1 Motivation and objectives

Sparsity is important, but how to locate sparse regions is the key. Previous research identifies that
during the finetuning stage, a significant portion of parameter updates is redundant, introducing interference
in model merging (Yadav et al., 2023). This underscores the need for locating sparse regions to reduce such
interference. While the importance of sparsity is recognized, strategies for achieving it remain underexplored.
Earlier approaches typically identify sparse regions through random selection (Yu et al., 2023) or selecting
regions with the top-k% largest magnitudes in task vectors (Yadav et al., 2023). However, they often fall
short in identifying the most effective sparse regions for model merging. In Figure 2, we evaluate the efficacy
of different localization methods across twelve language tasks, comparing the quality of their localized regions
(specified by the binary mask γi). The performance is assessed on individual grafted models for each task,
denoted as θpre + γi ⊙ τi, where τi is the task vector of the i-th task and ⊙ is the element-wise product.
This grafted performance measures how well the finetuned skills are preserved when only keeping parameter
updates during finetuning in localized regions. Unlike previous methods, we directly optimize the binary masks
to maximally retain finetuned performance, detailed in Section 3.2. Our method significantly outperforms
others, especially at lower sparsity levels. The strength of our approach lies in its precision in identifying
small but informative regions, which is particularly advantageous for model merging.

Sparse regions with less overlap reduce task conflicts. Identifying the smallest possible regions with
essential finetuned skills is key to minimizing potential conflicts among task vectors, as smaller localized regions
naturally incur less overlap among tasks. With reduced overlap, each task can occupy its own, relatively
disjoint localized region, thereby reducing task conflicts. This has the intuitive explanation that when two
conflicting tasks share highly overlapping localized regions, they will compete to steer the parameters within

3



Under review as submission to TMLR

10 3 10 2 10 1 100

Sparsity level

0.4

0.5

0.6

0.7

0.8
Av

er
ag

e 
sin

gl
e-

ta
sk

 p
er

fo
rm

an
ce

Our localization
Top-k
Random

Figure 2: Our method most effectively locates
sparse regions essential for finetuned performance.
Sparsity level indicates the proportion of total parameters
localized. By localizing only 1% of parameters (at sparsity
level 0.01), our approach recovers 99% of the finetuned
performance (at sparsity level 1).
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Figure 3: Merged models with more parameter
overlap manifest more task conflicts, resulting in
performance decrease. The overlapped proportion
is over the model’s total parameter count. The simple
averaging baseline is over all model parameters.

these regions to their advantage in the merged model, leading to performance degradation. We demonstrate
this by a case study (Figure 3) on merging models finetuned on two conflicting language tasks: QNLI (Wang
et al., 2018) and MNLI (Bowman et al., 2015). QNLI involves predicting whether a context contains the
answer to the given question, and MNLI involves predicting text entailment given a sentence pair. These
tasks are conflicting, manifested by a noticeable performance decline for both tasks when using simple
averaging to merge the corresponding finetuned models. However, if the localized regions are small yet
sufficiently informative about their respective tasks, the reduced overlap between these regions decreases task
conflicts and enhances overall performance after merging. In other words, as long as the localized region
contains sufficient task-specific knowledge, including more parameters than necessary in them only introduces
additional task interference.

3.2 Localization

Motivated by the importance of locating informative yet small sparse regions, we outline two objectives for
localization in finetuned models: i) the regions should encapsulate essential skills acquired during finetuning,
and ii) they should contain minimal number of parameters.

The objectives are grounded in the findings of Panigrahi et al. (2023), which demonstrates that skills
developed during finetuning are localizable. Specifically, grafting a small subset of finetuned parameters onto
the pretrained model can almost fully recover the performance of the finetuned model. Panigrahi et al. (2023)
propose the following optimization problem to identify the localized parameters, and we adapt it in the model
merging setting. With the constraint on the sparsity level s, on the i-th task with the loss function ℓi and
task vector τi, we optimize for a binary mask γi such that only adding up the masked portion of the task
vector onto the pretrained model performs well on the i-th task

γi = arg min
γ∈{0,1}d:∥γ∥0≤s

ℓi(θpre + γ ⊙ τi),

where ⊙ denotes the element-wise product. For the ease of optimization, we follow Panigrahi et al. (2023)
to reparametrize the binary mask γ as a real-valued vector S. To control the sparsity, we additionally relax
the L0 sparsity constraint to be L1. As a result, the optimization is reformulated as

Si = arg min
S∈Rd

ℓi (θpre + σ(S) ⊙ τi) + λ∥σ(S)∥1, (1)

where σ is the sigmoid function, and λ controls the strength of the L1 regularization. At the end of the
optimization, we round σ(Si) to be binary.
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(a) Jaccard similarity of pairwise task masks.
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(b) Cosine similarity of masked task vectors.

Figure 4: Our localized regions (each task with 1% of total parameters) have little pairwise overlap,
with the majority of Jaccard similarity below 5%. The sentiment classification tasks (SST-2, CR, MR, MPQA)
have relatively large overlap because they share similar skills in the overlapping regions, and we verify this by showing
that they have high cosine similarity of masked task vectors.

In comparison, Panigrahi et al. (2023) uses the following formulation

Si = arg min
S∈Rd

ℓi(γ ⊙ θft + (1 − γ) ⊙ θpre),

γ := γbase ⊙ (1 − σ(S)) + (1 − γbase) ⊙ σ(S), (2)

where γbase is the top-k% largest elements in the task vector, which serves as an initialization for the
optimization. There are two main advantages of formulation 1 over 2. Firstly, our formulation of S is more
straightforward, as we directly have γ = σ(S). In contrast, S in Equation (2) serves as a selector of whether to
take the value from γbase, leading to more complex computation. Secondly, our approach uses the L1 constraint
to control the sparsity in a more fine-grained manner, while Equation (2) does not have this constraint, and
they control the sparsity via early stopping instead. A detailed empirical performance comparison between
our localization technique and the one in (Panigrahi et al., 2023) is presented in Appendix C.

Note that the optimization is highly efficient, requiring as few as 8-shot data with 10 epochs of training using
SGD. A detailed ablation on the impact of data availability on the mask quality is shown in Section 4.4.

Interpretation of task relationships In Figure 4, we validate that our localization method effectively
identifies task-specific regions with minimal overlap. In Figure 4a, we report the Jaccard similarity of all
pairwise task masks, namely for each pair of masks γi and γj , we compute |γi ∩ γj |/|γi ∪ γj |. The majority
of task pairs exhibit a Jaccard similarity below 5%, confirming minimal overlap. For the few pairs with
Jaccard similarity larger than 10% (upper left corner of Figure 4a), we further compute the cosine similarity
of their masked task vectors in Figure 4b, and find that their cosine similarities are almost 1, indicating
high agreement of the parameters within the overlapped regions. Since these four tasks are all sentiment
classification tasks, this phenomenon intuitively suggests a shared skill set across the tasks, located in the
overlapped regions. We elaborate our resolution for the overlapped regions in Section 3.3

It is important to note that the meaningfulness of cosine similarity depends heavily on the presence of
a substantial overlap, as indicated by Jaccard similarity. In cases where overlap is minimal, high cosine
similarity might imply a strong relationship due to well-aligned parameters. Yet, this interpretation could be
misleading without the broader context provided by Jaccard similarity, which could reveal that the actual
interaction between the tasks is limited. This understanding is crucial for accurately assessing the nature of
the relationships between tasks based on their localized parameters.
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Figure 5: The localized regions are predominantly found in the LayerNorm parameters, while different tasks
are associated with different layers. The percentages represent the proportion of localized parameters in each component.

Distribution of localized regions We analyze the distribution of the localized regions for language
tasks in RoBERTa-base models Figure 5, both in terms of the layer index and the transformer components.
For the layers, different tasks seem to occupy different layers, although the earlier layers in the network
seldomly appear in the localized regions. Interestingly, most of the localized regions concentrate in the
LayerNorm (Ba, 2016) parameters. This pattern can possibly be attributed to a distribution shift observed in
the finetuning data compared to the pretraining data, necessitating adjustments to the LayerNorm parameters
to accommodate this shift. The same plots for GPT2-XL and ViT can be found in Appendix A, and the
findings hold true for those models as well.

Localization without validation data In the rare cases where no labeled data is available, we adopt
a similar strategy as the “Trim” step in TIES-Merging (Yadav et al., 2023), which selects positions in task
vectors with the top-k% largest magnitudes, i.e., the parameters changed the most during finetuning. We
refer to our approach as Dataless Localize-and-Stitch. As shown in Figure 2, to match the performance
of localization with validation data, the dataless version typically requires locating larger regions. This
expansion is necessary to encapsulate sufficient skills acquired during finetuning, but it also leads to increased
task conflicts. Nevertheless, in Section 4, we show that our dataless version still outperforms all other
methods that do not require additional validation data.

Despite the similarity, there are two key differences between Dataless Localize-and-Stitch and TIES:
i) Smaller localized region: We find selecting the top-5% of parameters is sufficient for our pipeline,
compared to the top-20% recommended by TIES-Merging. Our smaller selected region incurs less overlapping,
leading to reduced task interference. Note that this is not the only advantage of our approach, as reducing
the threshold in TIES to be 5% does not yield an improved performance as demonstrated in Appendix B
(Tables 11 and 12). ii) Better merging performance: We use “Stitching” described in the next section
for merging the localized regions, instead of the “Elect” procedure in TIES. The “Elect” approach in TIES
might work well when overlapping regions involve a larger number of tasks, allowing sign determination and
selective averaging to better capture a consensus among task vectors. However, when only two tasks are
involved in the overlapping regions (which is often the case as shown in Figure 11 in Appendix B), TIES may
only retain parameters predominantly from the task with the larger magnitude at each position. In such
scenarios, important parameters for both tasks could be alternately ignored, impairing the overall efficacy
in maintaining crucial task-specific information, particularly in tightly contested regions. We provide a
more detailed discussion about the advantages of Dataless Localize-and-Stitch over TIES-Merging with
empirical evidence in Appendix B.
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Algorithm 1 Localize-and-Stitch

Input: Pretrained model θpre, finetuned models {θ
(i)
ft }n

i=1, regularization coefficient λ, threshold k
Output: Merged model θmerged, binary masks {γi}n

i=1
// Step 1: Localization
for i = 1, 2, · · · , n do

Compute the task vector τi = θ
(i)
ft − θpre

if validation data available then
Si = arg minS ℓi (θpre + σ(S) ⊙ τi) + λ∥σ(S)∥1
// make the mask binary
γi = round(σ(Si))

else
// Dataless Localization
γi[|τi| > top-k(|τi|)] = 1 otherwise 0

end if
end for
// Step 2: Stitching
for i = 1, 2, · · · , n do

for k = 1, 2, · · · , d do
// take average for overlaps
γ′

i[k] = γi[k]/
(∑n

j=1 γj [k]
)

end for
end for
return θmerged = θpre +

∑n
i=1 (γ′

i ⊙ τi)

3.3 Stitching

After obtaining the binary mask for each task, we integrate these masks, and apply them to task vectors to con-
struct the merged model. Given the sparsity, the masks generally activate different positions for different tasks,
minimizing overlap. However, in instances where overlaps occur – that is, where multiple tasks share the same
mask positions – we address this by averaging the parameters in these regions. Specifically, for each final mask
γ′

i, the value at the k-th position, denoted γ′
i[k], is calculated as the reciprocal of the total number of tasks that

have a mask value of 1 at that position; if the original mask value γi[k] is 0, it remains 0 in the processed mask

γ′
i[k] = γi[k]

/  n∑
j=1

γj [k]

 .

After we obtain the processed masks {γ′
i}n

i=1, we apply them to the task vectors and stitch the masked task
vectors to get the final merged model

θmerged = θpre +
n∑
i

(γ′
i ⊙ τi) .

The complete algorithm is presented in Algorithm 1. Note that our stitching step does not involve tuning
the scaling factors α as other methods mentioned in Section 2, which typically requires grid search or
other optimization strategies for tuning. This distinction simplifies our method and avoids the computational
overhead. A comparison of runtime is provided in Appendix A.

Remark In Localize-and-Stitch, the majority of computational overhead lies in the localization step,
while the subsequent stitching process is notably efficient. This distribution of workload is ideal because the
more intensive localization step is performed separately on each individual finetuned model. This property
provides simple extension in continual learning settings: When integrating a new model into the existing
merged model (or updating any of the merged models), only the localization step for that new model incurs a
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Table 2: Multi-task performance of merged RoBERTa-base models on twelve NLP tasks.

Task SST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP Average
Single-task finetuned 0.898 0.894 0.844 0.848 0.938 0.931 0.764 0.791 0.706 0.643 0.766 0.716 0.811
Simple averaging (Wortsman et al., 2022a) 0.857 0.851 0.829 0.688 0.304 0.478 0.508 0.452 0.452 0.563 0.311 0.469 0.563
Task artihmetic (Ilharco et al., 2023) 0.846 0.856 0.769 0.810 0.156 0.584 0.607 0.538 0.403 0.539 0.822 0.581 0.626
TIES (Yadav et al., 2023) 0.805 0.805 0.728 0.791 0.226 0.549 0.552 0.501 0.379 0.477 0.816 0.572 0.600
Dataless Localize-and-Stitch 0.909 0.907 0.864 0.821 0.462 0.762 0.558 0.690 0.618 0.688 0.837 0.693 0.734
Task artihmetic (Ilharco et al., 2023) 0.885 0.882 0.803 0.829 0.320 0.610 0.620 0.561 0.495 0.656 0.828 0.623 0.675
TIES (Yadav et al., 2023) 0.886 0.88 0.852 0.835 0.226 0.482 0.548 0.359 0.397 0.594 0.794 0.603 0.621
Fisher merging (Matena & Raffel, 2022) 0.900 0.898 0.837 0.758 0.260 0.546 0.542 0.725 0.652 0.656 0.833 0.677 0.690
RegMean (Jin et al., 2022) 0.897 0.897 0.847 0.826 0.730 0.791 0.559 0.683 0.568 0.638 0.794 0.642 0.739
AdaMerging (Yang et al., 2023) 0.850 0.861 0.778 0.815 0.230 0.595 0.612 0.541 0.404 0.547 0.822 0.588 0.637
Localize-and-Stitch 0.896 0.896 0.849 0.828 0.782 0.820 0.734 0.621 0.580 0.633 0.820 0.651 0.759

cost, followed by stitching. This is in contrast to most model merging methods Jin et al. (2022); Ilharco et al.
(2023); Yadav et al. (2023); Yang et al. (2023) which necessitate restarting the whole merging process, as
the scaling factors of task vectors are tuned or learned based on the performance of the merged model. We
provide an experiment of continual learning in Section 4.4 to illustrate this advantage.

4 Experiments

We evaluate the performance of Localize-and-Stitch with baselines described in Section 2 under various
experimental settings. Our localization step is performed with 64-shot validation data, and the sparsity is
chosen to be 1%. In the dataless version, the sparsity is chosen to be 5%.

4.1 Merging finetuned encoder-based language models

Following Panigrahi et al. (2023), we finetune the RoBERTa-base (Liu et al., 2019) model on twelve
GLUE (Wang et al., 2018) tasks. Specifically, the dataset suite includes six single-sentence tasks
(SST-2 (Socher et al., 2013), CR (Hu & Liu, 2004), MR (Pang & Lee, 2005), MPQA (Wiebe et al., 2005),
TREC (Voorhees et al., 1999), SUBJ (Pang & Lee, 2004)) and six pairwise-sentence tasks (QNLI (Wang et al.,
2018), SNLI (Bowman et al., 2015), MNLI (Williams et al., 2017), RTE (Wang et al., 2018), MRPC Dolan
& Brockett (2005), QQP (Iyer et al.)). The dataset details can be found in Appendix E.

We present the results in Table 2. The table is structured into three blocks for clarity: the upper block displays
the performance of individually finetuned models for each task, the middle block lists algorithms that operate
without the need for validation data, whereas the lower block includes algorithms that require validation data.
Note that both the middle and lower blocks contain Task arithmetic and TIES because they are applicable
with or without data. Both algorithms are able to utilize validation data to tune the merging coefficients
α, as in θmerged = θpre + α

∑n
i=1 τi. We follow common practice to search over {0.1, 0.2, · · · , 1} to obtain the

optimal coefficients. When no validation data is available, we use their suggested merging coefficient of 0.4.

From Table 2, regardless of data availability, our approach consistently outperforms other baselines. Notably,
the dataless version of our algorithm provides more than 10% performance increase over task arithmetic
and surpasses methods that depend on validation data (Fisher merging and AdaMerging), demonstrating its
effectiveness. Note that TIES-Merging, although sharing one similar step with our dataless version, performs
worse than task arithmetic. This performance decrease is also observed in similar language evaluation settings
with similar model size Yadav et al. (2023). This phenomenon can be attributed to the two possible factors we
identify in Section 3.3: i) the larger localized regions of TIES potentially lead to more task conflicts; ii) the sign
election mechanism it employs tends to be less effective in overlapping regions that involve only a few tasks, par-
ticularly when just two are present. This can lead to suboptimal retention of essential task-specific information.
We provide further analysis comparing Dataless Localize-and-Stitch and TIES-Merging in Appendix B.
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Table 3: Multi-task performance of merged GPT2-XL models on three evaluation benchmarks.

Task MMLU TruthfulQA ARC Average
Single-task 0.273 0.488 0.472 0.411
Simple averaging (Wortsman et al., 2022a) 0.234 0.390 0.406 0.344
Task arithmetic (Ilharco et al., 2023) 0.234 0.390 0.399 0.341
TIES (Yadav et al., 2023) 0.233 0.448 0.310 0.330
Dataless Localize-and-Stitch 0.256 0.394 0.427 0.359
Localize-and-Stitch 0.247 0.388 0.467 0.367

Table 4: Multi-task performance of merged CLIP ViT-B/32 models on eight vision tasks.

Task SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average
Single-task finetuned 0.753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 0.905
Simple averaging (Wortsman et al., 2022a) 0.653 0.634 0.714 0.717 0.642 0.528 0.875 0.501 0.658
Task arithmetic (Ilharco et al., 2023) 0.552 0.549 0.667 0.789 0.802 0.697 0.973 0.504 0.692
TIES (Yadav et al., 2023) 0.598 0.586 0.707 0.797 0.862 0.721 0.983 0.542 0.725
Dataless Localize-and-Stitch 0.669 0.647 0.768 0.746 0.817 0.726 0.973 0.576 0.740
Task arithmetic (Ilharco et al., 2023) 0.638 0.621 0.720 0.776 0.744 0.651 0.970 0.522 0.701
TIES (Yadav et al., 2023) 0.648 0.629 0.743 0.789 0.831 0.714 0.976 0.562 0.736
Fisher merging (Matena & Raffel, 2022) 0.686 0.692 0.707 0.664 0.729 0.511 0.879 0.599 0.683
RegMean (Jin et al., 2022) 0.653 0.635 0.756 0.786 0.781 0.674 0.937 0.520 0.718
AdaMerging (Yang et al., 2023) 0.645 0.681 0.792 0.938 0.870 0.919 0.975 0.591 0.801
Localize-and-Stitch 0.672 0.683 0.818 0.894 0.879 0.866 0.948 0.629 0.799

4.2 Merging finetuned decoder-based language models

Compared with encoder-only language models, decoder-based language models benefit from increased number
of parameters and perform well on complicated generative tasks. We use GPT2-XL (Radford et al., 2019) as
the base model, and obtain three supervised finetuned checkpoints from the Hugging Face model hub (Wolf
et al., 2020), each tuned for distinct functionalities: general instruction following, scientific knowledge and
truthfulness respectively. Further details about these models are specified in Appendix D.

To assess these models, we use MMLU (Hendrycks et al., 2021), ARC (Clark et al., 2018) and TruthfulQA (Lin
et al., 2021) as evaluation datasets for the respective domains. Unlike datasets in the previous section,
these are typically used in their entirety for evaluation, without a designated train-test split. However, using
these datasets for both evaluation and localization could lead to data leakage. To prevent this, we use data
from three surrogate datasets with similar purposes for localization, namely Alpaca (Taori et al., 2023),
GSM8K (Cobbe et al., 2021) and HotpotQA (Yang et al., 2018).

We compare our approach with other methods directly applicable in this setting in Table 3. Both versions
of Localize-and-Stitch noticeably outperforms other baselines. The result verifies that even for complex
generative tasks, skills can still be localized within tiny regions of finetuned models. Moreover, this shows that
good localization performance can be achieved without access to the original finetuning data; using similar data
from other sources also suffices. This aligns with the finding from (Panigrahi et al., 2023) that localized regions
exhibit transfer among similar tasks, meaning that a localized region for one task can facilitate performance in
related tasks. This further reduces the dependency on data availability, making our approach more versatile.
Overall, these findings highlight the capability of Localize-and-Stitch to integrate the strengths from
multiple language models, demonstrating its effectiveness across a variety of linguistic challenges.

4.3 Merging finetuned vision models

Following the practice in Ilharco et al. (2023), we finetune the CLIP (Radford et al., 2021) image encoder
with the ViT-B/32 (Dosovitskiy et al., 2021) architecture on eight image classification tasks, incorporating
diverse categories of images such as remote sensing, satellite images and traffic signs. Specifically, the dataset
suite includes SUN397 (Xiao et al., 2016), Stanford Cars Krause et al. (2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011), GTRSB (Stallkamp et al., 2011), MNIST (LeCun
et al., 2010) and DTD (Cimpoi et al., 2014). The details of each dataset can be found in Appendix E.
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sion. With more data available, the performance of
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represent sparsity levels for each method.

We present the results in Table 4. Similarly, even in the absense of validation data, the dataless version of our
approach can outperform methods requiring validation data (Fisher merging and RegMean). When validation
data is available, our method also demonstrates competitive performance. Note that AdaMerging, while
achieving similar results as ours, imposes more demanding data availability requirement, and incurs higher
computational cost. It necessitates entropy minimization across the entire (unlabeled) test set, rendering it
approximately 15 times slower than our method.

4.4 Empirical analysis

Sparsity-performance trade-off In the localization step, we optimize for two competing objectives:
identifying regions containing sufficient finetuned skills, and minimizing the number of parameters involved.
Here, we study the trade-off by presenting the performance of our approach on the language tasks at different
sparsity levels in Figure 6. Across all models and tasks tested, we observe that a sparsity level around 1%
yields the best results using our localization method, whereas dataless localization requires 5 − 10%. When
the localized regions are too small to retain adequate finetuned knowledge, the benefit of less overlap is
diminished. Conversely, when the localized regions are too large, although the regions possess sufficient
finetuned knowledge, the increased overlap among task-specific regions leads to more task interference.

Effect of data availability We present the performance of our method across various data availability
scenarios with a localization region of 1% (Figure 7) on the language tasks. One clear trend is that with
more data, the quality of localization improves, resulting in enhanced performance of the merged model.
Notably, even with as few as 8-shot data, the merged performance surpasses that of the dataless approach,
highlighting its effectiveness under constrained data conditions.

Model compression through localization Our localization approach enables a compact representation
of the finetuned model. In our experiments, we find that localizing only 1% of the total parameters recovers
over 99% of the performance achieved by single-task finetuning (full evaluation reported in Appendix A).
The efficiency allows us to store only the masked task vectors for each task (γi ⊙ τi) instead of the entire
finetuned models, without a noticeable loss in performance. Given the sparsity of these masked task vectors,
we can store them in Compressed Sparse Row (CSR) format (Pissanetzky, 1984; Golub & Van Loan, 2013),
which drastically reduces the model size to about 1% of the original. For example, a RoBERTa-base model,
which typically requires ∼ 650MB of memory to store, can be represented using only a ∼ 7MB sparse matrix,
achieving a memory reduction of 99%. Although we still need to store the full pretrained model, this storage
overhead will be amortized with more finetuned models. This model compression, combined with the ease
of update mentioned in Section 3.3, enables flexible composition of skills from multiple finetuned models
with minimal storage and computational overhead.
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Table 5: Comparison of performance and efficiency for continual learning.

SST-2+CR +TREC +SUBJ +QNLI +QQP
Task arithmetic Average performance 0.907 0.864 0.853 0.817 0.762

Runtime (s) 1340 1760 2183 2654 2970
TIES Average performance 0.897 0.832 0.827 0.796 0.757

Runtime (s) 3421 5031 6894 8147 9358
Localize-and-Stitch Average performance 0.906 0.905 0.897 0.856 0.827

Runtime (s) 806 421 403 462 455
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Figure 8: Our method retains the pretrained
skill the best due to the minimal updates (7% of total
parameters) to the pretrained model, while performs
well on the eight merged tasks (upper right better).

Avoid forgetting of pretrained knowledge Pre-
trained models contain rich and generalizable informa-
tion, derived from their diverse training data. However,
finetuning often incurs catastrophic forgetting of skills
in the pretrained model (He et al., 2021; Luo et al.,
2023), which is carried over when these finetuned mod-
els are merged. As our method makes minimal change
to the pretrained model, such forgetting is substantially
mitigated. For instance, in the vision setting where we
localize 1% parameters for each task, the total param-
eters changed in our merged model compared with the
pretrained model is only around 7% for the 8 tasks as a
result of minimal overlap. We evaluate the retention of
pretrained capabilities with a general vision task that
the pretrained CLIP model excels, namely zero-shot
ImageNet classification (Deng et al., 2009), and report
the results in Figure 8. Our method most effectively
preserves the pretrained performance, while achieves
superior performance on the eight merged tasks.

Continual learning. As mentioned in Section 3.3, our approach is particularly efficient in the continual
learning setting. To illustrate the efficiency, we start from merging the SST-2 and CR RoBERTa models,
and incrementally add 4 more tasks to simulate a continual learning setting. The tasks are selected by
representativeness (including sentiment analysis, sentence classification, NLI, etc). We compare our method
against two baselines: task arithmetic and TIES, with merging coefficients tuned across {0.0, 0.1, ...0.9, 1.0}.
The results from Table 5 demonstrate that: i) Performance: Localize-and-Stitch consistently outperforms
the baselines, with the performance margin increasing as more tasks are involved, showing its ability to reduce
task interference. ii) Runtime: The runtime for both TIES and task arithmetic increases with each added
task due to the need for hyperparameter search from scratch and performance validations, while the runtime
of Localize-and-Stitch generally remains constant, reflecting its efficiency in continual learning scenarios.

5 Related works

Model merging Model merging aims at efficiently integrating multiple finetuned models into a single
model that retains the capabilities of each. It is a promising solution to enhance the generalization and
multi-task capabilities of finetuned models. Wortsman et al. (2022b;a) demonstrates that merging models
trained on the same task with different training configurations can improve the out-of-distribution (OOD)
robustness. Merging finetuned models from related tasks can provide an improved initialization for new
tasks (Choshen et al., 2022; Gueta et al., 2023). Additionally, finetuned models with different specialized
capabilities can be merged together for enhanced multi-task capabilities (Ilharco et al., 2023; Tam et al., 2023;
Matena & Raffel, 2022; Jin et al., 2022; Yang et al., 2023; Yu et al., 2023; Wang et al., 2024). In this work,
we primarily focus on merging model for enhancing multi-task performance. Similar to the gradient conflict
problem (Yu et al., 2020; Liu et al., 2021) in multi-task learning, finetuned models also manifest conflict when
merged together, and our method provides an effective solution to this problem.
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Our approach stands out with four key advantages: i) Localized merging: Instead of global merging, we
localize merging to specific regions with finetuned skills, effectively decreasing task conflicts. ii) Simplified
process: Existing works often require computationally intensive grid search or optimization to determine
the optimal merging coefficients, while our stitching procedure does not have the requirement. iii) Data
flexibility: Our method works with or without validation data, and provides competitive results in various
data availability scenarios. iv) Benefits beyond model merging: This includes interpretability of task relations,
model compression and preservation of pretrained knowledge.

Knowledge attribution Recent works find that knowledge contained in language models is localizable,
meaning that model behavior can be attributed to small subsets of model parameters. One line of work
identifies such regions to edit the knowledge contained in the networks. Sundararajan et al. (2017) uses
integrated gradients for knowledge attribution, which measures how sensitive each neuron’s gradient is to
the change of input. Dai et al. (2021) applies integrated gradients to edit factual knowledge contained in
BERT models. However, the relationship between the editing success and the localized regions remains
unclear (Hase et al., 2024). Another line of work aims at pruning large models. Lee et al. (2018) proposes
SNIP score, which computes the change of loss when each neuron is set to 0. Sun et al. (2023) proposes
Wanda score to optimize for a binary mask such that the masked activations is close to the original ones.
Knowledge attribution can also be applied for enhancing interpretability. Vig et al. (2020) applies causal
mediation analysis (Pearl, 2022) to identify individual neurons contributing to gender bias.

Recently, Panigrahi et al. (2023) optimizes for a binary mask to localize the skills contained in finetuned
language models and study task relationship based on it. There are two key differences between our localization
formulation and theirs. Firstly, our formulation of S is more straightforward, as we directly have γ = σ(S) in
Equation (1). In contrast, Panigrahi et al. (2023) uses S as a selector of whether to take the value from the
initial mask, leading to more complex computation. Secondly, our approach uses the L1 constraint to control
the sparsity in a more fine-grained manner, while Panigrahi et al. (2023) does not have this constraint, and
controls sparsity via early stopping. We empirically show that our localization formulation identifies regions
with improved quality in Appendix C.

6 Conclusion

In this work, we study the problem of task interference in the context of model merging. We find that globally
merging models typically leads to task interference, due to the parameter redundancy in task vectors. To
tackle this challenge, we introduce Localize-and-Stitch, which performs localized merging via sparse task
arithmetic. We first identify tiny regions in the finetuned models that contain essential skills acquired during
finetuning, and stitch only those regions back onto the pretrained model. Empirical evaluation on various
vision and language benchmarks validate the effectiveness of our approach. Beyond model merging, our
approach performs effective model compression, which compresses the model size to be 1% of the original
without sacrificing performance. Additionally, Localize-and-Stitch also excels at retaining the pretrained
knowledge. Overall, our approach offers a novel pathway for flexible and continual skills composition from
finetuned models with minimal storage and computational overhead.
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A More experiments

Where are the localized regions? We analyze the distribution of the localized regions for both language
and vision tasks in Figure 9, both in terms of the layer index and the transformer components. For the layers,
different tasks seem to occupy different layers, although the earlier layers in the network seldomly appear in
the localized regions. Interestingly, most of the localized regions concentrate in the LayerNorm parameters.
This pattern can possibly be attributed to a distribution shift observed in the finetuning data compared to
the pretraining data, necessitating adjustments to the LayerNorm parameters to accommodate this shift.

Table 6: Single-task grafted performance of RoBERTa-base models on twelve NLP tasks.

Task SST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP Average
Single-task finetuned 0.898 0.894 0.844 0.848 0.938 0.931 0.764 0.791 0.706 0.643 0.766 0.716 0.811
Single-task grafted 0.897 0.883 0.855 0.844 0.918 0.933 0.751 0.772 0.703 0.639 0.745 0.708 0.804
Recovered proportion 0.999 0.988 1.013 0.995 0.979 1.002 0.983 0.976 0.996 0.994 0.973 0.989 0.991

Table 7: Single-task grafted performance of GPT2-XL models on three NLP tasks.

Task MMLU TruthfulQA ARC Average
Single-task finetuned 0.273 0.488 0.472 0.411
Single-task grafted 0.264 0.436 0.475 0.392
Recovered proportion 0.969 0.893 1.007 0.953

Table 8: Single-task grafted performance of CLIP ViT-B/32 models on eight vision tasks.

Task SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average
Single-task finetuned 0.753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 0.905
Single-task grafted 0.731 0.772 0.955 0.989 0.963 0.973 0.996 0.781 0.895
Recovered proportion 0.970 0.993 0.994 0.992 0.988 0.985 0.999 0.983 0.989

Full grafted performance. We evaluate the quality of the localized regions by the grafted performance.
For the i-th task, we only add up the localized regions in the task vectors back to the pretrained model,
i.e., θpre + γi ⊙ τi. The results with a localization region of 1% is shown in Tables 6 to 8. For almost all tasks,
using only the tiny localized region recovers nearly 99% of the finetuned performance. For GPT2-XL, the
performance is slightly worse because we cannot use the evaluation data for the localization step. However,
the results are still strong even with surrogate datasets with similar purposes, demonstrating the flexibility
and robustness of our algorithm. Overall, this shows that our localization approach is effective in locating
regions containing essential skills acquired during finetuning, and the localized regions can be viewed as
compact representations of the finetuned models.

Effect of data availability. Similar to Figure 7, we plot the same trend of our method across various data
availability scenarios with a localization regions of 1% on the vision tasks as well (Figure 10). We can still
see the clear pattern that the performance monotonically increases with more data available, and does not
show saturation even with 512-shot data. In addition, with 8-shot data, the performance of localization
improves over the dataless version, the same observation as in language tasks.

Runtime. We compare the runtime of Localize-and-Stitch and other baselines. We divide the algorithms
into two categories: dataless and requiring data. Note that task arithmetic and TIES-Merging can fall in
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Figure 9: The localized regions are predominantly found in the LayerNorm parameters, while different tasks are
associated with different layers. The percentages represent the proportion of localized parameters in each component.
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Figure 10: Merged performance versus available data in vision tasks.

Table 9: Runtime for dataless algorithms.

Method Runtime (s)
Simple averaging 189.17
Task arithmetic 186.32
TIES-Merging 350.47
Dataless Localize-and-Stitch 304.85

Table 10: Runtime for algorithms requiring data.

Method Runtime (s)
Fisher Merging 293.33
Task arithmetic (tuned) 6562.14
TIES-Merging (tuned) 24042.43
RegMean 22987.54
AdaMerging 81326.57
Localize-and-Stitch 5130.05

both categories, with the difference of whether performing hyperparameter tuning (scaling factor α for both,
and sparsity for TIES). For the hyperparameter tuning, we follow the common practice in Ilharco et al.
(2023); Yadav et al. (2023) to grid search over {0.1, 0.2 · · · , 0.9} for the scaling factor and {0.1, 0.2, 0.3} for
the sparsity.

We report the runtime in Tables 9 and 10 for merging twelve NLP tasks with RoBERTa-base. For the dataless
algorithms, simple averaging and task arithmetic are very efficient, as they only involve arithmetic operations
on the weights. Both TIES and our dataless version requires sorting the task vectors to get the top-k%
largest elements, so the runtime is slower. Compared with TIES, we do not have the step for resolving sign
conflicts, so it takes less time. For algorithms requiring data, Fisher merging is the most efficient, as it uses a
diagonal estimate of the Fisher information matrices with little data (256 per task). Both task arithmetic and
TIES-Merging show substantial time increase, as they need to do grid search on 9 and 27 hyperparameters
respectively as well as evaluating on the validation data in each run. AdaMerging takes significantly more
runtime to execute compared with others, and the reason could be that entropy minimization converges slowly,
as we observe that AdaMerging requires around 500 epochs to converge. Compared with other algorithms,
Localize-and-Stitch executes in a relatively short amount of time, showing its effectiveness.

B Comparison between Dataless Localize-and-Stitch and TIES-Merging

Due to the similarity of the dataless version of our approach with TIES-Merging (Yadav et al., 2023), we
compare them in detail.

Table 11: Comparison of Dataless Localize-and-Stitch and TIES on language tasks.

Task SST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP Average
Dataless Localize-Stitch (5%) 0.909 0.907 0.864 0.821 0.462 0.762 0.558 0.690 0.618 0.688 0.837 0.693 0.734
TIES (5%) 0.858 0.837 0.822 0.712 0.142 0.290 0.467 0.191 0.271 0.438 0.743 0.358 0.510
TIES (20%) 0.805 0.805 0.728 0.791 0.226 0.549 0.552 0.501 0.379 0.477 0.816 0.572 0.600
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Table 12: Comparison of Dataless Localize-and-Stitch and TIES on vision tasks.

Task SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average
Dataless Localize-Stitch (5%) 0.669 0.647 0.768 0.746 0.817 0.726 0.973 0.576 0.740
TIES (5%) 0.520 0.552 0.669 0.683 0.874 0.606 0.982 0.480 0.671
TIES (20%) 0.598 0.586 0.707 0.797 0.862 0.721 0.983 0.542 0.725

The first step of both algorithms is similar: select the top-k% largest positions in the task vector. The
primary difference lies in the selection threshold: Dataless Localize-and-Stitch selects the top-5%, while
TIES selects the top-20%. However, as shown in Section 3.1, we find that when a localized region already
contains sufficient task-specific knowledge, including more parameters only introduces more task interference.
This observation could partially explain our superior performance. However, this is not the only limitation in
TIES, as reducing the threshold in TIES to be 5% does not yield an improved performance as demonstrated
in Tables 11 and 12.

In the subsequent merging step, Dataless Localize-and-Stitch can be viewed as a simplified version
of TIES. When dealing with overlap for the localized regions, Dataless Localize-and-Stitch simply
averages the parameters in these overlapping area. On the other hand, TIES first sums positive and negative
parameters separately at each overlapping position, and determines the dominant sign based on their total
magnitudes, a process akin to a weighted majority vote. Then, TIES only keep the parameter values that
aligns with the elected sign, and compute the mean.
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Figure 11: When merging 12 NLP tasks with top-
20% selection in TIES, most overlapping regions only
involve 2 or 3 tasks. This is the regime where the
sign election process in TIES is less effective in.
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the sign election stage of TIES is not effective. The
performance of TIES is consistently worse than simple
averaging on all parameters.

This approach by TIES might be more advantageous when overlapping regions involve a larger number of
tasks. The rationale is that with more tasks contributing to an overlap, the process of sign determination and
selective averaging may more accurately capture the consensus of task vectors for all tasks as a whole. However,
when only two tasks are involved (which is often the case as shown in Figure 11), TIES may only retain param-
eters predominantly from the task with the larger magnitude at each position. In such scenarios, important
parameters for both tasks could be alternately ignored, potentially degrading performance for both tasks. This
selective process might, therefore, impair the overall efficacy in maintaining crucial task-specific information,
particularly in tightly contested regions. We demonstrate this in Figure 12, where we use the same example of
conflicting tasks as in Section 3.1, i.e., QNLI and MNLI. When merging models on two conflicting tasks, the per-
formance of TIES is significantly worse than simple averaging on all model parameters across all sparsity levels.

C Details on localization

Here, we detail the skill attribution method in Panigrahi et al. (2023) and explain the difference with our
formulation. Panigrahi et al. (2023) aims to localize task-specific skills contained in finetuned language
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models. They introduce model grafting, where for given pretrained and finetuned model parameters θpre and
θft, they graft parameters of θft in the region γ onto the pretrained model as

θft(γ) = γ ⊙ θft + (1 − γ) ⊙ θpre.

With the grafting operation, they find the localized region with the following optimization procedure, where
they essentially find the region leading to the best grafted performance.

arg min
γ∈{0,1}d:∥γ∥o≤s

ℓτ (γ ⊙ θft + (1 − γ) ⊙ θpre)

They also use a reparametriztion of the binary mask γ as the sigmoid of a real-valued vector S, and reformulate
the problem as

arg min
S∈Rd

ℓi(γ ⊙ θft + (1 − γ) ⊙ θpre),

γ := γbase ⊙ (1 − σ(S)) + (1 − γbase) ⊙ σ(S), (3)

where γbase is the top-k% largest elements in the task vector. This serves as an initialization for the
optimization. In comparison, our formulation is as follows

Si = arg min
S∈Rd

ℓi (θpre + σ(S) ⊙ τi) + λ∥σ(S)∥1,

There are two main differences between the formulations. Firstly, our formulation of S is more straightforward,
as we directly have γ = σ(S). In contrast, S in Equation (3) serves as a selector of whether to take the value
from γbase, leading to more complex computation. Secondly, our approach uses the L1 constraint to control
the sparsity in a more fine-grained manner, while Equation (3) does not have this constraint, and the authors
control the sparsity via early stopping.

Table 13: Comparison of localization methods on RoBERTa-base models on twelve language tasks.

Task SST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP Average
Single-task finetuned 0.898 0.894 0.844 0.848 0.938 0.931 0.764 0.791 0.706 0.643 0.766 0.716 0.811
Single-task grafted (Ours) 0.897 0.883 0.855 0.844 0.918 0.933 0.751 0.772 0.703 0.639 0.745 0.708 0.804
Single-task grafted (Panigrahi et al., 2023) 0.902 0.908 0.862 0.851 0.884 0.925 0.752 0.756 0.676 0.643 0.757 0.693 0.801
Merged (Ours) 0.896 0.896 0.849 0.828 0.782 0.820 0.734 0.621 0.580 0.633 0.820 0.651 0.759
Merged (Panigrahi et al., 2023) 0.897 0.895 0.847 0.831 0.816 0.803 0.727 0.649 0.580 0.633 0.819 0.656 0.763

Table 14: Comparison of localization methods on CLIP ViT-B/32 models on eight vision tasks.

Task SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average
Single-task finetuned 0.753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 0.905
Single-task grafted (Ours) 0.731 0.772 0.955 0.989 0.963 0.973 0.996 0.781 0.895
Single-task grafted Panigrahi et al. (2023) 0.731 0.750 0.935 0.959 0.929 0.932 0.976 0.753 0.871
Merged (Ours) 0.672 0.683 0.818 0.894 0.879 0.866 0.948 0.629 0.799
Merged Panigrahi et al. (2023) 0.669 0.678 0.798 0.861 0.846 0.826 0.919 0.653 0.781

We present the performance comparison of the two localization methods in Tables 13 and 14. In both cases,
our approach with Equation (1) outperforms Panigrahi et al. (2023). The performance may come from
the fact that Panigrahi et al. (2023) use early stopping to control the sparsity, which results in incomplete
optimization for the masks. We also report the merged performance by following the same stitching process.
On the language tasks, the performance is similar, while on the vision tasks, our localization leads to better
merged performance.

D GPT2-XL experiment details

For the experiments in Section 4.2, we use the following three checkpoints from Hugging Face:
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• Locutusque/gpt2-large-conversational

• Onlydrinkwater/gpt2xl_language_math_520_10base

• Rachneet/gpt2-xl-alpaca

They are all finetuned on the original release of the GPT2-XL model openai-community/gpt2-xl. The
selection of the three models and associated tasks is a result of an extensive evaluation process. After testing
dozens of finetuned GPT-2XL checkpoints, we establish specific criteria to ensure the relevance and rigor of
our experiments: The checkpoints should

• be fully finetuned instead of PEFT,

• have a well-defined and evaluable downstream task,

• perform noticeably better than the pretrained model on its respective task.

We find that most finetuned checkpoints do not meet the last criterion, which is crucial for substantiating the
benefits of our merging method. Consequently, the three models and tasks combinations chosen best satisfy
all three criteria, making them the most appropriate for our purposes.

E Datasets

Vision datasets Following the practice in Ilharco et al. (2023), we use the following 8 datasets for the
vision part of our experiments:

• SUN397 (Xiao et al., 2016). The Scene UNderstanding dataset contains 108,754 images of 397 classes.

• Stanford Cars Krause et al. (2013). The Stanford Cars dataset contains 16,185 images of 196 classes
of cars.

• RESISC45 (Cheng et al., 2017). The REmote Sensing Image Scene Classification dataset contains
31,500 images, covering 45 scene classes.

• EuroSAT (Helber et al., 2019). The EuroSAT dataset consists of 10 classes with 27000 labeled and
geo-referenced samples. Each class represents a different land use and land cover.

• SVHN (Netzer et al., 2011). The Street View House Numbers dataset contains 600,000 digit images
in 10 classes of printed digits cropped from pictures of house number plates.

• GTRSB (Stallkamp et al., 2011). The German Traffic Sign Recognition Benchmark contains 43
classes of traffic signs with more than 50,000 images.

• MNIST (LeCun et al., 2010). The MNIST dataset contains 60,000 training images and 10,000 testing
images of 10 handwritten digits.

• DTD (Cimpoi et al., 2014). The Describable Texture Dataset contains 5,640 texture images in the
wild with 47 classes.

SUN397, RESISC45 and DTD are under the Creative Commons Attribution-ShareAlike 4.0 International
License. Stanford Cars is under the ImageNet License. EuroSAT is under MIT License. MNIST is under
Gnu General Public License. GTRSB and SVHN are under CCBY-SA License.
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Language datasets Following the practice in Panigrahi et al. (2023), we use the following 12 datasets for
the language part of our experiments. The majority comes from the GLUE benchmark (Wang et al., 2018).

• SST-2 (Socher et al., 2013). The Stanford Sentiment Treebank is a sentiment analysis dataset, which
contains sentences from movie reviews and human annotated binary sentiments.

• CR (Hu & Liu, 2004). The Customer Review dataset consists of customer reviews on e-commerce
products with binary sentiment labels.

• MR (Pang & Lee, 2005). The Movie Review dataset consists of movie reviews with binary sentiment
labels.

• MPQA (Wiebe et al., 2005). The Multi-Perspective Question Answering dataset contains news
articles and text documents manually annotated for opinions and other private states including
beliefs, emotions, sentiments, etc. Here, we use it for binary sentiment classification.

• TREC (Voorhees et al., 1999). The Text REtrieval Conference (TREC) dataset contains 6k questions
phrased by users and categorized into a small number of categories. The task is to classify the
questions into these categories.

• SUBJ (Pang & Lee, 2004). The SUBJectivity dataset contains 10k movie reviews with an annotation
of whether the review describes something subjective or objective about the movie.

• QNLI (Wang et al., 2018). The Question-answering NLI dataset is converted from the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016), which contains questions and
the paragraphs that contain the answer to the corresponding questions. QNLI converts SQuAD
into sentence pair classification by forming a pair between each question and each sentence in the
corresponding context, where the task is to predict whether the context contains the answer to the
question.

• SNLI (Bowman et al., 2015). The Stanford Natural Language Inference dataset contains 570k
sentence pairs manually labeled as entailment, contradiction or neutral.

• MNLI (Williams et al., 2017). The Multi-Genre Natural Language Inference Corpus is a collection of
433k sentence pairs annotated with textual entailment information.

• RTE (Wang et al., 2018). The Recognizing Textual Entialment dataset contains a series of textual
entailment challenges, including RTE1 (Dagan et al., 2005), RTE2 (Haim et al., 2006), RTE3 (Gi-
ampiccolo et al., 2007) and RTE5 (Bentivogli et al., 2009). The neutral and contradiction classes are
combined into a no entailment class.

• MRPC Dolan & Brockett (2005). The Microsoft Research Paraphrase Corpus consists of sentence
pairs from online news sources, with human annotations of whether the sentences in the pair are
semantically equivalent. Since the classes are imbalanced, we report the F1 score.

• QQP (Iyer et al.). The Quora Question Pairs dataset consists of question-answer pairs from the
website Quora. The task is to determine whether two questions are semantically equivalent.

CR, RTE, MRPC, QQP, QNLI are under CCBY-SA License. MRPC is under Microsoft Research License.
MNLI is under OANC’s License. SNLI is under a Creative Commons Attribution-ShareAlike 4.0 International
License.

GPT datasets We introduce the datasets used for GPT2-XL experiments.

• MMLU (Hendrycks et al., 2021). The Massive Multitask Language Understanding measures knowledge
in 57 subjects across STEM, humanities, social science, etc.
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• ARC (Clark et al., 2018). The AI2 Reasoning Challenge dataset contains 7,787 grade-school level,
multiple choice science questions.

• TruthfulQA (Lin et al., 2021). The TruthfulQA dataset measure whether a model is truthful in
generating answers to questions. It comprises 817 questions spanning 38 categories, including health,
law, finance, etc.

• Alpaca (Taori et al., 2023). The Alpaca dataset contains 52,000 instruction-following examples.

• GSM8k (Cobbe et al., 2021). The Grade School Math 8K dataset contains 8,500 high quality grade
school math problems created by human problem writers. The problems take 2 to 8 stpes to solve.

• HotpotQA (Yang et al., 2018). The HotpotQA dataset is a question answering dataset featuring
multi-hop questions.

ARC is under CC BY-SA License. TruthfulQA and Alpaca are under Apache License 2.0. MMLU and
GSM8k are under MIT License. HotpotQA is under CC BY-SA 4.0 License.

F Implementation details

The experiments are run on NVIDIA RTX A6000 GPUs with 48GB memory.

Finetuning. For the experiments on RoBERTa-base, we perform the finetuning process following the same
procedure as Panigrahi et al. (2023). Specifically, we use a batch size of 4 and a learning rate of 2e-5 to
finetune on each of the language tasks for 10 epochs with the SGD optimizer. For the experiments on CLIP
ViT, we directly use the finetuned checkpoints provided in Ilharco et al. (2023) with the data preprocessing
step provided in (Yang et al., 2023). The finetuned models in the GPT2-XL experiments in provided in
Appendix D.

Localization. Following the practice in Panigrahi et al. (2023), in the localization step, we initialize the
trainable real-valued vector S as the mask for top-k% largest entries in the task vector. Since the actual map
is rounded from σ(S) but not S, we choose the initial values of S to be either 0 or 3, as σ(3) is sufficiently
close to 1. To achieve a sparsity level of 1%, we use the learning rate 1e7, batch size 16, L1 regularization
factor λ 1e-5 and perform the optimization for 10 epochs on 64-shot data from each task. Following common
practice in Panigrahi et al. (2023); Yadav et al. (2023), we only perform localization in the transformer
blocks, and do not consider embedding layers.

Baselines. We use both task arithmetic and TIES-Merging in a dataless manner, meaning that we directly use
their recommended hyperparameters without tuning it. To be specific, for task arithmetic, the recommended
scaling factor is 0.4. For TIES-Merging, the recommended scaling factor is 1 and sparsity level is 20%. This
ensures a fair comparison with Dataless Localize-and-Stitch, which we also apply a fixed sparsity level
across all experiments, namely 5%.
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