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Abstract
Recently, the expansion of Variance Reduction
(VR) to Riemannian stochastic non-convex op-
timization has attracted increasing interest. In-
spired by recursive momentum, we first intro-
duce Stochastic Recursive Variance Reduced Gra-
dient (SRVRG) algorithm and further present
Stochastic Recursive Gradient Estimator (SRGE)
in Euclidean spaces, which unifies the prevailing
variance reduction estimators. We then extend
SRGE to Riemannian spaces, resulting in a uni-
fied Stochastic rEcursive vaRiance reducEd gradi-
eNt frAmework (SERENA) for Riemannian non-
convex optimization. This framework includes the
proposed R-SRVRG, R-SVRRM, and R-Hybrid-
SGD methods, as well as other existing Rieman-
nian VR methods. Furthermore, we establish a
unified theoretical analysis for Riemannian non-
convex optimization under retraction and vector
transport. The IFO complexity of our proposed R-
SRVRG and R-SVRRM to converge to ε-accurate
solution is O

(
min{n1/2ε−2, ε−3}

)
in the finite-

sum setting and O
(
ε−3
)

for the online case, both
of which align with the lower IFO complexity
bound. Experimental results indicate that the pro-
posed algorithms surpass other existing Rieman-
nian optimization methods.

1. Introduction
Riemannian optimization have received increasing interest
in machine learning (Sato et al., 2019; Zhou et al., 2021;
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Han & Gao, 2021b; Dodd et al., 2024). In this paper, we
focus on the following finite-sum or online optimization
problems on a Riemannian manifold M.

min
x∈M

f (x) :=


1

n

n∑
i=1

fi (x) (finite-sum) ,

E [f (x, ω)] (online) ,

(1)

where f : M → R is a smooth non-convex function. The
finite-sum case represents the minimization of the average
of n component functions, capturing the empirical risk min-
imization problem. When n is very large or even infinite,
f(x) is typically modeled via the online form, which is in-
dexed by a random variable ω. Numerous applications can
be expressed as given in (1), including principal component
analysis (PCA) (Sato et al., 2019), low-rank matrix comple-
tion (LRMC) (Boumal & Absil, 2011), Riemannian centroid
(RC) computation (Yuan et al., 2016), among others.

Due to the special geometric structure of the parameter
space involved in such optimization problems, traditional
Euclidean optimization methods may not be the optimal
choice in these situations. Riemannian optimization method
(Absil et al., 2008) directly advances the iterative solution
along the geodesic path toward the optimum, thereby pre-
serving the geometric structure of the problem, and effec-
tively addressing these issues. In fact, by exploiting intrinsic
properties of Riemannian manifold, the problem (1) can be
regarded as an unconstrained optimization problem defined
over the manifold spaces. One of the classical methods is
the Riemannian steepest descent (R-SD) algorithm (Udriste,
2013; Zhang & Sra, 2016). However, the requirement for
each iteration of R-SD to traverse n component functions
renders the process impractical when n is extremely large.
In contrast, the Riemannian stochastic gradient descent (R-
SGD) (Bonnabel, 2013) method computes the stochastic
gradient for each iteration of one sample (or a mini-batch
samples), significantly reducing the computational cost per
iteration. However, R-SGD exhibits slow convergence at-
tributed to the high variance (Bottou et al., 2018).

Variance reduction (Gower et al., 2020) has also been ex-
tended to Riemannian manifolds for improving performance.
For instance, Riemannian stochastic variance reduced gra-
dient (R-SVRG) (Zhang et al., 2016; Kasai et al., 2016;
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Sato et al., 2019), Riemannian stochastic recursive gradi-
ent (R-SRG) (Kasai et al., 2018b; Han & Gao, 2021b), and
Riemannian stochastic path integrated differential estima-
tor (R-SPIDER) (Zhang et al., 2018; Zhou et al., 2021)
are generalized from the Euclidean versions in (Johnson
& Zhang, 2013; Nguyen et al., 2017; Fang et al., 2018).
Variance reduction enjoys more favorable complexity in
Riemannian non-convex optimization. Specifically, the In-
cremental First-order Oracle (IFO) complexity of R-SVRG
to achieve an ε-accurate solution is O

(
n2/3ε−2

)
(Han &

Gao, 2021b), which improves upon O
(
ε−4
)

of R-SGD. The
R-SRG and R-SPIDER algorithms further enhance the com-
plexity to O

(
ε−3
)

(Zhou et al., 2021), matching the lower
bound for stochastic non-convex optimization complexity
in Euclidean spaces (Arjevani et al., 2023). However, a
“hybrid” algorithm that combines two existing stochastic
estimators through a convex combination to design a hybrid
offspring—inheriting the advantages of its underlying esti-
mators—has yet to be developed in the field of Riemannian
stochastic optimization.

In the Euclidean search space, Tran-Dinh et al. (2022) de-
signed a hybrid stochastic estimator to balance the variance
and bias, which can be regarded as a convex combination of
the SARAH-type estimator and the SGD estimator. Based
on this, they proposed the Hybrid-SGD algorithm, which
can be seen as an extension of the stochastic recursive mo-
mentum (STROM) method. Although they stated that their
approach could be extended to cover SVRG-type methods,
they did not provide explicit formulations. A general re-
cursive momentum estimator, stochastic variance reduced
recursive momentum (SVRRM) (Liao et al., 2024), was
proposed by incorporating loopless-SVRG (Kovalev et al.,
2020) into STORM. Jiang et al. (2024) also introduced a
similar stochastic estimator, but these approaches iterate
based on the Euclidean space.

While integrating SVRG-type estimators into hybrid
stochastic estimator allows us to achieve a unified form of
variance reduction algorithms, there is currently no related
work on Riemannian stochastic optimization. Furthermore,
the theoretical analyses of various Riemannian stochastic
algorithms differ significantly, and in some cases, the con-
struction of a Lyapunov function is required. A natural ques-
tion arises: “Is there a unified formulation for Riemannian
stochastic variance reduction methods and, consequently,
a simple and unified theoretical framework?” This paper
provides a compelling affirmative answer. Specifically, our
main contributions are summarized as follows.

• Motivated by recursive momentum, we propose the
SRVRG estimator and extend it to Riemannian mani-
folds. We establish an improved complexity bound for
Riemannian SRVRG (R-SRVRG), which achieves the
optimal complexity.

• We also develop the R-SVRRM and R-Hybrid-SGD
algorithms by extending the SVRRM and Hybrid-SGD
estimators to Riemannian manifolds.

• We introduce the stochastic recursive gradient estima-
tor, which unifies variance reduction methods (see Ta-
ble 1). We further propose the Stochastic rEcursive
vaRiance rEduced gradieNt frAmework (SERENA)
for Riemannian optimization by extending SRGE to
Riemannian spaces. Our proposed algorithms can be
regarded as special cases of this framework (see Sec-
tion 5).

• By providing an upper bound on the variance of Rie-
mannian stochastic estimator within the SERENA
framework, we establish a unified theoretical analysis
for general non-convex functions under retraction and
vector transport. Specifically, we derive convergence
results and IFO complexity for several algorithms un-
der both finite-sum and online settings.

• The experimental results on various tasks and datasets
demonstrate that our proposed R-SRVRG and R-
SVRRM algorithms outperform existing methods.

2. Preliminaries
Riemannian manifold (Absil et al., 2008; Boumal, 2023) M
is a manifold that is equipped with a smoothly varying inner
product ⟨·, ·⟩x on tangent space TxM for every x ∈ M.
The induced norm is given by ∥u∥x :=

√
⟨u, u⟩x for u ∈

TxM. In iterative optimization algorithms on manifold M,
an iteration is performed by following geodesics emanating
from x and tangent to u ∈ TxM. A locally shortest path on
the manifold with constant speed is called a geodesic curve
γ : [0, 1] → M , which is a generalized concept of straight
lines in Euclidean space.

If M is a complete manifold, the exponential mapping is de-
fined for all vectors u ∈ TxM (Absil et al., 2008; Sato et al.,
2019), then we can use the exponential mapping to update.
However, for some Riemannian manifolds, the closed form
of the exponential map is not available. Alternatively, we
can retract the variable x into the manifold M by defining
retraction to update. Retraction Rx : TxM → M approxi-
mates the exponential map and maps a tangent vector ξ to
z = Rx(ξ) such that Rx(0) = x and DRx(0)[ξ] = ξ.
The retraction curve is defined as c(t) := Rx(tξ) and
R−1

x : M → TxM denotes the inverse retraction if R
has smooth bijection. One advantage of using retraction
is that it can reduce computational costs compared to the
exponential map.

A common approach for performing the addition of tangent
vectors in different tangent spaces is to use the parallel
transport P y

x : TxM → TyM, which transports vector
on the geodesic curve γ that connects x to y such that the
induced vector fields are in parallel. However, the parallel
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translation can sometimes be computationally expensive,
and it does not have a explicit formula for certain manifolds
(Sato et al., 2019). Vector transport T z

x : TM⊕ TM →
TM is used as an alternative (Absil et al., 2008), it satisfies:
1) T has an associated retraction R, i.e., for x ∈ M and
ι, ξ ∈ TxM, Tξ(ι) is a tangent vector at Rx(ι); 2) T0x(ξ) =
ξ, where ξ ∈ TxM and x ∈ M; 3) Tξ(ay1 + by2) =
aTξ(y1) + bTξ(y2), where a, b ∈ R, ξ, y1, y2 ∈ TxM, and
x ∈ M. Similar to (Zhou et al., 2021; Han & Gao, 2021a;b),
we implicitly assume vector transport is isometric, which
means that ⟨T z

x u, T z
x v⟩z = ⟨u, v⟩x for all u, v ∈ TxM and

x, z ∈ M.

In this paper, our analysis focuses on retraction and vec-
tor transport, which are more general and efficient. It is
common to use the incremental first-order oracle (IFO) com-
plexity to measure the total complexity of stochastic opti-
mization algorithms in achieving ε-accurate solution.

Definition 2.1. (ϵ-accurate solution and IFO complexity)
The ϵ-accurate solution of a stochastic algorithm is an output
x for which the expected gradient norm does not exceed ε.
i.e., E [∥ grad f(x)∥] ⩽ ε. For problem (1), an Incremental
first-order oracle (IFO) takes an index i ∈ {1, . . . , n} and a
point x, and returns the pair (fi(x), grad fi(x) ∈ TxM).

The IFO complexity effectively captures the overall compu-
tational cost of a first-order Riemannian algorithm, as the
evaluations of the objective function and gradient typically
dominate the per-iteration computations.

2.1. Assumptions

We present the following assumptions, which are necessary
for the convergence analysis. Note that these assumptions
are standard in the analysis of optimization algorithms in-
volving retraction and vector transport (Kasai et al., 2018b;
Sato et al., 2019; Han & Gao, 2021b; Zhou et al., 2021).

Assumption 2.2. (1) Iterate sequences generated by algo-
rithms stay continuously in a neighbourhood X ⊂ M
around an optimal solution x∗. Additionally, X is a
totally retractive neighbourhood of x∗ where retraction
R is a diffeomorphism.

(2) Assume each loss fi and the objective function f are
twice continuously differentiable. Norms of Rieman-
nian gradient. That is ∥ grad fi(x)∥ ⩽ G for all
x ∈ X , where G > 0.

(3) Stochastic gradient grad fi(x) is unbiased
and has bounded variance. That is, for
all x ∈ X , E [grad fi(x)] = grad f(x),
E
[
∥grad fi(x)− grad f(x)∥2

]
⩽ σ2.

(4) The objective function f is retraction L-smooth with
respect to retraction R. That is, for all x, y = Rx(ξ) ∈
X , there exists a constant L > 0 such that f(y) ⩽
f(x) + ⟨grad f(x), ξ⟩+ L

2 ∥ξ∥
2.

(5) The function f is average retraction Ll-Lipschitz. That
is, there exists a constant Ll > 0 such that for all
x, y ∈ X , E

[∥∥grad fi(x)−P x
y grad fi(y)

∥∥]⩽Ll∥ξ∥
, where P x

y is the parallel transport operator.
(6) Difference between vector transport T and parallel

transport P associated with the same retraction R is
bounded. That is, for all x, y = Rx(ξ) ∈ X and
u ∈ TxM, there exists a constant θ ≥ 0 , such that
∥T y

x u− P y
xu∥ ⩽ θ∥ξ∥∥u∥.

The following assumptions are also standard (Sato et al.,
2019; Zhou et al., 2021; Han & Gao, 2021b).

Assumption 2.3. (1) The neighbourhood X is also a to-
tally normal neighbourhood of x∗ where exponential
map is a diffeomorphism.

(2) There exists µ, ν, δµ,ν > 0 where for all x, y =
Rx(ξ) ∈ X with ∥ξ∥ ⩽ δµ,v, we have ∥ξ∥ ⩽ µd(x, y)
and d(x, y) ⩽ ν∥ξ∥.

Notations. For notation simplicity, we omit the subscripts
for norm and inner product. Define ∆s

k = vsk − grad f(xs
k),

∆k = vk − grad f(xk), and ∆̃0 = E [f (x̃0)] − f(x∗).
Denote [n] = {1, . . . , n}, L̃ = Ll + θG. ∇fi(x) and
grad fi(x) represent stochastic gradient in Euclidean space
and stochastic Riemannian gradient of fi(x), respectively.
It holds that E [grad fi(x)] = grad f(x). grad fB(x) =
1
|B|
∑

i∈B grad fi(x) is a mini-batch Riemannian stochastic
gradient on TxM. We use f(n) = O(g(n)) to represent the
existence of constants c and N , such that |f(n)| ⩽ c|g(n)|
always holds for all n ≥ N . We denote Õ(·) to further
hide poly-logarithmic factors and use f(n) = Θ(g(n))
to represent the existence of c1, c2, and N , such that
c1|g(n)| ⩽ |f(n)| ⩽ c2|g(n)| holds for all n ≥ N .

3. Stochastic Recursive Variance Reduced
Gradient Algorithm

Recursive momentum, as proposed by Cutkosky & Orabona
(2019), serves to achieve variance reduction and can es-
sentially be regarded as a specific case of the Hybrid-SGD
(Tran-Dinh et al., 2022) algorithm. Hybrid-SGD is derived
from the combination of SARAH-type estimator and SGD.

vk =

STORM︷ ︸︸ ︷
(1− β) (vk−1 −∇fik(xk−1)) +∇fik(xk)

≈
Hybrid - SGD︷ ︸︸ ︷

(1−β) (vk−1+∇fik(xk)−∇fik(xk−1))︸ ︷︷ ︸
SARAH-type estimator

+β∇fjk(xk) .

The first row represents the STORM estimator, while the
second row corresponds to the Hybrid-SGD. When ik = jk,
then Hybrid-SGD reduce to STORM estimator. We propose
a Riemannian extension of Hybrid-SGD, called R-Hybrid-
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SGD, as outlined below,

vk = (1− β)T xk
xk−1

(vk−1 − grad fjk(xk−1))

+ β grad fik(xk) + (1− β) grad fjk(xk).
(2)

When ik = jk, we get R-SRM (Han & Gao, 2021a). In-
spired by hybrid estimator, we propose stochastic recursive
variance reduced gradient (SRVRG) algorithm, which inte-
grates the SVRG-type estimator with SARAH. In the s-th
outer loop,

vsk = (1−β)vsk−1+βus
k+(1−β)

(
∇fik(x

s
k)−∇fik(x

s
k−1)

)
,

(3)
where us

k = ∇fjk(x
s
k) −∇fjk(x̃s−1) +∇f(x̃s−1). x̃s−1

represents the point at which the true gradient is calculated
in the outer loop of SVRG algorithm. Note that if we choose
ik = jk, SRVRG reduces to SVRRM (Liao et al., 2024) or
SSVR-FS (Jiang et al., 2024) algorithm. The primary advan-
tage of SRVRG lies in its ability to select a larger parameter
β when us

k is an SVRG-type estimator, which facilitates a
more rapid reduction in the variance of vsk. By extending it
to Riemannian manifolds, we obtain Riemannian SRVRG
(R-SRVRG). The key step of R-SRVRG is similar to (3)
except the vector transport T .

vsk = (1− β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
+ β

(
grad fJk

(xs
k)− T xs

k
xs
0
(grad fJk

(xs
0)− vs0)

)
+ (1− β) grad fIk

(xs
k),

(4)

where xs
0 = x̃s−1, v0 = grad fB(x

s
0) and |B| = b,

|I| = |J | = b′. Our theoretical results (Theorem 5.3 and
Corollary 5.4) show that the IFO complexity of R-SRVRG
matches the lower-bound complexity (Zhou & Gu, 2019;
Arjevani et al., 2023). Additionally, experimental results
indicate that R-SRVRG significantly outperforms R-Hybrid-
SGD. Setting Ik = Jk enables the derivation of the Rie-
mannian SVRRM (R-SVRRM) algorithm,

vsk = (1− β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
+ β

(
grad fIk

(xs
k)− T xs

k
xs
0
(grad fIk

(xs
0)− vs0)

)
+ (1− β) grad fIk

(xs
k).

(5)

The specific algorithms are provided in the Appendix A.

4. Stochastic Recursive Variance Reduced
Gradient Framework for Riemannian
Non-convex Optimization

In this section, we first introduce the Stochastic Recursive
Gradient Estimator (SRGE) and then propose a Stochastic
Recursive Variance Reduced Gradient framework (SER-
ENA) for Riemannian non-convex optimization, which ex-

tends SRGE to the Riemannian spaces. Notably, our frame-
work also encompasses several existing Riemannian opti-
mization methods, such as R-SGD, R-SVRG (Zhang et al.,
2016; Sato et al., 2019), and R-SRG (Kasai et al., 2018b).

4.1. Stochastic Recursive Gradient Estimator

Motivated by hybrid stochastic estimator (Tran-Dinh et al.,
2022), we introduce the stochastic recursive gradient esti-
mator (SRGE) as follows,

vk = (1− β)vk−1 + βuk + (1− β) (wk − wk−1) , (6)

where E [uk] = ∇f (xk), E [wk − wk−1] = ∇f (xk) −
∇f(xk−1). Let us focus on the “error in vk of (6)” which
we denote as ∆k = vk −∇f(xk). It is easy to see that

E [∥∆k∥] ⩽ (1− β)E [∥∆k−1∥] + βE [∥uk −∇f (xk)∥]
+(1− β)E [∥(wk − wk−1 − (∇f (xk)−∇f (xk−1)))∥] .

The second term on the right-hand side is expected to be
controlled by a sufficiently small β. Under the bounded vari-
ance assumption (Assumption 2.2 (3)), it is possible to estab-
lish a non-increasing upper bound for E[∥uk −∇f(xk)∥2].
For instance, if uk is a variance reduced estimator, then
E[∥uk − ∇f(xk)∥2] → 0 when k → ∞ (Gower et al.,
2020). The third term is of order O(∥xk − xk−1∥) under
the assumption of L-smooth, which can be controlled by a
small step size η. Consequently, the variance is expected to
decrease. On the other hand, the bias of vk is smaller than
vk−1 when β < 1 as Bias [vk] = ∥E [vk −∇f (xk)]∥ <
(1 − β) ∥vk−1 −∇f (xk−1)∥. Therefore, we can get im-
proved performance by balancing bias and variance of
SRGE. Indeed, if β = 0 is chosen in (6) and v0 repre-

Table 1. Stochastic Recursive Gradient Estimator. Given β, the
second and third columns represent the types of stochastic gradi-
ent estimators for u and w, respectively, while the last column
indicates the corresponding algorithms.

β uk wk, wk−1 Methods
β = 0 — SGD SARAH-type

β = 1
SGD — SGD

SVRG-type — SVRG-type

β ∈ (0, 1)

SGD SGD STORM
SGD SARAH Hybrid-SGD

SVRG SGD SVRRM
SVRG SARAH SRVRG

sents the true gradient, then SRGE reduce to SARAH-type
estimator. When β = 1, SRGE can specifically configure
uk to correspond to either SGD or SVRG-type estimator.
Furthermore, if β ∈ (0, 1), SRGE can cover several other
algorithms, including Hybrid-SGD, STORM, SVRRM, and
our proposed SRVRG, see Table 1 for details.
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4.2. Riemannian Stochastic Recursive Variance
Reduced Gradient Methods

By extending SRGE to Rimannian manifold M, we estab-
lish a unified stochastic recursive variance reduced gradi-
ent framework (SERENA) for Riemannian stochastic al-
gorithms as presented in Algorithm 1. In the s-th outer
loop,

vsk = (1− β) T xs
k

xs
k−1

(
vsk−1 − ws

k−1

)
+ βus

k + (1− β)ws
k,

(7)
when us

k is SVRG-type estimator, us
k = grad fIk

(xs
k) −

T xs
k

xs
0
(grad fIk

(xs
0)− vs0), when us

k is SG estimator, us
k =

grad fIk
(xs

k). Vector transport is employed to integrate
gradient information in (7), as the Riemannian stochastic
gradient of xs

k, xs
k−1, and xs

0 are defined on disjoint tangent
spaces. The SERENA framework includes various Rieman-
nian stochastic optimization algorithms, among which are
the algorithms we proposed. Several of these are listed be-
low. For single-loop algorithms, such as R-Hybrid-SGD
and R-SRM, as well as loopless algorithms like R-PAGE,
S = 1 in Algorithm 1. And we omit the superscript for
these algorithms to simplify notation, as in Equations (8)
and (10).

Algorithm 1 Stochastic rEcursive vaRiance reducEd gradi-
eNt frAmework (SERENA)
Input: Step size η, outer loop size S, in-
ner loop size m, batch size b, b′, initial point
x̃0.

1: for s = 1, 2, . . . , S do
2: xs

0 = x̃s−1.
3: Sample B uniformly at random from [n] of size b.
4: vs0 = grad fB (xs

0).
5: xs

1 = Rxs
0
(−ηvs0).

6: for k = 1, . . . ,m− 1 do
7: Sample Ik and Jk uniformly at random from [n]

with |Ik| = |Jk| = b′.
8: Calculate SERENA estimator vsk.
9: xs

k+1 = Rxs
k
(−ηvsk).

10: end for
11: x̃s = xs

m

12: end for
13: Output: xζ uniformly selected at random from

{xs
k} , k ∈ [m− 1], s ∈ [S].

• R-SRM (Han & Gao, 2021a) was proposed by extend-
ing STORM to Rimannian manifold.

vk = (1− β)T xk
xk−1

(vk−1 − grad fIk
(xk−1))

+ grad fIk
(xk).

(8)

• Riemannian SVRG (R-SVRG) (Zhang et al., 2016;
Kasai et al., 2016; Han & Gao, 2021b) is captured

by setting β = 1 and choosing SVRG-type estima-
tor in (7). Furthermore, we can achieve Riemannian
AbaSVRG (Han & Gao, 2021b) by implementing batch
size adaptation in the outer loop.

vsk = grad fIk
(xs

k)−T xs
k

xs
0
(grad fIk

(xs
0)− vs0) , (9)

where |I| = b′.
• Riemannian probabilistic gradient estimator (R-PAGE)

was proposed by Demidovich et al. (2024) as an exten-
sion of the PAGE (Li et al., 2021) in Euclidean space,
where PAGE is a SARAH-type algorithm.

vk=

{
grad fB (xk) , with probability p

gradfI (xk)+T xk
xk−1

(vk−1−gradfI(xk−1)) , o
(10)

where |B| = b, |I| = b′ and “o” represents “other-
wise”.

5. Convergence Analysis for SERENA
We introduce a unified convergence theorem in this section.
All proofs can be found in the Appendix B. To simplify the
notation, we denote L = L̃2µ2ν2 in this section.

Theorem 5.1. Suppose that Assumptions 2.2 and 2.3 hold,
Let K = Sm denote the number of total iterations, if
there exist M1,M2, γk,i, λk > 0 such that the Rieman-
nian stochastic estimator vsk (7) in SERENA satisfies

E
[
∥∆s

k∥
2
]
⩽ M1η

2
k−1∑
i=0

γk,iE
[
∥vsi ∥

2
]
+M2λkσ

2. (11)

Then we have E
[
∥grad f (xζ)∥2

]
⩽ φ∆̃0

ϕK + φηM2Λ̂σ2

2ϕK +

2M2Λ̂σ2

K , where φ = 2
(
M1η

2Γ̂ + 1
)

, ϕ =

η
(

1−ηL−η2M1Γ̂
2

)
, Γ̂ = max {Γs

k} for all k ∈ [m−1], s ∈

[S], Γs
k =

m−1∑
k=0

γk,0, and Λ̂ =
S∑

s=1

m−1∑
k=0

λk.

Theorem 5.1 indicates that convergence results can be ob-
tained when the variance of (7) has an upper bound, specif-
ically when it satisfies (11). Next, we will present conver-
gence results for several specific algorithms.

5.1. Convergence for R-SRVRG and R-SVRRM

We first prove that the variance of estimator (4) and (5)
satisfy the inequality (11).

Lemma 5.2. Suppose that Assumptions 2.2 and 2.3 hold.
Then the variance of R-SRVRG estimator (4) has an up-
per bound as (11) with M1 = L̃2+β2Lm2

b′ , M2 =
1{b<n}

b ,
γk,i = (1− β)2(k−i−1), and λk = (1− β)2(k−1) + β.
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Stochastic Method Riemannian Stochastic Method Finite-sum Online

SGD
Riemannian SGD

(Hosseini & Sra, 2020) O
(
ε−4
)

O
(
ε−4
)

SVRG-type

Riemannian SVRG
(Han & Gao, 2021b) O

(
n+ n2/3ε−2

)
O
(
ε−10/3

)
Riemannian AbaSVRG

(Han & Gao, 2021b) O
(
n2/3ε−2

)
O
(
ε−10/3

)
Riemannian SVRG O(n2/3ε−2) O(ε−10/3)

SARAH-type

Riemannian SRG
(Kasai et al., 2018b) O

(
n+ ε−4

)
—

Riemannian AbaSRG
(Han & Gao, 2021b) O

(
n1/2ε−2

)
O
(
ε−3
)

Riemannian SPIDER
(Zhou et al., 2021) O

(
min{n+ n1/2ε−2, ε−3}

)
O
(
ε−3
)

Riemannian PAGE
(Demidovich et al., 2024) — —

Riemannian PAGE O
(
n + n1/2ε−2

)
O
(
ε−3

)
STORM

Riemannian SRM
(Han & Gao, 2021a) — Õ

(
ε−3
)

Riemannian SRM O
(
min{n, ε−1} + ε−3

)
O
(
ε−3

)
Hybrid-SGD Riemannian Hybrid-SGD∗ O

(
min{n, ε−1} + ε−3

)
O
(
ε−3

)
SVRRM Riemannian SVRRM∗ O

(
min{n1/2ε−2, ε−3}

)
O
(
ε−3

)
SRVRG Riemannian SRVRG∗ O

(
min{n1/2ε−2, ε−3}

)
O
(
ε−3

)
Table 2. The IFO complexity of Riemannian stochastic methods for non-convex optimization with retraction and vector transport. The
results presented in this paper are highlighted in bold.

The variance of the estimator for R-SVRRM has a simi-
lar upper bound with M1 = 2L̃2+2β2Lm2

b′ , M2 =
1{b<n}

b ,
γk,i = (1− β)2(k−i−1), and λk = (1− β)2(k−1) + 2β.

Consequently, we have the following convergence results
for R-SRVRG and R-SVRRM.

Theorem 5.3. Suppose that Assumptions 2.2 and 2.3 hold.
Then the output xζ after running K = Sm iterations of

R-SRVRG algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽

φ1∆̃0

ϕ1K
+

(φ1η+4ϕ1)1{b<n}σ
2

2ϕ1Kb

(
1
β +Kβ

)
, where

φ1 =
2η2(L̃2+β2Lm2)

βb′ + 2, ϕ1 = η(1−ηL)
2 −

η3(L̃2+β2Lm2)
2βb′ . Similarly, the output xζ of R-

SVRRM algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽

φ2∆̃0

ϕ2K
+

(φ2η+4ϕ2)1{b<n}σ
2

2ϕ2Kb

(
1
β + 2Kβ

)
, where φ2 =

4η2(L̃2+β2Lm2)
βb′ + 2, ϕ2 = η(1−ηL)

2 − 2η3(L̃2+β2Lm2)
2βb′ .

Corollary 5.4. Suppose that Assumptions 2.2 and 2.3
hold. Set β = m−1 for both R-SRVRG and R-SVRRM
algorithms. Denote η = min{ 1

2L ,
√
b′

2L̃
√
m
√

1+µ2ν2
} for R-

SRVRG, and η = min{ 1
2L ,

√
b′

4L̃
√
m
√

1+µ2ν2
} for R-SVRRM.

Choose b = min
{
n, σ2ε−2

}
and

√
β
b′ = max

{
1√
n
, ε
}

for both R-SRVRG and R-SVRRM in finite-sum case. While

under online setting, we set b = Θ
(
ε−2
)
,
√

β
b′ = ε. Then

S =

{
Θ
(
max

{
n−1/2ε−2, ε−1

})
, (finite - sum)

Θ
(
ε−1
)
, online

The IFO complexity of Riemannian SRVRG or Riemannian
SVRRM to obtain ε-accurate solution isO

(
min{n1/2ε−2, ε−3}

)
, (finite-sum)

O
(
ε−3
)
, (online)

Remark 5.5. We establish an O
(
min{n1/2ε−2, ε−3}

)
IFO

complexity for non-convex finite-sum problems, which is
not worse than O

(
n1/2ε−2

)
. Notably, our complexity is

superior in the regime n > O(ε−2), which is significant
for large-scale machine learning applications. In the online
setting, our result achieves the best-known complexity of
O
(
ε−3
)

(Li et al., 2021; Arjevani et al., 2023).
Remark 5.6. Corollary 5.4 indicates that if β and b′ satisfy√

β
b′ = max

{
1√
n
, ε
}

(finite-sum case) or
√

β
b′ = ε (online

case), our proposed algorithm can achieve optimal complex-
ity. This highlights the advantages of our algorithm in terms
of parameter selection.
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5.2. Convergence for R-Hybrid-SGD

Lemma 5.7. Suppose that Assumptions 2.2 and 2.3 hold.
Choose v0 = grad fB0

(x0), |B0| = b0, then the variance of
the R-Hybrid-SGD estimator is bounded above by inequality
(11), where M1 = L̃2, M2 = 1, γk,i = (1− β)2(k−i), and
λk = (1− β)2(k−1) 1{b0<n}

b0
+ β.

Building on Lemma 5.7 and Theorem 5.1, we obtain the
following convergence result for R-Hybrid-SGD.
Theorem 5.8. Suppose that Assumptions 2.2 and 2.3 hold.
Then the output xζ after running K iterations of Rieman-

nian Hybrid-SGD algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽

φ3∆̃0

ϕ3K
+ (φ3η+4ϕ3)σ

2

2ϕ3K

(
1{b0<n}

b0β
+Kβ

)
, where φ3 =

2
(

L̃2η2

β + 1
)

and ϕ3 = η
(

1−ηL
2 − η2L̃2

2β

)
.

Corollary 5.9. Suppose that Assumptions 2.2 and 2.3 hold.
Set β = K−2/3, η = min

{
1
2L ,

√
β

2L̃

}
. If we choose b0 =

min{n,K1/3} under finite-sum case and b0 = K1/3 in
online setting. Then the IFO complexity of Riemannian
Hybrid-SGD to obtain ε-accurate solution is{

O
(
min{n, ε−1}+ ε−3

)
, (finite-sum)

O
(
ε−3
)
, (online)

5.3. Convergence for Other Riemannian Algorithms

Convergence Analysis for R-SRM
Theorem 5.10. Suppose that Assumptions 2.2 and 2.3
hold. Then the output xζ after running K iterations of

R-SRM algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽ φ4∆̃0

ϕ4K
+

(φ4η+4ϕ4)σ
2

2ϕ4K

(
1

b0β
+ 2Kβ

)
, where φ4 = 2

(
2L̃2η2

β + 1
)

and ϕ4 = η
(

1−ηL
2 − η2L̃2

β

)
.

Corollary 5.11. Suppose that Assumptions 2.2 and 2.3 hold.
Set β = K−2/3, η = min

{
1
2L ,

√
β

2
√
2L̃

}
. If we choose b0 =

min{n,K1/3} under finite-sum case and b0 = K1/3 in
online setting. Then the IFO complexity of Riemannian
Hybrid-SGD to obtain ε-accurate solution is{

O
(
min{n, ε−1}+ ε−3

)
, (finite-sum)

O
(
ε−3
)
, (online)

Remark 5.12. Although our proof requires that v0 =
grad fB0(x0) be a batch gradient with a sufficiently large
batch size, the complexity can be enhanced from Õ

(
ε−3
)

(Han & Gao, 2021a) to O
(
ε−3
)

in the online setting.

Convergence Analysis for R-SVRG
Theorem 5.13. Suppose that Assumptions 2.2 and 2.3
hold. Then the output xζ after running K = Sm itera-

tions of R-SVRG algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽

φ5∆̃0

ϕ5K
+

(φ5η+4ϕ5)1{b<n}σ
2

2ϕ5b
, where φ5 = 2

(
η2m2L

b′ + 1
)

,

ϕ5 = η
(

1−ηL
2 − η2m2L

2b′

)
.

Corollary 5.14. Suppose that Assumptions 2.2 and 2.3 hold.
Set m =

√
b′ and η = min

{
1
2L ,

1
2L̃µν

}
. Choose b = n,

b′ = n2/3 in finite-sum setting and b = Θ
(
ε−2
)
, b′ =

Θ
(
ε−4/3

)
under online case, then the IFO complexity of

R-SVRG to obtain ε-accurate solution is
O
(
n2/3ε−2

)
, (finite-sum)

O
(
ε−10/3

)
, (online)

Remark 5.15. The IFO complexity result of the R-SVRG
that we present in Theorem 5.13 matches the optimal com-
plexity of the existing SVRG-type algorithms (Han & Gao,
2021b; Li et al., 2021).

Convergence Analysis for R-PAGE
Theorem 5.16. Suppose that Assumptions 2.2 and 2.3
hold. Then the output xζ after running K iterations of

R-PAGE algorithm satisfies E
[
∥grad f (xζ)∥2

]
⩽ φ6∆̃0

ϕ6K
+

φ6η+4ϕ6

2ϕ6
· 1{b<n}σ

2

b , where φ6 = 2
(

L̃2η2

b′p + 1
)

and ϕ6 =

η
(

1−ηL
2 − L̃2η2

2b′p

)
.

Corollary 5.17. Suppose that Assumptions 2.2 and 2.3
hold. Set p = b′

b+b′ , b′ ⩽
√
b and η = min

{
1
2L ,

b′

2L̃
√
b+b′

}
.

Choose b = n in the finite-sum setting and b = 18σ2

ε2 under
online case. Then the IFO complexity of Riemannian PAGE
to obtain ε-accurate solution is{

O
(
n+

√
nε−2

)
, (finite-sum)

O
(
ε−2 + ε−3

)
, (online)

Remark 5.18. Although Demidovich et al. (2024) have pro-
posed R-PAGE, they only provided convergence results
under exponential map and parallel transport. To our knowl-
edge, this is the first theoretical result on R-PAGE under
retraction and vector transport in the non-convex setting.
Furthermore, this result is consistent with the lower bounds
for both finite-sum and online problems.

6. Experiments
In this section, we compare the proposed R-SRVRG, R-
SVRRM, and R-Hybrid-SGD algorithms (dashed line) with
several Riemannian algorithms (solid line) across different
tasks, including R-SD, R-CG (Absil et al., 2008), R-SGD, R-
SRM, R-SPIDER, R-AbaSRG, R-AbaSVRG, and R-PAGE.
For our proposed algorithms and VR-based methods, a fixed
step size is considered. We established an inner loop size
m =

√
n for both our methods and the VR methods, with

7
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Figure 1. The comparison of the performance of our proposed algorithm (dashed line) with other methods (solid line) across different
tasks and datasets.

a mini-batch size b′ =
√
n for the VR methods and b′ =

0.5
√
n for our methods. We selected the same parameters

for R-SRVRG and R-SVRRM. Similarly, we chose identical
parameters for R-SRM and R-Hybrid-SGD for comparison.
Except for R-PAGE, the parameters of the other algorithms
are referenced from (Han & Gao, 2021b). In Figure 1, the
x-axis represents IFO (n), while the y-axis represents the
optimality gap (which is precalculated) or test mean square
error (MSE). All experiments are implemented in Matlab
based on the code from the Man-Opt package (Boumal
et al., 2014) and (Han & Gao, 2021b) 1 on a i7-1075H
2.6GHz CPU processor. The Appendix C presents more
experimental results and details.

We consider PCA and LRMC problems on Grassmann
manifold, and Riemannian centroid (RC) computation on
symmetric positive definite (SPD) manifold. The experi-
mental results demonstrate that our proposed R-SRVRG
and R-SVRRM algorithms perform superiorly across mul-
tiple tasks. As an improvement over R-Hybrid-SGD, our
R-SRVRG shows significantly better performance. Addi-
tionally, the selection of the parameter β and the constant
step size η for the proposed R-SRVRG, R-SVRRM, and
R-Hybrid-SGD algorithms demonstrate robustness across
various scenarios (see Appendix C).

PCA on Grassmann Manifold The PCA problem in-

1https://github.com/andyjm3/R-AbaVR

volves minimizing the reconstruction error between the
projected data points and the original data over the set
of orthogonal projection matrices U ∈ St(r, d), i.e.,
minU∈St(r,d)

1
n

∑n
i=1 ∥xi − UU⊤xi∥22. In fact, PCA is

equivalent to the following problem on the Grassmann man-
ifold, minU∈Gr(r,d) − 1

n

∑n
i=1 x

⊤
i UU⊤xi. Figures 1 (a)

and (c) illustrate the performance of various algorithms
in addressing the PCA problem on the MNIST dataset
(LeCun et al., 1998) with (n, d, r) = (60000, 784, 5) and
ijcnn1 dataset from LibSVM (Chang & Lin, 2011) with
(n, d, r) = (49990, 22, 5), respectively. It can be observed
that Our R-SRVRG and R-SVRRM algorithms outperform
alternative methods, while the R-Hybrid-SGD algorithm
demonstrates superior performance compared to the R-SRM
algorithm.

LRMC on Grassmann Manifold Given a matrix A ∈
Rd×n with missing entries, the rank-r matrix comple-
tion problem is to minU,V ∥PΩ(A)− PΩ(UV)∥2, with
U ∈ Rd×r,V ∈ Rr×n, where Ω is the set of in-
dices for which we know the entries in X, and the op-
erator PΩ acts as PΩ (Xij) = Xij if (i, j) ∈ Ω and
PΩ (Xij) = 0 otherwise. Since the factorization into U
and V is not unique and depends only on the column
space of U, the problem is defined on the Grassmann
manifold Gr(r, d). Partitioning a1, . . . ,an, it is equivalent
to minU∈Gr(r,d),vi∈Rr

1
n

∑n
i=1 ∥PΩi (ai)− PΩi (Uvi)∥2,

where PΩi is the sampling operator for the i-th column.

8
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Given U,vi in this admits a closed form solution. Figures
1 (b) and (e) show that our proposed algorithms R-SRVRG
and R-SVRRM are slightly better than that of all other algo-
rithms on datasets Movielens-1M (Harper & Konstan, 2015)
and Jester (Goldberg et al., 2001).

RC on SPD Manifold Given n points {X1, . . . ,Xn} ∈
Sd
++. Let ∥ · ∥F denote the Frobenius norm, and log(·)

represent the principal matrix logarithm. Then the Rieman-
nian centroid is derived from the solution to the problem
minC∈Sd

++

1
n

∑n
i=1

∥∥log (C−1/2XiC
−1/2

)∥∥2
F

. We com-
pare algorithms on Extended Yale B dataset (Wright et al.,
2008) and Kylberg dataset (Kylberg, 2011). From Figure 1
(c) and (f), we observe that R-SRVRG and R-SVRRM still
perform better compared to the other algorithms.

7. Conclusion
This paper first combines SVRG-type estimator with
SARAH-type one to propose the SRVRG estimator and
extend it to Riemannian manifolds. Subsequently, we in-
troduce a unified variance reduced estimator, SRGE, and
based on this, propose a unified framework for Riemannian
stochastic variance reduction algorithms, named SERENA.
Additionally, we provide a unified theoretical analysis for
Riemannian stochastic variance reduction algorithms under
retraction and vector transport, which is more general and ef-
ficient than using the exponential map and parallel transport.
Theoretical results indicate that the IFO complexity of our
proposed R-SRVRG, R-SVRRM, and R-Hybrid-SGD match
the lower bound of complexity for non-convex stochastic
optimization. Experimental results also demonstrate the
superiority of our proposed algorithms. However, our cur-
rent framework is limited to smooth problems. Therefore,
future work will involve extending this framework and the-
oretical analysis to address non-smooth optimization chal-
lenges on Riemannian manifolds. Furthermore, Riemannian
second-order methods have garnered increasing attention,
such as the RNGD (Hu et al., 2024), R-SQN-VR (Kasai
et al., 2018a), and R-SVRC (Zhang & Davanloo Tajbakhsh,
2023) algorithms. We will explore the integration of this
framework with second-order information to enhance the
convergence rate.

Acknowledgments
This paper was supported in part by the National
Key R&D Program of China (2022YFA1008300),
the National Natural Science Foundation of China
(12471308, 12101334, 62472415), the Guangdong Provin-
cial Science and Technology Plan (2022B1515130009,
2025A1515010103), the Excellent Young Scholars of Shen-
zhen (RCYX20231211090247060), and the General Re-
search Fund of Research Grants Council (15304721).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. Princeton University
Press, 2008.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro,
N., and Woodworth, B. Lower bounds for non-convex
stochastic optimization. Mathematical Programming, 199
(1):165–214, 2023.

Bonnabel, S. Stochastic gradient descent on riemannian
manifolds. IEEE Transactions on Automatic Control, 58
(9):2217–2229, 2013.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Boumal, N. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023.

Boumal, N. and Absil, P.-a. Rtrmc: A riemannian trust-
region method for low-rank matrix completion. In Ad-
vances in Neural Information Processing Systems, vol-
ume 24. Curran Associates, Inc., 2011.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R.
Manopt, a matlab toolbox for optimization on manifolds.
Journal of Machine Learning Research, 15(1):1455–1459,
2014.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2(3):1–27, 2011.

Cutkosky, A. and Orabona, F. Momentum-based variance
reduction in non-convex sgd. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Demidovich, Y., Malinovsky, G., and Richtárik, P. Stream-
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A. Specific Algorithms
Here, we list the algorithms proposed in this paper, including R-SRVRG, R-SVRRM, and R-Hybrid-SGD.

Algorithm 2 Riemannian SRVRG
Input: Step size η, outer loop size S, inner loop size m, batch size b, b′, initial point x̃0.

1: for s = 1, 2, . . . , S do
2: xs

0 = x̃s−1.
3: Sample B uniformly at random from [n] of size b and calculate vs0 = grad fB (xs

0).
4: xs

1 = Rxs
0
(−ηvs0).

5: for k = 1, . . . ,m− 1 do
6: Sample Ik and Jk independently from [n].
7: Calculate vsk = (1 − β) grad fIk

(xs
k) + β

(
grad fJk

(xs
k)− T xs

k
xs
0
(grad fJk

(xs
0)− vs0)

)
+ (1 −

β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
8: xs

k+1 = Rxs
k
(−ηvsk).

9: end for
10: x̃s = xs

m

11: end for
12: Output: xζ uniformly selected at random from {xs

k} , k ∈ [m− 1], s ∈ [S].

Algorithm 3 Riemannian SVRRM
Input: Step size η, outer loop size S, inner loop size m, batch size b, b′, initial point x̃0.

1: for s = 1, 2, . . . , S do
2: xs

0 = x̃s−1.
3: Sample B uniformly at random from [n] of size b and calculate vs0 = grad fB (xs

0).
4: xs

1 = Rxs
0
(−ηvs0).

5: for k = 1, . . . ,m− 1 do
6: Sample Ik randomly from [n].
7: Calculate vsk = (1 − β) grad fIk

(xs
k) + β

(
grad fIk

(xs
k)− T xs

k
xs
0
(grad fIk

(xs
0)− vs0)

)
+ (1 −

β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
8: xs

k+1 = Rxs
k
(−ηvsk).

9: end for
10: x̃s = xs

m

11: end for
12: Output: xζ uniformly selected at random from {xs

k} , k ∈ [m− 1], s ∈ [S].

Algorithm 4 Riemannian Hybrid-SGD
Input: Step size η, mini-batch size b0, the initial point x̃0,β.

1: Sample B uniformly at random from [n] of size b0.
2: v0 = grad fB (x0).
3: x1 = Rx0

(−ηv0).
4: for k = 1, . . . ,K − 1 do
5: Sample ik and jk independently from [n].
6: Calculate vk = β grad fik(xk) + (1− β) grad fjk(xk) + (1− β)T xk

xk−1
(vk−1 − grad fjk(xk−1))

7: xk+1 = Rxk
(−ηvk)

8: end for
9: Output: xζ uniformly selected at random from {xk}Kk=0.
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B. Missing Proofs
B.1. Useful Lemma

Lemma B.1. (Retraction Lipschitzness with vector transport (Lemma A.2 in (Han & Gao, 2021b))). Suppose that the
norm of gradient is bounded by G (Assumption 2.2 (2)), f is average retraction Ll-Lipschitz (Assumption 2.2 (5)), and the
difference between parallel transport P x

y and vector transport T x
y under same retraction is bounded (Assumption 2.2 (6)).

Then for all x, y = Rx(ξ) ∈ X ,
E
[∥∥grad fi(x)− T x

y grad fi(y)
∥∥] ⩽ L̃∥ξ∥,

where L̃ = (Ll + θG).

Lemma B.2. (Lemma 1 in (Han & Gao, 2021b)) Suppose Assumptions 2.2 and 2.3 hold and consider the estimator
vsk = grad fB′(xs

k)− T xs
k

xs
0
(grad fB′(xs

0)− vs0), where |B′| = b′ and vs0 = grad fB(x
s
0), |B| = b. We have

E
[
∥vsk − grad f (xs

k)∥
2
]
⩽

k

b′
L̃2µ2ν2η2

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 1{b<n}

σ2

b
,

where L̃ = Ll + θG.

B.2. The proof in Section 5

B.2.1. THE PROOF OF THEOREM 5.1

Proof. In the k-th inner loop of s-th outer loop, by retraction L-smooth in Assumption 2.2 (4) , we have

f
(
xs
k+1

)
⩽ f (xs

k)− ⟨grad f (xs
k) , ηv

s
k⟩+

η2L

2
∥vsk∥

2

= f (xs
k)− η∥vsk∥

2
+ η ⟨vsk − grad f (xs

k) , v
s
k⟩+

η2L

2
∥vsk∥

2

⩽ f (xs
k)− η

(
1− ηL

2

)
∥vsk∥

2
+

η

2
∥vsk∥

2
+

η

2
∥vsk − grad f (xs

k)∥
2

= f (xs
k)− η

(
1− ηL

2

)
∥vsk∥

2
+

η

2
∥vsk − grad f (xs

k)∥
2
,

where the second inequality is due to the fact 2 ⟨a, b⟩ ⩽ ∥a∥2 + ∥b∥2 for any vector a, b ∈ Rd. Taking expectation of the
above inequality and summing over k = 0, . . . ,m− 1 obtain

E [f (xs
m)] ⩽ E [f (xs

0)]− η

(
1− ηL

2

)m−1∑
k=0

E
[
∥vsk∥

2
]
+

η

2

m−1∑
k=0

E
[
∥vsk − grad f (xs

k)∥
2
]

⩽ E [f (xs
0)]− η

(
1− ηL

2

)m−1∑
k=0

E
[
∥vsk∥

2
]
+

η3M1

2

m−1∑
k=0

k−1∑
i=0

γk,iE
[
∥vsi ∥

2
]
+

ηM2

2

m−1∑
k=0

λkσ
2

⩽ E [f (xs
0)]− η

(
1− ηL

2

)m−1∑
k=0

E
[
∥vsk∥

2
]
+

η3M1

2

m−1∑
k=0

Γs
kE
[
∥vsk∥

2
]
+

ηM2

2

m−1∑
k=0

λkσ
2,

where the second inequality follows from (11) and the last inequality is due to the definition of Γs
k =

m−1∑
k=0

γk,0 and the

fact
m−1∑
k=0

γk,0 ⩾
k−1∑
i=0

γk,i for any i ∈ [k], k ∈ [m − 1]. Telescoping this inequality over s from 1 to S and noting that

xs
m = x̃s = xs+1

0 , we have

E
[
f
(
xS
m

)]
⩽ E [f (x̃0)]− η

(
1− ηL

2

) S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]
+

η3M1

2

S∑
s=1

m−1∑
k=0

Γs
kE
[
∥vsk∥

2
]
+

ηM2

2

S∑
s=1

m−1∑
k=0

λkσ
2.
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By definition of Γ̂ and Λ̂, the following inequality is satisfied:

E
[
f
(
xS
m

)]
⩽ E [f (x̃0)]− η

(
1− ηL− η2M1Γ̂

2

)
S∑

s=1

m−1∑
k=0

E
[
∥vsk∥

2
]
+

ηM2Λ̂σ
2

2
.

Denote ϕ = η
(

1−ηL−η2M1Γ̂
2

)
and ∆̃0 = E [f (x̃0)]− f(x∗). Therefore,

S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]
⩽

∆̃0

ϕ
+

ηM2Λ̂σ
2

2ϕ
. (12)

Considering that xζ is chosen from {xs
k}s∈[S],k∈[m−1] uniformly at random, we obtain

SmE
[
∥grad f (xζ)∥2

]
=

S∑
s=1

m−1∑
k=0

E
[
∥grad f (xs

k)∥
2
]

⩽ 2

S∑
s=1

m−1∑
k=0

E
[
∥grad f (xs

k)− vsk∥
2
]
+ 2

S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]

⩽ 2

S∑
s=1

m−1∑
k=0

(
M1η

2
k∑

i=0

γk,iE
[
∥vsi ∥

2
]
+M2λkσ

2

)
+ 2

S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]

⩽ 2M1η
2Γ̂

S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]
+ 2M2Λ̂σ

2 + 2

S∑
s=1

m−1∑
k=0

E
[
∥vsk∥

2
]

= 2
(
M1η

2Γ̂ + 1
) S∑

s=1

m−1∑
k=0

E
[
∥vsk∥

2
]
+ 2M2Λ̂σ

2

⩽
φ∆̃0

ϕ
+

φηM2Λ̂σ
2

2ϕ
+ 2M2Λ̂σ

2,

where the second inequality utilizes the (11), by definition of Γ̂ and Λ̂, the third inequality holds. The last equality is due to
φ = 2

(
M1η

2Γ̂ + 1
)

, and the last inequality follows (12). Dividing both sides by K = Sm gives

E
[
∥grad f (xζ)∥2

]
⩽

φ∆̃0

ϕK
+

φηM2Λ̂σ
2

2ϕK
+

2M2Λ̂σ
2

K
.

This completes the proof.

B.2.2. THE PROOF OF RIEMANNIAN SRVRG AND RIEMANNIAN SVRRM METHODS

The proof of Lemma 5.2

Proof. Let us first denote δsk = grad fIk
(xs

k) − grad f(xs
k), ϑ

s
k = us

k − grad f (xs
k). Note that us

k = grad fJk
(xs

k) −
T xs

k
xs
0
(grad fJk

(xs
0)− vs0), Ik and Jk are independent, |I| = |J | = b′. Obviously, EIk

[δsk − T xs
k

xs
k−1

δsk−1] = 0 and
EJk

[ϑs
k] = 0. For Riemannian SRVRG (4), we have

∥∆s
k∥

2

=
∥∥∥(1− β) grad fIk

(xs
k) + βus

k + (1− β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
− grad f (xs

k)
∥∥∥2

=
∥∥∥(1− β)T xs

k
xs
k−1

∆s
k−1 − (1− β)T xs

k
xs
k−1

δsk−1 + (1− β)δsk + βϑs
k

∥∥∥2
= (1− β)2

∥∥∥T xs
k

xs
k−1

∆s
k−1

∥∥∥2 + (1− β)2
∥∥∥δsk − T xs

k
xs
k−1

δsk−1

∥∥∥2 + β2∥ϑs
k∥

2

+2(1− β)2
〈
T xs

k
xs
k−1

∆s
k−1, δ

s
k − T xs

k
xs
k−1

δsk−1

〉
+ 2(1− β)β

〈
T xs

k
xs
k−1

∆s
k−1, ϑ

s
k

〉
+ 2(1− β)β

〈
δsk − T xs

k
xs
k−1

δsk−1, ϑ
s
k

〉
.
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Taking the expectation w.r.t. Ik conditioned on Jk, we obtain

Eik

[
∥∆s

k∥
2
]
= (1− β)2

[∥∥∥T xs
k

xs
k−1

∆s
k−1

∥∥∥2]+ (1− β)2EIk

[∥∥∥δsk − T xs
k

xs
k−1

δsk−1

∥∥∥2]+ β2
[
∥ϑs

k∥
2
]

+ 2(1− β)β
〈
T xs

k
xs
k−1

∆s
k−1, ϑ

s
k

〉
.

Taking the expectation w.r.t. Jk and noting that E(Ik,Jk)[·] = EJk
[EIk

[·|Jk]], EJk
[ϑs

k] = 0, we have

E(Ik,Jk)

[
∥∆s

k∥
2
]
= (1− β)2

[∥∥∥T xs
k

xs
k−1

∆s
k−1

∥∥∥2]+ (1− β)2EIk

[∥∥∥δsk − T xs
k

xs
k−1

δsk−1

∥∥∥2]+ β2EJk

[
∥ϑs

k∥
2
]
.

Then taking the expectation over all the randomness and using the Lemma B.2, we obtain

E
[
∥∆s

k∥
2
]
= (1− β)2E

[∥∥∥T xs
k

xs
k−1

∆s
k−1

∥∥∥2]+ (1− β)2E
[∥∥∥δsk − T xs

k
xs
k−1

δsk−1

∥∥∥2]
+ β2

(
kLη2

b′

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 1{b<n}

σ2

b

)
.

Noting that

E
[∥∥∥δsk − T xs

k
xs
k−1

δsk−1

∥∥∥2] = E
[∥∥∥grad fIk

(xs
k)− T xs

k
xs
k−1

grad fIk
(xs

k−1)−
(
grad f (xs

k)− T xs
k

xs
k−1

grad f(xs
k−1)

)∥∥∥2] .
By using the fact E[∥x− E[x]∥2] ⩽ E[∥x∥2], we have

E
[
∥∆s

k∥
2
]
⩽ (1− β)2E

[∥∥∆s
k−1

∥∥2]+ (1− β)2

b′
E
[∥∥∥grad fik(xs

k)− T xs
k

xs
k−1

grad fik(x
s
k−1)

∥∥∥2]
+ β2

(
kLη2

b′

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 1{b<n}

σ2

b

)
.

By applying the Lemma B.1, we have

E
[
∥∆s

k∥
2
]
⩽ (1− β)2E

[∥∥∆s
k−1

∥∥2]+ (1− β)2

b′
L̃2η2E

[∥∥vsk−1

∥∥2]+ β2

(
kLη2

b′

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 1{b<n}

σ2

b

)
.

Recursively applying this inequality gives

E
[
∥∆s

k∥
2
]
⩽

L̃2η2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]
+

β2kLη2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]

+ (1− β)2k1{b<n}
σ2

b
+ β2

k−1∑
i=0

(1− β)
2(k−i−1)

1{b<n}
σ2

b

⩽
L̃2η2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]
+

β2m2Lη2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]

+
(
(1− β)2k + β

)
1{b<n}

σ2

b
.

For Riemannian SVRRM, by the difinition of vsk in (5), we have

E
[
∥vsk − grad f (xs

k)∥
2
]

= E
[∥∥∥(1− β) grad fIk

(xs
k) + βus

k + (1− β)T xs
k

xs
k−1

(
vsk−1 − grad fIk

(xs
k−1)

)
− grad f (xs

k)
∥∥∥2]
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= (1− β)2E
[∥∥∥T xs

k
xs
k−1

(
vsk−1 − grad f(xs

k−1)
)∥∥∥2]

+ E
[∥∥∥(1− β)

(
grad fIk

(xs
k)− grad f (xs

k)− T xs
k

xs
k−1

(
grad fIk

(xs
k−1)− grad f(xs

k−1)
))

+ β (us
k − grad f (xs

k))
∥∥∥2]

⩽ (1− β)2E
[∥∥vsk−1 − grad f

(
xs
k−1

)∥∥2]+ 2β2E
[
∥us

k − grad f (xs
k)∥

2
]

+ 2(1− β)2E
[∥∥∥grad fIk

(xs
k)− grad f (xs

k)− T xs
k

xs
k−1

(
grad fIk

(xs
k−1)− grad f(xs

k−1)
)∥∥∥2]

⩽ (1− β)2E
[∥∥vsk−1 − grad f

(
xs
k−1

)∥∥2]+ 2(1− β)2E
[∥∥∥grad fIk

(xs
k)− T xs

k
xs
k−1

grad fIk
(xs

k−1)
∥∥∥2]

+ 2β2E
[
∥us

k − grad f (xs
k)∥

2
]

⩽ (1− β)2E
[∥∥vsk−1 − grad f

(
xs
k−1

)∥∥2]+ 2(1− β)2L̃2η2

b′
E
[∥∥vsk−1

∥∥2]+ 2β2E
[
∥us

k − grad f (xs
k)∥

2
]

⩽ (1− β)2E
[∥∥vsk−1 − grad f

(
xs
k−1

)∥∥2]+ 2(1− β)2L̃2η2

b′
E
[∥∥vsk−1

∥∥2]+ 2kβ2Lη2

b′

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 2β2

1{b<n}
σ2

b
,

where the second equality holds due to the unbiasedness of grad fik(xk), grad fik(xk−1) and E[us
k] = grad f(xs

k). The
first inequality is due to the fact ∥a+ b∥2 ⩽ 2∥a∥2 + 2∥b∥2, the second inequality follows E[∥x− E[x]∥2] ⩽ E[∥x∥2]. By
using the Lemma B.1, we have the third inequality, the last is due to the Lemma B.2.

Recursively applying this inequality, we have

E
[
∥∆s

k∥
2
]
⩽

2L̃2η2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]
+

2β2m2Lη2

b′

k−1∑
i=0

(1− β)
2(k−i−1)E

[
∥vsi ∥

2
]

+
(
(1− β)2k + 2β

)
1{b<n}

σ2

b
.

The proof of Theorem 5.3 and Corollary 5.4

Proof. Given the similarities in the theoretical analysis of R-SRVRG and R-SVRRM, we will use R-SRVRG as an example
to present the proof. Note that M1 = L̃2+β2Lm2

b′ , M2 =
1{b<n}

b , γk,i = (1− β)2(k−i−1), and λk = (1− β)2k + β.
Therefore, we have

Γs
k =

m−1∑
k=0

γk,0 ⩽
m−1∑
k=0

(1− β)
2(k−1) ⩽

1

1− (1− β)
2 ⩽

1

β
= Γ̂,

S∑
s=1

m−1∑
k=0

λk =
1

β
+Kβ = Λ̂.

According to Theorem 5.1, we have

E
[
∥grad f (xζ)∥2

]
⩽

φ1∆̃0

ϕ1K
+

(φ1η + 4ϕ1)σ
2

2ϕ1Kb

(
1

β
+Kβ

)
,

where φ1 =
2η2(L̃2+β2Lm2)

βb′ + 2, ϕ1 = η

(
1−ηL

2 − η2(L̃2+β2Lm2)
2βb′

)
. Setting β = m−1, η = min{ 1

2L ,
√
b′

2L̃
√
m
√

1+µ2ν2
},

then we can derive that 2 ⩽ φ1 ⩽ 5
2 , η

8 ⩽ ϕ1 ⩽ η
2 .

In finite-sum case, if we choose b = min
{
n, σ2ε−2

}
and

√
β
b′ = max

{
1√
n
, ε
}

, we observe that
√

β
b′ ⩾ ε2. Consequently,

we have E
[
∥grad f (xζ)∥2

]
⩽ 20∆̃0

ηK + 18σ2

Kb

(
m+ K

m

)
⩽ 20∆̃0

ηK + 36σ2

b . To obtain ε-accurate solution, we require
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K = Θ
(

1√
b′βε2

)
, which is derived from the fact E [∥grad f (xζ)∥] ⩽

√
E
[
∥grad f (xζ)∥2

]
. Therefore, the total IFO

complexity is given by S (b+ 3mb′) =
√
β√

b′ε2

(
min

{
n, σ2ε−2

}
+ 3b′

β

)
= O

(
min

{
n1/2ε−2, ε−3

})
.

Under online setting, denote b = 72σ2ε−2 and
√

β
b′ = ε, then we have E

[
∥grad f (xζ)∥2

]
⩽ 20∆̃0

ηK + 36σ2

Kb ⩽ ε2. To obtain

ε-accurate solution, we require K = Θ
(

1√
b′βε2

)
. Consequently, the total IFO complexity is given by S (b+ 3mb′) =

√
β√

b′ε2

(
b+ 3b′

β

)
= O

(
ε−3
)
. The proof of Riemannian SVRRM is similar to R-SRVRG, thus we omitted it.

B.2.3. THE PROOF OF RIEMANNIAN HYBRID-SGD

The proof of Lemma 5.7

Proof. Let us first denote ∆k = vk−grad f (xk), δk,i = grad fik(xk)−grad f(xk) and δk,j = grad fjk(xk)−grad f(xk).

E
[
∥∆k∥2

]
= E

[∥∥∥β grad fik(xk) + (1− β) grad fjk(xk) + (1− β)T xk
xk−1

(vk−1 − grad fjk(xk−1))− grad f (xk)
∥∥∥2]

= E
[∥∥∥(1− β)T xk

xk−1
∆k−1 + (1− β)

(
δk,j − T xk

xk−1
δk−1,j

)
+ βδk,i

∥∥∥2]
= (1− β)2E

[
∥∆k−1∥2

]
+ E

[∥∥∥(1− β)
(
δk,j − T xk

xk−1
δk−1,j

)
+ βδk,i

∥∥∥2]
= (1− β)2E

[
∥∆k−1∥2

]
+ (1− β)2E

[∥∥∥δk,j − T xk
xk−1

δk−1,j

∥∥∥2]+ β2E
[
∥δk,i∥2

]
⩽ (1− β)2E

[
∥∆k−1∥2

]
+ (1− β)2E

[∥∥∥T xk
xk−1

grad fjk(xk−1)− grad fjk(xk)
∥∥∥2]+ β2E

[
∥δk,i∥2

]
⩽ (1− β)2E

[
∥∆k−1∥2

]
+ (1− β)2η2L̃2E

[
∥vk−1∥2

]
+ β2σ2,

where the first inequality is due to the fact E[∥x − E[x]∥2] ⩽ E[∥x∥2] and δk,j − T xk
xk−1

δk−1,j = grad fjk(xk) −
T xk
xk−1

grad fjk(xk−1)−
(
grad f(xk)− T xk

xk−1
grad f(xk−1)

)
, while the last inequality is derived from Lemma B.2. There-

fore, by applying this inequality recursively, we have

E
[
∥∆k∥2

]
⩽ (1− β)2(k−1)E

[
∥∆0∥2

]
+ η2L̃2

k−1∑
i=0

(1− β)
2(k−i)E

[
∥vi∥2

]
+ β2

k−1∑
i=0

(1− β)
2(k−i−1)

σ2.

Note that v0 = grad fB0(x0) and |B0| = b0, then we obtain

E
[
∥∆k∥2

]
⩽ η2L̃2

k−1∑
i=0

(1− β)
2(k−i)E

[
∥vi∥2

]
+ β2

k−1∑
i=0

(1− β)
2(k−i−1)

σ2 + (1− β)
2(k−1)1{b0<n}σ

2

b0

⩽ η2L̃2
k−1∑
i=0

(1− β)
2(k−i)E

[
∥vi∥2

]
+ βσ2 + (1− β)

2(k−1)1{b0<n}σ
2

b0
,

where the first inequality is due to E[∥v0 − grad f(x0)∥2] = E[∥ grad fB0
(x0) − grad f(x0)∥2] = 1{b0<n}

σ2

b0
, the last

inequality follows that β2
k−1∑
i=0

(1− β)
2(k−i−1) ⩽ β2

1−(1−β)2
⩽ β

2−β ⩽ β, the proof is completed.

The proof of Theorem 5.8 and Corollary 5.9

Proof. By Lemma 5.7, we know that M1 = L̃2, M2 = 1, γk,i = (1− β)2(k−i), and λk = (1− β)2(k−1) 1{b0<n}
b0

+ β.
Therefore,

Γs
k =

m−1∑
k=0

γk,0 ⩽
1

1− (1− β)
2 ⩽

1

β
= Γ̂,
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K−1∑
k=0

λk ⩽
1{b0<n}

b0β (2− β)
+Kβ ⩽

1{b0<n}

b0β
+Kβ = Λ̂.

According to Theorem 5.1, we have

E
[
∥grad f (xζ)∥2

]
⩽

φ3∆̃0

ϕ3K
+

(φ3η + 4ϕ3)σ
2

2ϕ3K

(
1{b0<n}

b0β
+Kβ

)
,

where ϕ3 = η
(

1−ηL
2 − η2L̃2

2β

)
and φ3 = 2

(
2L̃2η2

β + 1
)

. Set β = K−2/3 and η = min
{

1
2L ,

√
β

2L̃

}
, then 2 ⩽ φ3 ⩽ 3,

η
8 ⩽ ϕ3 ⩽ η

2 . Therefore,

E
[
∥grad f (xζ)∥2

]
⩽

24∆̃0

ηK
+

20σ2

K2/3
+

201{b0<n}σ
2

K1/3b0
.

Note that η = Θ
(
K−1/3

)
, if we set b0 = min{n,K1/3} under finite-sum case, then we have E

[
∥grad f (xζ)∥2

]
⩽

24∆̃0

ηK + 40σ2

K2/3 . To obtain ε-accurate solution, we require K = Θ
(
ε−3
)
, thus the total IFO complexity is given by

b0 + 3K = O
(
min{n, ε−1}+ ε−3

)
. In online setting, set b0 = K1/3, then the total IFO complexity is given by

b0 + 3K = O
(
ε−3
)
.

B.2.4. THE PROOF OF OTHER RIEMANNIAN STOCHASTIC ALGORITHMS

The proof for R-SRM Algorithm. The upper bound of variance for R-SRM is as Lemma B.3. The Lemma B.3 states
that M1 = 2L̃2, M2 = 2, γk,i = (1− β)2(k−i), and λk = (1− β)2(k−1) 1{b0<n}

b0
+ 2β. Based on this, we obtain the

convergence result 5.10 for R-SRM (The proof is similar to Theorem 5.8, thus we omitted it).

Lemma B.3. Suppose that Assumptions 2.2 and 2.3 hold. Choose v0 = grad fB0(x0), |B0| = b0, then the estimator of
R-SRM (8) satisfies

E
[
∥∆k∥2

]
⩽ 2η2L̃2

k−1∑
i=0

(1− β)
2(k−i)E

[
∥vi∥2

]
+ 2βσ2 + (1− β)

2(k−1)1{b0<n}σ
2

b0
.

Proof. Define δk = grad fik(xk)− grad f(xk).

E
[
∥vk −∇f (xk)∥2

]
= E

[∥∥∥∇fik(xk) + (1− β)T xk
xk−1

(vk−1 −∇fik(xk−1))−∇f (xk)
∥∥∥2]

= E
[∥∥∥(1− β)T xk

xk−1
(vk−1 −∇f(xk−1))− (1− β)

(
T xk
xk−1

δk−1 − δk

)
+ βδk

∥∥∥2]
= (1− β)2E

[
∥vk−1 −∇f (xk−1)∥2

]
+ E

[∥∥∥(1− β)
(
T xk
xk−1

δk−1 − δk

)
+ βδk

∥∥∥2]
⩽ (1− β)2E

[
∥vk−1 −∇f (xk−1)∥2

]
+ 2(1− β)2E

[∥∥∥T xk
xk−1

δk−1 − δk

∥∥∥2]+ 2β2E
[
∥δk∥2

]
⩽ (1− β)2E

[
∥vk−1 −∇f (xk−1)∥2

]
+ 2(1− β)2E

[∥∥∥T xk
xk−1

∇fik(xk−1)−∇fik(xk)
∥∥∥2]+ 2β2E

[
∥δk∥2

]
⩽ (1− β)2E

[
∥vk−1 −∇f (xk−1)∥2

]
+ 2(1− β)2η2L̃2E

[
∥vk−1∥2

]
+ 2β2σ2,

where the third equality is due to E
[
T xk
xk−1

δk−1 − δk

]
= 0 and E [δk] = 0. The first inequality follows that ∥a +

b∥2 ⩽ 2∥a∥2 + 2∥b∥2, the second follows from E
[
T xk
xk−1

∇fik(xk−1)−∇fik(xk)
]
= T xk

xk−1
∇f(xk−1) − ∇f (xk) and

E[∥x− E[x]∥2] ⩽ E[∥x∥2]. By applying Lemma B.2, the last inequality holds true. Recursively applying this inequality
and noting that v0 = grad fB0(x0), |B0| = b0, we can reach the final result.
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The proof of R-SVRG (Theorem 5.13 and Corollary 5.14)

Lemma B.4. (Lemma 1 in (Han & Gao, 2021b)) Suppose Assumptions 2.2 and 2.3 hold and consider the estimator of
RSVRG. We have

E
[
∥∆s

k∥
2
]
⩽

k

b′
L̃2µ2ν2η2

k−1∑
i=0

E
[
∥vsi ∥

2
]
+ 1{b<n}

σ2

b
.

Proof. By Lemma B.4, M1 = L
b′ , γk,i = k, M2 =

1{b<n}
b , λk = 1. Thus we have Γ̂ = m2, Λ̂ = Sm, φ5 =

2
(

η2m2L
b′ + 1

)
, ϕ5 = η

(
1−ηL

2 − η2m2L
2b′

)
. According to Theorem 5.1, we obtain

E
[
∥grad f (xζ)∥2

]
⩽

φ5∆̃0

ϕ5K
+

(φ5η + 4ϕ5)1{b<n}σ
2

2ϕ5b
.

Consider the parameter setting m =
√
b′ and η = min

{
1
2L ,

1
2L̃µν

}
, then we have E

[
∥grad f (xζ)∥2

]
⩽ 20∆̃0

ηK + 18σ2

b . In

finite-sum setting, if we choose b = n and b′ = n2/3, then we require that K = Θ
(
ε−2
)

to obtain ε-accurate solution.

Consequently, the total IFO complexity is given by S(b+ 2mb′) = Sn+ 2Kb′ = O
(

n2/3

ε2

)
. Under online case, choosing

b = Θ
(
ε−2
)

and b′ = Θ
(
ε−4/3

)
, then we require K = Θ

(
ε−2
)
. Therefore, the total IFO complexity to obtain ε-accurate

solution is S (b+ 2mb′) = 1√
b′ε2

(b+ 2mb′) = O
(
ε−10/3

)
.

The proof of R-PAGE (Theorem 5.16 and Corollary 5.17)

We first present a necessary lemma.

Lemma B.5. Suppose Assumptions 2.2 and 2.3 hold. If the estimator vk is defined as (10), then we have

E
[
∥∆k∥2

]
⩽

L̃2η2

b′

k−1∑
i=0

(1− p)
k−iE

[
∥vi∥2

]
+ 1{b<n}

σ2

b
.

Setting b = n in finite-sum settings, we have

E
[
∥∆k∥2

]
⩽

L̃2η2

b′

k−1∑
i=0

(1− p)
k−iE

[
∥vi∥2

]
.

Proof. Denote ∆k = vk − grad f(xk). By the definition of vk in (10), we have

E
[
∥∆k∥2

]
= pE

∥∥∥∥∥1b∑
i∈B

grad fi (xk)− grad f (xk)

∥∥∥∥∥
2


+ (1− p)E

∥∥∥∥∥T xk
xk−1

vk−1 +
1

b′

∑
i∈B′

(
grad fi (xk)− T xk

xk−1
grad fi (xk−1)

)
− grad f (xk)

∥∥∥∥∥
2


= (1− p)E

∥∥∥∥∥T xk
xk−1

vk−1 +
1

b′

∑
i∈B′

(
grad fi (xk)− T xk

xk−1
grad fi (xk−1)

)
− grad f (xk)

∥∥∥∥∥
2
+ 1{b<n}

pσ2

b

= (1− p)E

∥∥∥∥∥T xk
xk−1

∆k−1 +
1

b′

∑
i∈B′

(
grad fi (xk)− T xk

xk−1
grad fi (xk−1)

)
+ T xk

xk−1
grad f (xk−1)− grad f (xk)

∥∥∥∥∥
2


+ 1{b<n}
pσ2

b
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= (1− p)E
[
∥∆k−1∥2

]
+ 1{b<n}

pσ2

b

+ (1− p)E

∥∥∥∥∥ 1b′ ∑
i∈B′

(
grad fi (xk)− T xk

xk−1
grad fi (xk−1)

)
+ T xk

xk−1
grad f (xk−1)− grad f (xk)

∥∥∥∥∥
2


⩽ (1− p)E
[
∥∆k−1∥2

]
+

(1− p)

b′
E
[∥∥∥grad fi (xk)− T xk

xk−1
grad fi (xk−1)

∥∥∥2]+ 1{b<n}
pσ2

b

⩽ (1− p)E
[
∥∆k−1∥2

]
+

(1− p) L̃2η2

b′
E
[
∥vk−1∥2

]
+ 1{b<n}

pσ2

b
,

where the second equality is due to Assumption 2.2 (3), the first inequality holds since E[∥x−E[x]∥2] ⩽ E[∥x∥2]. By using
the Lemma B.1, the last inequality holds. Recursively applying this inequality gives

E
[
∥∆k∥2

]
⩽

L̃2η2

b′

k−1∑
i=0

(1− p)
k−iE

[
∥vi∥2

]
+ 1{b<n}

pσ2

b

k−1∑
i=0

(1− p)
k−i−1

⩽
L̃2η2

b′

k−1∑
i=0

(1− p)
k−iE

[
∥vi∥2

]
+ 1{b<n}

σ2

b
.

In finite-sum settings, if we choose b = n, then we have

E
[
∥∆k∥2

]
⩽

L̃2η2

b′

k−1∑
i=0

(1− p)
k−iE

[
∥vi∥2

]
.

The proof of Theorem 5.16 and Corollary 5.17

Proof. By Lemma B.5, we have M1 = L̃2

b′ , M2 =
1{b<n}

b , γk,i = (1− p)
k−i, λk = 1. Thus

Γ̂ =
1

p
⩾

m−1∑
k=0

γk,0, Λ̂ = K = Sm ⩾
S∑

s=1

m−1∑
k=0

λk.

According to Theorem 5.1, it is easy to obtain

E
[
∥grad f (xζ)∥2

]
⩽

φ6∆̃0

ϕ6K
+

φ6η + 4ϕ6

2ϕ6
·
1{b<n}σ

2

b
,

where φ6 = 2
(

L̃2η2

b′p + 1
)

and ϕ6 = η
(

1−ηL
2 − L̃2η2

2b′p

)
. Set p = b′

b+b′ , b′ ⩽
√
b and η ⩽ min

{
b′

2L̃
√
b+b′

, 1
2L

}
, then

2 ⩽ φ6 ⩽ 5
2 , η

8 ⩽ ϕ6 ⩽ η
2 .

In finite-sum setting, if we set b = n, then we have E
[
∥grad f (xζ)∥2

]
⩽ 20∆̃0

ηK . To obtain ε-accurate solution, it is necessary

to satisfy the condition 20∆̃0

ηK ⩽ ε2, which implies that the number of iterations K must be at least 20∆̃0

ηε2 . Consequently, the

total IFO complexity is b+K (pb+ (1− p) b′) = b+ 2n
ε2

√
n+b′

∼ O
(
n+

√
n

ε2

)
.

Under online setting, we obtain E
[
∥grad f (xζ)∥2

]
⩽ 20∆̃0

ηK + 18σ2

b . To obtain ε-accurate solution, we require 20∆̃0

ηK ⩽ ε2

2

and 18σ2

b ⩽ ε2

2 . Thus K = Θ(
√
b+b′

b′ε2 ) and b = Θ(ε−2). Consequently, the total IFO complexity is b+K (pb+ (1− p) b′) =

b+ 2b′bK
b+b′ = O

(
1
ε2 + 1

ε4
√
b+b′

)
= O

(
1
ε2 + 1

ε3

)
.
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C. Experiment Details and Additional Experiment Results
C.1. Geometry of Specific Riemannian Manifolds

C.1.1. GRASSMANN MANIFOLD

The Grassmann manifold Gr(r, d) has the structure of a Riemannian quotient manifold (Absil et al., 2008), i.e., Gr(r, d) :=
St(r, d)/O(r), where St(r, d) is the Stiefel manifold, which is the set of matrices of size d× r with orthonormal columns.
An element of the Grassmann manifold is represented by a d× r orthogonal matrix U with orthonormal columns, satisfying
the condition U⊤U = I. Any element is considered equivalent to U if it can be expressed as UR for any R ∈ O(r).
We use the polar-based retraction RX, which is commonly used for Riemannian optimization (Zhou et al., 2021; Han &
Gao, 2021b; Boumal et al., 2014). Denote pf represents the extraction of polar factors from polar decomposition. Then
RX(V) = pf(X + V), the inverse retraction is R−1

X (Y) = Y
(
X⊤Y

)−1 − X. The associated vector transport is the
orthogonal projection to the horizontal space, i.e., T Y

X (V) =
(
I−YY⊤)V. Although the vector transport method is

not isometric, it is feasible to create isometric vector transport using singular value decomposition (SVD), albeit at a
high computational cost. Nevertheless, Han & Gao (2021b) demonstrated that non-isometric vector transport performed
effectively.
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(a) PCA on Mnist
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Figure 2. Convergence results for the PCA problem in terms of gradient norm on Mnist and ijcnn1, along with additional results on
synthetic dataset.

C.1.2. SYMMETRIC POSITIVE DEFINITE (SPD) MANIFOLD

The symmetric positive definite (SPD) manifold Sd
++ is defined as the set of d× d symmetric positive definite matrices,

represented as Sd++ := {X ∈ Rd×d : X⊤ = X,X ≻ 0}. By endowing Sd
++ with the affine-invariant Riemannian metric

(AIRM) (Pennec et al., 2006) defined as ⟨U,V⟩X = tr
(
X−1UX−1V

)
for U,V ∈ TXSd

++ at X ∈ Sd
++, the SPD

manifold Sd
++ forms a Riemannian manifold. We adopt the retraction RX(V) = X+V + 1

2VX−1V from (Kasai et al.,
2018b; Han & Gao, 2021b), along with the isometric vector transport. Note that the isometric vector transport can be derived
by parallelization for Sd

++. That is, For any X,Y ∈ Sd
++, the expression T Y

X ξ = BYBb
Xξ holds, where BX ∈ Rd×d

represents the orthonormal basis on TXSd
++ and Bb

X : TXSd
++ → R is defined such that Bb

XU = ⟨BX,U⟩X.
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C.2. Parameter Settings and Additional Experiment Results

For the probability p of PAGE in all experiments, we select from { 19
20 ,

39
40 ,

79
80 ,

159
160 ,

319
320}, the mini-batch size is set to be

b = n, b′ =
√
n. For R-Hybrid-SGD, we set β = 0.01 across all experiments.

C.2.1. PCA ON GRASSMANN MANIFOLD

For all double-loop algorithms, we set η = 0.03 on MNIST 2 and η = 0.9 on ijcnn13. The step sizes for R-SRM and
R-Hybrid-SGD are set to 0.05 and 0.3 on datasets MNIST and ijcnn1, respectively. In the experiments conducted on
Mnist and ijcnn1, our proposed algorithm selected parameters β = 0.1 and β = 0.5, respectively. In fact, the algorithm
exhibits insensitivity to the choice of β. Figure 2 (a) and (b) illustrate the comparison of gradient norm descent when
the algorithms solve the PCA problem on the MNIST and ijcnn1 datasets, respectively. The results demonstrate that
our proposed R-SRVRG and R-SVRRM perform more effectively. Figure 2 (c) and (d) present the comparison of the
performance on the synthetic dataset with (n, d, r) = (105, 200, 5) in terms of optimality gap and gradient norm, where the
synthetic data is sourced from (Han & Gao, 2021b). Similar observations can be made.

C.2.2. LRMC ON GRASSMANN MANIFOLD

We set η = 7× 10−5 on Movielens-1M4 and η = 9× 10−6 on Jester5 for both R-SRVRG and R-SVRRM. The step sizes for
R-SRM and R-Hybrid-SGD are set to 5× 10−5 and 5× 10−6, respectively, on Movielens-1M with 6040 users (d) and 3706
movies (n) (Harper & Konstan, 2015) and Jester (Goldberg et al., 2001) with 24983 users and 100 jokes. In the experiments
conducted on the Movielens-1M and Jester datasets, our proposed algorithm utilized parameter values of β = 0.5 and
β = 0.1, respectively. Figure 2 (e) demonstrates the performance of solving the LRMC problem on synthetic data with
(n, d, r) = (20000, 100, 5) (sourced from (Han & Gao, 2021b)). It can be observed that our R-SRVRG and R-SVRRM
exhibit superior performance.

C.2.3. RC ON SPD MANIFOLD

For the experiments conducted on the Extended Yale B dataset, we set η = 0.03 for all VR methods and η = 0.04 for both
R-SRM and R-Hybrid-SGD. For Kylberg6 dataset, we set η = 0.04 for R-AbaSRG and R-AbaSVRG methods, and choose
η = 0.05 for the other methods. We set β = 0.5 for our proposed algorithms in the experiments conducted on both Yale
B and Kylberg datasets. In Figure 2 (f), we compare the performance of solving the RC problem on synthetic data with
(n, d, cn) = (5000, 100, 5)7. Our proposed R-SRVRG and R-SVRRM continue to demonstrate excellent performance.

C.3. Sensitivity of parameter β

We demonstrate the robustness of parameter β in the proposed R-SRVRG, R-SVRRM, and R-Hybrid-SGD algorithms,
respectively. Figure 3 illustrates the effect of parameter β on the R-SRVRG algorithm across different tasks and datasets,
indicating that the algorithm is robust to the selection of β. In Figures 4 and 5, we present the effects of parameter β on both
the R-SVRRM algorithm and the R-Hybrid-SGD algorithm, indicating that our proposed algorithms exhibit insensitivity to
the selection of β.

2http://yann.lecun.com/exdb/mnist/
3https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
4https://grouplens.org/datasets/movielens/
5https://eigentaste.berkeley.edu/
6https://www.cb.uu.se/˜gustaf/texture/
7source: https://github.com/andyjm3/R-AbaVR
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Figure 3. Robustness of parameter β in the R-SRVRG algorithm.
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Figure 4. Robustness of parameter β in the R-SVRRM algorithm.
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Figure 5. Robustness of parameter β in the R-Hybrid-SGD algorithm.

0 10 20 30 40

IFO/n

-10

-5

0

O
p

ti
m

a
li
ty

 g
a
p

 (
lo

g
)

R-SRVRG(4e-2)

R-SRVRG(5e-2)

R-SRVRG(6e-2)

R-SRVRG(7e-2)

R-SRVRG(8e-2)

R-SRVRG(9e-2)

(a) PCA on Mnist

0 5 10 15

IFO/n

0

2

4

6

8

10

12

14

T
e
s
t 

M
S

E

R-SRVRG(4e-5)

R-SRVRG(5e-5)

R-SRVRG(6e-5)

R-SRVRG(7e-5)

R-SRVRG(8e-5)

R-SRVRG(9e-5)

(b) LRMC on Movielens

0 5 10 15 20 25 30

IFO/n

-15

-10

-5

0

O
p

ti
m

a
li
ty

 g
a
p

 (
lo

g
)

R-SRVRG(4e-2)

R-SRVRG(5e-2)

R-SRVRG(6e-2)

R-SRVRG(7e-2)

R-SRVRG(8e-2)

R-SRVRG(9e-2)

(c) RC on YaleB

0 10 20 30 40

IFO/n

-15

-10

-5

0

O
p

ti
m

a
li
ty

 g
a
p

 (
lo

g
)

R-SRVRG(4e-1)

R-SRVRG(5e-1)

R-SRVRG(6e-1)

R-SRVRG(7e-1)

R-SRVRG(8e-1)

R-SRVRG(9e-1)

(d) PCA on ijcnn1

0 10 20 30 40 50 60

IFO/n

17

18

19

20

21

22

23

24

T
e
s
t 

M
S

E

R-SRVRG(4e-6)

R-SRVRG(5e-6)

R-SRVRG(6e-6)

R-SRVRG(7e-6)

R-SRVRG(8e-6)

R-SRVRG(9e-6)

(e) LRMC on Jester

0 5 10 15 20 25 30

IFO/n

-15

-10

-5

0

O
p

ti
m

a
li
ty

 g
a
p

 (
lo

g
)

R-SRVRG(4e-2)

R-SRVRG(5e-2)

R-SRVRG(6e-2)

R-SRVRG(7e-2)

R-SRVRG(8e-2)

R-SRVRG(9e-2)

(f) RC on Kylberg

Figure 6. Robustness of step sizes η in the R-Hybrid-SGD algorithm.

C.4. Sensitivity of step sizes η

Figures 6, 7, and 8 illustrate the effects of different constant step sizes on our proposed algorithms. As observed in Figures 6
and 7, the selection of step size is relatively insensitive for the R-SRVRG and R-SVRRM algorithms. Figure 8 shows a
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somewhat greater impact of step size on the R-Hybrid-SGD algorithm, which also indicates that our improved algorithm,
R-SRVRG, enhances the robustness of the method.
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Figure 7. Robustness of step sizes η in the R-Hybrid-SGD algorithm.
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Figure 8. Robustness of step sizes η in the R-Hybrid-SGD algorithm.
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