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ABSTRACT

Recent advances in Vision-Language Models (VLMs) have opened new pos-
sibilities for complex spatial reasoning. Benchmarks for VLMs largely assess
single- or limited-view perception, leaving untested the core ability to integrate
observations across viewpoints into a coherent 3D understanding. We introduce
MVBench, a benchmark expressly designed to evaluate multi-view integration
for holistic 3D scene comprehension. MVBench is paired with a highly extensible
data-generation pipeline that supports plug-and-play 3D assets (synthetic or real),
configurable distractors, and flexible camera positions and orientations, enabling
researchers to readily instantiate new datasets by swapping assets or altering view-
point configurations. Beyond benchmarking, MVBench serves as a fundamental
diagnostic that VLMs should pass before being deployed as agents operating 3D
software for downstream tasks such as part assembly for mechanical engineering.
We evaluate a broad set of frontier VLMs and uncover consistent failure modes:
strong performance on 2D planar relations from a single image, but marked dif-
ficulty with 3D spatial relations and with aggregating information across views.
We further identify biases in VLMs, including handling unconventional axis di-
rections and sensitivity to object colorways and texture variations. Acknowl-
edging these limitations, we propose ViewNavigator, a multi-agent framework
that actively selects informative viewpoints, perceive, and fuses multi-view evi-
dence through belief-updating. ViewNavigator improves the performances of di-
verse base models on MVBench by more than 50%. MVBench and its extensible
pipeline are designed to equip researchers with a principled testbed for strengthen-
ing VLMs’ 3D scene understanding, paving the way for more capable VLM-based
agents that can support a wide range of downstream 3D tasks.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) (Brown et all [2020; 2023, 2024
Touvron et al 2023) and Vision-Language Models (VLMs) (Radford et all, 2021}, |Li et al., 2022




Google| 2023} |Dat et al.l |2023)) have demonstrated remarkable progress in complex perceptual and
reasoning tasks, including spatial navigation (Mirowski et al., 2018} |Du et al., |2023; |Yamada et al.,
2023) and image understanding (Dosovitskiy et al.l 2021). Their strong generalization capabilities,
coupled with emergent reasoning skills, make them compelling candidates for cognitive systems that
integrate perception and strategic planning (Bubeck et al.l 2023). When equipped with appropriate
tools and scaffolding, such systems have shown promise in robotics control (Brohan et al.| 2023} Liu
et al.| [2023), 3D modeling (Hu et al.| 2024} |Gu et al.,2025)), and image editing (Huang et al.|[2024).

However, effectively solving many of these tasks fundamentally depends on the ability to perceive
and reason about scenes from multiple viewpoints (Edelman, [1998; |Biilthoff & Edelman, 1992)).
Humans naturally perform multi-angle observations to construct coherent mental models of ob-
jects, resolving perceptual ambiguities that arise from single viewpoints (Shepard & Metzler, 1971}
Palmer] [1999). This ability is crucial when assembling complex objects, where each component
must be rotated and inspected from multiple viewpoints to determine how it connects with others. In
contrast, a single static image often fails to convey critical structural or relational details necessary
for accurate reasoning and manipulation, underscoring the importance of multi-view perception in
spatial cognition (Marr}, |2010; [Kosslyn, |1994).

A possible workaround involves geometric representations such as point clouds, meshes, or voxels
(Q1 et al., |2017a; Wu et al.| 2015 Mescheder et al.| [2019), which encode precise 3D coordinates
and shapes. However, processing such low-level geometric data typically requires specialized en-
coders (Q1 et al., 2017bjWang et al.,|2019) and lacks the broad generalization of LLM/VLM-based
approaches. Moreover, these representations diverge from the modality of human visual input, lim-
iting their interpretability for human-readable reasoning (Tarr & Biilthotf], |1998).

Current spatial reasoning benchmarks primarily assess single-view or few-view understanding, with-
out testing the fundamental ability of VLMs to integrate partial visual evidence from multiple per-
spectives into a unified 3D understanding. For example, ShapeNet (Chang et al., 2015) provides a
rich repository of 3D models but is aimed at reconstruction and recognition tasks rather than multi-
view reasoning. CLEVR (Johnson et al. |2017) diagnoses compositional reasoning but remains
limited to synthetic single-view scenes. Consequently, there remains a gap in evaluating whether
modern VLMs can perform viewpoint integration—a prerequisite for real-world spatial decision-
making.

In this work, we address this gap by introducing MVBench, a multi-view spatial reasoning bench-
mark that explicitly tests a VLM’s ability to integrate information from multiple viewpoints. Our
contributions are as follows:

* We introduce MVBench, a comprehensive and extensible benchmark for evaluating
VLMs’ ability to integrate multi-view observations into a coherent 3D scene understanding.

* Alongside the benchmark, we provide a flexible data generation pipeline that allows re-
searchers to easily extend the dataset with new 3D assets, task variants, and viewpoint
configurations.

* We conduct a systematic evaluation of state-of-the-art VLMs on MVBench, revealing key
failure modes, biases, and limitations in their multi-view spatial reasoning capabilities.

* We propose ViewNavigator, a multi-agent framework that models perception, planning,
and belief-updating. ViewNavigator consistently and significantly enhances the perfor-
mance of underlying VLMs on MVBench, demonstrating its potential as a plug-and-play
reasoning scaffold for future vision—language systems.

2 RELATED WORK

VLM Benchmarks. A number of benchmarks have emerged to evaluate VLM capabilities. Foun-
dational datasets such as ShapeNet (Chang et al., 2015) and ModelNet (Wu et al.l [2015) focus on
3D object recognition and reconstruction. CLEVR (Johnson et al.,[2017) targets compositional rea-
soning in synthetic and real-world images. More recent work has extended to spatial reasoning:
SpatialRGPT (Cheng et al.||2024)) and OmniSpatial (Jia et al.,|2025) incorporate perspective-taking
and dynamic reasoning, but remain primarily single-view in nature. InternSpatial (Deng et al., 2025)
includes multi-view data but is designed for large-scale training (e.g., rotation estimation) rather than



as a diagnostic benchmark. ViewSpatial-Bench (Li et al., [2025) focuses on egocentric—allocentric
transformations for navigation, rather than integrating multiple viewpoints into a single coherent
representation. IR3DBench (Liu et al., [2025)) tests 3D layout reconstruction from camera metadata,
but is restricted to single views—allowing multiple plausible configurations to produce the same
image.

In summary, while these benchmarks advance spatial reasoning evaluation, none are explicitly de-
signed to test multi-view information integration for 3D understanding.

3D Spatial Reasoning with LLM/VLM Agents. Agentic systems leveraging LLMs and VLMs
have recently demonstrated impressive performance on 3D tasks, including open-world gaming
(Wang et al.l 2023} [Yao et al., [2023)), procedural scene generation (Hu et al., |2024; [Huang et al.,
2024])), and LEGO assembly (Yamada et al.| 2024} |Pun et al., 2025). In such systems, LLMs often
act as planners, akin to the prefrontal cortex in the brain (Stokes et al., [2021)), while VLMs serve
as perceptual modules that transform raw visual inputs into structured descriptions. These pipelines
work well when single-image perception suffices (e.g., block-based abstractions in Minecraft), but
break down when tasks require precise geometric reasoning over multiple views (Chen et al., |2024;
Hong et al., |[2023)).

While some works attempt to enhance VLM 3D reasoning (Cheng et al., [2024; |Chen et al.| [2024;
Hong et al.| [2023), they typically focus on VQA-style setups without extending to real-world appli-
cations that require integrated 3D perception and planning. MVBench is designed precisely to call
for the awareness of VLMs’ limitations in multi-view integration and to serve as a selection criterion
when building VLM-based agents for real-world embodied intelligence as well as for operating 3D
software in 3D asset generation and mechanical engineering.

3 MOTIVATION

To illustrate the necessity and practical importance of our benchmark, we motivate our study through
a real-world furniture part assembly task. In this setting, a collection of labeled components (e.g.,
legs, table tops, backrests) must be connected and arranged to form a functional piece of furniture.
Solving this task naturally demands multi-view perception, 3D spatial reasoning, and common-sense
knowledge about how objects are typically used and combined. At a minimum, three core abilities
are required:

1. Part Identification and Semantic Reasoning: Identifying distinct furniture components
and inferring their functionality using combined visual and semantic reasoning.

2. Assembly Planning: Formulating a coherent and executable plan by determining the cor-
rect assembly sequence and how components interconnect.

3. Assembly Execution: Precisely placing each component and executing physical assembly
actions.

From experimentation, VLMs have considerable potential to tackle the first two stages, effectively
operating as the cognitive system or brain of a robotic agent. The subsequent execution can then
rely on specialized robotic control modules that function as the robot’s motor system.

While recent LLM-based approaches have shown strong capabilities in environments such as
Minecraft or Blender (Yamada et al., 2024} [Pun et al.| 2025 Wang et al [2023)), where assem-
blies involve standardized, uniform blocks. Such blocks lend themselves to lossless bounding-box
(Iength, width, height) representation and these LLM-based agents’ success largely depends on sim-
ple geometric descriptions and mathematical reasoning. However, real-world furniture assembly
poses significantly greater complexity due to irregular, non-convex shapes that defy concise, loss-
less linguistic descriptions. Hence, purely semantic or bounding-box representations are inadequate
for precise assembly tasks involving intricate real-world parts.

Figure (1] illustrates typical furniture assembly tasks that explicitly require multi-view perception to
comprehend and accurately reason about the spatial configuration of parts. These examples under-
score the critical need for robust VLMs capable of integrating information across multiple visual
perspectives to build accurate internal 3D understanding.



Figure 1: Furniture Assembly Example. Top Left: Many real-world objects do not lend themselves
to simple natural language description. The table on the right can be described using fundamental
convex shapes and their bounding boxes but the chair on the left has non-convex parts without an
analytical expression. Thus it is preferrable to include visual information. Top Right: Often times
single-view observation leads to visual misconception and does not reveal some alignment issues.
The chair looks well-assembled in the view shown on the left but when it turns to the view shown on
the right we see the backrest is slightly misplaced in the X-axis. Bottom: Only using the bounding
box dimensions, we are unable to assemble furniture that have non-convex parts. In the left instance,
the bounding boxes are perfectly aligned but the assembly is problematic. A good assembly example
is shown on the right.

4 MVBENCH

In this section, we introduce MVBench (Multi-view Benchmark), a foundational evaluation de-
signed to test VLMs’ multi-view spatial reasoning capabilities, preparing them for complex real-
world tasks like mechanical engineering or 3D scene reconstruction.

4.1 SETUP

The core task of MVBench assesses a VLM’s ability to reason about the relative positions of objects
within a 3D scene. VLMs must observe scenes from multiple viewpoints to infer spatial relationships
accurately (Figure [2). To ensure consistency, we introduce a fixed global coordinate system with
clearly marked axes—X (red), Y (green), and Z (blue)—providing a viewpoint-independent frame
of reference for spatial descriptions. This coordinate system is created as fixed 3D meshes in Blender
so it keeps invariant upon camera change. We added appropriate opacity in objects’ materials so
that axes would be clearly seen. This is analogous to Blender GUI and this benchmark can be
seen as a fundamental test to pass before building any VLM-based agents for 3D model design for
manufacturing as it requires VLMs to visually understand 3D coordinate system that is crucial in
any 3D modeling software.

After multi-view observations, VLMs must describe the object’s relative position to the central ob-
ject along each axis using the format (+X/0, +Y/0, +Z/0), ensuring precise and parsable re-
sponses to support large-scale evaluations.
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Figure 2: Data generation pipeline of MVBench: this pipeline allows us to choose 3D assets, ma-
nipulate placements, and adjust camera configurations to test different spatial cognitive abilities.

4.2 DATASET CREATION

To construct our benchmark dataset, we design a modular pipeline that procedurally generates di-
verse 3D scenes with controlled variations (Figure[2).

3D assets. A wide variety of 3D models are readily available from online repositories. In MVBench,
we used the fundamental geometric object randomly sampled from cube, sphere, cylinder and cone
for the synthetic tasks. For real-world objects (3D Real World), we use 3DCoMPaT++ dataset
(2023))) which consists of thousands of real-world objects from different categories like table,
chair, airplane and so on. To minimize visual ambiguity in spatial comparisons, all objects are
rescaled to share a common bounding box (length, width, height) so that the relative position can be
easily inferred from comparison for arbitrary edges or vertices. Beyond the main objects of interest,
additional distractor objects can be introduced as confounders to increase scene complexity. The
modularity of our pipeline also makes it easy to substitute alternative 3D assets and construct new
datasets tailored to specific domains.

Object placement. We first fix a central object at the origin and then randomize other objects’
positions within the scene while enforcing a minimum and maximum separation distance. This
prevents overlaps and ensures objects remain in close proximity. We set a threshold margin for
0 relation by pushing any smaller deviations along an axis to exactly 0. To better analyze model
limitations, we also construct controlled task variants where target objects are restricted to simplified
spatial layouts. In the DoF=1 variant, objects are placed along a single axis as the central object,
reducing the task to detecting 1D relative relationships. In the DoF=2 variant, objects lie on the same
2D plane as the central object and DoF=3 refers to no constraints of placement in the 3D space.

Camera viewpoints. In the main benchmark, we render six viewpoints with uniformly distributed
azimuth angles and slight elevations. This configuration guarantees visibility of all three axes. Im-
portantly, the pipeline is not restricted to this setup: arbitrary viewpoint configurations can be spec-
ified, enabling analysis of inductive biases in VLMs and the creation of specialized tasks such as
egocentric-to-allocentric transformations or spatial navigation through 3D environments. Examples
of such extensions to tasks proposed in [Jia et al.| (2025) and |Yin et al.| (2025) are provided in the

Appendix[A.5]

Rendering. We render images from each viewpoint. While rendering complex scenes with many
textured objects can be computationally expensive, the process is parallelizable across CPU cores,




allowing multiple viewpoints to be rendered simultaneously. This design makes large-scale dataset
creation both efficient and scalable.

Q&A generation. Finally, we generate question—answer pairs automatically. Relative spatial re-
lations are computed directly from Blender’s intrinsic coordinate system, ensuring reliable ground-
truth supervision.

Overall, this dataset provides a rigorous test of VLMSs’ ability to integrate multi-view information
and reason spatially. Moreover, the extensibility of the pipeline makes it a versatile testbed for
probing the limits of 3D reasoning, analyzing inductive biases, and generating tailored training
datasets for downstream applications.
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Figure 3: Model Performance on MVBench: we systematically evaluated the performance of 7
leading VLMs. We found that GPT-5 has the best overall performance while models like Claude
series and GPT-40 can hardly beat random chance (red dashed line) in harder tasks 3D DoF=3 and
3D Real World. As we decrease the DoF, models tend to have higher accuracy with a great leap as
we decrease the DoF to 1. Surprisingly, Claude 3.7 Sonnet beat its successor significantly in low
DoF synthetic tasks and reached near GPT-5 level when DoF=1. We also show that single isometric
view is not enough for solving this task as all models’ performances are around random chance. Full
evaluation results are presented in Appendix The random chance is computed by 3% to account
for the 3 choices for each of the 3 axes.

5 FAILURE AND BIAS ANALYSIS

In this section, we investigate the limitations and biases of off-the-shelf VLMs by conducting de-
tailed case studies on different VLMs.

5.1 FAILURE PATTERNS

First we notice that providing only a single isometric view (clearly displaying all three axes) sig-
nificantly reduced accuracy for both models (Figure[3] 3D Single View), underscoring the essential
role of multi-view observations. Single-view conditions resulted in substantial information loss,
demonstrating that accurate spatial reasoning fundamentally requires multi-angle perception.



To better understand the sources of these failures, we decomposed the spatial reasoning task into
intermediate sub-steps analogous to human reasoning processes:

 Step 1: Object Identification: Recognizing and distinguishing individual objects.

» Step 2: 2D Spatial Relation: Articulating the relative object positions within a given 2D
viewpoint.

» Step 3: Axis Direction Identification: Interpreting and clearly describing the directional-
ity of each axis within a 3D scene.

» Step 4: 3D Position Translation: Translating observed 2D spatial relationships into ex-
plicit 3D positional descriptions.

We performed some web trials and revealed that VLMSs primarily struggle with accurately iden-
tifying and articulating the directionality of axes within the 3D context (Step 3), as illustrated in
Figure[d Models consistently exhibited difficulty in expressing axis directions using clear and un-
ambiguous 3D spatial language.

-
. ‘Which object is at the
center and which one is
< next to it?
-] At the center (origin 0,0,0): The brown/tan colored cube is positioned at the center of the coordinate system. This is where the three
tgl coordinate axes (red X-axis, green Y-axis, and blue Z-axis) intersect, and there's a small yellow sphere marking the origin point.
b Next to it: The purple sphere is positioned above and slightly offset from the center cube. It appears to be floating in the positive Z
tgl direction (upward along the blue axis) relative to the central cube.
. R on [ ]
‘What is the relative direction of the purple sphere to the brown cube on this 2D image? Py
tgl Looking at this 2D image, the purple sphere is positioned in the upper left relative to the brown cube.
ao
o [ ]
‘Where does each axis point to in this 3D scene? )
Looking at this 3D scene, I can identify the coordinate system based on the colored rods extending from the yellow sphere (origin):
Orrigin (0,0,0): Located at the yellow sphere in the center
t%l X-axis (RED rod): Points to the left in the image — negative X direction from our viewing perspective
ao Y-axis (GREEN rod): Points forward/away from us into the scene — positive Y direction

Z-axis (BLUE rod): Points upward — positive Z direction

This appears to be a right-handed coordinate system where: The red X-axis extends horizontally to the left; The green Y-axis
Ym extends into the depth of the scene; The blue Z-axis extends vertically upward; The brown cube sits on the grid plane below
ao the origin; The purple sphere floats above the scene.

Figure 4: Example conversation with VLM: VLM did well in 2D reasoning in the first 2 steps but
failed to reason about the 3D scene in Step 3. Wrong reasoning traces are highlighted in yellow.
Signs of inductive bias on the 3D coordinate system are highlighted in cyan.

Motivated by this observation, we further explored whether VLM performance could be enhanced
by decomposing the task into simpler 2D views. We designed a variant of the MVBench task (2D)
utilizing three canonical (front, side, top) views, as shown in Figure |8} each emphasizing one 2D
plane (XZ, YZ, XY) and clearly displaying only two axes per view. Models were tested under two
configurations: first, providing all three canonical views simultaneously to produce a single inte-
grated 3D answer (Single-agent), and second, utilizing a multi-agent approach wherein each agent
independently assessed one canonical view, with the final 3D answer obtained by straightforward
integration of individual responses (resolving inconsistencies by random selection).

Results from these experiments, depicted in Figure [5] demonstrate notable improvements by sim-
plifying 3D reasoning tasks into 2D multi-view reasoning tasks and even further improvements by
decomposing multi-view 2D tasks into single-view sub-tasks. These results validate that VLMs’
struggle both at 3D perception and multi-view integration.



Model Performance on MVBench-2D (Single-Agent vs Multi-Agent)
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Figure 5: By simplifying the task into 2D multi-view task, VLMs demonstrate significantly higher
performance. Decomposing 2D multi-view task into a multi-agent 2D single-view task can further
improve VLMs’ performances by a great margin. Adding visual aids like grids and distinct colors
enhances the performance of Claude series but shows limited help to Gemini series and GPT-4o.

5.2 BIAS DISCOVERY

Visual Enhancements. We further explore how visual enhancements, such as distinct color
schemes and grids, influence VLMs’ 3D perception and spatial reasoning performance. Specifically,
we evaluated VLMs under conditions of randomized color assignment, fixed color combinations, 3D
scenes with integrated 2D grid planes, and purely 2D views with grid overlays. Previous research
indicates that structured visual aids can improve VLM performance on visual reasoning tasks like
counting and scene comprehension (Izadi et al.l [2025). Our experiments confirm that visual struc-
tures indeed boost performance for models like Claude series; however, surprisingly, Gemini 2.5
Pro’s performance declines under these conditions. Additionally, we observed distinct color biases
among different models, with each showing preferential responses to particular color combinations,
underscoring inherent perceptual biases (Figure [6).

Coordinate Rotation. Upon closer examination of model responses, we identified a notable pat-
tern: models frequently disregarded explicitly depicted coordinate directions, defaulting instead to
reasoning based on the conventional right-handed coordinate system (Figure[). We hypothesize that
this behavior reflects a strong inductive bias derived from extensive exposure to standard coordinate
conventions during pretraining. To rigorously investigate this bias, we conducted rotation experi-
ments using the canonical 2D view task. In these experiments, axes directions were deliberately
rotated away from conventional orthogonal orientations (such as 90°, 180°, etc.) to non-standard an-
gles. Results shown in Figure [f|clearly showed significant performance degradation under these un-
conventional orientations, confirming that VLMs heavily rely on learned coordinate-system priors.
These findings highlight the critical need to address such inherent biases to enhance the robustness
and generalization capabilities of VLMs.

6 VIEWNAVIGATOR

In this section, we introduce ViewNavigator, a brain-inspired multi-agent system designed to ac-
tively reason about spatial relationships between objects within a 3D environment.

Our agent architecture integrates a VLM and a LLM in a closed-loop manner without requiring post-
training or external geometry-based image analysis. The LLM strategically plans the next move, de-
ciding the viewpoint to look at. The VLM processes visual inputs from one viewpoint and its jittered
viewpoints each time. The probablistic belief module (details in Appendix [A.3) integrates feedback
from VLM to maintain a memory of the trajectory and belief state, which the LLM retrieves to guide
future actions. The LLM emits the final answer if it is confident enough. ViewNavigator signifi-
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Figure 6: (a) VLMs exhibit fluctuating performance across different color combinations. Notably,
these fluctuations diverge from human perception: the models perform better on the less distinguish-
able Maroon/Purple pair, yet worse on the more distinct Olive/Coral pair. (b) VLMs’ performances
degrade under unconventional axis orientations.

cantly enhances the performances across diverse base models by a large margin (Figure[7). Detailed
configurations and prompts for ViewNavigator is presented in Appendix [A.4]
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Figure 7: (a) ViewNavigator workflow. (b) ViewNavigator framework significantly enhances various
base models’ performances on the 3D DoF=3 tasks.

7 CONCLUSION

In this work, we presented MVBench, a benchmark specifically designed to test the ability of VLMs
to integrate multi-view observations into a coherent 3D scene understanding. Alongside the bench-
mark, we introduced an extensible data-generation pipeline that allows researchers to readily con-
struct new datasets and a brain-inspired multi-agent framework ViewNavigator that significantly
improves the performance of diverse base models on MVBench. Our systematic evaluation of lead-
ing VLMs on MVBench revealed fundamental limitations: while these models excel at recognizing
2D planar relations from single images, they struggle with integrating information across multiple
views, interpreting 3D spatial relations, and generalizing under unconventional axes or texture varia-
tions. Taken together, MVBench, its extensible pipeline, and ViewNavigator form both a diagnostic
tool and a stepping stone toward more powerful VLM-based agents. This benchmark is designed
to raise awareness of the limitations of current VLMs in multi-view integration and horizontally
benchmark and track improvements of VLMs. Our benchmark also serves as a selection standard
for base model when building VLM-based 3D-reasoning agents. We hope that future research builds
on this foundation to equip VLMs with the spatial understanding necessary for diverse downstream
3D tasks such as part assembly, scene editing, and 3D assets creation.
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A APPENDIX

A.1 MODEL EVALUATIONS IN ALL MVBENCH TASKS
Table 1: Model Performance on MVBench
Tasks/Models Claude 3.7 Sonnet ~ Claude 4 Sonnet  Gemini 2.5 Flash  Gemini 2.5 Pro GPT-40 GPT-5 GPT-03
3D DoF=3 0.060 0.050 0.110 0.170 0.030  0.500 0.300
3D DoF=2 0.150 0.065 0.130 0.095 0.050  0.440 0.320
3D DoF=1 0.420 0.080 0.220 0.230 0.260  0.430 0.470
3D Single View 0.010 0.080 0.090 0.050 0.020  0.110 0.060
3D Real World 0.060 0.080 0.140 0.140 0.020  0.520 0.480
2D Three Views (Rotation 0) 0.250 0.200 0.330 0.420 0.200  0.630 0.550
2D Three Views multiagent (Rotation 0) 0.390 0.310 0.460 0.610 0.310  0.660 0.560
2D Three Views Grids 0.300 0.260 0.330 0.390 0.200  0.690 0.540
2D Three Views Grids multiagent 0.400 0.450 0.580 0.580 0.330  0.580 0.570
2D Three Views Colors (Random) 0.150 0.160 0.330 0.380 0.140  0.640 0.560
2D Three Views Colors multiagent (Random) 0.370 0.340 0.430 0.490 0.200  0.700 0.420
2D Three Views Colors (Maroon+Purple) 0.190 0.270 0.330 0.440 0.180  0.680 0.590
2D Three Views Colors (Turquoise+Orange) 0.210 0.230 0.300 0.320 0.150  0.710 0.530
2D Three Views Colors (Purple+Olive) 0.230 0.240 0.320 0.350 0.110  0.660 0.540
2D Three Views Colors (Teal+Coral) 0.150 0.150 0.200 0.330 0.060  0.530 0.430
2D Three Views Colors (Olive+Coral) 0.200 0.150 0.200 0.320 0.110  0.600 0.440
2D Three Views Colors (Pink+Coral) 0.180 0.160 0.130 0.350 0.120  0.580 0.360
2D Three Views Rotation (23°) 0.210 0.260 0.310 0.280 0.140  0.510 0.400
2D Three Views Rotation (45°) 0.240 0.180 0.310 0.340 0.170  0.450 0.440
2D Three Views Rotation (68°) 0.090 0.040 0.290 0.170 0.070  0.480 0.390
2D Three Views Rotation (90°) 0.060 0.060 0.130 0.290 0.040  0.480 0.370
2D Three Views Rotation (113°) 0.030 0.020 0.200 0.160 0.010  0.510 0.330
2D Three Views Rotation (135°) 0.070 0.000 0.160 0.130 0.020  0.400 0.350
2D Three Views Rotation (156°) 0.030 0.020 0.170 0.110 0.010  0.470 0.360
2D Three Views Rotation (180°) 0.000 0.000 0.120 0.300 0.000  0.580 0.450

A.2 MORE EXAMPLE TASKS

(a) 2D three-view (front, side, top)

(b) 3D isometric views with 2D sheet grids
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(c) 2D three-view with colors and grids

(d) 2D three-view with colors and 70° camera rotation
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Figure 8: More Example Tasks

(e) 2D three-view with colors, grids and 130° camera rotation



A.3 BELIEF STATE AND UPDATE

The agent maintains a probabilistic belief state over spatial directions (+, 0, -) for each axis inde-
pendently. Specifically, we model this belief as a Dirichlet distribution parameterized by vector
ag = [aa4,a40,a4 ] for each axis A € {X,Y, Z}. Initially, each axis is given an uniform
prior: aeg =[1,1,1].

Upon selecting a camera viewpoint, the agent captures multiple images using micro-jitters (small
perturbations around a base viewpoint) to assess stability in the VLM’s answers, which is used as
a confidence score. For each jittered viewpoint, the VLM returns a categorical judgment (4,0, —)
independently for each axis, resulting in vote counts k4, k4,0, ka,— from a set of n images.

To update the belief, we first compute smoothed proportions:

~ o kA,s+)\

PA,s = ’ﬂ+3)\ 3 s € {+>O7_} (1)

where )\ is a smoothing constant (default A = 1) to avoid over-confidence for small n.

These proportions represent the directional preference of the cluster, while the confidence score
discounts clusters that show large variability under micro-jitters.

We propose two methods to compute the confidence score: Wilson Lower Bound Score and Rela-
tive Entropy Score, both of which achieved comparable performance.

Wilson Lower Bound Score. Given that the majority label among the n answers occurs Kmax
times, the empirical majority proportion is p = kmax/n. The Wilson score interval offers a conser-
vative estimate of the true binomial proportion, particularly robust for small n or when proportions
are near 0 or 1. The 95% Wilson lower bound is computed as:

B A I ik

, 2= 1.96. )

We map this to a conservative confidence score relative to a random baseline (uniform guess = 1/3):

o — (max(LBé%S) - 1/3)”7

3)
where 7y € [1, 2] controls sensitivity.

Relative Entropy Score. Let H(pa) = — > Pa,slogpa s be the entropy of the smoothed vote
distribution and Hp,,x = log 3 its maximum for three equally likely outcomes. The normalized

entropy gap from uniform is:
H(D v
wa = (1 H(:i)) : )

with  again controlling sensitivity.

These two methods prevent overconfidence when a cluster’s votes are unstable, rewarding highly
peaked vote distributions and penalizing near-uniform ones.

The effective evidence size is then:
Teff, A = T - WA- &)
Belief Update. The smoothed proportions p 4 s are scaled by negr, 4 to yield soft counts:
Aags = Nefr,A - Pas, Vs €{+,0,—} 6)
These are added to the Dirichlet parameters to yield the new belief:
aps ¢ aas+ Aags @)

This belief is updated iteratively over successive jittered view clusters.
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Active View Selection and Aggregation The LLM planner actively proposes the next best cam-
era viewpoint based on the current belief state and previous view history, aiming to maximize in-
formation gain and reduce uncertainty. After each belief update, the agent checks if the posterior
probability of the dominant class on each axis exceeds a confidence threshold 7 and if sufficient
evidence concentration is reached (e.g., total evidence ) | ca s > Kmin). If these criteria are met for

all axes, the agent terminates the viewpoint exploration and outputs the final prediction:

.. QA s
prediction = arg max

s VA€ (XY, 7). 8
s€{+,0,—} Zt At { } ( )

A.4 EXPERIMENTS SETUP

All experiments are conducted using our proposed MVBench benchmark. The 3D scenes and cor-
responding multi-view images are procedurally generated using Blender. Each scene is constructed
with a fixed global coordinate system, represented by colored axes (X: red, Y: green, Z: blue), to
provide a consistent frame of reference across all viewpoints. The generation pipeline allows for
the use of various 3D assets, randomized object placements, and configurable camera positions, as
detailed in Section 4 of the main paper.

A.4.1 HYPERPARAMETERS

VLM API Calls (Single-Agent & Multi-Agent) For models other than GPT-03 and GPT-5:

* temperature = 1.0

* max_tokens = 4096

ViewNavigator Framework The ViewNavigator agentic framework was configured as follows:

* max_steps = 10 (Maximum number of viewpoints the agent can select)
* r_az = 5 (Radius in degrees for azimuthal jitter)
* rel = 5 (Radius in degrees for elevation jitter)

* tau = 0.6 (Confidence threshold 7 for the belief state using the Wilson Lower Bound
Score)

* jitter_size = 5 (Number of jittered images per viewpoint)
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A.4.2 PROMPTS

The exact prompts used in our experiments are provided below. Placeholders such as
{central_obj_type} are filled dynamically during data generation. Labels such as % VLM
SYSTEM PROMPT are included only for readability in the paper.

Prompt for MVBench-3D and MVBench-2D Tasks (Single-agent):

Look at this 3D scene carefully from different viewpoints. You can
see several
geometric objects and coordinate axes.

COORDINATE SYSTEM:

- X—-axis: RED rod, pointing to positive X direction

- Y-axis: GREEN rod, pointing to positive Y direction

— Z-axis: BLUE rod, pointing to positive Z direction

- Origin (0,0,0): YELLOW sphere, located at the center of the
{central_obj_type}

TASK:

Determine the relative position of the {sampled_obj_type} compared
to the

{central_obj_type} in terms of their geometric centers.

INSTRUCTIONS:

1. Look at where the {sampled_obj_type} is positioned relative to
the {central_obj_type}

2. For each axis, determine if the {sampled_obj_type} is in the
positive (+) or

negative (-) direction using the coordinate system shown in the
images.
3. If objects appear at approximately the same level on an axis,
use (0)

ANSWER FORMAT:

Respond with exactly this format: <answer> (+X, Y, +Z)</answer>
Examples: <answer> (+X, -Y, +Z)</answer> or <answer>(-X, 0Y,
-7)</answer>

or <answer> (0X, +Y, 0Z)</answer>

What is the relative position of the {sampled_obj_type} to the
{central_obj_type}?
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Prompt for MVBench-2D Tasks (Multi-agent):

o

% Prompt for Front View (XZ plane)
Look at this Front View (XZ plane) carefully. You can see several
geometric objects and coordinate axes.

VIEW DESCRIPTION:
This is the Front View (XZ plane), looking along the Y-axis.

COORDINATE SYSTEM:

- X-axis: RED rod, pointing to positive X direction

- Z-axis: BLUE rod, pointing to positive Z direction

- Origin (0,0,0): YELLOW sphere, located at the center of the
{central_obj_type}

TASK:

Determine the relative position of the {sampled_obj_type} compared
to the {central_obj_type} in terms of their geometric centers,
focusing only on the X and Z axes visible in this view.

INSTRUCTIONS:

1. Look at where the {sampled_obj_type} is positioned relative to
the {central_obj_type}

2. For each visible axis (X, Z), determine if the
{sampled_obj_type} is in the positive (+) or negative (-) direction
using the coordinate system shown in the image.

3. If objects appear at approximately the same level on an axis,
use (0)

ANSWER FORMAT:

Respond with exactly this format for the X and Z axes: <answer> (%X,
+7)</answer>

Examples: <answer> (+X, -Z)</answer> or <answer> (0X, +Z)</answer>

What is the relative position of the {sampled_obj_type} to the
{central_obj_type} in the X and Z axes?
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% Prompt for Side View (YZ plane)
Look at this Side View (YZ plane) carefully. You can see several
geometric objects and coordinate axes.

VIEW DESCRIPTION:
This is the Side View (YZ plane), looking along the X-axis.

COORDINATE SYSTEM:

- Y-axis: GREEN rod, pointing to positive Y direction

- Z-axis: BLUE rod, pointing to positive Z direction

- Origin (0,0,0): YELLOW sphere, located at the center of the
{central_obj_type}

TASK:

Determine the relative position of the {sampled_obj_type} compared
to the {central_obj_type} in terms of their geometric centers,
focusing only on the Y and Z axes visible in this view.

INSTRUCTIONS:

1. Look at where the {sampled_obj_type} is positioned relative to
the {central_obj_type}

2. For each visible axis (Y, Z), determine if the
{sampled_obj_type} is in the positive (+) or negative (-) direction
using the coordinate system shown in the image.

3. If objects appear at approximately the same level on an axis,
use (0)

ANSWER FORMAT:

Respond with exactly this format for the Y and Z axes: <answer> (zY,
+7)</answer>

Examples: <answer> (+Y, -Z)</answer> or <answer>(0Y, +Z)</answer>

What is the relative position of the {sampled_obj_type} to the
{central_obj_type} in the Y and Z axes?"
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)

% Prompt for Top View (XY plane)
Look at this Top View (XY plane) carefully. You can see several
geometric objects and coordinate axes.

VIEW DESCRIPTION:
This is the Top View (XY plane), looking along the Z-axis from
above.

COORDINATE SYSTEM:

- X-axis: RED rod, pointing to positive X direction

- Y-axis: GREEN rod, pointing to positive Y direction

- Origin (0,0,0): YELLOW sphere, located at the center of the
{central_obj_type}

TASK:

Determine the relative position of the {sampled_obj_type} compared
to the {central_obj_type} in terms of their geometric centers,
focusing only on the X and Y axes visible in this view.

INSTRUCTIONS:

1. Look at where the {sampled_obj_type} is positioned relative to
the {central_obij_type}

2. For each visible axis (X, Y), determine if the
{sampled_obj_type} is in the positive (+) or negative (-) direction
using the coordinate system shown in the image.

3. If objects appear at approximately the same level on an axis,
use (0)

ANSWER FORMAT:

Respond with exactly this format for the X and Y axes: <answer> (xX,
+Y) </answer>

Examples: <answer> (+X, -Y)</answer> or <answer> (0X, +Y)</answer>

What is the relative position of the {sampled_obj_type} to the
{central_obj_type} in the X and Y axes?
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Prompts for ViewNavigator:

VLM PERCEPTION MODULE PROMPTS

% VLM SYSTEM PROMPT
You are a precise vision judge. The image shows colored world axes:

COORDINATE SYSTEM:

- X-axis: RED rod, pointing to positive X direction

- Y-axis: GREEN rod, pointing to positive Y direction

- Z-axis: BLUE rod, pointing to position Z direction

- Origin (0,0,0): YELLOW sphere, located at the center of the
{central_object}

- Both CENTRAL and TARGET objects have the same scale in X, Y, Z
dimensions

TASK:

Determine the relative position of the {target_object} compared to
the

{central_object} in terms of their geometric centers.

INSTRUCTIONS:
1. Only focus on axis {axis} for this view and only give answer for
these axes.
2. Compare the TARGET center to the CENTRAL center along each of
{axis}:

« "+" if TARGET lies in the positive direction

« "{" if in the negative direction

« "0" if approximately equal (centers aligned along that axis)
3. Wrap your full step-by-step reasoning in <think>...</think>.
4. Then emit exactly one line, wrapped in <answer>...</answer>,
listing only

axes {axis} with their sign or 0.

Do **not**x include any extra text or prose.

% VLM USER PROMPT
CENTRAL: {central}
TARGET: {target}

Return exactly:
<think>...step-by-step reasoning...</think>
<answer> (X, *Y, +Z)</answer>

Valid examples:
<think>I see red and green axes...</think>
<answer> (+X, -Y)</answer>

<think>Blue axis only is clear...</think>
<answer> (-7Z)</answer>
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LLM PLANNER MODULE PROMPTS

% LLM SYSTEM PROMPT

You control a camera in a 3D scene. Your goal is to decide the
signs (+,0,-)

of TARGET relative to CENTRAL on axes X,Y,Z by choosing successive
viewpoints.

**xCamera Coordinate System:*x*

- Azimuth 0°: X-axis points towards viewer, Y-axis points right

— As azimuth increases (clockwise rotation):
- Azimuth 90°: Y-axis points towards viewer, X-axis points left
— Azimuth 180°: X-axis points away from viewer, Y-axis points
left
— Azimuth 270°: Y-axis points away from viewer, X-axis points
right

- Elevation 0°: Camera views from directly above (top-down)

- Elevation 90°: Camera views from horizontal level

- Elevation 180°: Camera views from directly below (bottom-up)

On every turn you will receive:
- threshold \tau (a float in [0,1])
- belief_state:
{
"X": {"+" : p_plus, "O0": p_zero, "-" : p_minus},
"Y' {...},
ngw. {___}
}
— history: a list of previously checked views, each entry:
{
"view": {"az": az_deg, "el": el_deg},
"answer": " (X, #Y, #Z)" or shorter,
"confidence": {"X":cX, "Y":cYy, "zZ":cZ}

If x*xallxx axes have max(belief) \geg \tau, you should stop.
Otherwise choose the

next best view. Note that you can revisit some views to stengthen
your belief.

You should also decide which axes you want to focus on in a view.
For example,

if you choose a view that shows the XY plane, then you should focus
on only

the X axis and Y axis or even just focus on X or Y axis.

Note that the confidence score represents the reliability of the
answer got from

that view. Zero confidence score for a view indicates that the
relative

position is not clear revealed through that view.

**Rulesxx*

1. Wrap your internal reasoning in <think>...</think>
2. Then emit exactly one <answer>...</answer> containing *xonlyx*x
this JSON:
{
"action": "CAPTURE" | "STOP",
"view": {"az": <number>, "el": <number>} | null,
"axis": ["x", "y"]

}

No extra text or fields.
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% LLM FIRST TURN PROMPT

# First turn (no belief_state or history)

Task: find (£X,+Y,+Z) for TARGET={target} vs CENTRAL={central}.
Threshold \tau = {tau}.

Propose your initial viewpoint.
Respond with:
<think>...</think>

<answer>{ {

"action": "CAPTURE",
"view": {{"az": <num>, "el": <num>}},
"axis": ["axes to focus on for this view"]

}}</answer>

% LLM INTERMEDIATE TURN PROMPT
# Subsequent turn

Threshold \tau = {tau}

belief state = {belief_ state}
history {history}

Decide whether to STOP or pick another view.
Respond with:

<think>...</think>

<answer>{{

"action": "CAPTURE" |"STOP",
"view": {{"az": <num>, "el": <num>}} | null,
"axis": ["axes to focus on for this wview"] | null

}}</answer>

A.5 EXAMPLES OF MORE SPATIAL TASKS

Hypothetical Perspective-Taking Spatial Navigation

Question: If you are positioned at
this viewpoint, then turn left and
move forward, will you get closer to
the chair?

Question: If you are siting on the
chair facing the front, the table is on
the left or right of you?

-] .
L Answer: No.

-] Answer: Left side
B B

Spatial Mental Modeling

Question: If you are at view 1 and
move to view 2, which one is the
furthest from you?

Allocentric Perspective-Taking

Question: The table is on the left or
right side of the bench?

1& Answer: Left side.

"gx Answer: Table. an

Figure 9: Examples of more spatial tasks that can be created using our data generation pipeline.



A.6 FAILURE CASES

In this section, we present a glimpse of failure cases we observed during the evaluations.

A.6.1 3D DOF=3 (CLAUDE 3.7 SONNET)

In this challenging 3D spatial reasoning task, the model correctly identifies the relationships on the
X and Y axes but fails to accurately determine the relative position on the Z-axis.

¢ Ground Truth: (-X, +Y, +72)
e Model’s Answer: (-X, +Y, 0Z)

Figure 10: Six isometric views provided to the model for the 3D DoF=3 task.

Reasoning and Answer:

Looking at the different viewpoints of the 3D scene, I can analyze the relative position of
the cube compared to the cylinder.
From the images, I can see that:

» X-axis: The cube appears to be positioned mainly in the negative X direction rela-
tive to the cylinder (to the left in several views)

* Y-axis: The cube appears to be positioned in the positive Y direction relative to the
cylinder (forward in several views)

» Z-axis: The cube and cylinder appear to be at approximately the same height on
the Z-axis

<answer>(-X, +Y, 0Z)</answer>




A.6.2 2D COLORS (CLAUDE 4 SONNET)

In this task, the model is provided with three canonical 2D views (front, side, and top). The model
demonstrates a classic failure in view integration. It correctly processes the x-axis relationship (-X),
which is salient in the top and front views. However, when trying to determine depth (Y-axis from
the side/top views) and height (Z-axis from the front/side views), it incorrectly concludes the objects
are at the “same level.”

¢ Ground Truth: (-X, +Y, +72)
e Model’s Answer: (-X, 0Y, 0Z)

(a) Front view (b) Side view (c) Top view

Figure 11: Example task of 2D three view with colors.

Reasoning and Answer:

Based on examining the 3D scene from multiple viewpoints, I can determine the relative
position of the teal cone compared to the lime cylinder.
Looking at all three viewpoints:

» X-axis: The cone appears to be to the left of the cylinder (negative X direction)

* Y-axis: The cone appears to be at approximately the same level as the cylinder on
the Y-axis

» Z-axis: The cone appears to be at approximately the same height as the cylinder
on the Z-axis

<answer>(-X, 0Y, 0Z)</answer>
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A.6.3 VIEWNAVIGATOR (GPT-5): VLM PERCEPTION FAILURE

This case illustrates a failure where the agent incorrectly determines the position on the Y-axis,
leading to an incorrect final answer. The failure stems from a critical misperception by the VLM,
which then misleads the LLM planner. This single error propagates through the agent’s belief state,
causing the LLM planner to develop confirmation bias and eventually accept the wrong conclusion.

¢ Ground Truth: (-X, -Y, +7)
* Agent’s Final Answer: (-X, 0Y, +2)

Figure 12: Image observed by the VLM from a side view (az=0, e1=90).

Reasoning and Anwser:

<think>Identify axes: green is +Y to the right; blue is +Z upward. Compare centers:
the sphere is directly above the cube with no horizontal (Y) offset, so along Y the centers
align (0). Along Z, the sphere lies above the cube center, so it is in the positive Z direction
(#+).</think> <answer>(0Y, +Z)</answer>
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A.6.4 VIEWNAVIGATOR (GEMINI 2.5 FLASH): LLM PLANNING FAILURE

This case demonstrates a fundamental failure in the LLM’s spatial reasoning, where there is a dis-
connect between its stated goal and its proposed action. It correctly identifies the need for a view
of the XZ plane but incorrectly believes that an elevation of 90° will achieve this. A view with an
elevation of 90° is a top-down view, which clearly displays the XY plane while making it impossible
to accurately judge relative positions along the X-axis. The model’s stated goal is contradicted by
its proposed action, highlighting a limited capacity to translate a desired outcome into the correct
geometric parameters.

Figure 13: The view generated by the LLM’s proposal (az=0, e1=90).

Reasoning and Planning:

<think> ... A view with azimuth 0° and elevation 90° would provide a side view focusing
on the XZ plane, which might help clarify the X axis. This view also gives us a chance
to improve our understanding of the Z axis. Therefore, I will choose a view with azimuth
0° and elevation 90°, focusing on the X and Z axes. </think> <answer> ”action”:
"CAPTURE”, "view”: 7az”: 0, ’el”: 90, 7axis™: [*X”, ”Z”’] </answer>
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