

000
001 **TEQUILA: TRAPPING-FREE TERNARY QUANTIZA-
002 TION FOR LARGE LANGUAGE MODELS**
003
004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 **ABSTRACT**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

Quantization techniques are essential for the deployment of Large Language Models (LLMs) on edge devices. However, prevailing methods often rely on mixed-precision multiplication that lacks efficient hardware support, making it not feasible. Ternary weight quantization addresses this by constraining weights to $\{-1, 0, 1\}$, replacing expensive multiplications with hardware-efficient additions. However, such aggressive compression leads to significant accuracy degradation, even after costly quantization-aware training with massive data. We identify the core issue as **deadzone trapping**: *a large number of weights are trapped at the deadzone boundary*. This occurs because these weights receive only noisy, less informative gradients, preventing stable escape from the deadzone and severely impeding model capacity and optimization. To address this issue, we propose **Tequila**, a trapping-free quantization optimization method that reactivates deadzone-trapped weights by repurposing them as dynamic biases. This allows the repurposed weights to provide a continuous signal in the forward pass and, critically, receive direct, meaningful gradient signals during backpropagation, thereby enhancing model capacity and optimization with nearly *zero* inference overhead. Extensive evaluations demonstrate that Tequila outperforms state-of-the-art (SOTA) ternary quantization methods across five benchmarks. Specifically, on the ARC benchmark, it achieves $> 4\%$ accuracy gain over the SOTA baseline, nearly matching full-precision performance (within $< 1\%$ gap) with a $3.0\times$ inference speedup. Consequently, Tequila offers a practical and efficient implementation for the deployment of advanced LLMs in resource-constrained environments. The code is available at <https://anonymous.4open.science/r/Tequila-2B5F/>

035 **1 INTRODUCTION**
036

037 Recent advancements in large language models (LLMs) (Wu et al., 2023; Floridi & Chiriatti, 2020;
038 Zhang et al., 2022) have demonstrated remarkable success across a wide range of applications, from
039 conversational chatbots to creative writing. However, growing concerns over data privacy, the need
040 for offline functionality, and the high cost of large-scale cloud deployment (Yao et al., 2024; Liagkou
041 et al., 2024) have necessitated the deployment of these models directly on edge devices, which are
042 usually resource-constrained.

043 Quantization (Dettmers et al., 2021; 2022; Lin et al., 2023; Frantar et al., 2022) has emerged as
044 a promising technique to achieve this goal, reducing model size and computational requirements
045 by representing model weights with lower precision. However, most existing quantization meth-
046 ods (Kwon et al., 2022; Dettmers et al., 2024; Liu et al., 2023; Frantar et al., 2022) are primarily
047 designed for server-grade GPUs that support specialized hardware features, such as mixed-precision
048 multiplication (Lin et al., 2023). These methods are often incompatible with a wide range of edge
049 and mobile hardware, highlighting a critical need for hardware-friendly quantization approaches that
050 remain effective across diverse and resource-constrained devices.

051 Ternary quantization (Li et al., 2016; Liu & Liu, 2023; Ma et al., 2025; Wang et al., 2023; 2025a)
052 offers a promising path for on-device deployment of LLMs by constraining weights to $\{-1, 0, +1\}$.
053 This method reduces matrix multiplication to efficient additions, as illustrated in Fig. 2, which are
widely supported by most hardware. However, such aggressive compression introduces significant

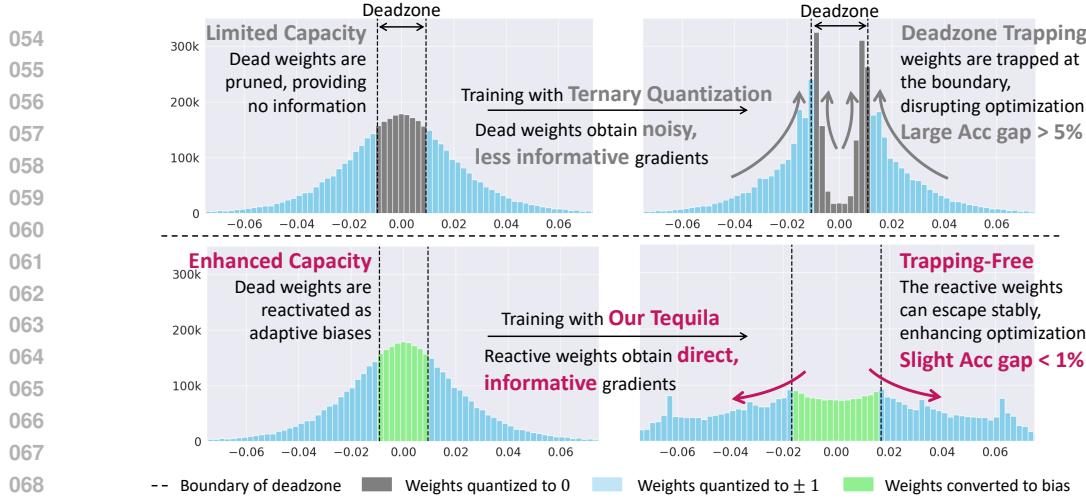


Figure 1: (Top) **Deadzone Trapping in Ternary Quantization:** Dead weights are trapped in a cycle of ineffective oscillation around the deadzone boundary due to noisy and less informative gradients, impeding model capacity and optimization, causing a significant accuracy drop ($> 5\%$) versus the full-precision. (Bottom) **Reactivation Strategy of Tequila:** Our Tequila reactivates dead weights as dynamic biases, providing direct and meaningful gradients for stable escapes, enhancing model capability and optimization, achieving only a minor accuracy gap ($< 1\%$).

information loss, often leading to severe accuracy degradation even after costly Quantization-Aware Training (QAT) on massive datasets. For instance, BitNet (Ma et al., 2025; Wang et al., 2025a) consumes 4T tokens during QAT but still fails to match full-precision performance. Thus, the dual problems of performance degradation and prohibitive training overheads persist as the fundamental barriers to the development of effective ternary LLMs.

In this paper, we identify the key source of these challenges as **deadzone trapping**, where *a large number of weights are trapped at the deadzone boundary*. Deadzone trapping arises from the aggressive nature of ternary quantization, which creates a vast deadzone that quantizes a large proportion of weights to zero. During training, these “dead” weights receive only noisy, less informative gradients from the Straight-Through Estimator (STE), preventing effective optimization. Lacking consistent directional signals, these weights are hard to escape the deadzone stably and are accumulated at the deadzone boundary, as shown in Fig. 1 (Top). This results in a cycle of ineffective oscillation, rendering these weights long-term inactive and severely impeding model capacity and optimization.

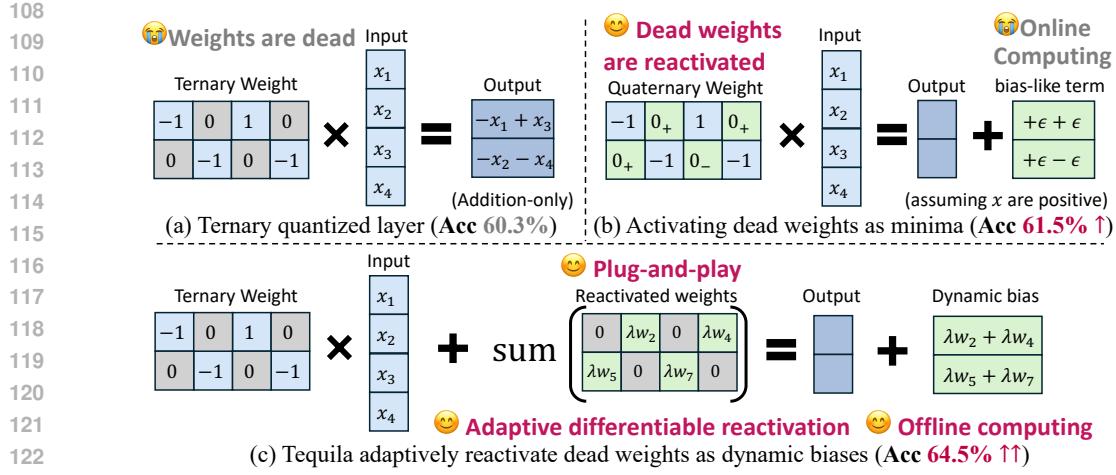
To address the deadzone trapping issue, we propose **Tequila**, a trapping-free Ternary quantization method for large language models. Our key idea is to reactivate dead weights by repurposing them as dynamic biases. This provides continuous signals to the output, enhancing the model capacity, as shown in Fig. 2 (c). More importantly, these weights receive direct and informative gradients via the bias terms, enabling them to escape the deadzone stably, as shown in Fig. 1 (Bottom). Crucially, these biases can be computed offline, introducing nearly zero inference overhead.

We evaluate the effectiveness and efficiency of Tequila on five common benchmarks using LLaMA 3.2 (Touvron et al., 2023) and Qwen3 (Bai et al., 2023) models. Our experiments demonstrate that Tequila outperforms all state-of-the-art (SOTA) ternary methods across all benchmarks while requiring only limited training data. For instance, when trained on just 10B tokens, Tequila achieves a $> 4\%$ accuracy gain over the SOTA baseline on the ARC benchmark, nearly matching full-precision performance (within $< 1\%$ gap). Furthermore, it delivers a significant $3\times$ inference speedup on an Intel 8263C CPU, verifying that Tequila offers a practical and efficient solution for deploying LLMs on resource-constrained devices.

2 BACKGROUND AND CHALLENGE

2.1 TERNARY QUANTIZATION

Ternary quantization is an extreme compression technique that constrains model weights to ternary values $\{-1, 0, +1\}$. This representation converts the computationally expensive weight-input matrix



123
124 Figure 2: (a) Prior Ternary Quantization replaces multiplications with efficient additions but suffers
125 from severe information loss and limited capacity due to deadzone-trapped weights. (b) Minima
126 Reactivation assigns signed minima to dead weights, improving capacity but yielding only marginal
127 accuracy gains. (c) Tequila reactivates dead weights as adaptive dynamic biases via a differentiable
128 function, achieving significant accuracy improvements with nearly zero inference overhead. For
129 simplicity, we omit the scaling operation in the Figure.

130 multiplication into input-inner addition, as shown in Fig. 2 (a), offering significant hardware advan-
131 tages. Given a full-precision weight vector $W = (w_1, \dots, w_n)$, the general form of the ternary
132 quantization function $Q(\cdot)$ is defined as:

$$133 \quad Q(W) = \hat{W}\alpha, \quad \hat{w}_i = \begin{cases} +1, & \text{if } w_i \geq \Delta; \\ 0, & \text{if } |w_i| < \Delta; \\ -1, & \text{if } w_i \leq -\Delta, \end{cases} \quad (1)$$

136 where $\hat{W} = (\hat{w}_1, \dots, \hat{w}_n)$ is ternary weights, α is a scaling factor and Δ is a threshold parameter.
137 A significant body of research focuses on determining optimal values for α and Δ . For instance,
138 the TWN (Li et al., 2016) assumes the weight distribution follows a standard Gaussian distribution.
139 It approximates the optimal threshold as $\Delta^* \approx \frac{0.75}{n} \sum_{i=1}^n |w_i|$ and derives a closed-form solution
140 for α by minimizing $\|W - \alpha\hat{W}\|^2$. Subsequent methods (Chen et al., 2024; Liu et al., 2025; Zhu
141 et al., 2016) forgo this distributional hypothesis and instead treat α or Δ as trainable parameters
142 learned during optimization. In recent open-source ternary LLMs (Ma et al., 2025; Team et al.,
143 2025; Kaushal et al., 2025), the static absmean quantization method has gained wider adoption due
144 to its training stability, where the α and Δ are defined by

$$145 \quad \alpha = \frac{1}{n} \sum_{i=1}^n |w_i|, \quad \Delta = \frac{\alpha}{2}. \quad (2)$$

146 Due to the aggressive nature of this compression, quantized models often require Quantization-
147 Aware Training (QAT) to recover accuracy. During QAT, full-precision weights are dynamically
148 quantized using a quantization function $Q(\cdot)$ in Eq. 1 for the forward pass, while the backward pass
149 operates on full-precision gradients. This process maintains a full-precision copy of the weights W
150 to accumulate gradient updates, as detailed in Appendix C. Due to a non-differentiable function
151 of $Q(\cdot)$, the gradients for W are approximated using the Straight-Through Estimator (STE) (Zhu
152 et al., 2016; Chen et al., 2024), leading to the following forward pass and backpropagation with
153 input vector $X = (x_1, \dots, x_n)$:

$$154 \quad Y = X^T Q(W) = X^T \hat{W}\alpha, \quad \frac{\partial L}{\partial w_i} = \begin{cases} \frac{\partial L}{\partial Y} x_i \alpha, & \text{if } |w_i| \geq \Delta; \\ \frac{\partial L}{\partial Y} x_i, & \text{if } |w_i| < \Delta, \end{cases} \quad (3)$$

155 where L denotes the loss of the model prediction. After training, the full-precision weights W are
156 discarded. The ternary weights \hat{W} and the scaling factor α are packed for inference. During infer-
157 ence, the ternary multiplication of $X^T \hat{W}$ is computed first, following the efficient process shown
158 in Fig. 2 (a). This eliminates the need for mixed-precision matrix multiplication, replacing it with
159 hardware-efficient addition. The related work and details can be found in Appendix B and E.4.

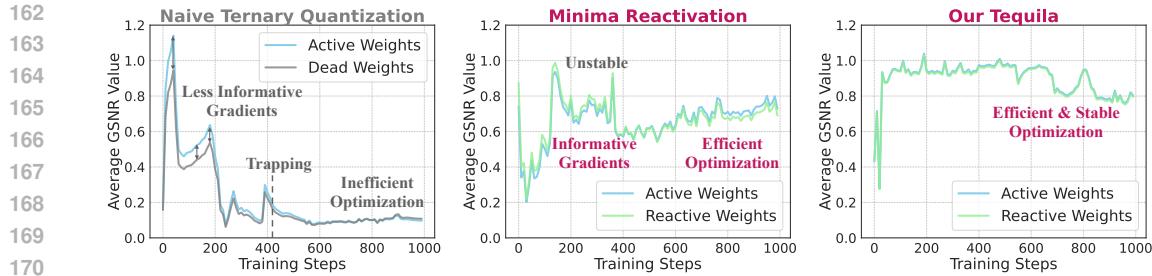


Figure 3: The average Gradient Signal-to-Noise Ratio (GSNR) for (left) Naive Ternary Quantization, (middle) Minima Reactivation, and (right) our Tequila method during training.

2.2 DEADZONE TRAPPING

Ternary quantization incurs significant information loss and performance degradation, necessitating extensive retraining to recover model accuracy. This problem is exacerbated in LLMs, where the scale of parameters amplifies the difficulty of retraining. For instance, BitNet (Ma et al., 2025) trains from scratch on 4T tokens, a cost rivaling standard pre-training. Similarly, BitCPM4 (Team et al., 2025) uses 100B tokens of training even when starting from a pre-trained model. To our knowledge, no existing work has achieved competitive performance with less than 100B tokens for ternary-quantized LLMs.

We identify the core cause of this inefficiency as **deadzone trapping**, where a large number of weights become trapped at the deadzone boundary. This issue originates from the aggressive nature of ternary quantization, which creates a deadzone within the range $(-\Delta, \Delta)$ where weights are quantized to zero. During Training, these "dead" weights ($\hat{w}_i = 0$) and their corresponding inputs x_i are continually pruned in the forward pass, contributing nearly no information to the output Y and the loss L . Consequently, the upstream signal $\frac{\partial L}{\partial Y}$ reflects less sensitivity to w_i and x_i , making the overall gradients in Eq. 3 noisy and less informative. This problem is exacerbated by the non-differentiable quantization function $Q(\cdot)$, as the required use of the STE injects significant noise into these gradients. As shown in Fig. 3 (left), the Gradient Signal-to-Noise Ratio (GSNR) for naive ternary quantization confirms this analysis: in early training, the GSNR for dead weights is much lower than for active weights (see Appendix E.2 for more details and analysis).

These noisy gradients prevent dead weights from accumulating consistent update signals, trapping them within the deadzone. When a large number of weights remain at deadzone for an extended period, the model easily becomes trapped in a suboptimal state. When some weights occasionally break free, their abrupt changes often trigger opposing gradients that pull them back. This dynamic results in weights accumulating at the deadzone boundary, trapped in a cycle of ineffective oscillation, as shown in Fig. 1 (top) and Fig. 10. Ultimately, deadzone trapping renders a substantial portion of the model weights long-term inactive, severely impairing both model capacity and training efficiency, as evidenced in Fig. 3 (left).

3 TEQUILA: DEADZONE-FREE TERNARY QUANTIZATION

3.1 MITIGATING THE DEADZONE TRAPPING BY MINIMA REACTIVATION

We identify the fundamental limitation of deadzone trapping in ternary quantization as the fact that the dead weights provide no meaningful signal to the model output in the forward pass. This creates a vicious cycle where trapped weights cannot contribute to learning and struggle to escape the deadzone effectively, significantly impeding convergence.

Our core motivation is to allow dead weights to contribute to the forward output, even with minimal but informative values, which can break this trapping by receiving a more direct and informative gradient signal. Therefore, we propose to *repurpose* dead weights to provide informative signals, which enhance model capacity and establish clean gradient pathways.

To implement this, we intuitively propose Minima Reactivation, preserving the sign information of dead weights, reactivating them as distinct values 0_- and 0_+ , representing negative and positive minima, respectively, as shown in Fig. 2 (b). This creates a quaternary weight representation $\tilde{w}_i \in$

216 $\{-1, 0_-, 0_+, +1\}$. Crucially, to isolate the impact of increasing the representation capability from
 217 3 to 4 values while preserving only sign information, we replace multiplication with a constant-
 218 magnitude mapping. For any input x , the operation yields a value $\pm\varepsilon$:

$$219 \quad 220 \quad x \cdot 0_+ = \text{sign}(x)\varepsilon, \quad x \cdot 0_- = -\text{sign}(x)\varepsilon. \quad (4)$$

221 Formally, let $\tilde{W} = (\tilde{w}_1, \dots, \tilde{w}_n)$ represent the quaternary weight vector, and define the set of indices
 222 in the deadzone as $D = \{i \mid -\Delta < w_i < \Delta\}$. The forward pass can then be converted to:

$$223 \quad 224 \quad Y = X\tilde{W}\alpha = \alpha \underbrace{\sum_{i \in \bar{D}} \text{sign}(w_i)x_i}_{\text{original output}} + \varepsilon \underbrace{\sum_{i \in D} \text{sign}(x_i)\text{sign}(w_i)}_{\text{online bias-like term}}, \quad (5)$$

$$225 \quad 226$$

227 where the \bar{D} denotes the set of indices not in the deadzone. This formulation reveals that previously
 228 dead weights now contribute meaningfully to the output through the bias-like term. Consequently,
 229 these weights w_i receive informative gradients from backpropagation, denoted as

$$230 \quad 231 \quad \frac{\partial L}{\partial w_i} = \varepsilon \cdot \text{sign}(x_i) \cdot \frac{\partial L}{\partial Y}, \quad \forall i \in D. \quad (6)$$

$$232$$

233 Compared to previous naive ternary quantization, where dead weights receive essentially random
 234 gradients in Eq. 3, this approach enables these dead weights to contribute a meaningful, non-zero
 235 signal that directly influences the final output. This allows them to receive more informative gradient
 236 signals proportional to the downstream loss, thereby providing an effective optimization direction.

237 **As shown by the GSNR measurements in Fig. 3 (middle), Minima Reactivation provides reactivated
 238 weights with higher GSNR, thereby mitigating the dead-zone trapping issue and enabling more
 239 efficient optimization.**

240 **Limitations:** While this Minima Reactivation method demonstrates the theoretical viability of
 241 deadzone repurposing, we identify two practical limitations: (1) **Noisy gradients and unstable**
 242 **training:** The gradients for reactivated weights in Eq. 3 still rely on the STE for the $\text{sign}(\cdot)$ operation,
 243 introducing noise and unstable training, as shown in Fig. 3 (middle), yielding only marginal
 244 accuracy gains. (2) **Non-negligible inference overhead:** The additional bias-like term, which is
 245 input-dependent, introduces non-negligible inference overhead, as it requires computation for every
 246 forward pass.

247 These insights motivate our final Tequila method, which retains the core concept of deadzone reac-
 248 tivation while introducing key optimizations to overcome these limitations, as detailed in the next
 249 subsection.

251 3.2 TEQUILA: REPURPOSING DEAD WEIGHT AS DYNAMIC BIAS

252 This section introduces Tequila, a trapping-free quantization method that reactivates deadzone-
 253 trapped weights to enhance model capacity and restore optimization potential without sacrificing
 254 hardware efficiency. Tequila’s core innovation lies in repurposing the deadzone from a fundamental
 255 limitation into a source of adaptability through the following three key designs.

256 **Differentiable Reactivation:** To address the noisy gradient and unstable training problem in Min-
 257 ima Reactivation, **we replace the non-differentiable mapping to a constant $\pm\varepsilon$ with a scaling for**
 258 **dead weight w_i , allowing the computation of reactivation values as λw_i , resulting in a smooth,**
 259 **differentiable reactivation function.** That is, in forward pass, the Eq. 5 is converted as:

$$260 \quad 261 \quad Y = X\hat{W}\alpha \approx \alpha \sum_{i \in \bar{D}} \text{sign}(w_i)x_i + \lambda \sum_{i \in D} \text{sign}(x_i)w_i. \quad (7)$$

$$262 \quad 263$$

264 Crucially, this design bypasses the STE, providing direct and informative gradients that enable ef-
 265 fective optimization of previously trapped weights.

266 **Repurposing Dead Weights as Biases:** To eliminate the non-negligible inference overhead of
 267 Minima Reactivation, we repurpose dead weights as actual biases, thereby converting online com-
 268 putation into an offline one, i.e., setting $\lambda \sum_{i \in D} \text{sign}(x_i)w_i \approx \lambda \sum_{i \in D} w_i$ in Eq. 7. This simplifi-
 269 cation is justified by two reasons. **First, it remains faithful to our core motivation of enabling dead**

weights to contribute to the output; a bias term achieves this in an activation-free manner, perfectly aligning with our hypothesis while minimizing overhead. Second, we find empirical support for this approximation: the cosine similarity between the original bias-like vector and the simplified bias vector is high ($> 70\%$), as shown in Fig. 4, validating that our simplification retains the essential functional behavior.

Hybrid Roles of Reactivated Weights: While converting dead weights to pure biases ($\sum_{i \in D} \lambda w_i$) provides clean gradients, it discards valuable input information. Tequila overcomes this limitation by assigning reactivated weights to hybrid roles. In addition to functioning as a dynamic bias, these weights are simultaneously maintained as participants in the ternary matrix multiplication. This dual role creates a mixed gradient from both the standard ternary pathway and the direct bias pathway. Consequently, the optimization process preserves crucial input information while benefiting from a direct, informative gradient signal, driving more effective training.

With these three key designs, the Tequila forward pass combines efficient ternary operations with dynamic biases:

$$Y = XQ(W) + C(W) = X\hat{W}\alpha + \sum_{i \in D} \lambda w_i, \quad (8)$$

where the bias term $C(W) = \sum_{i \in D} \lambda w_i$ acts as a residual connection for weights within the dead-zone. This formulation directly yields superior gradients for these dead weights:

$$\frac{\partial L}{\partial w_i} = x_i \frac{\partial L}{\partial Y} + \lambda \frac{\partial L}{\partial Y}, \quad \forall i \in D, \quad (9)$$

thereby preserving input-dependent information and delivering a direct, informative gradient signal to enable effective optimization. As shown by the GSNR measurements in Fig. 3 (right), Tequila provides high and stable GSNR during the training, thereby enabling more efficient optimization.

Advantages: Tequila provides five key advantages over existing ternary quantization methods:

- (1) **Enhanced Model Capacity:** Reactivating dead weights effectively expands the model parameter space without increasing computational complexity during inference.
- (2) **Trapping-free Optimization:** By providing direct, informative gradients, Tequila enables stable escape from deadzone, achieving trapping-free weight optimization.
- (3) **Training Stability:** The differentiable reactivation function ensures stable optimization while maintaining quantization constraints, resulting in more consistent, reliable training convergence.
- (4) **Plug-and-play Design:** Tequila is a simple and plug-and-play module that can be easily integrated into most existing ternary quantization methods.
- (5) **Nearly Zero Inference Overhead:** The input-agnostic bias term can be precomputed offline and seamlessly fused into the computation kernel, achieving nearly zero inference overhead. This preserves the hardware efficiency of pure ternary quantization.

4 EVALUATION

To validate the efficacy of Tequila, we conduct comprehensive experiments evaluating its performance against state-of-the-art ternary quantization methods. All experimental results are averaged on three independent runs with random seeds. In all tables, the best and second-best results are highlighted in purple and blue color, respectively, and the result of the full-precision method is set to gray color for reference.

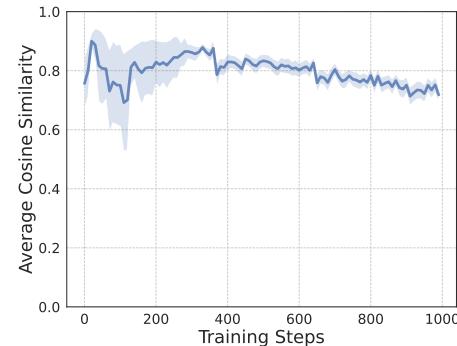


Figure 4: The cosine similarity of bias-like term in Eq. 7 and pure bias term Eq. 8 during training of Tequila.

Size	Method	ARC-e	ARC-c	HeLS	PIQA	WinG	GPQA	Average
1B	BF16	0.654	0.313	0.477	0.742	0.603	0.222	0.502
	LSQ	0.376	0.177	0.258	0.574	0.506	0.231	0.354
	SEQ	0.421	0.180	0.273	0.604	0.510	0.232	0.370
	DLT	0.424	0.174	0.256	0.563	0.513	0.277	0.368
	TWN	0.407	0.220	0.284	0.601	0.492	0.212	0.363
	AbsMedian	0.567	0.251	0.339	0.674	0.533	0.222	0.431
	AbsMean	0.603	0.259	0.360	0.683	0.541	0.227	0.445
	Tequila+AbsMedian	0.645	0.308	0.393	0.719	0.558	0.237	0.477
	Tequila+AbsMean	0.645	0.305	0.391	0.710	0.542	0.232	0.471
3B	BF16	0.745	0.422	0.552	0.768	0.691	0.303	0.580
	LSQ	0.431	0.200	0.294	0.599	0.522	0.239	0.354
	SEQ	0.498	0.231	0.303	0.645	0.529	0.258	0.411
	DLT	0.361	0.161	0.260	0.572	0.496	0.272	0.354
	TWN	0.692	0.351	0.462	0.734	0.586	0.237	0.510
	AbsMedian	0.636	0.299	0.406	0.713	0.558	0.181	0.466
	AbsMean	0.672	0.329	0.439	0.735	0.582	0.301	0.510
	Tequila+AbsMedian	0.701	0.345	0.449	0.733	0.611	0.237	0.513
	Tequila+AbsMean	0.702	0.346	0.464	0.739	0.627	0.303	0.530

Table 1: Comparison of Tequila method with different ternary quantization methods

4.1 EXPERIMENTAL SETUP

We provide a comprehensive overview of our experimental configuration below, with additional implementation details available in the Appendix E.

Datasets, Models and Evaluation: We utilize the LLaMA-3.2-1B, LLaMA-3.2-3B (Touvron et al., 2023) and Qwen3-4B Bai et al. (2023) models as our base architectures, employing a group size of 128 throughout our experiments unless otherwise specified. For quantization-aware training, we use 10B tokens sampled from the UltraFineWeb dataset (Wang et al., 2025c). Following established practices in ternary quantization research (Liu et al., 2025; Chen et al., 2024; Ma et al., 2025), we evaluate model performance with lm-evaluation-harness (Gao et al., 2024) on five zero-shot benchmarks: PIQA (Bisk et al., 2020), ARC-Easy/Challenge (ARC-e/ARC-c) (Clark et al., 2018), HellaSwag (HeLS) (Zellers et al., 2019), GPQA-Diamond (Rein et al., 2023) and Winogrande(WinG) (Sakaguchi et al., 2021). Details for benchmarks are in Appendix E.1.

Baselines: We compare Tequila against several quantization method baselines, which represent the methods used in existing state-of-the-art (SOTA) ternary LLMs. These include two types of quantization methods: (1) *static methods*: TWN Li et al. (2016), AbsMedian and AbsMean used in BitNet (Ma et al., 2025; Wang et al., 2023), Spectra (Kaushal et al., 2025), and BitCPM (Team et al., 2025); and (2) *learnable methods*: DLT in TernaryLLM (Chen et al., 2024), LSQ (Esser et al., 2019), and SEQ used in ParetoQ (Liu et al., 2025). In addition to comparing quantization methods, we also directly compare against those well-trained ternary LLMs. Further discussion about the baselines is in Appendix E.4.

Implementation Details: All experiments are conducted on 16 GPUs for training, with inference performance evaluated on an Intel 8263C CPU. Following established practices (Liu et al., 2025), we quantize all linear layers within the transformer architecture. The sequence length for input and output is 1024. The learning rate is set as a fixed value of 10^{-4} . Given that Tequila is designed as a plug-and-play solution, the AbsMean in Eq. 2 was selected for Tequila’s base quantization method due to its prevalence in open-source ternary large language models. We set $\lambda = 10^{-3}$ for Tequila by default. The LLM trained by Tequila is called **TequilaLLM**.

4.2 PERFORMANCE EVALUATION

Comparison of Different Ternary Quantization Methods: To evaluate the effectiveness of Tequila, we conduct QAT with different ternary quantization methods with 10B tokens and evaluate their performance. Our Tequila is plugged into the AbsMedian and AbsMean quantization

378	Model	Size	#Tokens	ARC-e	ARC-c	HeS	PIQA	WinG	Average
379	LLaMA3.2	1B	-	0.654	0.313	0.477	0.742	0.603	0.558
380	TernaryLLM*	1B	10B	0.424	0.174	0.256	0.563	0.513	0.386
381	ParetoQ*	1B	10B	0.421	0.180	0.273	0.604	0.510	0.398
382	LLM-QAT	1B	100B	0.360	0.262	0.313	0.551	0.496	0.397
383	BitNet	1.3B	100B	0.549	0.242	0.377	0.688	0.558	0.483
384	Spectra	1.1B	100B	0.563	0.246	0.388	0.693	0.555	0.489
385	TequilaLLM	1B	10B	0.645	0.305	0.391	0.710	0.542	0.519
386	LLaMA3.2	3B	-	0.745	0.422	0.552	0.768	0.691	0.636
387	TernaryLLM*	3B	10B	0.361	0.161	0.260	0.572	0.496	0.370
388	ParetoQ*	3B	10B	0.498	0.231	0.303	0.645	0.529	0.441
389	LLM-QAT	3B	100B	0.445	0.307	0.434	0.627	0.506	0.464
390	BitNet	3B	100B	0.614	0.283	0.429	0.715	0.593	0.527
391	Spectra	3.9B	100B	0.660	0.319	0.483	0.744	0.631	0.567
392	TequilaLLM	3B	10B	0.702	0.346	0.464	0.739	0.627	0.576

Table 2: Comparison of TequilaLLM with other ternary LLMs across different model sizes and training token counts (#Tokens); * indicates LLMs obtained from our reproduction.

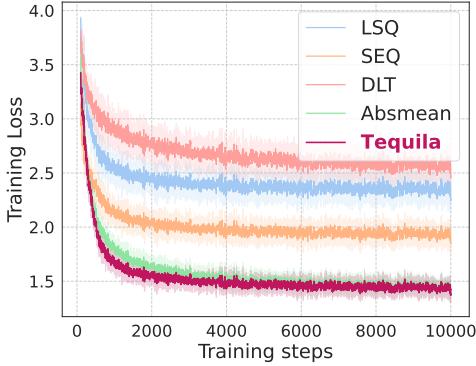


Figure 5: Evaluation of Tequila on convergence speed compared to SOTA ternary quantization.

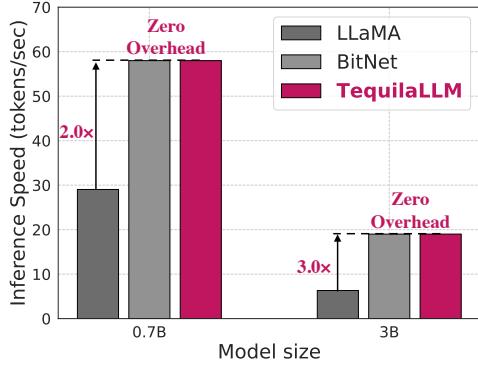


Figure 6: Inference speed of TequilaLLM versus BF16 LLaMA and ternary BitNet.

method. The experimental results in Table 1 show that Tequila outperforms all baselines on both 1B and 3B models, achieving an average accuracy gain of $> 2.6\%$ over SOTA methods. Specifically, on both ARC-Easy and ARC-Challenge benchmarks, Tequila achieves significant $> 4\%$ accuracy gains over SOTA methods, while matching the BF16 performance with only a minimal gap ($< 1\%$).

An important observation is that learnable ternary quantization methods generally underperform static ones. We attribute this to the fact that increasing learnable parameters slows convergence and makes optimization more prone to getting stuck in local optima. This aligns with the broader trend of using static AbsMean quantization method in open-source ternary LLMs (Liu et al., 2025; Chen et al., 2024; Ma et al., 2025), confirming our design decision.

Comparison with Different Ternary LLMs: To further evaluate the effectiveness of Tequila, we name the resulting model trained by Tequila as Tequila and compare it against existing ternary LLaMA-based LLMs. We reproduce methods Liu et al. (2025); Chen et al. (2024) with available training code and train them on 10B tokens from the UltraFineWeb dataset using identical hyper-parameters for a fair comparison. For models without available implementations, we report results from their original papers or published weights. The GPQA benchmark is excluded from comparison as it is not consistently reported across baselines. As shown in Table 2, TequilaLLM achieves the best average accuracy in the benchmarks. Remarkably, Tequila achieves superior performance using significantly fewer training tokens than other well-trained ternary LLMs, demonstrating both faster convergence and higher final accuracy. Specifically, our TequilaLLM-3B model outperforms the SOTA ternary LLM, Spectra-3.9B, by 0.9% in average accuracy while using only 10% of the training tokens. These results robustly validate the effectiveness of Tequila’s adaptive reactivation strategy in resolving the deadzone trapping problem.

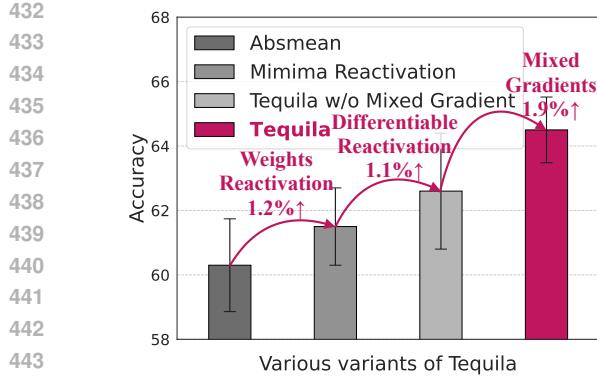


Figure 7: Ablation study comparing Tequila against its variants.



Figure 8: Sensitivity evaluation for the reactivation parameter λ .

Convergence Analysis: To demonstrate that Tequila’s more direct and informative gradients enable faster information recovery, we compare the training loss convergence of a 1B model using Tequila against ternary baselines over 10,000 steps. As shown in Fig. 5, Tequila achieves a faster convergence rate than other baselines. This result validates the effectiveness of our core innovation: reactivating dead weights as adaptive biases by a differentiable reactivation function can obtain superior gradient signals, thereby enhancing optimization.

Inference Efficiency: Theoretically, Tequila introduces nearly zero inference overhead, as the reactivation bias terms are input-independent and can be precomputed offline. The additional computational cost for bias addition is negligible, measured at less than 0.1%. To empirically validate this claim, we evaluate the token generation speed of Tequila against BitNet and a BF16 LLaMA baseline on an Intel 8263C CPU. Due to limitations in the compiled BitNet model, we conduct experiments using 0.7B and 3B model sizes. We accelerate both Tequila and BitNet using the efficient lookup table paradigm (Wang et al., 2025b) to eliminate multiplication operations, as shown in Fig. 9. The results in Fig. 6 show that TequilaLLM maintains a $3.0 \times$ speedup over the LLaMA-3.2, matching the practical inference speed of BitNet, demonstrating that Tequila introduces nearly zero overhead compared to pure ternary methods.

Ablation Study: To analyze the individual contributions of Tequila’s components in addressing deadzone trapping, we conduct an ablation study on a 1B model using the ARC-Easy benchmark. We attribute Tequila’s benefits to three key aspects: the reactivated forward signal, differentiable reactivation, and the hybrid roles of reactivated weights. To evaluate these aspects, we compare the following variants of Tequila: (1) *AbsMean*: This baseline disables all reactivation aspects to evaluate Tequila’s overall effectiveness. (2) *Minima Reactivation*: This variant reactivates dead weights in-place as signed minima (Sec. 3.1), enabling the reactivated forward signal but still relying on the STE for gradients. (3) *Tequila w/o Mixed Gradients*: This variant treats dead weights as biases only by differentiable reactivation. It replaces the gradients in Eq. 9 with $\frac{\partial L}{\partial w_i} = \lambda \frac{\partial L}{\partial Y}$ for $\forall i \in D$, while keeping the forward pass unchanged.

The results in Fig. 7 demonstrate the incremental effectiveness of each aspect. First, *Minima Reactivation* outperforms the *AbsMean*, confirming that reactivating dead weights enhances model capacity. Second, *Tequila w/o Mixed Gradients* surpasses *Minima Reactivation*, demonstrating that differentiable reactivation is more effective than the STE, as it provides direct backpropagation to mitigate deadzone trapping. Finally, the *Tequila* achieves superior performance to *Tequila w/o Mixed Gradients*, validating that mixed gradients from the residual pathway are more effective than the single gradient from an input-agnostic bias. This shows that assigning dead weights a hybrid role (functioning as both weights and biases) is more suitable than a pure bias assignment. This ablation study conclusively demonstrates the individual and combined importance of the reactivated forward signal, differentiable reactivation, and hybrid roles of reactivated weights.

Impact of the Reactivation Parameter λ : The choice of the reactivation parameter λ is critical for Tequila. An excessively high value of λ may cause the bias to dominate the output, while a value

Model	ARC-e	ARC-c	HeS	PIQA	WinG	Average
BF16	0.8186	0.5213	0.5423	0.7769	0.6772	0.6673
AWQ	0.2702	0.2244	0.2587	0.5305	0.5122	0.3592
AbsMean	0.6915	0.3507	0.4616	0.7339	0.5856	0.5647
Tequila	0.7538	0.4189	0.4681	0.7383	0.6133	0.5985

Table 4: Performance comparison (accuracy) for Qwen3-4B.

that is too low renders the reactivation ineffective; if $\lambda = 0$, Tequila degenerates to standard ternary quantization. To analyze the sensitivity of λ , we evaluate average accuracy on five benchmarks across a range of values: $\lambda \in \{0, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$. The results in Figure 8 indicate that even a small λ provides a noticeable gain, and performance is robust across a wide range of values. This suggests the model can effectively adapt the dead weights into useful biases during training, converging to a near-optimal configuration regardless of the value of λ . **And the optimal λ is correlated with model size, with larger models preferring a smaller λ .**

The Impact of Quantization Granularity: Quantization granularity presents a fundamental trade-off between a model’s efficiency and its performance. Per-token quantization enables high acceleration but introduces significant quantization error. Conversely, per-group quantization mitigates this error at the cost of reduced efficiency, due to the overhead of storing and applying scaling matrices. We evaluate Tequila across various granularities: per-token, per-channel, and per-group with group size 128. The results in Table 3 indicate that Tequila exhibits minimal performance loss across different granularities. This robustness stems from its ability to use reactivated biases to compensate for quantization errors.

Tequila	Average Acc
per-tensor	0.463
per-channel	0.471
per-group	0.471

Table 3: Average accuracy of Tequila across quantization granularities on a 1B Model

Experiments on Qwen3-4B: To validate the scalability and generalization of Tequila, we extend our evaluation to the Qwen3-4B model Bai et al. (2023). We compare Tequila against AbsMean and a standard Post-Training Quantization (PTQ) approach using AWQ Lin et al. (2023). The results is shown in Table 4. The AWQ suffers a catastrophic performance drop, which underscores the necessity of QAT for aggressive ternary quantization in LLMs. Tequila consistently outperforms other baselines across all tasks, confirming that our proposed reactivation mechanism delivers a consistent advantage by providing more informative gradients and mitigating the dead zone problem, even at the 4B scale.

5 CONCLUSION

In this paper, we first identified **deadzone trapping** as a fundamental obstacle to efficient and accurate ternary quantization of large language models for on-device deployment. Deadzone trapping, where weights become trapped in ineffective oscillation around the quantization boundary due to **less informative** gradients, severely diminishes model capacity and impedes optimization.

To overcome this challenge, we introduced Tequila, a novel trapping-free ternary quantization method. Tequila repurposes trapped weights as adaptive dynamic biases, successfully reactivating them to enhance model expressiveness with nearly zero inference overhead. Crucially, this approach provides direct gradient signals, enabling efficient escape from the deadzone and substantially accelerating quantization-aware training. Extensive evaluations on five benchmarks demonstrate that Tequila outperforms state-of-the-art ternary methods, closing the gap to full-precision performance while using limited training data, and preserving the computational benefits of ternary quantization, delivering up to $3\times$ inference speedup.

Looking forward, Tequila establishes a new direction for efficient model compression. **The concept of dynamically repurposing dead weights opens promising avenues for future research into extreme quantization.** We believe our work contributes a practical and scalable path toward bringing advanced LLM capabilities to resource-constrained devices.

540 REFERENCES
541

542 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
543 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

544 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
545 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
546 volume 34, pp. 7432–7439, 2020.

547 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
548 Efficientqat: Efficient quantization-aware training for large language models. In *Proceedings*
549 *of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
550 *Papers)*, pp. 10081–10100, 2025.

551 Tianqi Chen, Zhe Li, Weixiang Xu, Zeyu Zhu, Dong Li, Lu Tian, Emad Barsoum, Peisong Wang,
552 and Jian Cheng. Ternaryllm: Ternarized large language model. *arXiv preprint arXiv:2406.07177*,
553 2024.

554 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
555 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
556 *arXiv preprint arXiv:1803.05457*, 2018.

557 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
558 quantization. *arXiv preprint arXiv:2110.02861*, 2021.

559 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
560 multiplication for transformers at scale. *arXiv preprint arXiv:2208.07339*, 2022.

561 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
562 of quantized llms. *Advances in Neural Information Processing Systems*, 36, 2024.

563 Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
564 dra S Modha. Learned step size quantization. *arXiv preprint arXiv:1902.08153*, 2019.

565 Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. *Minds*
566 and *Machines*, 30:681–694, 2020.

567 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
568 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

569 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
570 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
571 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
572 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
573 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

574 Hong Huang and Dapeng Wu. Quaff: Quantized parameter-efficient fine-tuning under outlier spatial
575 stability hypothesis. *arXiv preprint arXiv:2505.14742*, 2025.

576 Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina
577 Rish. Surprising effectiveness of pretraining ternary language model at scale. In *The Thirteenth*
578 *International Conference on Learning Representations*, 2025.

579 Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park,
580 Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning: Quantization-
581 aware parameter-efficient adaptation of large-scale pre-trained language models. *arXiv preprint*
582 *arXiv:2210.03858*, 2022.

583 Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural net-
584 work: Squeeze the last bit out with admm. In *Proceedings of the AAAI conference on artificial*
585 *intelligence*, volume 32, 2018.

586 Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary weight networks. *arXiv*
587 *preprint arXiv:1605.04711*, 2016.

594 Vasiliki Liagkou, Evangelia Filiopoulou, George Fragiadakis, Mara Nikolaidou, and Christos
 595 Michalakelis. The cost perspective of adopting large language model-as-a-service. In *2024 IEEE*
 596 *International Conference on Joint Cloud Computing (JCC)*, pp. 80–83. IEEE, 2024.

597

598 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
 599 Activation-aware weight quantization for llm compression and acceleration. *arXiv preprint*
 600 *arXiv:2306.00978*, 2023.

601 Dan Liu and Xue Liu. Ternary quantization: A survey. *arXiv preprint arXiv:2303.01505*, 2023.

602

603 Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
 604 Accurate and efficient low-bitwidth quantization for large language models. *arXiv preprint*
 605 *arXiv:2310.08041*, 2023.

606

607 Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Understanding why neural
 608 networks generalize well through gsnr of parameters. *arXiv preprint arXiv:2001.07384*, 2020.

609

610 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 611 Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
 612 quantization. *arXiv preprint arXiv:2502.02631*, 2025.

613 Shuming Ma, Hongyu Wang, Shaohan Huang, Xingxing Zhang, Ying Hu, Ting Song, Yan Xia, and
 614 Furu Wei. Bitnet b1. 58 2b4t technical report. *arXiv preprint arXiv:2504.12285*, 2025.

615

616 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 617 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 618 mark. *arXiv preprint arXiv:2311.12022*, 2023.

619 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 620 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

621

622 MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
 623 Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. *arXiv preprint*
 624 *arXiv:2506.07900*, 2025.

625 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 626 lay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 627 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

628

629 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
 630 Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
 631 models. *arXiv preprint arXiv:2310.11453*, 2023.

632

633 Hongyu Wang, Shuming Ma, Lingxiao Ma, Lei Wang, Wenhui Wang, Li Dong, Shaohan Huang,
 634 Huaijie Wang, Jilong Xue, Ruiping Wang, et al. Bitnet: 1-bit pre-training for large language
 635 models. *Journal of Machine Learning Research*, 26(125):1–29, 2025a.

636

637 Jinheng Wang, Hansong Zhou, Ting Song, Shijie Cao, Yan Xia, Ting Cao, Jianyu Wei, Shuming
 638 Ma, Hongyu Wang, and Furu Wei. Bitnet. cpp: Efficient edge inference for ternary llms. *arXiv*
 639 *preprint arXiv:2502.11880*, 2025b.

640

641 Yudong Wang, Zixuan Fu, Jie Cai, Peijun Tang, Hongya Lyu, Yewei Fang, Zhi Zheng, Jie Zhou,
 642 Guoyang Zeng, Chaojun Xiao, et al. Ultra-fineweb: Efficient data filtering and verification for
 643 high-quality llm training data. *arXiv preprint arXiv:2505.05427*, 2025c.

644

645 Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. A brief
 646 overview of chatgpt: The history, status quo and potential future development. *IEEE/CAA Journal*
 647 *of Automatica Sinica*, 10(5):1122–1136, 2023.

648

649 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 650 Accurate and efficient post-training quantization for large language models. In *International*
 651 *Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.

648 He Xiao, Runming Yang, Qingyao Yang, Wendong Xu, Zhen Li, Yupeng Su, Zhengwu Liu, Hongxia
649 Yang, and Ngai Wong. Ptqtp: Post-training quantization to trit-planes for large language models.
650 *arXiv preprint arXiv:2509.16989*, 2025.

651

652 Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
653 language model (llm) security and privacy: The good, the bad, and the ugly. *High-Confidence
654 Computing*, 4(2):100211, 2024.

655 Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
656 standing straight-through estimator in training activation quantized neural nets. *arXiv preprint
657 arXiv:1903.05662*, 2019.

658

659 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
660 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

661 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
662 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
663 language models. *arXiv preprint arXiv:2205.01068*, 2022.

664

665 Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. *arXiv
666 preprint arXiv:1612.01064*, 2016.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Appendix

706

707 A THE USAGE OF LLMs

708

709 We state that the LLM is used exclusively for polishing the English text and grammar in this
 710 manuscript, prompted with: "Please polish and rephrase the following sentences: #input". All technical
 711 content, ideas, methodologies, experimental results, analyses, and conclusions are the original
 712 work of the authors. The LLM acted solely as a writing assistant and did not contribute to the
 713 intellectual substance of the research.

714 B RELATED WORK

715

716 B.1 GENERAL QUANTIZATION

717 Quantization (Dettmers et al., 2021; 2022; Lin et al., 2023; Frantar et al., 2022) is a well-established
 718 technique for improving the efficiency of Large Language Models (LLMs) by reducing the precision
 719 of weights and activations. However, low-precision quantization (Lin et al., 2023; Frantar et al.,
 720 2022) often leads to mixed-precision matrix multiplication, where weights and activations have
 721 different data types. This requires specific hardware support for efficient computation, which is a
 722 significant limitation for edge and mobile deployment, given the extreme diversity of devices in
 723 these environments.

724 While activation-weight quantization methods (Dettmers et al., 2022; Xiao et al., 2023; Huang &
 725 Wu, 2025) attempt to mitigate this by using a unified low-precision format for both weights and
 726 activations, they still face challenges. These methods often require specialized hardware adapta-
 727 tion and suffer from high quantization error in activations due to outlier issues (Xiao et al., 2023),
 728 preventing activations from reaching the same effective precision as weights. Consequently, existing
 729 general quantization methods struggle to enable efficient LLM deployment on diverse edge and
 730 mobile platforms.

731 B.2 TERNARY QUANTIZATION

732

733 Ternary quantization Li et al. (2016); Zhu et al. (2016), or 1.58bit quantization. presents a com-
 734 pelling alternative by constraining weights to ternary values, typically $\{-1, 0, +1\}$. Beyond the
 735 substantial memory savings, this approach transforms the core matrix multiplication operation into
 736 efficient addition operations by replacing multiplications with conditional sign flips. This in-
 737 trinsic hardware-friendliness makes it particularly suitable for resource-constrained edge and mobile
 738 hardware.

739 Early research on ternary quantization Li et al. (2016); Zhu et al. (2016); Leng et al. (2018) primar-
 740 ily focused on refining the quantization function, particularly the selection of threshold parameters
 741 and scaling factors. The foundational Ternary Weight Networks (TWN) (Li et al., 2016) assumed a
 742 Gaussian weight distribution to determine optimal thresholds that minimize the distortion between
 743 full-precision and quantized weights. Trained Ternary Quantification (TTQ) (Zhu et al., 2016) ad-
 744 vanced this paradigm by introducing trainable scaling factors, enabling models to learn optimal
 745 ternary representations directly during training. Further extending these ideas, Leng et al. (2018)
 746 formulated the problem using the Alternating Direction Method of Multipliers (ADMM) to itera-
 747 tively optimize both scaling factors and thresholds.

748 With the emergence of Large Language Models (LLMs) Wu et al. (2023); Floridi & Chiriatti (2020);
 749 Zhang et al. (2022), the limitations of early ternary quantization methods have become apparent.
 750 The generative capabilities of LLMs are highly sensitive to precision loss, which often leads to un-
 751 acceptable performance degradation under existing ternary techniques. This challenge has spurred
 752 two primary research directions. One line of work employs Post-Training Quantization (PTQ) tech-
 753 niques Lin et al. (2023); Frantar et al. (2022) to mitigate performance loss efficiently Xiao et al.
 754 (2025). However, concerns over PTQ's potential performance drop have led the most of work to
 755 explore Quantization-Aware Training (QAT) Chen et al. (2025) for more robust recovery. Within
 QAT-based ternary methods, a divergence in strategy exists: some approaches, such as those in the

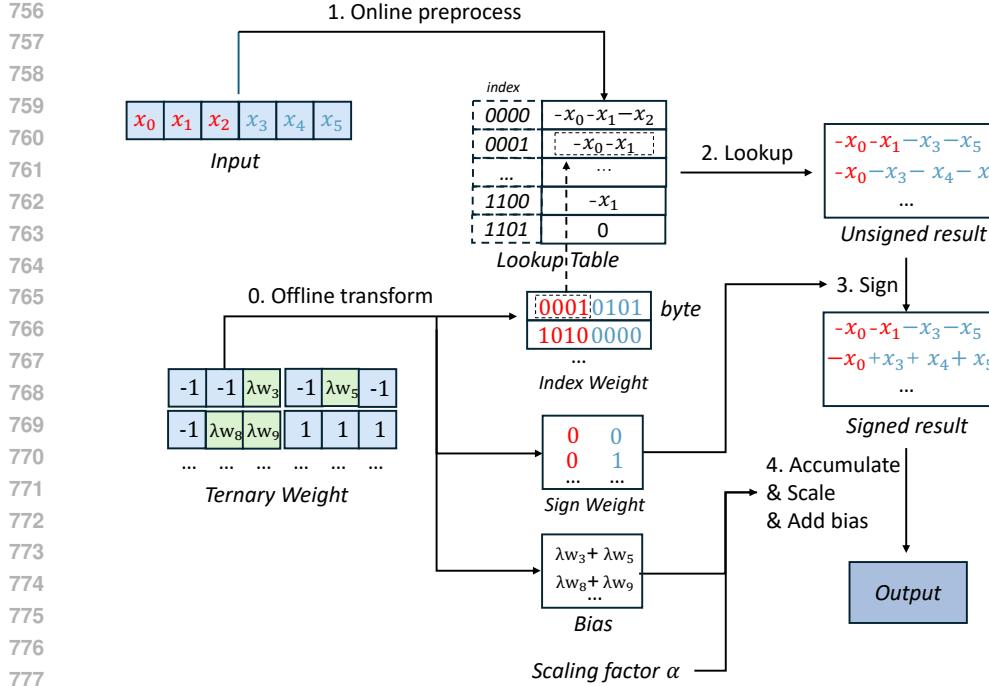


Figure 9: The Lookup Table-Based Inference designed for Tequila. Weights are packed into indices, signs, and a precomputed bias offline. At runtime, inputs are processed to construct a lookup table containing various unsigned intermediate values. The system then uses the weight indices to retrieve these values from the table. After that, the 1-bit sign values are applied to generate signed results and are accumulated, and the per-channel bias is added to produce the final output.

BitNet family Ma et al. (2025); Wang et al. (2023; 2025b), utilize the straightforward AbsMean quantization, while others, like Chen et al. (2024) and Liu et al. (2025), have adapted more sophisticated techniques such as Learned Step Size Quantization (LSQ) Esser et al. (2019) to the ternary setting.

Despite these advancements, these existing ternary LLMs still suffer from the deadzone trapping issue, where a large number of weights become trapped in a cycle of ineffective oscillation around the deadzone boundary, severely impeding model capacity and convergence. Therefore, we propose Tequila to achieve trapping-free quantization.

C QUANTIZATION-AWARE TRAINING

Quantization-Aware Training (QAT) Chen et al. (2025); Liu et al. (2025) is employed to recover model performance by incorporating quantization into the training loop. The core idea of QAT is to model the effects of quantization during the forward pass, allowing the model to adapt its parameters to the subsequent precision loss. This is achieved through a *fake quantization* process, where full-precision weights and activations are passed through a quantization function $\hat{Q}(\cdot)$ that mimics the behavior of integer arithmetic. Critically, the backward pass leverages the Straight-Through Estimator (STE) Yin et al. (2019) to approximate gradients through this otherwise non-differentiable operation.

The standard QAT procedure can be summarized as follows:

- (1) Maintain a full-precision weight copy W as the master weights for accumulation.
- (2) During the forward pass, generate quantized weights $\hat{W} = Q(W)$ and scaling factor α for computation.
- (3) Compute the output Y using the quantized weights $\hat{W} = Q(W)$, scaling factor α and activations X .

810 (4) Compute the Loss L using output Y and begin backward pass.
 811 (5) During the backward pass, full-precision gradients $\frac{\partial L}{\partial W}$ are computed with the STE, the
 812 gradients are passed directly to the full-precision weights: $\frac{\partial L}{\partial W} \approx \frac{\partial L}{\partial \tilde{W}}$.
 813 (6) Update the full-precision weights W using the approximated gradients via a standard opti-
 814 mizer (e.g., SGD, Adam).

815 By maintaining and updating full-precision master weights, QAT provides a stable optimization
 816 process while training a model that is robust to the quantization errors it will encounter during
 817 inference. This makes it the preferred method for achieving high accuracy with ultra-low precision,
 818 such as ternary or binary quantization.

819 D INFERENCE DESIGN

820 Tequila seamlessly integrates with the lookup table paradigm to enable efficient, multiplication-free
 821 inference. As illustrated in Figure 9, our system operates in two phases: an offline packing stage
 822 and an efficient online inference stage.

823 During the offline phase, the ternary weights and reactivation biases are packed into compact data
 824 structures, including index weights, sign weights, and channel-wise biases. To maximize efficiency,
 825 every three weights are packed into a 4-bit index and a 1-bit sign value.

826 At inference time, the input values are preprocessed into a lookup table within segments. For each
 827 segment, the corresponding weight index is used to retrieve the results from the lookup table. This
 828 process entirely replaces multiplication operations with efficient table lookups. The retrieved result
 829 is then combined with the sign weight to determine the final polarity, and subsequent accumulation
 830 across segments is followed by the addition of the channel-wise bias term. This results in a highly
 831 optimized inference path that maintains the theoretical hardware efficiency of ternary quantization
 832 while requiring only minimal modifications to existing inference frameworks.

833 E MORE EXPERIMENTAL DETAILS

834 E.1 EVALUTAION BENCHMARKS

835 The evaluation of language models has evolved beyond simple word prediction to assessing their
 836 ability to understand and apply knowledge in a human-like manner. This requires benchmarks that
 837 probe deeper cognitive capabilities, such as commonsense reasoning, logical deduction, and special-
 838 ized knowledge. This section introduces a suite of prominent benchmarks designed for this purpose:
 839 PIQA, ARC-Easy, ARC-Challenge, HellaSwag, GPQA, and WinoGrande.

840 PIQA (Physical Interaction Question Answering) Bisk et al. (2020) focuses on physical common-
 841 sense reasoning, testing a model’s understanding of how the everyday physical world works. The
 842 benchmark presents questions about the mechanics of physical actions (e.g., “How do you stabilize
 843 a wobbly table?”) and requires choosing the correct solution from two options. Success on PIQA
 844 indicates that a model possesses a foundational knowledge of physical laws and object interactions.

845 The ARC (AI2 Reasoning Challenge) dataset Clark et al. (2018) is divided into two tiers to assess
 846 scientific knowledge and reasoning. The ARC-Easy set contains grade-school-level science ques-
 847 tions that are often answerable through simple fact retrieval. In contrast, the ARC-Challenge set
 848 is specifically curated to be difficult, consisting of questions that require complex reasoning and a
 849 deeper understanding of scientific concepts, posing a significant challenge for even advanced mod-
 850 els.

851 HellaSwag Zellers et al. (2019) is a benchmark for evaluating contextual commonsense reasoning.
 852 It presents a beginning of a situation (e.g., “A person is folding a paper towel”) and challenges the
 853 model to select the most plausible continuation from four options. The distractors are generated by
 854 adversarial models, making them deceptively plausible and ensuring the task cannot be solved by
 855 simple word association, but rather requires a nuanced understanding of event dynamics.

856 GPQA Rein et al. (2023) represents a significant leap in difficulty, designed as a “graduate-level”
 857 benchmark for highly specialized knowledge. The questions, written by domain experts in biology,

864 physics, and chemistry, are exceptionally challenging and "Google-proof," meaning they are difficult
 865 to answer by simply searching the web. On GPQA-Diamond, the set of GPQA's 198 most difficult
 866 questions, PhD experts achieve 65% accuracy, while skilled non-experts with web access only reach
 867 34%.

868 WinoGrande Sakaguchi et al. (2021) is a large-scale dataset for assessing commonsense reasoning
 869 through pronoun resolution. Inspired by the Winograd Schema Challenge, it presents sentences
 870 with ambiguous pronouns (e.g., "The trophy didn't fit in the suitcase because it was too big.") and
 871 requires the model to determine the referent of "it." WinoGrande is designed to be adversarial, with
 872 a focus on reducing spurious statistical biases present in earlier datasets, forcing models to rely on
 873 genuine commonsense understanding.

874 Together, these benchmarks provide a multifaceted evaluation framework, testing language models
 875 on everything from everyday physical intuition (PIQA, HellaSwag) and general scientific knowledge
 876 (ARC) to expert-level understanding (GPQA) and nuanced linguistic reasoning (WinoGrande).
 877

878 E.2 GRADIENT SIGNAL-TO-NOISE RATIO (GSNR) MEASUREMENT

880 The Gradient Signal-to-Noise Ratio (GSNR) Liu et al. (2020) is a crucial metric for quantifying the
 881 reliability of gradient updates for model weights. It is defined as the ratio of the squared expectation
 882 to the variance of a weight's gradients over the data distribution. Formally, for a weight w_i , its
 883 GSNR is calculated as:

$$884 \text{GSNR}(w_i) = \frac{(\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\nabla_{w_i} L])^2}{\text{Var}_{\mathbf{x} \sim \mathcal{D}}[\nabla_{w_i} L]}, \quad (10)$$

885 where $\nabla_{w_i} L$ is the gradient of the loss with respect to w_i for a data sample \mathbf{x} . A high GSNR
 886 indicates a stable and consistent gradient signal across the dataset, whereas a low GSNR suggests
 887 noisy, uninformative updates that hinder effective optimization.

888 To evaluate the impact of our method on , we measure the GSNR specifically for dead weights,
 889 active weight and reactive weights that are trained by AbsMean, Minima Reactivation and Tequila.
 890 We estimate the expectation and variance in Eq. 10 using a 1024 training data samples and compute
 891 the average GSNR. This comparative analysis, shown in Figure 3, directly demonstrates that our
 892 reactivation mechanism provides a clearer optimization signal by significantly elevating the GSNR
 893 of previously dead weights.

894 E.3 GENERALIZABILITY TO OTHER QUANTIZATION SCHEMES

895 This paper primarily addresses the *deadzone trapping* problem, a fundamental challenge in *ternary*
 896 quantization that arises from uniquely fixing the zero point to eliminate multiplications. In higher-bit
 897 regimes (e.g., 2-bit, 4-bit), which are multiplication-based, this specific issue is effectively mitigated
 898 through techniques like zero-point shifting Liu et al. (2025). Consequently, the primary contribution
 899 of our work is the identification and resolution of a problem inherent to the ternary paradigm.

900 However, the core innovation of Tequila that repurposes a subset of weights to form a dynamic bias
 901 term is a general mechanism to enhance model capacity and gradient quality. To validate Tequila's
 902 generalizability beyond the ternary setting, we adapt Tequila to the following higher bit schemes.
 903

904 **Low-bit Quantization Scheme Without Deadzone.** To show the benefit of the weight repurposing
 905 method in a non-deadzone quantization scheme, we adapt Tequila into a 2-bit scheme using the
 906 levels $\{-1, -0.5, +0.5, +1\}$ (SEQ) by introducing a repurposed-bias term, modifying the forward
 907 pass to $Y = XW + \lambda \sum_i W_i$. Results in Table 5, confirm the broader applicability of our Tequila.
 908 The integration of the repurposed-bias term consistently improves performance across most tasks,
 909 yielding a noticeable 1.04% gain in the average accuracy. This demonstrates that the benefits of
 910 Tequila can be effectively translated to other low-precision formats.

911 **High-bit Quantization Scheme With Deadzone.** We further evaluate Tequila's generalization on
 912 high-bit quantization scheme by applying it to INT4 LSQ quantization. As shown in Figure 11
 913 (left), the deadzone trapping effect in INT4 LSQ is less severe than in ternary quantization (Figure 1). Despite this, Tequila effectively mitigates the remaining trapping, leading to a more stable

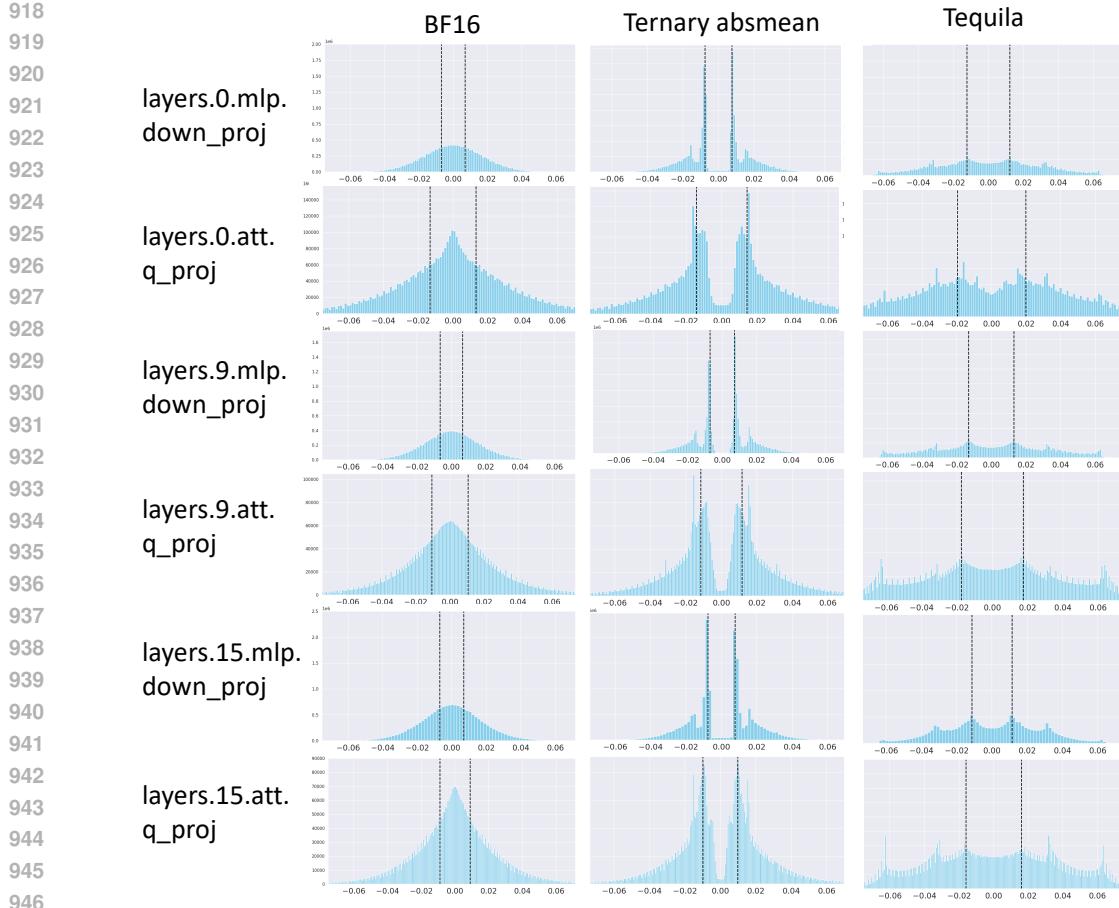


Figure 10: The distribution of weights from randomly selected linear layers in transformers with full-precision (BF16), ternary AbsMean, and our Tequila. The weights from the ternary AbsMean method are trapped at the deadzone boundary, suffering from deadzone trapping. Our Tequila can significantly address this issue. This observation aligns with our findings and demonstrates the effectiveness of Tequila.

weight distribution Figure 11 (right). The resulting performance gains, reported in Table 5, are consistent but modest. This is because the INT4 LSQ baseline is already highly competitive with the BF16 baseline, leaving little room for significant improvement. These results confirm that Tequila generalizes to higher-bit quantization, even when absolute gains are limited by a strong baseline.

E.4 TERNARY QUANTIZATION BASELINES

Recall the general form of the ternary quantization: Given a full-precision weight vector $W = (w_1, \dots, w_n)$, the general form of the ternary quantization function $Q(\cdot)$ is defined as:

$$Q(W) = \hat{W}\alpha, \quad \hat{w}_i = \begin{cases} +1, & \text{if } w_i \geq \Delta \\ 0, & \text{if } |w_i| < \Delta \\ -1, & \text{if } w_i \leq -\Delta \end{cases} \quad (11)$$

where $\hat{W} = (\hat{w}_1, \dots, \hat{w}_n)$ is ternary weights, α is a scaling factor and Δ is a threshold parameter. Due to the non-differentiable function of $Q(\cdot)$, the gradients for W are approximated using the Straight-Through Estimator (STE) (Zhu et al., 2016; Chen et al., 2024), leading to the following forward pass and backpropagation with input vector $X = (x_1, \dots, x_n)$:

$$Y = X^T Q(W) = X^T \hat{W}\alpha, \quad \frac{\partial L}{\partial w_i} = \begin{cases} \frac{\partial L}{\partial Y} x_i \alpha, & \text{if } |w_i| \geq \Delta \\ \frac{\partial L}{\partial Y} x_i, & \text{if } |w_i| < \Delta \end{cases}, \quad (12)$$

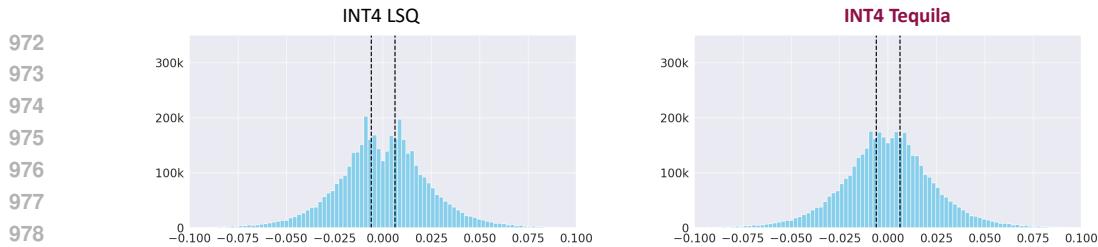


Figure 11: The weight distribution of INT4 (left) LSQ and (right) Tequila

Method	Bits	ARC-e	ARC-c	HeS	PIQA	WinG	Average
LLaMA-1B	16	0.654	0.313	0.477	0.742	0.603	0.557
SEQ	2	0.591	0.245	0.365	0.671	0.531	0.481
Tequila + SEQ	2	0.604	0.258	0.363	0.703	0.528	0.491
LSQ	4	0.670	0.310	0.458	0.741	0.587	0.553
Tequila + LSQ	4	0.672	0.313	0.459	0.747	0.593	0.557

Table 5: Performance comparison of the higher bit scheme with and without the Tequila.

where L denotes the loss of the model prediction.

Previous methods for optimizing ternary quantization can be broadly categorized into two approaches: (1) reducing quantization error, and (2) enhancing the model’s expressive capacity.

E.4.1 REDUCING QUANTIZATION ERROR

A primary line of work focuses on optimizing the threshold Δ and scaling factor α to reduce the quantization error. It is exemplified by estimation-based methods like Ternary Weight Networks (TWN) (Li et al., 2016), which aim to minimize the reconstruction error between full-precision and quantized weights. This is formalized by the objective:

$$\min_{\Delta, \alpha} |W - \alpha \hat{W}|^2, \quad (13)$$

which has a closed-form solution for α given a fixed threshold Δ :

$$\alpha^* = \frac{1}{|\hat{D}|} \sum_{i \in \hat{D}} |w_i|, \quad (14)$$

where \hat{D} is the set of weights whose absolute value exceeds Δ . However, finding the optimal threshold Δ^* that minimizes the overall objective is challenging. To circumvent this, TWN hypothesizes that the weights follow a standard Gaussian distribution, leading to the approximation $\Delta^* \approx 0.7 \cdot \mathbb{E}[|W|]$.

This Gaussian assumption often does not hold in modern deep learning models, particularly in LLMs, where weight distributions can be highly non-Gaussian. Consequently, the estimated α becomes biased, degrading performance. To address this, subsequent methods like Learned Step Size Quantization (LSQ) (Esser et al., 2019) and DLT (Chen et al., 2024) propose making the scaling factor α a trainable parameter, while typically retaining the heuristic estimation for Δ .

However, optimizing α and Δ alone cannot resolve the fundamental issue of deadzone trapping. Weights within the deadzone $(-\Delta, \Delta)$ remain **long-term** pruned during the forward pass and continue to receive only noisy, **less informative** gradients via the Straight-Through Estimator (STE), which prevents effective recovery. Moreover, in the context of LLMs, simply introducing additional trainable parameters (e.g., for α) increases optimization complexity and can make the model more susceptible to converging to poor local optima. As our results in Fig. 5 demonstrate, these methods exhibit significantly slower convergence and higher final loss compared to our approach, underscoring their inherent limitations.

1026
1027

E.5 ENHANCING THE MODEL’S EXPRESSIVE CAPACITY

1028
1029

Previous work has attempted to enhance model capacity by incorporating bias terms. For instance, DLT Li et al. (2016) introduces a learnable bias during dequantization:

1030
1031

$$Q(W) = \hat{W}\alpha + b, \quad Y = X(\hat{W}\alpha + b) = X\hat{W}\alpha + Xb, \quad (15)$$

1032
1033
1034

where b is a learnable bias. However, this approach breaks the computational efficiency of ternary quantization by introducing the dense full-precision scaling Xb . Similarly, SEQ Liu et al. (2025) introduces a bias by reassigning the zero point to a non-zero value αb :

1035
1036
1037
1038

$$\hat{w}_i = \begin{cases} +1, & \text{if } w_i \geq \Delta \\ \alpha b, & \text{if } |w_i| < \Delta \\ -1, & \text{if } w_i \leq -\Delta \end{cases} \quad (16)$$

1039

This also destroys efficiency, as the resulting operations are no longer multiplication-free.

1040
1041
1042
1043

While these methods may potentially mitigate the deadzone trapping issue by reactivating the deadzone, they fundamentally break the hardware efficiency of ternary quantization. In contrast, our method, Tequila, introduces an input-agnostic bias that is precomputed offline. This design directly addresses the deadzone trapping issue while perfectly preserving the computational efficiency of ternary quantization.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079