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Figure 1. Comparison between the proposed approach and baselines. Our model is more accurate and coherent in real time, compared
to two baseline methods with input from monocular video, Atlas [29] and NeuralRecon [41] + Semantic-Heads. Real-time 3D perception
efficiency η3D the higher the better. Color denotes different semantic segmentation labeling.

Abstract

We present a novel real-time capable learning method
that jointly perceives a 3D scene’s geometry structure and
semantic labels. Recent approaches to real-time 3D scene
reconstruction mostly adopt a volumetric scheme, where a
Truncated Signed Distance Function (TSDF) is directly re-
gressed. However, these volumetric approaches tend to fo-
cus on the global coherence of their reconstructions, which
leads to a lack of local geometric detail. To overcome this
issue, we propose to leverage the latent geometric prior
knowledge in 2D image features by explicit depth predic-
tion and anchored feature generation, to refine the occu-
pancy learning in TSDF volume. Besides, we find that this
cross-dimensional feature refinement methodology can also
be adopted for the semantic segmentation task by utilizing
semantic priors. Hence, we proposed an end-to-end cross-
dimensional refinement neural network (CDRNet) to extract
both 3D mesh and 3D semantic labeling in real time. The
experiment results show that this method achieves a state-
of-the-art 3D perception efficiency on multiple datasets,
which indicates the great potential of our method for in-
dustrial applications.

1. Introduction

Recovering 3D geometry and semantics of objects or en-
vironment scenes prevails these days with the advent of

the ubiquitous digitization. The digitization of the world
where people live can not only help them better understand
their environment scenes, but also enable robots to compre-
hend what they need to know about the world and there-
with conducting assigned tasks. Generally, with surround-
ing environment measurements as input, 3D reconstruc-
tion and 3D semantic segmentation are two key 3D percep-
tion techniques [9, 42, 13] in the computer vision society,
which enable a wide range of applications, including digital
twins [19, 3], virtual/augmented reality (VR/AR) [41, 49],
building information modeling [27, 44], and autonomous
driving [4, 22].

Tremendous research efforts have been made for 3D per-
ception techniques. Based on the sensor types, researches
on 3D perception can be divided into two main streams,
namely active range sensors that capture surface geome-
try information and RGB cameras that capture texture with
perspective projection. Originated from KinectFusion [31],
the commodity RGB-D range sensor is used to measure
depth data first and then fuse it into Truncated Signed
Distance Function (TSDF) volume for 3D reconstruction.
Although the follow-up depth-based TSDF fusion meth-
ods [47, 48, 1, 50, 39] achieve detailed dense reconstruction
result, they suffer from global incoherence due to the lack
of sequential correlation, the tendency of noise disturbance
due to redundant overlapped calculations, and the incapabil-
ity of semantic deduction due to the lack of texture features.

On the other hand, as camera-equipped smartphones be-
come readily available with built-in inertial measurement
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units, recent advances have emerged to explore 3D percep-
tion with RGB cameras on mobile devices. The problem
of reconstructing 3D geometry with posed RGB images in-
put only is referred to as multi-view stereo (MVS). Existing
methods for MVS that are based on deep learning, tend to
adopt a volumetric scheme by directly regressing the TSDF
volume [29, 40, 7, 41] either as a whole or in fragments.
However, these volumetric learning methods extract 3D ge-
ometric feature representation simply from the back pro-
jection of 2D image features, resulting in the mismatch to
the 2D information priors for the predicted 3D reconstruc-
tion. Moreover, the intrinsic end-to-end learning manner
and the lack of local details on the reconstructed mesh of
these volumetric schemes result in an inferior semantic de-
duction based on its 3D reconstruction prediction.

What’s worse, these learning-based methods tend to
store their entire computational graphs in memory for ag-
gregation and require prohibitive 3D convolution opera-
tions [29, 35, 40], which keeps them from being deployed
on robots due to the real-time and low-latency requirements
in SLAM. These limitations motivate our key idea to utilize
2D explicit predictions to further impose a light-weight fea-
ture refinement on the 3D features input in a sparse man-
ner, while keeping the global coherence within the frag-
ments. Unlike these preceding learning-based volumetric
works, we conjecture that the utilization of 2D prior knowl-
edge coming out of explicit predictions as a latent feature
refinement plays a significant role in learning the feature
representation in 3D perception. In addition, the feature re-
finement brought by 2D explicit prediction can be operated
within the fragment input for keeping the computation re-
dundancy and thus overhead low, while having the global
coherence by correlating different fragments to extract the
target 3D semantic mesh.

In this paper, we propose a novel framework, CDRNet,
to accomplish both 3D meshing and 3D semantic labeling
tasks in real-time. Our key contributions are as follows.

• We propose a novel, end-to-end trainable network archi-
tecture, which cross-dimensionally refines the 3D fea-
tures with the prior knowledge extracted from the explicit
estimations of depths and 2D semantics.

• The proposed cross-dimensional refinements yield more
accurate and robust 3D reconstruction and semantic seg-
mentation results. We highlight that the explicit estima-
tions of both depths and 2D semantics serve as efficient
yet effective prior knowledge for 3D perception learning.

• To achieve real-time 3D perception capability, our ap-
proach performs both geometric and semantic localized
updates to the global map. We present a progressive 3D
perception system that is capable of real-time interaction
with input data streaming from cellphones with a monoc-
ular camera.

2. Related Work

Real-Time 3D Perception. The prosperity of deep learn-
ing hardwares enables both inference and training at the
edge [20, 14], thus it consolidates the foundation to deploy
more and more learning-based 3D perception techniques in
real time. KinectFusion [31] first brought in the concept
of handling 3D reconstruction tasks in real time with com-
modity RGB-D sensors. Han et al. [13] presented a real-
time 3D meshing and semantic labeling system similar to
our work, however, depth measurements from RGB-D sen-
sors are required as input in their work. Pham et al. [33]
built up 3D meshes with voxel hashing, and then fuse the
initial semantic labeling with super-voxel clustering and a
high-order conditional random field (CRF) to improve la-
beling coherence. Menini et al. [28] extended RoutedFu-
sion [47] by merging semantic estimation in its TSDF ex-
traction scheme for each incoming depth-semantics pair.
NeuralRecon [41] adopted sparse 3D convolutions and the
gated recurrent unit (GRU) to achieve a real-time 3D recon-
struction on cellphones, without the capability of seman-
tic deduction. For depth estimation and semantic segmen-
tation, there are also works achieving real-time processing
capability [46, 30, 33].

Voxelized 3D Semantic Segmentation. The learning
of semantic segmentation on the voxelized map started
from [5], which extends TSDF fusion pipeline [31] with
per-pixel labels. 3DMV [11] and MVPNet [18] further
combined both depth and RGB modalities to train an end-
to-end network with 3D semantics for voxels and point
clouds, respectively. PanopticFusion [30] performed map
regularization based on adopting a CRF on the predicted
panoptic labels. Atlas [29] utilized its extracted 3D fea-
tures and passed them to a set of semantic heads for voxel
labeling, the pyramid features are proven to have strong se-
mantics at all scales than the gradient pyramid in nature, as
proven in [23]. BPNet [15] proposed to have a joint-2D-3D
reasoning in an end-to-end learning manner. Two deriva-
tive works [28, 17] of RoutedFusion incorporated seman-
tic priors into their depth fusion scheme and removed their
routing module for less overhead. However, none of these
works utilize the prior knowledge within the estimated 2D
semantics as a 3D feature refinement.

Volumetric 3D Surface Reconstruction. Volumetric
TSDF fusion became prevalent for 3D surface reconstruc-
tion starting from the seminal work KinectFusion [31] due
to its high accuracy and low latency. A follow-up work,
PSDF-Fusion [32] augmented TSDF with a random vari-
able to improve its robustness to sensor noise. Starting from
DeepSDF [32], the learned representations of TSDF using
depth input dominates the current fad. These learning-based
substitutes [47, 48, 3, 1, 50, 39, 52] to TSDF fusion achieve
impressive 3D reconstruction quality compared to the base-
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Figure 2. Overview of CDRNet. Posed RGB images from monocular videos are wrapped as fragment input for 2D feature extraction,
which is used for both depth and 2D semantic predictions for cross-dimensional refinement purposes. To learn the foundational 3D
geometry before conducting refinements, the extracted 2D features are back-projected into raw 3D features, Vs, in different resolutions
without any 2D priors involved. At each resolution, after being processed by the GRU, the output feature Ls in the local volume is further
fed into Depth and Semantics refinement modules sequentially to have a 2D-prior-refined feature with better representations.

line method with the availability of RGB-D range sensors.
Given the fact that range sensors have relatively higher

cost and energy consumption than RGB cameras, MonoFu-
sion [34] is one of the first works to learn TSDF volume
from RGB images by fusing the estimated depth into an im-
plicit model. Atlas [29] started the trend of learning-based
methods by a direct regression on TSDF volume. Neural-
Recon [41] achieved a real-time 3D reconstruction learn-
ing capability by utilizing sparse 3D convolutions and re-
current networks with key frames as input. Transformer-
Fusion [2] and VoRTX [40] introduced transformers [45]
to improve the performance by more relevant inter-frame
correlation. These learning-based methods prevail thanks
to the availability of these general 2D feature extractors,
such as FPN [23] and U-Net [37]. 2D information in RGB
images can be effectively extracted and further utilized for
constructing their 3D perception counterparts.

However, the learning of the explicit representations of
2D latent geometric features, such as depths and seman-
tics, is typically ignored by all the prior arts. They only
treat the 2D feature as an intermediate in the network and
then conduct ray back-projection upon it, without consid-
ering the explicit representations for their 3D embodiment,
which we found are significant prior knowledge for 3D per-
ception. To extract depth as the explicit 2D representa-
tion, VolumeFusion [7] and SimpleRecon [38] performed
local MVS and further fused it into TSDF volume with its
customized network, while 3DVNet [35] performed sparse
3D convolutions on the feature-back-projected point cloud.
Different from above, our method extracts the 2D represen-
tations from light-weight network modules, including a por-
tion of MVSNet [51] for depth and a simple 2D MLP head
for 2D semantics, to conduct the 3D feature refinements.
Similar to [21, 24], we utilize the geometric and seman-
tic prior information to improve the generalizability of our
network by correlating the 2D representations and their 3D
counterparts.

To the best of our knowledge, we present the very first
learning-based method which uses posed RGB images input
only to conduct 3D perception tasks in real time, including
3D meshing and semantic labeling.

3. Methods

Given a posed image sequence I, our goal is to extract a
3D mesh model that can represent both 3D geometry and
3D semantic labeling, i.e., 3D meshing with vertices K ∈
R3, surfaces G ∈ R3, and its corresponding 3D semantic
labeling S ∈ N. We achieve this goal by jointly predicting
TSDF value T ∈ [−1, 1] and semantic label S ∈ N for each
voxel, and then extracting the mesh with the marching cubes
[25]. Meanwhile, our proposed method aims at establishing
a real-time capable deep learning model for these two 3D
perception tasks. To quantitatively evaluate the efficiency
of conducting these two tasks simultaneously, we define a
3D perception efficiency metric η3D by involving frames
per second (FPS) in runtime, as shown in Sec. 4.1.

The proposed network architecture is illustrated in Fig.
2. In Sec. 3.1, we introduce the joint fragment learning
on depth, 2D semantic category, intermediate TSDF, and
occupancy using key frames input, for the following cross-
dimensional refinements of TSDF and 3D semantics. For
each fragment, the geometric features are progressively ex-
tracted in a coarse-to-fine hierarchy using binomial inputs
GRU to build the learned representations of 3D. Sec. 3.2
describes the cross-dimensional refinements for 3D features
that refines 3D features with anchored features and semantic
pixel-to-vertex correspondences enabled by the depth and
2D semantic predictions, which helps the learning of not
only the TSDF value, but also the 3D semantic labeling in a
sparsified manner. We also present the implementation de-
tails including loss design in Sec. 3.3. Specifications of the
network are elaborated in the supplement.

3.1. Sparse Joint Fragment Learning in a Coarse-
to-Fine Manner

Given the inherent nature of great sparsity in the ordi-
nary real-world 3D scene, we utilize sparse 3D convolutions
to efficiently extract the 3D feature from each input scene.
However, the memory overhead of processing a 3D scene
is still prohibitive, thus we fragment the whole 3D scene
and progressively handle each of them, to further release
the memory burden of holding up the huge 3D volume data.

3
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Inspired by [29, 12, 41, 40, 35], we adopt a coarse-to-fine
learning paradigm for the sparse 3D convolutions to effec-
tively exploit the representation of 3D features in multiple
scales. In each stage of the hierarchy, the raw features in the
fragment bounding volume (FBV) is extracted from a GRU
by correlating local features and global feature volume.

FBV Construction by Image Features. The input se-
quence of a monocular RGB video is first processed into
frames. Following [46, 41], we select a set of key frames
out of the input sequences I by querying on each frame’s
pose, namely the relative translation and optical center ro-
tation with empirical thresholds, θkey and tkey . Key frames
are further wrapped into a fragment Fi = {Ii,j ,Ti,j}Nk

j=1

as the input to the network, where i, j, and Nk denote the
fragment index, the key frame index, and the number of key
frames in the fragment, respectively.

Once the fragment Fi is constructed, it is processed by
a 2D image backbone network to extract image features.
In the decoder part of the backbone network, three differ-
ent resolutions of feature maps are extracted from the pyra-
mid sequentially as Ps ∈ {P2, P3, P4}, where the suffix
notation of P denotes the scaling ratio level in log2 similar
to [23]. The extracted feature Ps is then back-projected into
a local 3D volume, according to the projection matrix of
each frame in Fi. We hereby define FBV as the current lo-
cal volume Fs,i = {T x×y×z

s,i , Sx×y×z
s,i } that is conditioned

on the pyramid layers Ps, where all the 3D voxels that are
casted in the view frustums of current Fi are included.

Initial Depth and 2D Semantics Learning. With the fine
feature P2 as input, we build up differentiable homography
fronto-parallel planes for the coarse-level depth prediction
D̂4. Likewise, 2D semantics prediction Ŝ2D

4 is extracted
with a pointwise convolutional decoder as the 2D seman-
tic head using P2. The resolution gap between the input
and output feature map provides generalizability. The initial
depth estimation is retrieved from the features using a light-
weight multi-view stereo network via plane sweep [51]. For
each source feature map x in P2, we conduct the planar
transformation xj ∼ Hj(d) ·x, where “∼” denotes the pro-
jective equality and Hj(d) is the homography of the jth key
frame at depth d. For a given fragment input Fi, the ho-
mography1 is defined as:

Hj(d) = d ·Kj · (Tj ·T−1
1 ) ·KT

1 , (1)

where T ∈ SE(3) denotes the transform matrix inversed
from the pose. To measure the similarity after conduct-
ing homography warping, we calculate the variance cost
of xj and further process it with an encoder-decoder-based
cost regularization network. The output logit from the reg-
ularization network is treated as the depth probability on

1For brevity’s sake, the transformation from homogeneous coordinates
to Euclidean coordinates in the camera projection is omitted here.

each hypothesis plane and we conduct the same soft argmin
in [51] to have the initial depth prediction.

Geometric and Semantic GRU Fusion. Meanwhile, as
the 2D features are extracted in different resolutions, they
are back-projected from each of the pyramid level in Ps into
raw geometric 3D features Vs ∈ {V2, V3, V4}, which are
further sparsified by sparse 3D convolutions. To improve
the global coherence and temporal consistency of the re-
constructed 3D mesh, following [41], we first correlate the
sparse geometric feature Vs in the current Fs,i using GRU,
with the local FBV hidden states Hs,i−1 whose information
coming from all of the previous fragments Fs,i′ , i

′ < i and
coordinates are masked to be the same as Vs. Such cor-
relation outputs a temporal-coherent local feature Ls,i for
each stage s, which will be used to generate dense occu-
pancy intermediate os,i, and passed to the 2D-to-3D cross-
dimensional refinements. The global feature volume for the
entire scene Gs,i will be fused by Gs,i−1 and Ls,i given the
coordinates of Vs as masks, and update Hs,i. Unlike [41],
we reuse the same parameters in GRU to process the back-
projected and upsampled 3D semantic features to generalize
better for the semantic prediction Ŝ in the current FBV. This
is because inputting TSDF and semantic features sequen-
tially into GRU enables its selective fusion across modali-
ties, thus the feature extracted from the hidden state incor-
porates more semantic information, as pointed out in [36].

For the sake of learning 3D features consistently between
scales, we update Vs at each stage by fusing with the up-
sampled Ls+1,i. Inspired by the meta data mechanism pro-
posed in [38], we further concatenate sparse features, with
sparse TSDF, occupancy and semantics after masking with
os,i, as the meta feature Ls+1,i to be upsampled. We found
the inclusion of semantic information in the hidden state of
GRU helps build up a good starting point for the upcoming
feature refinements, which is verified in the ablation.

3.2. 2D-to-3D Cross-Dimensional Refinements

The raw coherent features from GRUs lack detailed ge-
ometric descriptions, leading to unsatisfactory meshing and
semantic labeling results. To overcome these issues, we
propose to leverage the 2D feature that is latent after in-
corporating the learning of depth and semantic frame for
the refinement purposes. We notice that with the learning
of depth and 2D semantics, the 2D features now reside in
the latent space which can generalize to more accurate 3D
geometry and semantics via cross-dimensional refinements.

2D-to-3D Prior Knowledge. Consider a probabilistic prior
in the latent space of the output coherent feature coming
from GRU, which accounts for the prior knowledge that the
pixel information in both depth predictions and 2D semantic
predictions should produce high confidence matching with
regard to their own 3D representations. The prior condi-
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Figure 3. Workflow of the depth anchor refinement module.
Anchored voxels are extracted from depth points and further serve
as a geometric prior for the occupancy refinement.

tioned 3D feature for both perception tasks is defined as:

Xprior = f(Ls,i) = f
(
Hs,i(Vs, Hs,i−1 | Fs,i)

)
, (2)

where f(·) is the 2D-to-3D feature refinement process for
either 3D meshing or 3D semantic labeling, whose input
is Ls,i extracted from Vs and Hs,i−1 given Fs,i. We bor-
row the notation of Hs,i to be a constructor function Hs,i(·)
indicating GRU. For each voxel in Fs,i, both TSDF and se-
mantic labeling predictions can be formulated as:

Îs,i = ϵh
(
Hs,i(Vs, Hs,i−1 | Fs,i)

)
+ (1− ϵ)Xprior , (3)

where Îs,i ∈ Fs,i is the refined prediction; ϵ is a random
variable for the respective prior, which is jointly learned by
the feature refinement modules representing the 2D-to-3D
priors and the GRU network trained with maximum like-
lihood estimation losses; h(·) is the prediction head. The
proof of Eq. (3) can be found in the supplement.

The key insight is that the voxels back-projected from ei-
ther depth prediction or semantic label prediction of the in-
put images has strong evidence on its 3D counterparts. We
hereby define anchored voxels αi, as those voxels in Fs,i

that are incorporating all the back-projected depth points,
given the fact that the 3D reconstruction task is essentially
an inverse problem. We propose two progressive feature re-
finement modules to learn the high confidence of the refined
features in latent space such that a more accurate Îs,i can be
extracted with the help of 2D-to-3D prior knowledge.

Depth-Anchored Occupancy Refinement. Unlike the
volumetric methods [29, 41] that directly regress on the
TSDF volume, we propose a novel module in each stage
s that can explicitly refine the initial depth, predict depths
in resolutions, and further create the 3D anchored features
with the depth prediction, as shown in Fig. 3. The anchored
feature is generated by 3D sparse convolutions with an an-
chored voxel on the occupancy intermediate oi

2.
Intuitively, the anchored voxel will have higher confi-

dence of achieving a valid oi and Ts,i close to zero. We
imposed the anchored feature on occupancy feature to rein-
force the occupancy information brought by the depth prior.

2The universal stage suffix s is hereinafter omitted for brevity.
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Figure 4. Anchored voxel generation for occupancy refinement.
An example of occupancy refinement happening on the middle
row of a 3 × 6 × 3 FBV is shown with geometrically valid voxel
highlighted in green. The initial depth prediction is back-projected
into FBV and displaced by trilinear interpolation on all depth
points, in the range of 6 additional hypothesis points for each depth
point. The voxels on the top are set as half transparent for clarity.

Inspired by [6, 35], we conduct PointFlow algorithm for
each stage in the coarse-to-fine structure Vs to determine
the depth displacement on the initial depth prediction such
that finer depth prediction can be achieved. Different from
the PointFlow algorithm used in [35], we utilize the back-
projected depth points from all Nk views in the fragment
to query an anchored voxel, which can be further aggre-
gated with oi. Fig. 4 illustrates how these hypothesis points
are selected and turned into depth displacement prediction,
such that the anchored voxel can be generated. The an-
chored voxel index in the 3D volume is sparsified as a mask
to update the occupancy prediction as ôi in the following:

ôi = oi ∩ αi . (4)

The enhanced occupancy prediction ôi is used to condition
the TSDF volume at the current stage to generate the refined
T̂i, which is further sparsified with a light-weight pointwise
convolution and upsampled to concatenate with Ls,i.

Pixel-to-Vertex Matching Semantic Refinement. In ad-
dition to the depth anchor refinement, we propose a seman-
tic cross-dimensional refinement which utilizes the seman-
tic prior that lies in the 2D semantic prediction to have a
refined 3D voxel semantic prediction, implemented as fol-
lows. First, the 2D feature extractor pyramid will learn the
2D semantic prior information that is useful for 3D voxel se-
mantic labeling learning by incorporating the learning of 2D
frame semantic labeling. Second, the sparse 3D feature Ls,i

will be passed to pointwise 3D convolution layers and come
up with the initial 3D voxel semantic labeling predictions
in respective scales. Third, to conduct the semantic feature
refinement, we observed that there is a sole 3D voxel coun-
terpart in Fs,i for each pixel on a 2D semantic prediction
of Ii,j , since the surface edges are encoded as vertices. We
define these vertices as the one-on-one matching correspon-
dences to their camera-projected pixels, which is recorded
in a matching matrix for masking the 2D features Ps.

The upper part of Fig. 5 illustrates the design of the
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matching matrix that is used to correlate the pixel-vertex
pairs for each frame Ii,j across all vertices in Fs,i. We con-
struct the matching matrix M = {−→midx}Nidx=1 for each se-
mantic labeling frame, where N is the number of the ver-
tices in the volume Fs,i. Each column of the matching ma-
trix M is defined as:

M(idx) = −→midx =

uidx

vidx
mask

 . (5)

For each column, each pixel-vertex pair recorded in the
matching matrix, i.e., the idxth vertex in the 3D volume on
the right-hand side of the upper part and its correspondence
pixel on the left-hand side is recorded. The last entry of the
pixel-vertex pair represents a mask which will be recorded
as valid when the 2D correspondence for M is in the current
view frustum of the frame.

After the matching matrix M is constructed, it will be
used for masking each of the feature map Ps with the log2
scale of s to create a refined feature, whose voxel number is
the same as the number of sparse 3D features, as shown in
the lower part of Fig. 5. Meanwhile, the coordinates of the
sparse 3D features Ls,i will be mapped as the coordinate of
the refined feature. By doing so, the underlying semantic
information from the Ps can be incorporated by Ls,i, such
that better 3D semantic prediction can be achieved. Then
we use the sparse pointwise convolution to extract its un-
derlined feature from 2D semantics, and concatenate it with
Ls,i to create Ls−1,i with semantic information for the re-
finement in the next finer stage, so as to ensure the 2D se-
mantic priors to have reliable refinement on the sparse co-
herent features.

3.3. Implementation Details

Our model is implemented in PyTorch, trained and tested
on an NVIDIA RTX3090 graphics card. We empirically set
the optimizer as Adam without weight decay [26], with an
initial learning rate as 0.001, which goes through 3 halves
throughout the training. The first momentum and second
momentum are set to 0.9 and 0.999, respectively. For key
frame selection, following [46, 41], we set thresholds θkey ,
tkey and fragment input number Nk as 15 degrees, 0.1 me-
ters, and 9, respectively. A fraction of FPN [23] is adopted
as the 2D backbone with its classifier as MNasNet [43].
MinkowskiEngine [8] is utilized as the sparse 3D tensor li-
brary. More details are introduced in the supplement.

Loss Design. Our model is trained in an end-to-end fash-
ion. Since our target is to learn the 3D geometry and se-
mantic segmentation of the surrounding scene given posed
images input, we regress the TSDF value with the mean ab-
solute error (MAE) loss, classify the occupancy value with
the binary cross-entropy (BCE) loss and the semantic label-

Features with

3D Semantic Info.

Semantic Prediction as 

Input to the Next Stage

Camera Projection 

Matching Matrix

Coordinates

Mapping 

Sparse Pointwise

Convolutions

Cross-Dimensional Semantic Refinement

Sparse

Encoder-Decoder

Convolutions

Mask

2D View 3D Volume

Masked by 

Figure 5. Workflow of the pixel-to-vertex matching feature re-
finement. Upper: Matching matrix M for pixel-to-vertex corre-
spondence is constructed with camera projection. The red-shaded
boxes in the 3D volume denote an example of valid correspon-
dence pairs of the 2D semantic prediction −→ma and its surrounding
3D scene. The green and purple boxes denote the occluded ver-
tex and out-of-view vertex that is not imaged in the 2D semantic
prediction, which correspond to −→mb and −→mz , respectively; Lower:
The 2D features are further masked by M(a) with the mapped co-
ordinates from the sparse 3D features of the scene that are valid
for the current view.

ing with cross-entropy (CE) loss as:

L3D =

4∑
s=2

αsLMAE(Ts, T̂s) + λαsLBCE(Os, Ôs)

+ βsLCE(Ss, Ŝs) , (6)

where T , S, and O denote TSDF value, semantic labeling,
and occupancy predictions. αs, βs, and λ are the weighting
coefficients in different stages for TSDF volume, semantic
volume and positive weight for BCE loss, respectively. By
doing so, the learning process stays most sensitive and rele-
vant to the supervisory signals in the coarse stage, and less
fluctuating as the 3D features become finer with the upsam-
pling, after log-transforming the predicted and ground-truth
TSDF value following [29].

To conduct cross-dimensional refinements, we regress
the depth estimation with MAE loss and classify the 2D se-
mantic segmentation with CE loss:

L2D =LMAE(dinit, D̂init) + LCE(S
2D
2 , Ŝ2D

2 )

+

4∑
s=2

γsLMAE(Ds, D̂s) , (7)

where D and γs denote depth and the weighting coefficient
for depth estimation in different stages. We further wrap the
losses into an overall loss L = L3D+µL2D, where µ is the
coefficient to balance the joint learning of 2D and 3D.

4. Experiments
4.1. Datasets and Metrics

We conduct the experiments on two indoor scene
datasets, ScanNet (v2) [10] and SceneNN [16]. The model

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#4

ICCV
#4

ICCV 2023 Submission #4. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ours NeuralReconAtlas
Ground

Truth
VoRTX

Figure 6. Qualitative 3D reconstruction results on ScanNet. Our method is capable of reconstructing consistent and detailed geometry
which is neither overly smooth as the one from Atlas [29] nor eroded with holes as from NeuralRecon [41].

Method Acc. ↓ Comp. ↓ Prec. ↑ Recall ↑ F-Score ↑
Atlas [29] 0.124 0.074 0.382 0.711 0.499

NeuralRecon [41] 0.073 0.106 0.450 0.609 0.516
3DVNet [35] 0.051 0.075 0.715 0.625 0.665

SimpleRecon [38] 0.061 0.055 0.686 0.658 0.671
VoRTX [40] 0.891 0.092 0.618 0.589 0.623

Ours 0.068 0.062 0.609 0.616 0.612

Table 1. Quantitative 3D reconstruction results on ScanNet.
Our method is superior to two main baselines, Atlas and Neural-
Recon, and as competitive as other SOTAs on 3D reconstruction.

Method FPS ↑ KFPS ↑ FLOPF ↓ mIoU ↑ η3D ↑
3DMV [11] 7.04 N/A 65.06G 44.2 N/A
BPNet [15] 4.46 N/A 141.06G 74.9 N/A
Atlas [29] 66.3 N/A 267.04G 34.0 11.25

NeuralRecon [41] + Semantics-Heads 228 30.9 42.38G 27.9 32.82
VoRTX [40] + Semantic-Heads 119 13.5 150.23G 13.2 9.79

Ours 158 21.4 90.62G 39.1 37.81

Table 2. Quantitative 3D voxel semantic segmentation and
overall 3D perception results on ScanNet. Upper: Two rep-
resentative state-of-the-art methods for semantic segmentation
whose input requires either depth or 3D mesh, respectively. No
key-frame selection and F-score are involved due to their input
modality; Lower: RGB-input-only volumetric methods. Key-
frame FPS (KFPS) is measured with the same selection scheme
across all methods. FLOPF is measured with PyTorch operation
counter across operations of neural network’s learnable modules.

is trained on the ScanNet train set, tested and reported on the
ScanNet test set and further verified on SceneNN data set.
To quantify the 3D reconstruction and 3D semantic segmen-
tation capability of our method, we use the standard metrics
following [29, 41]. Completeness Distance (Comp.), Ac-
curacy Distance (Acc.), Precision, Recall, and F-score, are
used for 3D reconstruction, while mean Intersection over
Union (mIoU) is used for 3D semantic segmentation.

To evaluate how much robustness a model can achieve
while targeting solving 3D perception tasks in real time,
we define the 3D perception efficiency metric η3D =
FPS × mIoU × F-score, since F-score is regarded as the
most suitable 3D metric for evaluating 3D reconstruction
quality by considering Precision and Recall at the same
time [29, 41, 38]. It is noteworthy that for fairness across
methods, FPS for processing speed is measured in the infer-
ence across all captured frames in a given video sequence
rather than key frames only, since the input is the same
for different methods regardless of their key frame selection
scheme.

4.2. Evaluation Results and Discussion

3D Perception. To evaluate the 3D perception capabil-
ity, we mainly compare our methods against state-of-the-art

works in two categories: volumetric 3D reconstruction and
voxelized 3D semantic segmentation methods.

For 3D reconstruction capability, we compare our pro-
posed method with the canonical volumetric methods [29,
41] and several state-of-the-art 3D reconstruction methods
with posed images input [35, 38]. Fig. 6 demonstrates the
superiority of our method in terms of 3D reconstruction by
showing the 3D meshing results in normal mapping. Ta-
ble 1 shows that our method outperforms two main base-
line methods in terms of 3D meshing accuracy. We further
compare both state-of-the-art depth estimation methods and
volumetric methods in depth metrics in the supplement to
justify from the depth extraction perspective.

For 3D semantic segmentation quality, we compare At-
las, NeuralRecon with semantic heads, and VoRTX with se-
mantic heads with our methods in Table 2. We augment
three stages of MLP heads on top of the flattened 3D fea-
tures to predict the semantic segmentation for both base-
lines. One of the SOTA baselines, SimpleRecon is intrin-
sically unable to follow this modification for semantics due
to the lack of 3D feature extraction. Table 2 shows that
our method outperforms these two baselines. Besides mIoU
for semantic segmentation, we include FPS and η3D for
3D perception efficiency in the comparison. We also in-
clude two state-of-the-art 3D semantic segmentation meth-
ods, 3DMV [11] and BP-Net [15]. It shows that our method
can achieve mIoU results nearly comparable to 3DMV, but
with only RGB images as input. Overall, our method
achieves the best 3D semantic segmentation performance
and highest 3D perception efficiency among all the volu-
metric methods. Fig. 7 and Fig. 8 illustrate the 3D seman-
tic labeling results. We found that the semantic information
generation on VoRTX is unsatisfying, mostly caused by its
bias on geometric features brought by the projective occu-
pancy mentioned in [40].

Efficiency. Since our main goal is to achieve real-time pro-
cessing performance while solving 3D perception tasks, we
compare the computational efficiency of our model against
other RGB-input-only volumetric methods in Table 2. The
3D perception efficiency metric η3D for several 3D seman-
tic segmentation works are shown there. We employ FPS,
which is commonly used to measure efficiency for 2D-input
3D perception methods [29, 41, 40], as a metric to bring out
and emphasize the nature of real-time system. We also in-
clude the floating-point operations per frame (FLOPF) to
compare the learnable parameters’ operations across differ-
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Figure 7. Qualitative 3D semantic segmentation results on ScanNet. Our method consistently outperforms baseline models and some-
times even surpasses the ground-truth labeling, e.g., in the bottom row, the photo-printed curtain above the bed is correctly recognized as
“curtain” and “picture”, whereas the ground truth mistakes it as “other furniture”.

Ground

Truth
Ours Atlas

NeuralRecon+

Semantic-Heads

Method Acc. ↓ Comp. ↓ FPS ↑ F-Score ↑ mIoU ↑ η3D ↑
Atlas [29] 0.074 0.164 54.7 0.499 31.4 8.57

NeuralRecon [41] + Semantic-Heads 0.138 0.216 178 0.510 15.9 14.43
Ours 0.068 0.143 121 0.611 36.7 27.09

Figure 8. Qualitative and quantitative 3D pereception results
on SceneNN dataset. Our method is proven to be generalized to
SceneNN without pretraining on the SceneNN train set.

ent methods. The superiority in η3D of our method mani-
fests that it has better deployment potential for real-life 3D
perception applications. From the human user’s and robotic
SLAM’s points of view, our method greatly surpasses the
threshold of being real-time, 90.17 FPS, as elaborated in the
supplement. It shows that our method is more suitable for
real-time industrial scenarios with input data from low-cost
portable devices compared to baseline methods.

4.3. Ablation Study

To analyze the effectiveness of cross-dimensional refine-
ment, we present 3D perception efficiency η3D and its com-
ponents of with different modifications in Table 3. In other
experiments above, we adopt (e) as our method.

Binomial GRU Fusion. In (a), we remove the back-
projected semantics input to GRU in the pipeline. Com-
pared with (e), both F-score and mIoU of the removal de-
grade since no hidden semantic information from last FBV
is fused with GRU anymore. Although FPS increases due
to less computations, the efficiency η3D is worse.

Depth Refinement. In (c), we remove the depth anchored
refinement in the pipeline. The loss in F-score and mIoU
manifests that the geometric feature without depth anchored
refinement becomes inferior, which means depth anchored
refinement can improve 3D reconstruction performance.

Semantic Refinement. We validate the semantic refine-

GRU Input Depth Semantics F-Score↑ mIoU↑ FPS ↑ η3D ↑DE AR SE PVR
a Geo. ✓ ✓ ✓ ✓ 0.477 31.7 190 28.73
b Geo.+ Sem. ✓ ✓ 0.479 27.1 232 30.12
c Geo.+ Sem. ✓ ✓ ✓ 0.482 34.5 169 28.10
d Geo.+ Sem. ✓ ✓ ✓ 0.556 26.8 226 33.68
e Geo.+ Sem. ✓ ✓ ✓ ✓ 0.612 39.1 158 37.81

Table 3. Ablation study. We assess our method by removing each
of the proposed feature fusion techniques on ScanNet. DE, AR,
SE, and PVR denote depth estimation, anchored refinement, 2D
semantics estimation, and point-to-vertex refinement, respectively.

ment in the pipeline by removing this module and, as shown
in (d). The mIoU drops due to the insufficient learning in-
formation from semantics heads only. This result demon-
strates the effectiveness of our semantic refinement scheme
based on pixel-to-vertex matching for improving 3D seman-
tic segmentation performance. We also experiment with no
refinements but depth and 2D semantics learning setup in
(b), which gives the highest FPS but not satisfying 3D per-
ception performance.

5. Conclusion

In this paper, we proposed a lightweight volumetric
method, CDRNet, that leverages the 2D latent information
about depths and semantics as the feature refinement to han-
dle 3D reconstruction and semantic segmentation tasks ef-
fectively. We demonstrated that our method has real-time
3D perception capabilities, and justified the significance of
utilizing 2D prior knowledge when solving 3D perception
tasks. Experiments on multiple datasets justify the 3D per-
ception performance improvement of our method compared
to prior arts. From the application point of view, the scala-
bility of CDRNet supports the notion that 2D priors should
not be disregarded in 3D perception tasks and opens up new
avenues for achieving real-time 3D perception using input
data from readily accessible portable devices such as smart-
phones and tablets.
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