
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEQUILA: TRAPPING-FREE TERNARY QUANTIZA-
TION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization techniques are essential for the deployment of Large Language Mod-
els (LLMs) on edge devices. However, prevailing methods often rely on mixed-
precision multiplication that lacks efficient hardware support, making it not fea-
sible. Ternary weight quantization addresses this by constraining weights to {-
1, 0, 1}, replacing expensive multiplications with hardware-efficient additions.
However, such aggressive compression leads to significant accuracy degradation,
even after costly quantization-aware training with massive data. We identify
the core issue as deadzone trapping: a large number of weights are trapped
at the deadzone boundary. This occurs because these weights receive only
noisy, less informative gradients, preventing stable escape from the deadzone and
severely impeding model capacity and optimization. To address this issue, we
propose Tequila, a trapping-free quantization optimization method that reacti-
vates deadzone-trapped weights by repurposing them as dynamic biases. This
allows the repurposed weights to provide a continuous signal in the forward pass
and, critically, receive direct, meaningful gradient signals during backpropagation,
thereby enhancing model capacity and optimization with nearly zero inference
overhead. Extensive evaluations demonstrate that Tequila outperforms state-of-
the-art (SOTA) ternary quantization methods across five benchmarks. Specifically,
on the ARC benchmark, it achieves > 4% accuracy gain over the SOTA base-
line, nearly matching full-precision performance (within < 1% gap) with a 3.0×
inference speedup. Consequently, Tequila offers a practical and efficient imple-
mentation for the deployment of advanced LLMs in resource-constrained environ-
ments. The code is available at https://anonymous.4open.science/
r/Tequila-2B5F/

1 INTRODUCTION

Recent advancements in large language models (LLMs) (Wu et al., 2023; Floridi & Chiriatti, 2020;
Zhang et al., 2022) have demonstrated remarkable success across a wide range of applications, from
conversational chatbots to creative writing. However, growing concerns over data privacy, the need
for offline functionality, and the high cost of large-scale cloud deployment (Yao et al., 2024; Liagkou
et al., 2024) have necessitated the deployment of these models directly on edge devices, which are
usually resource-constrained.

Quantization (Dettmers et al., 2021; 2022; Lin et al., 2023; Frantar et al., 2022) has emerged as
a promising technique to achieve this goal, reducing model size and computational requirements
by representing model weights with lower precision. However, most existing quantization meth-
ods (Kwon et al., 2022; Dettmers et al., 2024; Liu et al., 2023; Frantar et al., 2022) are primarily
designed for server-grade GPUs that support specialized hardware features, such as mixed-precision
multiplication (Lin et al., 2023). These methods are often incompatible with a wide range of edge
and mobile hardware, highlighting a critical need for hardware-friendly quantization approaches that
remain effective across diverse and resource-constrained devices.

Ternary quantization (Li et al., 2016; Liu & Liu, 2023; Ma et al., 2025; Wang et al., 2023; 2025a)
offers a promising path for on-device deployment of LLMs by constraining weights to {−1, 0,+1}.
This method reduces matrix multiplication to efficient additions, as illustrated in Fig. 2, which are
widely supported by most hardware. However, such aggressive compression introduces significant
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Training with Ternary Quantization

Deadzone Trapping
weights are trapped at 
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disrupting optimization
Large Acc gap > 5%
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no information

Enhanced Capacity
Dead weights are 
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Deadzone Deadzone

Figure 1: (Top) Deadzone Trapping in Ternary Quantization: Dead weights are trapped in a cycle
of ineffective oscillation around the deadzone boundary due to noisy and less informative gradients,
impeding model capacity and optimization, causing a significant accuracy drop (> 5%) versus the
full-precision. (Bottom) Reactivation Strategy of Tequila: Our Tequila reactivates dead weights
as dynamic biases, providing direct and meaningful gradients for stable escapes, enhancing model
capability and optimization, achieving only a minor accuracy gap (< 1%).

information loss, often leading to severe accuracy degradation even after costly Quantization-Aware
Training (QAT) on massive datasets. For instance, BitNet (Ma et al., 2025; Wang et al., 2025a)
consumes 4T tokens during QAT but still fails to match full-precision performance. Thus, the dual
problems of performance degradation and prohibitive training overheads persist as the fundamental
barriers to the development of effective ternary LLMs.

In this paper, we identify the key source of these challenges as deadzone trapping, where a large
number of weights are trapped at the deadzone boundary. Deadzone trapping arises from the aggres-
sive nature of ternary quantization, which creates a vast deadzone that quantizes a large proportion of
weights to zero. During training, these ”dead” weights receive only noisy, less informative gradients
from the Straight-Through Estimator (STE), preventing effective optimization. Lacking consistent
directional signals, these weights are hard to escape the deadzone stably and are accumulated at
the deadzone boundary, as shown in Fig. 1 (Top). This results in a cycle of ineffective oscillation,
rendering these weights long-term inactive and severely impeding model capacity and optimization.

To address the deadzone trapping issue, we propose Tequila, a trapping-free Ternary quantization
method for large language models. Our key idea is to reactivate dead weights by repurposing them
as dynamic biases. This provides continuous signals to the output, enhancing the model capacity,
as shown in Fig. 2 (c). More importantly, these weights receive direct and informative gradients via
the bias terms, enabling them to escape the deadzone stably, as shown in Fig. 1 (Bottom). Crucially,
these biases can be computed offline, introducing nearly zero inference overhead.

We evaluate the effectiveness and efficiency of Tequila on five common benchmarks using LLaMA
3.2 (Touvron et al., 2023) and Qwen3 (Bai et al., 2023) models. Our experiments demonstrate that
Tequila outperforms all state-of-the-art (SOTA) ternary methods across all benchmarks while re-
quiring only limited training data. For instance, when trained on just 10B tokens, Tequila achieves a
> 4% accuracy gain over the SOTA baseline on the ARC benchmark, nearly matching full-precision
performance (within < 1% gap). Furthermore, it delivers a significant 3× inference speedup on an
Intel 8263C CPU, verifying that Tequila offers a practical and efficient solution for deploying LLMs
on resource-constrained devices.

2 BACKGROUND AND CHALLENGE

2.1 TERNARY QUANTIZATION

Ternary quantization is an extreme compression technique that constrains model weights to ternary
values {−1, 0,+1}. This representation converts the computationally expensive weight-input matrix

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

−1 0 1 0

0 −1 0 −1

𝑥!

𝑥"

𝑥#

𝑥$

−𝑥! + 𝑥#

−𝑥" − 𝑥$

−1 0% 1 0%

0% −1 0& −1

𝑥!

𝑥"

𝑥#

𝑥$

+𝜖 + 𝜖

+𝜖 − 𝜖

Ternary Weight Quaternary Weight

Input Input

Output Output bias-like term

𝑥!

𝑥"

𝑥#

𝑥$

Input

(assuming 𝑥 are positive)

−1 0 1 0

0 −1 0 −1

Ternary Weight Reactivated weights

0 𝜆𝑤! 0 𝜆𝑤"

𝜆𝑤# 0 𝜆𝑤$ 0
sum 𝜆𝑤" + 𝜆𝑤$

𝜆𝑤' + 𝜆𝑤(

Output Dynamic bias

😭Weights are dead 😊 Dead weights 
are reactivated  

😊 Offline computing😊 Adaptive differentiable reactivation

(a) Ternary quantized layer (Acc 60.3%) (b) Activating dead weights as minima (Acc 61.5% ↑)

(c) Tequila adaptively reactivate dead weights as dynamic biases (Acc 64.5% ↑↑)

😊 Plug-and-play

(Addition-only)

😭Online
Computing

Figure 2: (a) Prior Ternary Quantization replaces multiplications with efficient additions but suffers
from severe information loss and limited capacity due to deadzone-trapped weights. (b) Minima
Reactivation assigns signed minima to dead weights, improving capacity but yielding only marginal
accuracy gains. (c) Tequila reactivates dead weights as adaptive dynamic biases via a differentiable
function, achieving significant accuracy improvements with nearly zero inference overhead. For
simplicity, we omit the scaling operation in the Figure.

multiplication into input-inner addition, as shown in Fig. 2 (a), offering significant hardware advan-
tages. Given a full-precision weight vector W = (w1, . . . , wn), the general form of the ternary
quantization function Q(·) is defined as:

Q(W ) = Ŵα, ŵi =


+1, if wi ≥ ∆;

0, if |wi| < ∆;

−1, if wi ≤ −∆,

(1)

where Ŵ = (ŵ1, . . . , ŵn) is ternary weights, α is a scaling factor and ∆ is a threshold parameter.
A significant body of research focuses on determining optimal values for α and ∆. For instance,
the TWN (Li et al., 2016) assumes the weight distribution follows a standard Gaussian distribution.
It approximates the optimal threshold as ∆∗ ≈ 0.75

n

∑n
i=1 |wi| and derives a closed-form solution

for α by minimizing ||W − αŴ ||2. Subsequent methods (Chen et al., 2024; Liu et al., 2025; Zhu
et al., 2016) forgo this distributional hypothesis and instead treat α or ∆ as trainable parameters
learned during optimization. In recent open-source ternary LLMs (Ma et al., 2025; Team et al.,
2025; Kaushal et al., 2025), the static absmean quantization method has gained wider adoption due
to its training stability, where the α and ∆ are defined by

α =
1

n

n∑
i=1

|wi|, ∆ =
α

2
. (2)

Due to the aggressive nature of this compression, quantized models often require Quantization-
Aware Training (QAT) to recover accuracy. During QAT, full-precision weights are dynamically
quantized using a quantization function Q(·) in Eq. 1 for the forward pass, while the backward pass
operates on full-precision gradients. This process maintains a full-precision copy of the weights W
to accumulate gradient updates, as detailed in Appendix C. Due to a non-differentiable function
of Q(·), the gradients for W are approximated using the Straight-Through Estimator (STE) (Zhu
et al., 2016; Chen et al., 2024), leading to the following forward pass and backpropagation with
input vector X = (x1, . . . , xn):

Y = XTQ(W ) = XT Ŵα,
∂L

∂wi
=

{
∂L
∂Y xiα, if |wi| ≥ ∆;
∂L
∂Y xi, if |wi| < ∆,

(3)

where L denotes the loss of the model prediction. After training, the full-precision weights W are
discarded. The ternary weights Ŵ and the scaling factor α are packed for inference. During infer-
ence, the ternary multiplication of XT Ŵ is computed first, following the efficient process shown
in Fig. 2 (a). This eliminates the need for mixed-precision matrix multiplication, replacing it with
hardware-efficient addition. The related work and details can be found in Appendix B and E.4.
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Figure 3: The average Gradient Signal-to-Noise Ratio (GSNR) for (left) Naive Ternary Quantization,
(middle) Minima Reactivation, and (right) our Tequila method during training.

2.2 DEADZONE TRAPPING

Ternary quantization incurs significant information loss and performance degradation, necessitating
extensive retraining to recover model accuracy. This problem is exacerbated in LLMs, where the
scale of parameters amplifies the difficulty of retraining. For instance, BitNet (Ma et al., 2025)
trains from scratch on 4T tokens, a cost rivaling standard pre-training. Similarly, BitCPM4 (Team
et al., 2025) uses 100B tokens of training even when starting from a pre-trained model. To our
knowledge, no existing work has achieved competitive performance with less than 100B tokens for
ternary-quantized LLMs.

We identify the core cause of this inefficiency as deadzone trapping, where a large number of
weights become trapped at the deadzone boundary. This issue originates from the aggressive nature
of ternary quantization, which creates a deadzone within the range (−∆,∆) where weights are
quantized to zero. During Training, these ”dead” weights (ŵi = 0) and their corresponding inputs
xi are continually pruned in the forward pass, contributing nearly no information to the output Y
and the loss L. Consequently, the upstream signal ∂L

∂Y reflects less sensitivity to wi and xi, making
the overall gradients in Eq. 3 noisy and less informative. This problem is exacerbated by the non-
differentiable quantization function Q(·), as the required use of the STE injects significant noise
into these gradients. As shown in Fig. 3 (left), the Gradient Signal-to-Noise Ratio (GSNR) for naive
ternary quantization confirms this analysis: in early training, the GSNR for dead weights is much
lower than for active weights (see Appendix E.2 for more details and analysis).

These noisy gradients prevent dead weights from accumulating consistent update signals, trapping
them within the deadzone. When a large number of weights remain at deadzone for an extended
period, the model easily becomes trapped in a suboptimal state. When some weights occasionally
break free, their abrupt changes often trigger opposing gradients that pull them back. This dynamic
results in weights accumulating at the deadzone boundary, trapped in a cycle of ineffective oscil-
lation, as shown in Fig. 1 (top) and Fig. 10. Ultimately, deadzone trapping renders a substantial
portion of the model weights long-term inactive, severely impairing both model capacity and train-
ing efficiency, as evidenced in Fig. 3 (left).

3 TEQUILA: DEADZONE-FREE TERNARY QUANTIZATION

3.1 MITIGATING THE DEADZONE TRAPPING BY MINIMA REACTIVATION

We identify the fundamental limitation of deadzone trapping in ternary quantization as the fact
that the dead weights provide no meaningful signal to the model output in the forward pass. This
creates a vicious cycle where trapped weights cannot contribute to learning and struggle to escape
the deadzone effectively, significantly impeding convergence.

Our core motivation is to allow dead weights to contribute to the forward output, even with minimal
but informative values, which can break this trapping by receiving a more direct and informative
gradient signal. Therefore, we propose to repurpose dead weights to provide informative signals,
which enhance model capacity and establish clean gradient pathways.

To implement this, we intuitively propose Minima Reactivation, preserving the sign information of
dead weights, reactivating them as distinct values 0− and 0+, representing negative and positive
minima, respectively, as shown in Fig. 2 (b). This creates a quaternary weight representation w̃i ∈

4
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{−1, 0−, 0+,+1}. Crucially, to isolate the impact of increasing the representation capability from
3 to 4 values while preserving only sign information, we replace multiplication with a constant-
magnitude mapping. For any input x, the operation yields a value ±ε :

x · 0+ = sign(x)ε, x · 0− = −sign(x)ε. (4)

Formally, let W̃ = (w̃1, . . . , w̃n) represent the quaternary weight vector, and define the set of indices
in the deadzone as D = {i| −∆ < wi < ∆}. The forward pass can then be converted to:

Y = XW̃α = α
∑
i∈D̄

sign(wi)xi︸ ︷︷ ︸
original output

+ ε
∑
i∈D

sign(xi)sign(wi)︸ ︷︷ ︸
online bias-like term

, (5)

where the D̄ denotes the set of indices not in the deadzone. This formulation reveals that previously
dead weights now contribute meaningfully to the output through the bias-like term. Consequently,
these weights wi receive informative gradients from backpropagation, denoted as

∂L

∂wi
= ε · sign(xi) ·

∂L

∂Y
, ∀i ∈ D. (6)

Compared to previous naive ternary quantization, where dead weights receive essentially random
gradients in Eq. 3, this approach enables these dead weights to contribute a meaningful, non-zero
signal that directly influences the final output. This allows them to receive more informative gradient
signals proportional to the downstream loss, thereby providing an effective optimization direction.
As shown by the GSNR measurements in Fig. 3 (middle), Minima Reactivation provides reactivated
weights with higher GSNR, thereby mitigating the dead-zone trapping issue and enabling more
efficient optimization.

Limitations: While this Minima Reactivation method demonstrates the theoretical viability of
deadzone repurposing, we identify two practical limitations: (1) Noisy gradients and unstable
training: The gradients for reactivated weights in Eq. 3 still rely on the STE for the sign(·) oper-
ation, introducing noise and unstable training, as shown in Fig. 3 (middle), yielding only marginal
accuracy gains. (2) Non-negligible inference overhead: The additional bias-like term, which is
input-dependent, introduces non-negligible inference overhead, as it requires computation for every
forward pass.

These insights motivate our final Tequila method, which retains the core concept of deadzone reac-
tivation while introducing key optimizations to overcome these limitations, as detailed in the next
subsection.

3.2 TEQUILA: REPURPOSING DEAD WEIGHT AS DYNAMIC BIAS

This section introduces Tequila, a trapping-free quantization method that reactivates deadzone-
trapped weights to enhance model capacity and restore optimization potential without sacrificing
hardware efficiency. Tequila’s core innovation lies in repurposing the deadzone from a fundamental
limitation into a source of adaptability through the following three key designs.

Differentiable Reactivation: To address the noisy gradient and unstable training problem in Min-
ima Reactivation, we replace the non-differentiable mapping to a constant ±ε with a scaling for
dead weight wi, allowing the computation of reactivation values as λwi, resulting in a smooth,
differentiable reactivation function. That is, in forward pass, the Eq. 5 is converted as:

Y = XŴα ≈ α
∑
i∈D̄

sign(wi)xi + λ
∑
i∈D

sign(xi)wi. (7)

Crucially, this design bypasses the STE, providing direct and informative gradients that enable ef-
fective optimization of previously trapped weights.

Repurposing Dead Weights as Biases: To eliminate the non-negligible inference overhead of
Minima Reactivation, we repurpose dead weights as actual biases, thereby converting online com-
putation into an offline one, i.e., setting λ

∑
i∈D sign(xi)wi ≈ λ

∑
i∈D wi in Eq. 7. This simplifi-

cation is justified by two reasons. First, it remains faithful to our core motivation of enabling dead

5
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weights to contribute to the output; a bias term achieves this in an activation-free manner, perfectly
aligning with our hypothesis while minimizing overhead. Second, we find empirical support for this
approximation: the cosine similarity between the original bias-like vector and the simplified bias
vector is high (> 70%), as shown in Fig. 4, validating that our simplification retains the essential
functional behavior.
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Figure 4: The cosine similarity of bias-like
term in Eq. 7 and pure bias term Eq. 8 during
training of Tequila.

Hybrid Roles of Reactivated Weights: While
converting dead weights to pure biases (

∑
i∈D λwi)

provides clean gradients, it discards valuable input
information. Tequila overcomes this limitation by
assigning reactivated weights to hybrid roles. In
addition to functioning as an dynamic bias, these
weights are simultaneously maintained as partici-
pants in the ternary matrix multiplication. This dual
role creates a mixed gradient from both the standard
ternary pathway and the direct bias pathway. Con-
sequently, the optimization process preserves cru-
cial input information while benefiting from a direct,
informative gradient signal, driving more effective
training.

With these three key designs, the Tequila forward
pass combines efficient ternary operations with dy-
namic biases:

Y = XQ(W ) + C(W ) = XŴα+
∑
i∈D

λwi, (8)

where the bias term C(W ) =
∑

i∈D λwi acts as a residual connection for weights within the dead-
zone. This formulation directly yields superior gradients for these dead weights:

∂L

∂wi
= xi

∂L

∂Y
+ λ

∂L

∂Y
, ∀i ∈ D, (9)

thereby preserving input-dependent information and delivering a direct, informative gradient signal
to enable effective optimization. As shown by the GSNR measurements in Fig. 3 (right), Tequila
provides high and stable GSNR during the training, thereby enabling more efficient optimization.

Advantages: Tequila provides five key advantages over existing ternary quantization methods:

(1) Enhanced Model Capacity: Reactivating dead weights effectively expands the model parameter
space without increasing computational complexity during inference.

(2) Trapping-free Optimization: By providing direct, informative gradients, Tequila enables stable
escape from deadzone, achieving trapping-free weight optimization.

(3) Training Stability: The differentiable reactivation function ensures stable optimization while
maintaining quantization constraints, resulting in more consistent, reliable training convergence.

(4) Plug-and-play Design: Tequila is a simple and plug-and-play module that can be easily inte-
grated into most existing ternary quantization methods.

(5) Nearly Zero Inference Overhead: The input-agnostic bias term can be precomputed offline and
seamlessly fused into the computation kernel, achieving nearly zero inference overhead. This
preserves the hardware efficiency of pure ternary quantization.

4 EVALUATION

To validate the efficacy of Tequila, we conduct comprehensive experiments evaluating its perfor-
mance against state-of-the-art ternary quantization methods. All experimental results are averaged
on three independent runs with random seeds. In all tables, the best and second-best results are
highlighted in purple and blue color, respectively, and the result of the full-precision method is set
to gray color for reference.
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Size Method ARC-e ARC-c HelS PIQA WinG GPQA Average

1B

BF16 0.654 0.313 0.477 0.742 0.603 0.222 0.502
LSQ 0.376 0.177 0.258 0.574 0.506 0.231 0.354
SEQ 0.421 0.180 0.273 0.604 0.510 0.232 0.370
DLT 0.424 0.174 0.256 0.563 0.513 0.277 0.368
TWN 0.407 0.220 0.284 0.601 0.492 0.212 0.363
AbsMedian 0.567 0.251 0.339 0.674 0.533 0.222 0.431
AbsMean 0.603 0.259 0.360 0.683 0.541 0.227 0.445
Tequila+AbsMedian 0.645 0.308 0.393 0.719 0.558 0.237 0.477
Tequila+AbsMean 0.645 0.305 0.391 0.710 0.542 0.232 0.471

3B

BF16 0.745 0.422 0.552 0.768 0.691 0.303 0.580
LSQ 0.431 0.200 0.294 0.599 0.522 0.239 0.354
SEQ 0.498 0.231 0.303 0.645 0.529 0.258 0.411
DLT 0.361 0.161 0.260 0.572 0.496 0.272 0.354
TWN 0.692 0.351 0.462 0.734 0.586 0.237 0.510
AbsMedian 0.636 0.299 0.406 0.713 0.558 0.181 0.466
AbsMean 0.672 0.329 0.439 0.735 0.582 0.301 0.510
Tequila+AbsMedian 0.701 0.345 0.449 0.733 0.611 0.237 0.513
Tequila+AbsMean 0.702 0.346 0.464 0.739 0.627 0.303 0.530

Table 1: Comparison of Tequila method with different ternary quantization methods

4.1 EXPERIMENTAL SETUP

We provide a comprehensive overview of our experimental configuration below, with additional
implementation details available in the Appendix E.

Datasets, Models and Evaluation: We utilize the LLaMA-3.2-1B, LLaMA-3.2-3B (Touvron
et al., 2023) and Qwen3-4B Bai et al. (2023) models as our base architectures, employing a group
size of 128 throughout our experiments unless otherwise specified. For quantization-aware train-
ing, we use 10B tokens sampled from the UltraFineWeb dataset (Wang et al., 2025c). Following
established practices in ternary quantization research (Liu et al., 2025; Chen et al., 2024; Ma et al.,
2025), we evaluate model performance with lm-evaluation-harness (Gao et al., 2024) on five zero-
shot benchmarks: PIQA (Bisk et al., 2020), ARC-Easy/Challenge (ARC-e/ARC-c) (Clark et al.,
2018), HellaSwag (HelS) (Zellers et al., 2019), GPQA-Diamond (Rein et al., 2023) and Wino-
Grande(WinG) (Sakaguchi et al., 2021). Details for benchmarks are in Appendix E.1.

Baselines: We compare Tequila against several quantization method baselines, which represent
the methods used in existing state-of-the-art (SOTA) ternary LLMs. These include two types of
quantization methods: (1) static methods: TWN Li et al. (2016), AbsMedian and AbsMean used
in BitNet (Ma et al., 2025; Wang et al., 2023), Spectra (Kaushal et al., 2025), and BitCPM (Team
et al., 2025); and (2) learnable methods: DLT in TernaryLLM (Chen et al., 2024), LSQ (Esser et al.,
2019), and SEQ used in ParetoQ (Liu et al., 2025). In addition to comparing quantization methods,
we also directly compare against those well-trained ternary LLMs. Further discussion about the
baselines is in Appendix E.4.

Implementation Details: All experiments are conducted on 16 GPUs for training, with inference
performance evaluated on an Intel 8263C CPU. Following established practices (Liu et al., 2025),
we quantize all linear layers within the transformer architecture. The sequence length for input and
output is 1024. The learning rate is set as a fixed value of 10−4. Given that Tequila is designed as a
plug-and-play solution, the AbsMean in Eq. 2 was selected for Tequila’s base quantization method
due to its prevalence in open-source ternary large language models. We set λ = 10−3 for Tequila
by default. The LLM trained by Tequila is called TequilaLLM.

4.2 PERFORAMCNE EVALUATION

Comparison of Different Ternary Quantization Methods: To evaluate the effectiveness of
Tequila, we conduct QAT with different ternary quantization methods with 10B tokens and eval-
uate their performance. Our Tequila is plugged into the AbsMedian and AbsMean quantization

7
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Model Size #Tokens ARC-e ARC-c HelS PIQA WinG Average
LLaMA3.2 1B - 0.654 0.313 0.477 0.742 0.603 0.558
TernaryLLM∗ 1B 10B 0.424 0.174 0.256 0.563 0.513 0.386
ParetoQ∗ 1B 10B 0.421 0.180 0.273 0.604 0.510 0.398
LLM-QAT 1B 100B 0.360 0.262 0.313 0.551 0.496 0.397
BitNet 1.3B 100B 0.549 0.242 0.377 0.688 0.558 0.483
Spectra 1.1B 100B 0.563 0.246 0.388 0.693 0.555 0.489
TequilaLLM 1B 10B 0.645 0.305 0.391 0.710 0.542 0.519
LLaMA3.2 3B - 0.745 0.422 0.552 0.768 0.691 0.636
TernaryLLM∗ 3B 10B 0.361 0.161 0.260 0.572 0.496 0.370
ParetoQ∗ 3B 10B 0.498 0.231 0.303 0.645 0.529 0.441
LLM-QAT 3B 100B 0.445 0.307 0.434 0.627 0.506 0.464
BitNet 3B 100B 0.614 0.283 0.429 0.715 0.593 0.527
Spectra 3.9B 100B 0.660 0.319 0.483 0.744 0.631 0.567
TequilaLLM 3B 10B 0.702 0.346 0.464 0.739 0.627 0.576

Table 2: Comparison of TequilaLLM with other ternary LLMs across different model sizes and
training token counts (#Tokens); ∗ indicates LLMs obtained from our reproduction.
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Figure 5: Evaluation of Tequila on convergence
speed compared to SOTA ternary quantization.
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Figure 6: Inference speed of TequilaLLM ver-
sus BF16 LLaMA and ternary BitNet.

method. The experimental results in Table 1 show that Tequila outperforms all baselines on both 1B
and 3B models, achieving an average accuracy gain of > 2.6% over SOTA methods. Specifically,
on both ARC-Easy and ARC-Challenge benchmarks, Tequila achieves significant > 4% accuracy
gains over SOTA methods, while matching the BF16 performance with only a minimal gap (< 1%).

An important observation is that learnable ternary quantization methods generally underperform
static ones. We attribute this to the fact that increasing learnable parameters slows convergence and
makes optimization more prone to getting stuck in local optima. This aligns with the broader trend
of using static AbsMean quantization method in open-source ternary LLMs (Liu et al., 2025; Chen
et al., 2024; Ma et al., 2025), confirming our design decision.

Comparison with Different Ternary LLMs: To further evaluate the effectiveness of Tequila,
we name the resulting model trained by Tequila as Tequila and compare it against existing ternary
LLaMA-based LLMs. We reproduce methods Liu et al. (2025); Chen et al. (2024) with available
training code and train them on 10B tokens from the UltraFineWeb dataset using identical hyper-
parameters for a fair comparison. For models without available implementations, we report results
from their original papers or published weights. The GPQA benchmark is excluded from compar-
ison as it is not consistently reported across baselines. As shown in Table 2, TequilaLLM achieves
the best average accuracy in the benchmarks. Remarkably, Tequila achieves superior performance
using significantly fewer training tokens than other well-trained ternary LLMs, demonstrating both
faster convergence and higher final accuracy. Specifically, our TequilaLLM-3B model outperforms
the SOTA ternary LLM, Spectra-3.9B, by 0.9% in average accuracy while using only 10% of the
training tokens. These results robustly validate the effectiveness of Tequila’s adaptive reactivation
strategy in resolving the deadzone trapping problem.
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tion parameter λ.

Convergence Analysis: To demonstrate that Tequila’s more direct and informative gradients en-
able faster information recovery, we compare the training loss convergence of a 1B model using
Tequila against ternary baselines over 10,000 steps. As shown in Fig. 5, Tequila achieves a faster
convergence rate than other baselines. This result validates the effectiveness of our core innovation:
reactivating dead weights as adaptive biases by a differentiable reactivation function can obtain su-
perior gradient signals, thereby enhancing optimization.

Inference Efficiency: Theoretically, Tequila introduces nearly zero inference overhead, as the
reactivation bias terms are input-independent and can be precomputed offline. The additional com-
putational cost for bias addition is negligible, measured at less than 0.1%. To empirically validate
this claim, we evaluate the token generation speed of Tequila against BitNet and a BF16 LLaMA
baseline on an Intel 8263C CPU. Due to limitations in the compiled BitNet model, we conduct
experiments using 0.7B and 3B model sizes. We accelerate both Tequila and BitNet using the effi-
cient lookup table paradigm (Wang et al., 2025b) to eliminate multiplication operations, as shown in
Fig. 9. The results in Fig. 6 show that TequilaLLM maintains a 3.0× speedup over the LLaMA-3.2,
matching the practical inference speed of BitNet, demonstrating that Tequila introduces nearly zero
overhead compared to pure ternary methods.

Ablation Study: To analyze the individual contributions of Tequila’s components in addressing
deadzone trapping, we conduct an ablation study on a 1B model using the ARC-Easy benchmark.
We attribute Tequila’s benefits to three key aspects: the reactivated forward signal, differentiable
reactivation, and the hybrid roles of reactivated weights. To evaluate these aspects, we compare
the following variants of Tequila: (1) AbsMean: This baseline disables all reactivation aspects to
evaluate Tequila’s overall effectiveness. (2) Minima Reactivation: This variant reactivates dead
weights in-place as signed minima (Sec. 3.1), enabling the reactivated forward signal but still relying
on the STE for gradients. (3) Tequila w/o Mixed Gradients: This variant treats dead weights as biases
only by differentiable reactivation. It replaces the gradients in Eq. 9 with ∂L

∂wi
= λ ∂L

∂Y for ∀i ∈ D,
while keeping the forward pass unchanged.

The results in Fig. 7 demonstrate the incremental effectiveness of each aspect. First, Minima Re-
activation outperforms the AbsMean, confirming that reactivating dead weights enhances model
capacity. Second, Tequila w/o Mixed Gradients surpasses Minima Reactivation, demonstrating that
differentiable reactivation is more effective than the STE, as it provides direct backpropagation to
mitigate deadzone trapping. Finally, the Tequila achieves superior performance to Tequila w/o Mixed
Gradients, validating that mixed gradients from the residual pathway are more effective than the
single gradient from an input-agnostic bias. This shows that assigning dead weights a hybrid role
(functioning as both weights and biases) is more suitable than a pure bias assignment. This ablation
study conclusively demonstrates the individual and combined importance of the reactivated forward
signal, differentiable reactivation, and hybrid roles of reactivated weights.

Impact of the Reactivation Parameter λ: The choice of the reactivation parameter λ is critical
for Tequila. An excessively high value of λ may cause the bias to dominate the output, while a value

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Model ARC-e ARC-c HelS PIQA WinG Average
BF16 0.8186 0.5213 0.5423 0.7769 0.6772 0.6673
AWQ 0.2702 0.2244 0.2587 0.5305 0.5122 0.3592
AbsMean 0.6915 0.3507 0.4616 0.7339 0.5856 0.5647
Tequila 0.7538 0.4189 0.4681 0.7383 0.6133 0.5985

Table 4: Performance comparison (accuracy) for Qwen3-4B.

that is too low renders the reactivation ineffective; if λ = 0, Tequila degenerates to standard ternary
quantization. To analyze the sensitivity of λ, we evaluate average accuracy on five benchmarks
across a range of values: λ ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1}. The results in Figure 8 indicate
that even a small λ provides a noticeable gain, and performance is robust across a wide range of
values. This suggests the model can effectively adapt the dead weights into useful biases during
training, converging to a near-optimal configuration regardless of the value of λ. And the optimal λ
is correlated with model size, with larger models preferring a smaller λ.

Tequila Average Acc
per-tensor 0.463

per-channel 0.471
per-group 0.471

Table 3: Average accuracy of
Tequila across quantization gran-
ularities on a 1B Model

The Impact of Quantization Granularity: Quantization
granularity presents a fundamental trade-off between a model’s
efficiency and its performance. Per-token quantization enables
high acceleration but introduces significant quantization error.
Conversely, per-group quantization mitigates this error at the
cost of reduced efficiency, due to the overhead of storing and
applying scaling matrices. We evaluate Tequila across various
granularities: per-token, per-channel, and per-group with group
size 128. The results in Table 3 indicate that Tequila exhibits
minimal performance loss across different granularities. This
robustness stems from its ability to use reactivated biases to compensate for quantization errors.

Experiments on Qwen3-4B: To validate the scalability and generalization of Tequila, we extend
our evaluation to the Qwen3-4B model Bai et al. (2023). We compare Tequila against AbsMean and
a standard Post-Training Quantization (PTQ) approach using AWQ Lin et al. (2023). The results
is shown in Table 4. The AWQ suffers a catastrophic performance drop, which underscores the
necessity of QAT for aggressive ternary quantization in LLMs. Tequila consistently outperforms
other baselines across all tasks, confirming that our proposed reactivation mechanism delivers a
consistent advantage by providing more informative gradients and mitigating the dead zone problem,
even at the 4B scale.

5 CONCLUSION

In this paper, we first identified deadzone trapping as a fundamental obstacle to efficient and accu-
rate ternary quantization of large language models for on-device deployment. Deadzone trapping,
where weights become trapped in ineffective oscillation around the quantization boundary due to
less informative gradients, severely diminishes model capacity and impedes optimization.

To overcome this challenge, we introduced Tequila, a novel trapping-free ternary quantization
method. Tequila repurposes trapped weights as adaptive dynamic biases, successfully reactivating
them to enhance model expressiveness with nearly zero inference overhead. Crucially, this approach
provides direct gradient signals, enabling efficient escape from the deadzone and substantially ac-
celerating quantization-aware training. Extensive evaluations on five benchmarks demonstrate that
Tequila outperforms state-of-the-art ternary methods, closing the gap to full-precision performance
while using limited training data, and preserving the computational benefits of ternary quantization,
delivering up to 3× inference speedup.

Looking forward, Tequila establishes a new direction for efficient model compression. The concept
of dynamically repurposing dead weights opens promising avenues for future research into ex-
treme quantization. We believe our work contributes a practical and scalable path toward bringing
advanced LLM capabilities to resource-constrained devices.
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Appendix
A THE USAGE OF LLMS

We state that the LLM is used exclusively for polishing the English text and grammar in this
manuscript, prompted with: ”Please polish and rephrase the following sentences: #input”. All tech-
nical content, ideas, methodologies, experimental results, analyses, and conclusions are the original
work of the authors. The LLM acted solely as a writing assistant and did not contribute to the
intellectual substance of the research.

B RELATED WORK

B.1 GENERAL QUANTIZATION

Quantization (Dettmers et al., 2021; 2022; Lin et al., 2023; Frantar et al., 2022) is a well-established
technique for improving the efficiency of Large Language Models (LLMs) by reducing the precision
of weights and activations. However, low-precision quantization (Lin et al., 2023; Frantar et al.,
2022) often leads to mixed-precision matrix multiplication, where weights and activations have
different data types. This requires specific hardware support for efficient computation, which is a
significant limitation for edge and mobile deployment, given the extreme diversity of devices in
these environments.

While activation-weight quantization methods (Dettmers et al., 2022; Xiao et al., 2023; Huang &
Wu, 2025) attempt to mitigate this by using a unified low-precision format for both weights and
activations, they still face challenges. These methods often require specialized hardware adapta-
tion and suffer from high quantization error in activations due to outlier issues (Xiao et al., 2023),
preventing activations from reaching the same effective precision as weights. Consequently, exist-
ing general quantization methods struggle to enable efficient LLM deployment on diverse edge and
mobile platforms.

B.2 TERNARY QUANTIZATION

Ternary quantization Li et al. (2016); Zhu et al. (2016), or 1.58bit quantization. presents a com-
pelling alternative by constraining weights to ternary values, typically {−1, 0,+1}. Beyond the
substantial memory savings, this approach transforms the core matrix multiplication operation into
efficient addition operations by replacing multiplications with conditional sign flips. This intrin-
sic hardware-friendliness makes it particularly suitable for resource-constrained edge and mobile
hardware.

Early research on ternary quantization Li et al. (2016); Zhu et al. (2016); Leng et al. (2018) primar-
ily focused on refining the quantization function, particularly the selection of threshold parameters
and scaling factors. The foundational Ternary Weight Networks (TWN) (Li et al., 2016) assumed a
Gaussian weight distribution to determine optimal thresholds that minimize the distortion between
full-precision and quantized weights. Trained Ternary Quantification (TTQ) (Zhu et al., 2016) ad-
vanced this paradigm by introducing trainable scaling factors, enabling models to learn optimal
ternary representations directly during training. Further extending these ideas, Leng et al. (2018)
formulated the problem using the Alternating Direction Method of Multipliers (ADMM) to itera-
tively optimize both scaling factors and thresholds.

With the emergence of Large Language Models (LLMs) Wu et al. (2023); Floridi & Chiriatti (2020);
Zhang et al. (2022), the limitations of early ternary quantization methods have become apparent.
The generative capabilities of LLMs are highly sensitive to precision loss, which often leads to un-
acceptable performance degradation under existing ternary techniques. This challenge has spurred
two primary research directions. One line of work employs Post-Training Quantization (PTQ) tech-
niques Lin et al. (2023); Frantar et al. (2022) to mitigate performance loss efficiently Xiao et al.
(2025). However, concerns over PTQ’s potential performance drop have led the most of work to
explore Quantization-Aware Training (QAT) Chen et al. (2025) for more robust recovery Within
QAT-based ternary methods, a divergence in strategy exists: some approaches, such as those in the
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Figure 9: The Lookup Table-Based Inference designed for Tequila. Weights are packed into indices,
signs, and a precomputed bias offline. At runtime, inputs are processed to construct a lookup table
containing various unsigned intermediate values. The system then uses the weight indices to retrieve
these values from the table. After that, the 1-bit sign values are applied to generate signed results
and are accumulated, and the per-channel bias is added to produce the final output.

BitNet family Ma et al. (2025); Wang et al. (2023; 2025b), utilize the straightforward AbsMean
quantization, while others, like Chen et al. (2024) and Liu et al. (2025), have adapted more sophis-
ticated techniques such as Learned Step Size Quantization (LSQ) Esser et al. (2019) to the ternary
setting.

Despite these advancements, these existing ternary LLMs still suffer from the deadzone trapping
issue, where a large number of weights become trapped in a cycle of ineffective oscillation around
the deadzone boundary, severely impeding model capacity and convergence. Therefore, we propose
Tequila to achieve trapping-free quantization.

C QUANTIZATION-AWARE TRAINING

Quantization-Aware Training (QAT) Chen et al. (2025); Liu et al. (2025) is employed to recover
model performance by incorporating quantization into the training loop. The core idea of QAT
is to model the effects of quantization during the forward pass, allowing the model to adapt its
parameters to the subsequent precision loss. This is achieved through a fake quantization process,
where full-precision weights and activations are passed through a quantization function Q(·) that
mimics the behavior of integer arithmetic. Critically, the backward pass leverages the Straight-
Through Estimator (STE) Yin et al. (2019) to approximate gradients through this otherwise non-
differentiable operation.

The standard QAT procedure can be summarized as follows:

(1) Maintain a full-precision weight copy W as the master weights for accumulation.

(2) During the forward pass, generate quantized weights Ŵ = Q(W ) and scaling factor α for
computation.

(3) Compute the output Y using the quantized weights Ŵ = Q(W ), scaling factor α and
activations X .
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(4) Compute the Loss L using output Y and begin backward pass.
(5) During the backward pass, full-precision gradients ∂L

∂W are computed with the STE, the
gradients are passed directly to the full-precision weights: ∂L

∂W ≈ ∂L
∂Ŵ

.

(6) Update the full-precision weights W using the approximated gradients via a standard opti-
mizer (e.g., SGD, Adam).

By maintaining and updating full-precision master weights, QAT provides a stable optimization
process while training a model that is robust to the quantization errors it will encounter during
inference. This makes it the preferred method for achieving high accuracy with ultra-low precision,
such as ternary or binary quantization.

D INFERENCE DESIGN

Tequila seamlessly integrates with the lookup table paradigm to enable efficient, multiplication-free
inference. As illustrated in Figure 9, our system operates in two phases: an offline packing stage
and an efficient online inference stage.

During the offline phase, the ternary weights and reactivation biases are packed into compact data
structures, including index weights, sign weights, and channel-wise biases. To maximize efficiency,
every three weights are packed into a 4-bit index and a 1-bit sign value.

At inference time, the input values are preprocessed into a lookup table within segments. For each
segment, the corresponding weight index is used to retrieve the results from the lookup table. This
process entirely replaces multiplication operations with efficient table lookups. The retrieved result
is then combined with the sign weight to determine the final polarity, and subsequent accumulation
across segments is followed by the addition of the channel-wise bias term. This results in a highly
optimized inference path that maintains the theoretical hardware efficiency of ternary quantization
while requiring only minimal modifications to existing inference frameworks.

E MORE EXPERIMENTAL DETAILS

E.1 EVALUTAION BENCHMARKS

The evaluation of language models has evolved beyond simple word prediction to assessing their
ability to understand and apply knowledge in a human-like manner. This requires benchmarks that
probe deeper cognitive capabilities, such as commonsense reasoning, logical deduction, and special-
ized knowledge. This section introduces a suite of prominent benchmarks designed for this purpose:
PIQA, ARC-Easy, ARC-Challenge, HellaSwag, GPQA, and WinoGrande.

PIQA (Physical Interaction Question Answering) Bisk et al. (2020) focuses on physical common-
sense reasoning, testing a model’s understanding of how the everyday physical world works. The
benchmark presents questions about the mechanics of physical actions (e.g., ”How do you stabilize
a wobbly table?”) and requires choosing the correct solution from two options. Success on PIQA
indicates that a model possesses a foundational knowledge of physical laws and object interactions.

The ARC (AI2 Reasoning Challenge) dataset Clark et al. (2018) is divided into two tiers to assess
scientific knowledge and reasoning. The ARC-Easy set contains grade-school-level science ques-
tions that are often answerable through simple fact retrieval. In contrast, the ARC-Challenge set
is specifically curated to be difficult, consisting of questions that require complex reasoning and a
deeper understanding of scientific concepts, posing a significant challenge for even advanced mod-
els.

HellaSwag Zellers et al. (2019) is a benchmark for evaluating contextual commonsense reasoning.
It presents a beginning of a situation (e.g., ”A person is folding a paper towel”) and challenges the
model to select the most plausible continuation from four options. The distractors are generated by
adversarial models, making them deceptively plausible and ensuring the task cannot be solved by
simple word association, but rather requires a nuanced understanding of event dynamics.

GPQA Rein et al. (2023) represents a significant leap in difficulty, designed as a ”graduate-level”
benchmark for highly specialized knowledge. The questions, written by domain experts in biology,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

physics, and chemistry, are exceptionally challenging and ”Google-proof,” meaning they are difficult
to answer by simply searching the web. On GPQA-Diamond, the set of GPQA’s 198 most difficult
questions, PhD experts achieve 65% accuracy, while skilled non-experts with web access only reach
34%.

WinoGrande Sakaguchi et al. (2021) is a large-scale dataset for assessing commonsense reasoning
through pronoun resolution. Inspired by the Winograd Schema Challenge, it presents sentences
with ambiguous pronouns (e.g., ”The trophy didn’t fit in the suitcase because it was too big.”) and
requires the model to determine the referent of ”it.” WinoGrande is designed to be adversarial, with
a focus on reducing spurious statistical biases present in earlier datasets, forcing models to rely on
genuine commonsense understanding.

Together, these benchmarks provide a multifaceted evaluation framework, testing language models
on everything from everyday physical intuition (PIQA, HellaSwag) and general scientific knowledge
(ARC) to expert-level understanding (GPQA) and nuanced linguistic reasoning (WinoGrande).

E.2 GRADIENT SIGNAL-TO-NOISE RATIO (GSNR) MEASUREMENT

The Gradient Signal-to-Noise Ratio (GSNR) Liu et al. (2020) is a crucial metric for quantifying the
reliability of gradient updates for model weights. It is defined as the ratio of the squared expectation
to the variance of a weight’s gradients over the data distribution. Formally, for a weight wi, its
GSNR is calculated as:

GSNR(wi) =
(Ex∼D[∇wi

L])2

Varx∼D[∇wiL]
, (10)

where ∇wi
L is the gradient of the loss with respect to wi for a data sample x. A high GSNR

indicates a stable and consistent gradient signal across the dataset, whereas a low GSNR suggests
noisy, uninformative updates that hinder effective optimization.

To evaluate the impact of our method on , we measure the GSNR specifically for dead weights,
active weight and reactive weights that are trained by AbsMean, Minima Reactivation and Tequila.
We estimate the expectation and variance in Eq. 10 using a 1024 training data samples and compute
the average GSNR. This comparative analysis, shown in Figure 3, directly demonstrates that our
reactivation mechanism provides a clearer optimization signal by significantly elevating the GSNR
of previously dead weights.

E.3 GENERALIZABILITY TO OTHER QUANTIZATION SCHEMES

This paper primarily addresses the deadzone trapping problem, a fundamental challenge in ternary
quantization that arises from uniquely fixing the zero point to eliminate multiplications. In higher-bit
regimes (e.g., 2-bit, 4-bit), which are multiplication-based, this specific issue is effectively mitigated
through techniques like zero-point shifting Liu et al. (2025). Consequently, the primary contribution
of our work is the identification and resolution of a problem inherent to the ternary paradigm.

However, the core innovation of Tequila that repurposes a subset of weights to form a dynamic bias
term is a general mechanism to enhance model capacity and gradient quality. To validate Tequila’s
generalizability beyond the ternary setting, we adapt Tequila to the following higher bit schemes.

Low-bit Quantization Scheme Without Deadzone. To show the benefit of the weight repurpos-
ing method in a non-deadzone quantization scheme, we adapt Tequila into a 2-bit scheme using the
levels {−1,−0.5,+0.5,+1} (SEQ) by introducing a repurposed-bias term, modifying the forward
pass to Y = XW + λ

∑
i Wi. Results in Table 5, confirm the broader applicability of our Tequila.

The integration of the repurposed-bias term consistently improves performance across most tasks,
yielding a noticeable 1.04% gain in the average accuracy. This demonstrates that the benefits of
Tequila can be effectively translated to other low-precision formats.

High-bit Quantization Scheme With Deadzone. We further evaluate Tequila’s generalization on
high-bit quantization scheme by applying it to INT4 LSQ quantization. As shown in Figure 11
(left), the deadzone trapping effect in INT4 LSQ is less severe than in ternary quantization (Fig-
ure 1). Despite this, Tequila effectively mitigates the remaining trapping, leading to a more stable
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Figure 10: The distribution of weights from randomly selected linear layers in transformers with
full-precision (BF16), ternary AbsMean, and our Tequila. The weights from the ternary AbsMean
method are trapped at the deadzone boundary, suffering from deadzone trapping. Our Tequila can
significantly address this issue. This observation aligns with our findings and demonstrates the
effectiveness of Tequila.

weight distribution Figure 11 (right). The resulting performance gains, reported in Table 5, are con-
sistent but modest. This is because the INT4 LSQ baseline is already highly competitive with the
BF16 baseline, leaving little room for significant improvement. These results confirm that Tequila
generalizes to higher-bit quantization, even when absolute gains are limited by a strong baseline.

E.4 TERNARY QUANTIZATION BASELINES

Recall the general form of the ternary quantization: Given a full-precision weight vector W =
(w1, . . . , wn), the general form of the ternary quantization function Q(·) is defined as:

Q(W ) = Ŵα, ŵi =


+1, if wi ≥ ∆

0, if |wi| < ∆

−1, if wi ≤ −∆

(11)

where Ŵ = (ŵ1, . . . , ŵn) is ternary weights, α is a scaling factor and ∆ is a threshold parameter.
Due to the non-differentiable function of Q(·), the gradients for W are approximated using the
Straight-Through Estimator (STE) (Zhu et al., 2016; Chen et al., 2024), leading to the following
forward pass and backpropagation with input vector X = (x1, . . . , xn):

Y = XTQ(W ) = XT Ŵα,
∂L

∂wi
=

{
∂L
∂Y xiα, if |wi| ≥ ∆
∂L
∂Y xi, if |wi| < ∆

, (12)
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INT4 LSQ INT4 Tequila

Figure 11: The weight distribution of INT4 (left) LSQ and (right) Tequila

Method Bits ARC-e ARC-c HelS PIQA WinG Average
LLaMA-1B 16 0.654 0.313 0.477 0.742 0.603 0.557
SEQ 2 0.591 0.245 0.365 0.671 0.531 0.481
Tequila + SEQ 0.604 0.258 0.363 0.703 0.528 0.491
LSQ 4 0.670 0.310 0.458 0.741 0.587 0.553
Tequila + LSQ 0.672 0.313 0.459 0.747 0.593 0.557

Table 5: Performance comparison of the higher bit scheme with and without the Tequila.

where L denotes the loss of the model prediction.

Previous methods for optimizing ternary quantization can be broadly categorized into two ap-
proaches: (1) reducing quantization error, and (2) enhancing the model’s expressive capacity.

E.4.1 REDUCING QUANTIZATION ERROR

A primary line of work forcus on optimizing the threshold ∆ and scaling factor α to reduce the
quantization error. It is exemplified by estimation-based methods like Ternary Weight Networks
(TWN) (Li et al., 2016), which aim to minimize the reconstruction error between full-precision and
quantized weights. This is formalized by the objective:

min
∆,α

|W − αŴ |2, (13)

which has a closed-form solution for α given a fixed threshold ∆:

α∗ =
1

|D̂|

∑
i∈D̂

|wi|, (14)

where D̂ is the set of weights whose absolute value exceeds ∆. However, finding the optimal
threshold ∆∗ that minimizes the overall objective is challenging. To circumvent this, TWN hy-
pothesizes that the weights follow a standard Gaussian distribution, leading to the approximation
∆∗ ≈ 0.7 · E[|W |].
This Gaussian assumption often does not hold in modern deep learning models, particularly in LLM,
where weight distributions can be highly non-Gaussian. Consequently, the estimated α becomes
biased, degrading performance. To address this, subsequent methods like Learned Step Size Quan-
tization (LSQ) (Esser et al., 2019) and DLT (Chen et al., 2024) propose making the scaling factor α
a trainable parameter, while typically retaining the heuristic estimation for ∆.

However, optimizing α and ∆ alone cannot resolve the fundamental issue of deadzone trapping.
Weights within the deadzone (−∆,∆) remain long-term pruned during the forward pass and con-
tinue to receive only noisy, less informative gradients via the Straight-Through Estimator (STE),
which prevents effective recovery. Moreover, in the context of LLMs, simply introducing additional
trainable parameters (e.g., for α) increases optimization complexity and can make the model more
susceptible to converging to poor local optima. As our results in Fig. 5 demonstrate, these methods
exhibit significantly slower convergence and higher final loss compared to our approach, underscor-
ing their inherent limitations.
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E.5 ENHANCING THE MODEL’S EXPRESSIVE CAPACITY

Previous work has attempted to enhance model capacity by incorporating bias terms. For instance,
DLT Li et al. (2016) introduces a learnable bias during dequantization:

Q(W ) = Ŵα+ b, Y = X(Ŵα+ b) = XŴα+Xb, (15)

where b is a learnable bias. However, this approach breaks the computational efficiency of ternary
quantization by introducing the dense full-precision scaling Xb. Similarly, SEQ Liu et al. (2025)
introduces a bias by reassigning the zero point to a non-zero value αb:

ŵi =


+1, if wi ≥ ∆

αb, if |wi| < ∆

−1, if wi ≤ −∆

(16)

This also destroys efficiency, as the resulting operations are no longer multiplication-free.

While these methods may potentially mitigate the deadzone trapping issue by reactivating the dead-
zone, they fundamentally break the hardware efficiency of ternary quantization. In contrast, our
method, Tequila, introduces an input-agnostic bias that is precomputed offline. This design directly
addresses the deadzone trapping issue while perfectly preserving the computational efficiency of
ternary quantization.
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