

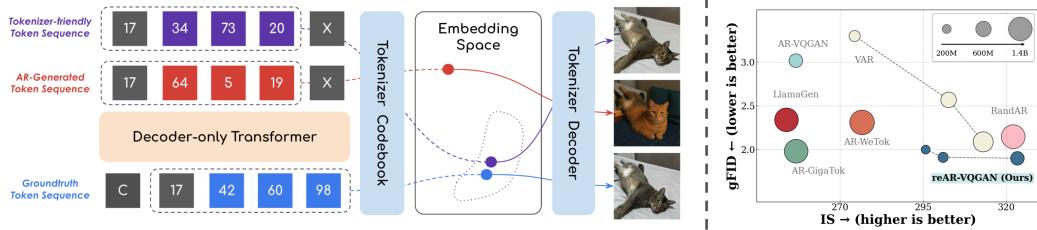
REAR: RETHINKING VISUAL AUTOREGRESSIVE MODELS VIA GENERATOR-TOKENIZER CONSISTENCY REGULARIZATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Visual autoregressive (AR) generation offers a promising path toward unifying
 014 vision and language models, yet its performance remains suboptimal against dif-
 015 fusion models. Prior work often attributes this gap to tokenizer limitations and
 016 rasterization ordering. In this work, we identify a core bottleneck from the per-
 017 spective of generator-tokenizer inconsistency, i.e., the AR-generated tokens may
 018 not be well-decoded by the tokenizer. To address this, we propose reAR, a simple
 019 training strategy introducing a token-wise regularization objective: when predict-
 020 ing the next token, the causal transformer is also trained to recover the visual em-
 021 bedding of the current token and predict the embedding of the target token under a
 022 noisy context. It requires no changes to the tokenizer, generation order, inference
 023 pipeline, or external models. Despite its simplicity, reAR substantially improves
 024 performance. On ImageNet, it reduces gFID from 3.02 to 1.86 and improves IS to
 025 316.9 using a standard rasterization-based tokenizer. When applied to advanced
 026 tokenizers, it achieves a gFID of 1.42 with only 177M parameters, matching the
 027 performance with larger state-of-the-art diffusion models (675M).



036 (a) Visual autoregressive generation suffers from generator–tokenizer in-
 037 consistency: (1) Due to **exposure bias**, the AR model is more likely to
 038 generate token sequences unseen by the tokenizer; (2) Being **embedding**
 039 **unaware**, the embedding sequence of the generated discrete tokens may
 040 also be unfamiliar to the tokenizer, resulting in a cat in an unnatural pose,
 041 with its lower body flipped and the belly facing upward. The top and bot-
 042 tom images can still appear similar despite differing token indices, since
 043 distinct token sequences may map to nearby embeddings.

044 (b) With **generator-tokenizer consistency regularization**, reAR with
 045 fewer parameters significantly improves over vanilla AR (gFID: 3.02
 046 to 1.86, IS: 256.2 to 316.9) and even surpasses methods based on
 047 advanced tokenization and sophisticated generative paradigm.

Figure 1: **Generator-tokenizer inconsistency is the bottleneck in the visual autoregressive model.**

1 INTRODUCTION

049 Autoregressive (AR) models, using a decoder-only transformer with the objective of next token pre-
 050 diction, are state-of-the-art for natural language generation (Team et al., 2023; Achiam et al., 2023).
 051 For image generation, however, AR models are less competitive than diffusion models (Dhariwal
 052 & Nichol, 2021; Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2024c). There is great interest
 053 in advancing visual autoregressive models to unify the language and visual modalities into a single
 054 generative framework (Bai et al., 2024; Team, 2024; Chung et al., 2024).

054 Scrutinizing the current design in visual AR, the dominant paradigm is to convert images into discrete tokens and train an autoregressive model on the converted token sequences. Specifically, a tokenizer is trained to split an image (or the feature) into patches and utilizes them into a sequence of discrete tokens (Esser et al., 2021; Sun et al., 2024; Luo et al., 2024), which it can use to reconstruct the original image. A decoder-only transformer using a causal mask is then trained on this token sequence in raster-scan order with the objective of next-token prediction. Unfortunately, this paradigm typically results in suboptimal performance compared to the diffusion model (Dhariwal & Nichol, 2021; Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2024c). Previous works have analyzed the performance gap from the perspective of tokenization, including token decomposition (Tian et al., 2024; Yu et al., 2024b; Bachmann et al., 2025; Pan et al., 2025) and sequence order (Pang et al., 2025; Yu et al., 2024a), rather than the whole system of visual autoregressive generation.

065 In this work, we provide a unified perspective on the key bottleneck of visual AR through the lens of **generator-tokenizer inconsistency**, which refers to the challenge that the autoregressive model 066 might generate a token sequence that is hard for the tokenizer to decode back to an image. Specifically, 067 we examine two sources of the inconsistencies inherited from the generated token sequence.

069 Firstly, the generated token sequence can be *unseen* by the tokenizer due to **exposure bias**. In autoregressive training, each token is predicted given the ground-truth context (teacher forcing), but 070 at inference, the context consists of the model’s own predictions. Early mistakes then compound 071 and lead to sequences never observed during training. While exposure bias is well studied in language (Bengio et al., 2015; Wang & Sennrich, 2020), it is *amplified* in visual AR. Text tokens are 072 themselves the final output, so even an unseen sequence may still be semantically coherent. By 073 contrast, visual tokens are decoded into images: a single wrong token can corrupt future predictions 074 and decode into a token sequence never seen by the tokenizer during training, spreading structural 075 artifacts across the image. As shown in Figure 1(a), an early misprediction (e.g., 42’ → 64’) cascades 076 through subsequent tokens and yields a cat in an unnatural pose with a different coat color.

078 Secondly, the AR model suffers from **embedding unawareness**. During training, it optimizes only 079 the discrete token indices without considering how these tokens are embedded by the tokenizer. 080 However, the decoded image quality depends on the embeddings of the generated tokens rather 081 than their indices alone, as shown in Figure 1(a). This unawareness leads to two issues: (i) even 082 if two tokens are close in the embedding space, the model can only infer this relation indirectly 083 from co-occurrence statistics, which is data-inefficient. and (ii) the embedding of an incorrect token 084 is unconstrained by the ground-truth embedding, which can cause the overall sequence embedding 085 to drift far from the training distribution of the tokenizer decoder. As illustrated in Figure 1(a), 086 although the purple and red sequences contain the same number of incorrect tokens, the one with 087 embeddings closer to the ground truth generates a decoded image of higher quality.

088 In this regard, we propose reAR, a unified training framework that explicitly regularizes the model 089 toward tokenizer-friendly behavior. Concretely, we introduce two complementary strategies: 1) 090 **Noisy Context Regularization** that exposes the model to perturbed context during training, reducing 091 its reliance on clean contexts and improving robustness to imperfect histories at test time, thereby 092 alleviating the model’s tendency to generate unseen token sequence; 2) **Codebook Embedding 093 Regularization** that aligns the generator’s hidden states with the tokenizer’s embedding space, which 094 encourages the generator to be aware of how tokens are decoded into visual patches. By learning 095 to predict the embeddings rather than only discrete indices, even if the generator generates an 096 unseen token sequence, the corresponding embedding sequence is optimized to be more compatible 097 with the tokenizer. Combining them together, the *token-wise consistency regularization* can guide 098 visual AR to be friendly to the tokenizer by predicting the visual embedding in a robust manner.

099 Building on reAR, we conduct extensive experiments comparing it against other generative frameworks. To show that reAR generalizes beyond specific tokenizers, we apply it to non-standard 100 designs such as TiTok (Yu et al., 2024b) and AliTok (Wu et al., 2025). When combined with standard 101 rasterization-order AR, reAR outperforms prior autoregressive methods even when those rely 102 on sophisticated tokenizers, as Figure 1 (b) shows. Under the same model size and training budget, 103 it also surpasses alternative paradigms such as MAR (Li et al., 2024), VAR (Tian et al., 2024), and 104 SiT (Ma et al., 2024). Furthermore, when paired with a tokenizer tailored for causal AR modeling 105 (Wu et al., 2025), reAR achieves FID = 1.42 with only 177M parameters—competitive with the 106 diffusion model REPA, which requires external representations and 675M parameters.

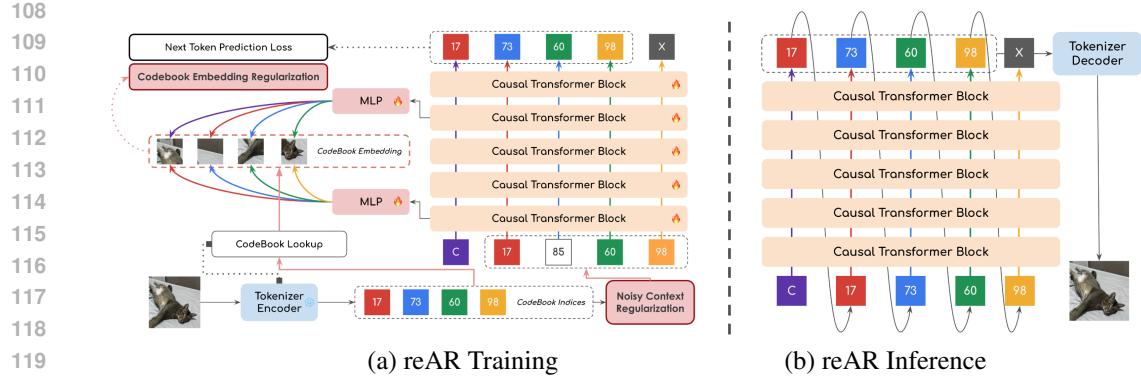


Figure 2: Overview of reAR, a plug-and-play framework that is agnostic to the visual tokenizer.

Our contributions can be summarized as follows:

- We identify the inconsistency between generator and tokenizer, where tokenizer fails to decode the generated token sequence, as the bottleneck of visual autoregressive generation;
- We propose reAR, a plug-and-play training regularization that introduces visual inductive bias from the tokenizer and alleviates exposure bias to train the visual autoregressive model;
- We demonstrate that reAR significantly improves visual autoregressive generation across different tokenizers (e.g., on VQGAN, FID improves from 3.02 to 1.86) and even surpasses more sophisticated generative models, using far fewer parameters.

2 PRELIMINARIES

Visual autoregressive generation is commonly divided into two components: (1) A visual tokenizer to tokenize the image; (2) An autoregressive model to sample the token sequence.

Visual Tokenizer. Visual tokenizers compress image pixels into discrete token sequences. The most commonly adopted methods are patch-based tokenizers (Esser et al., 2021; Sun et al., 2024; Yu et al., 2023; Chang et al., 2022). The tokenizer includes three parts: Encoder \mathcal{E} , Quantizer \mathcal{Q} and Decoder \mathcal{D} . Formally, a given image $\mathbf{I} \in \mathbb{R}^{3 \times H \times W}$ is converted to a feature $\hat{\mathbf{z}} \in \mathbb{R}^{c \times h \times w}$ with the encoder \mathcal{E} where $h < H, w < W$. It's then processed into quantized embedding $\mathbf{z}^q \in \mathbb{R}^{c \times h \times w}$ via the quantizer \mathcal{Q} and decoded back to reconstruct image $\hat{\mathbf{I}}$ by the decoder \mathcal{D} :

$$\hat{\mathbf{z}} = \mathcal{E}(\mathbf{I}), \quad \mathbf{z}^q = \mathcal{Q}(\hat{\mathbf{z}}), \quad \hat{\mathbf{I}} = \mathcal{D}(\mathbf{z}^q) \quad (1)$$

The vector quantization is performed *element-wise* with a codebook $\mathcal{Z} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_K\} \subset \mathbb{R}^{c \times h \times w}$ by looking up the closest entry. Formally:

$$\mathbf{z}^q_{ij} = \arg \min_{\mathbf{z}_k \in \mathcal{Z}} \|\hat{\mathbf{z}}_{ij} - \mathbf{z}_k\|, \quad \mathbf{x}_{ij} = \arg \min_{k \in \{1, \dots, K\}} \|\hat{\mathbf{z}}_{ij} - \mathbf{z}_k\|. \quad i = 1, \dots, h, \quad j = 1, \dots, w. \quad (2)$$

where \mathbf{x}_{ij} forms the discrete token (indices such as 17 and 73). In the standard approach, it's arranged into 1D token sequence via row-major rasterization order, i.e., $\{\mathbf{x}_{11}, \dots, \mathbf{x}_{1w}, \mathbf{x}_{21}, \dots, \mathbf{x}_{h1}, \dots, \mathbf{x}_{hw}\}$. The autoregressive model can then be trained on it..

Autoregressive Model. To model the distribution of a sequence of signal $\mathbf{x}_{1:N} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$, the autoregressive model p_θ aims to maximize the likelihood of the next token under teacher forcing:

$$\theta = \arg \max_{\theta} \log p_\theta(\mathbf{x}_{1:N}) = \arg \max_{\theta} \sum_{i=1}^N \log p_\theta(\mathbf{x}_i | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1}) \quad (3)$$

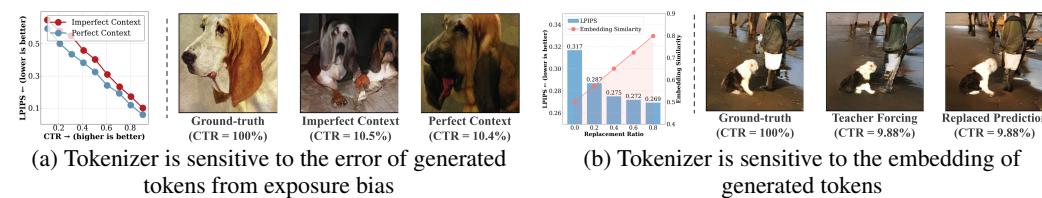


Figure 3: **Tokenizer is sensitive to the error of generated tokens from exposure bias.** Under the same CTR, (a) The images decoded from imperfect context is much less similar to the ground truth than the one from perfect context; (b) Replacing incorrect token with other incorrect tokens but with more similar embedding of the correct token, the generated image can be more similar to ground truth than original prediction.

During inference, the model then decodes the sequence one by one. The t th token is sampled from the context $\mathbf{x}_{1:t-1}$ by $\mathbf{x}_t \sim p(\cdot | \mathbf{x}_{1:t-1})$ under free running. In visual autoregressive generation, after sampling a sequence $\hat{\mathbf{x}}$ from p_θ , it's decoded into \hat{I} as the final generated image by the tokenizer decoder \mathcal{D} .

3 REAR: REGULARIZING CONSISTENCY IN VISUAL AR

Different from natural language, $\hat{\mathbf{x}}$ is not the final generated result in visual autoregressive generation. Therefore, inconsistency between the generator and decoder can lead to unsatisfying results even if the autoregressive model is trained well. For example, when sampling an unseen or rare sequence $\hat{\mathbf{x}}$ in the training dataset of the tokenizer, it's possible that the sequence $\hat{\mathbf{x}}$ cannot be properly decoded by decoder \mathcal{D} and affect the final generated results. We hypothesize that the inconsistency between the tokenizer and generator is the main obstacle to performance. A promising solution is to train the AR model such that it can generate a token sequence that is friendly to the tokenizer.

To verify our hypothesis, we investigate and quantitatively analyze how the existing visual autoregressive model suffers from the inconsistency in Section 3.1. Based on the observations, we propose **reAR: regularizing token-wise consistency of visual AutoRegressive generation**, a plug-and-play regularized training method designed for a visual autoregressive model. In summary, reAR introduces visual embedding looked up from a discrete tokenizer to the hidden feature of the generator under a noisy context. Despite its simplicity, reAR allows the autoregressive model to leverage visual signals that are compatible with the tokenizer and reduce inconsistent behavior significantly.

3.1 UNDERSTANDING THE BOTTLENECK OF VISUAL AUTOREGRESSIVE GENERATION

The performance of an autoregressive model can be assessed through the quality of generated tokens $\hat{x}_{1:n}$ with the ground-truth sequence $x_{1:n}$ by the **correct token ratio** (CTR), where $\text{CTR}(\hat{x}_{1:n}, x_{1:n}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{\hat{x}_i = x_i\}$. While CTR is widely used to indicate the performance, the token sequence is only an intermediate representation in visual autoregressive generation, and the final output is actually the decoded image. To evaluate end-to-end quality, we instead measure LPIPS (Zhang et al., 2018) between the images decoded from two token sequences. We consider that the inconsistencies between training and inference can be observed from inconsistencies between CTR and LPIPS. In the following, two controlled experiments demonstrate that generated token sequences with similar CTR can result in images of different quality. This inconsistency is also reflected by other metrics for the AR model, such as **perplexity**, with details in the Appendix B.

Amplified exposure bias. Exposure bias is a well-known issue in sequence models (Bengio et al., 2015; Wang & Sennrich, 2020): during training with teacher forcing, the model predicts the next token given the *ground-truth* context, whereas at inference it must condition on its *own* predictions, which may contain errors. In visual autoregressive generation, we hypothesize that the visual tokenizer amplifies this effect since exposure bias leads to more unseen token sequences and spreads structural error in the pixel space. To verify it, consider a token sequence $x_{1:n}$ decoded from an image with a ground-truth token ratio $r \in [0, 1]$. We compare two decoding protocols: (1) *Perfect context (front-loaded)*. Fix the first $[rn]$ tokens to ground truth, i.e., $x_{1:[rn]}$, and let the AR model

216 generate the remainder. This minimizes exposure bias for a given r , since the context remains clean
 217 until step $\lfloor rn \rfloor$. (2) *Imperfect context (uniformly interleaved)*. Sample a mask $M \subseteq \{1, \dots, n\}$ with
 218 $|M| = \lfloor rn \rfloor$ uniformly at random. During decoding at the t th step, it uses ground truth token x_t if
 219 $t \in M$, otherwise samples the token from the AR model. This introduces earlier contamination of
 220 the context, thereby increasing exposure bias compared to *Perfect context* with similar CTR.

221 Since both protocols fix the number of ground-truth tokens at $\lfloor rn \rfloor$, any difference in downstream
 222 quality reflects sensitivity to exposure bias rather than token-level accuracy. Results are shown
 223 in Figure 3 (a). For comparable CTR, imperfect context consistently yields higher LPIPS than
 224 perfect context. Qualitatively, an imperfect context leads to images that deviate significantly from
 225 the original, whereas a perfect context yields better prediction, i.e., the layout of the dog is more
 226 similar. This highlights that alleviating exposure bias is essential in visual autoregressive generation.

227 **Embedding unawareness.** During training, the AR model is optimized only for token correctness,
 228 whereas the tokenizer decoder operates in embedding space. We hypothesize that even if a
 229 predicted token is incorrect, if its embedding is close to that of the correct token, the decoded image
 230 may still retain high visual quality. To verify this, we introduce a replacement ratio r' . Given
 231 a ground-truth sequence $x_{1:n}$, the AR model predicts $\hat{x}_{1:n}$ with teacher forcing. For each incorrect
 232 prediction ($\hat{x}_i \neq x_i$), we replace \hat{x}_i with probability r' by another incorrect token $x'_i \neq x_i$
 233 whose embedding z'^i is closest to the correct embedding z^i under cosine similarity $d(\cdot, \cdot)$, i.e.,
 234 $z'^i = \arg \min_{z^q \in \mathcal{Z} \setminus \{z^i\}} d(z^q, z^i)$. This replacement leaves CTR unchanged.

235 Figure 3(b) presents the results. As r' increases, the average embedding similarity improves and
 236 LPIPS decreases markedly. Qualitatively, as shown on the right of Figure 3(b), such replacements
 237 without altering CTR can yield decoded images more faithful to the ground truth (e.g., clearer
 238 prediction of shirts and human legs). This suggests that incorporating tokenizer embeddings into the
 239 training of the AR model could potentially improve consistency between them.

240 A straightforward approach to increase generator-tokenizer inconsistency is to reuse the tokenizer’s
 241 codebook embeddings in the embedding layer or prediction head of the AR model. However,
 242 this method commonly results in suboptimal performance without sophisticated design of the tok-
 243 enizer (Weber et al., 2024; Yu et al., 2023). We hypothesize that such a rigid integration is not ideal:
 244 it may constrain the scalability of a large AR model with a smaller tokenizer, and the codebook
 245 embeddings themselves may not be the optimal representations for the primary task of next-token
 246 prediction. It’s required to introduce the embedding into the model in a less constrained manner.

248 3.2 GENERATOR-TOKENIZER CONSISTENCY REGULARIZATION

250 These findings reveal training–inference inconsistencies: maximizing correctness to predict token
 251 indices alone is insufficient for visual AR models. Proper inductive bias is required to train the gen-
 252 erator such that the generated token sequence is more consistent with the tokenizer during inference.
 253 **Meanwhile, injecting this inductive bias should remain lightweight to ensure good cross-architecture**
 254 **generalization and full compatibility with existing AR training and inference pipelines.**

255 To address these challenges, reAR introduces token-wise consistency regularization during training
 256 of the visual AR model. Specifically, the decoder-only transformer is trained to perform next-token
 257 prediction under noisy contexts, while its hidden representations are regularized by the visual em-
 258 beddings of the correct current token at a shallow layer and the correct next token at a deep layer.
 259 This encourages the AR model to interpret current tokens similar to the tokenizer while improving
 260 robustness to exposure bias, then predicting the next token embedding compatible with the decoder.
 261 Below we denote the AR model as p_θ , the tokenizer codebook as $\mathcal{Z} = \{z_1, z_2, \dots, z_K\}$, the training
 262 dataset as $\mathcal{X}_{\text{train}}$, and the discrete token sequence as $\mathbf{x} = \{x_1, x_2, \dots, x_N\}$.

263 **Noisy Context Regularization.** While techniques such as scheduled sampling (Bengio et al., 2015)
 264 can mitigate exposure bias, we choose a simple approach that preserves parallel training of the
 265 transformer. Specifically, we apply uniform noise to the input, denoted by $q_\epsilon(\tilde{\mathbf{x}} \mid \mathbf{x})$. Formally:

$$267 \tilde{\mathbf{x}}_i = (1 - b_i) \mathbf{x}_i + b_i \mathbf{u}_i, \quad b_i \sim \text{Bernoulli}(\epsilon), \quad \mathbf{u}_i \sim \text{Uniform}(\{1, \dots, K\}). \quad (4)$$

268 where b_i is a Bernoulli random variable with probability ϵ , and \mathbf{u}_i is sampled uniformly from the
 269 codebook indices. In practice, the choice of ϵ strongly affects training stability. To ensure the AR

270 model is exposed to sequences with varying noise levels, we sample $\epsilon \sim U(0, f(t))$ for each token
 271 sequence, where $t \in [0, 1]$ denotes the normalized training progress. Here, $f : [0, 1] \rightarrow [0, 1]$ is
 272 an annealing schedule that controls the maximum noise level over training. The AR model is then
 273 trained to predict the next correct token based on the noisy context. Formally:

$$275 \quad \mathcal{L}'_{\text{AR}}(\theta) = -\mathbb{E}_{\mathbf{x} \in \mathcal{X}_{\text{train}}, \tilde{\mathbf{x}} \sim q_{\epsilon}(\cdot | \mathbf{x}), \epsilon \sim U(0, f(t))} \sum_{i=1}^N \log p_{\theta}(\mathbf{x}_i | \tilde{\mathbf{x}}_{i-1}, \dots, \tilde{\mathbf{x}}_1) \quad (5)$$

278 Empirically, we found that the annealing uniform noisy augmentation can stabilize training com-
 279 pared to noisy augmentation with a fixed ratio. We provide detailed ablation in Section 4.3.

281 **Codebook Embedding Regularization.** Instead of directly applying codebook embedding, we
 282 propose to add a regularization task as **recover current embedding** and **predict next embedding**.
 283 Specifically, we apply a trainable MLP layer h_{ϕ} to project the hidden feature into the target space in
 284 the same dimension of visual embedding. For the simplicity of notation, we use $\mathbf{w}_{\theta}^l(\tilde{\mathbf{x}})$ to represent
 285 the feature at the shallow layer l and $\mathbf{w}_{\theta}^{l'}(\tilde{\mathbf{x}})$ as the one at the deep layer l' . To be aligned with
 286 the design of decoder-only transformer, the objective of the shallow layer $\mathbf{w}_{\theta}^l(\tilde{\mathbf{x}})$ is to predict the
 287 embedding of current token and $\mathbf{w}_{\theta}^{l'}(\tilde{\mathbf{x}})$ is to predict the next token. Formally:

$$290 \quad \mathcal{L}_{\text{re}}(\theta, \phi; t) = \mathbb{E}_{\substack{\mathbf{x} \in \mathcal{X}_{\text{train}}, \\ \tilde{\mathbf{x}} \sim q_{\epsilon}(\cdot | \mathbf{x}), \\ \epsilon \sim U(0, f(t))}} \sum_{i=1}^{N-1} \left[d(h_{\phi}^i(\mathbf{w}_{\theta}^l(\tilde{\mathbf{x}})), z_{\mathbf{x}_i}) + d(h_{\phi}^i(\mathbf{w}_{\theta}^{l'}(\tilde{\mathbf{x}})), z_{\mathbf{x}_{i+1}}) \right]. \quad (6)$$

294 where $d(\cdot, \cdot)$ is cosine distance to evaluate the distance between different features, h_{ϕ}^i refers the
 295 mapping from the feature of the i^{th} current token to the embedding space, $z_{\mathbf{x}_i}$ is the embedding
 296 of current token and $z_{\mathbf{x}_{i+1}}$ is the embedding of the next token looked up from the codebook. In
 297 the implementation, we apply the regularization on the layers that are originally most closely to the
 298 embedding of the tokenizer in the vanilla AR (i.e, the 1st layer for encoding regularization and the
 299 15th layer for decoding regularization) to avoid potential conflicts on the primary task of next-token
 300 prediction. **Intuitively, we place the encoding regularization at the first layer to preserve the model’s**
 301 **capacity for next-token prediction, and apply the decoding regularization in a deep but not final layer,**
 302 **since the raw tokenizer embedding is not necessarily the best latent representation for prediction. By**
 303 **default, we regularize at three-quarters of the model depth, which works well across architectures**
 304 **though the exact layer for decoding regularization is flexible.** We provide more analysis on the
 305 codebook embedding regularization in Section 4.3 and Appendix C.2.

306 **Generator-Tokenizer Consistency Regularization.** Combing Noisy Context Regularization and
 307 Codebook Embedding Regularization, the object of reAR is:

$$308 \quad \mathcal{L}_{\text{reAR}}(\theta, \phi; t) = \mathcal{L}'_{\text{AR}}(\theta; t) + \lambda \mathcal{L}_{\text{re}}(\theta, \phi; t), \quad (7)$$

311 where λ is the weight of the regularization term. Notice that we align the hidden feature of noisy to-
 312 kens to the embedding of the ground truth token as well, which further encourages the autoregressive
 313 model to predict codebook embedding in a robust manner. **This joint effect** is important to boost
 314 the performance of visual autoregressive generation. We provide detailed ablation in Section 4.3.

315 4 EXPERIMENTS & ANALYSIS

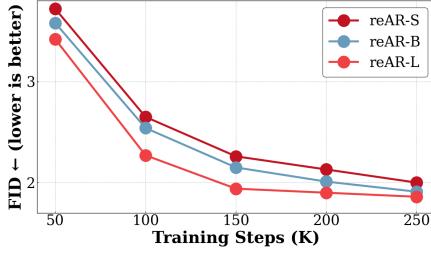
317 4.1 EXPERIMENTAL SETUP

319 Below we provide a brief of our experimental setup, and more details are in Appendix A.

321 **Dataset and evaluation.** We evaluate reAR on ImageNet-1K at 256×256 using the ADM proto-
 322 col (Dhariwal & Nichol, 2021). Each model generates 50k images with classifier-free guidance (Ho
 323 & Salimans, 2022). We report FID (lower is better) (Heusel et al., 2017) and IS (higher is bet-
 324 ter) (Salimans et al., 2016), and compare training efficiency by epochs and parameters needed to

324
325 **Table 1: Results on 256×256 class-conditional generation on ImageNet-1K.** “Mask.” indicates
326 masked generation; “Tok.” denotes non-standard tokenization; “Rand.” denotes randomized order;
327 “Raster.” denotes rasterization order. “ \dagger ” indicates that the model is not provided and it’s trained
328 with our implementation. $BPP_{16} = 16 \times BPP$ (bits per pixel) measures the compression rate of
329 discrete tokenizers and is not applicable (“N/A”) to continuous tokenizers. “#Params” is the number
330 of model parameters. “ \uparrow ” and “ \downarrow ” indicate whether higher or lower values are better, respectively.

331	Training Paradigm	Generation Model	Tokenizer Type	Tokenizer $BPP_{16} \downarrow$	Training Epochs	#Params. \downarrow	FID \downarrow	IS \uparrow	
332	Diffusion	LDM-4 (Rombach et al., 2022)	Patch-VAE	N/A	200	400M	3.60	247.7	
333		DiT-XL (Peebles & Xie, 2023)	Patch-VAE	N/A	1400	675M	2.27	278.2	
334		SiT-XL (Ma et al., 2024)	Patch-VAE	N/A	800	675M	2.06	270.3	
335		REPA (Yu et al., 2024c)	Patch-VAE	N/A	800	675M	1.42	305.7	
336	Mask.	MAR-L (Li et al., 2024)	Patch-VAE	N/A	800	479M	1.98	290.3	
337		MAR-H (Li et al., 2024)	Patch-VAE	N/A	800	943M	1.55	303.7	
338		MaskGIT-re (Chang et al., 2022)	Patch-VQ	0.625	300	227M	4.02	355.6	
339		MAGVIT-v2 (Yu et al., 2023)	Patch-VQ	1.125	1080	307M	1.78	319.4	
340		Maskbit (Weber et al., 2024)	Patch-LFQ	0.875	1080	305M	1.52	328.6	
341	Rand.	Mask-TiTok-64 (Yu et al., 2024b)	TTok	0.188	800	177M	2.48	214.7	
342		Mask-TiTok-128 (Yu et al., 2024b)	TTok	0.375	800	287M	1.97	281.8	
343		VAR	VAR-d20 (Tian et al., 2024)	VAR	1.992	350	600M	2.57	
344		VAR	VAR-d30 (Tian et al., 2024)	VAR	1.992	350	2.0B	1.92	
345	Causal	RAR-B (Yu et al., 2024a)	Patch-VQ	0.625	400	261M	1.95	290.5	
346		RAR-L (Yu et al., 2024a)	Patch-VQ	0.625	400	461M	1.70	299.5	
347		RAR-XL (Yu et al., 2024a)	Patch-VQ	0.625	400	955M	1.50	306.9	
348		RandAR-L (Pang et al., 2025)	Patch-VQ	0.875	300	343M	2.55	288.8	
349	AR	RandAR-XL (Pang et al., 2025)	Patch-VQ	0.875	300	775M	2.25	317.8	
350		RandAR-XXL (Pang et al., 2025)	Patch-VQ	0.875	300	1.4B	2.15	322.0	
351		Tok.	AR-FlexTok-XL (Bachmann et al., 2025)	FlexTok	0.125	300	1.3B	2.02	–
352		Causal	AR-GigaTok-XXL (Xiong et al., 2025)	GigaTok	0.875	300	1.4B	1.98	256.8
353	AR	AR	AR-WeTok-XL (Zhuang et al., 2025)	WeTok	1.667	300	1.5B	2.31	276.6
354		VQGAN (Egger et al., 2021)	Patch-VQ	0.875	100	1.4B	5.20	280.3	
355		Open-MAGVIT-v2 (Luo et al., 2024)	Patch-LFQ	1.125	300	1.5B	2.33	271.8	
356		LlamaGen-XL (Sun et al., 2024)	Patch-VQ	0.875	300	775M	2.62	244.1	
357	Raster.	LlamaGen-XXL (Sun et al., 2024)	Patch-VQ	0.875	300	1.4B	2.34	253.9	
358		AR-L \dagger (Yu et al., 2024a)	Patch-VQ	0.625	400	461M	3.02	256.2	
359		reAR-S	Patch-VQ	0.625	400	201M	2.00	295.7	
360		reAR-B	Patch-VQ	0.625	400	261M	1.91	300.9	
361	Causal	reAR-L (cfg=10.0/11.0)	Patch-VQ	0.625	400	461M	1.86/1.90	316.9/323.2	
362		AR-L \dagger (Yu et al., 2024a)	Patch-VQ	0.625	400	461M	3.02	256.2	
363		reAR-S	Patch-VQ	0.625	400	201M	2.00	295.7	
364		reAR-B	Patch-VQ	0.625	400	261M	1.91	300.9	
365		reAR-L (cfg=10.0/11.0)	Patch-VQ	0.625	400	461M	1.86/1.90	316.9/323.2	



361 **Figure 4: Scaling Effect of reAR.** As
362 model size increases, the FID at each
363 training step decreases consistently.

364 **Table 2: Superior generalization ability.** reAR adapts
365 to different tokenizers and achieves state-of-the-art per-
366 formance with smaller models.

Model	Epochs	Params.	FID \downarrow
Maskbit (Weber et al., 2024)	1080	305M	1.52
REPA (Yu et al., 2024c)	800	675M	1.42
AR-TiTok-b64 (Yu et al., 2024b)	400	261M	4.45
RAR-TiTok-b64 (Yu et al., 2024a)	400	261M	4.07
reAR-TiTok-b64	400	261M	4.01
AR-AliTok-B (Wu et al., 2025)	800	177M	1.50
RAR-B-AliTok (Yu et al., 2024a)	800	177M	1.52
reAR-B-AliTok	800	177M	1.42

367 reach the same quality. Baselines span diffusion, masked generation (continuous and discrete),
368 VAR, randomized-order AR, advanced-tokenizer AR, and standard raster AR (see Table 1).

369 **Model configuration.** We use MaskGIT VQGAN (Chang et al., 2022) (rFID= 1.97) as a tokenizer
370 and a DiT-style (Peebles & Xie, 2023) AR backbone. We report reAR-S/B/L with 20/24/24 causal
371 Transformer layers and hidden sizes 768/768/1024. To evaluate the generalization of reAR, we also
372 pair it with TiTok (Yu et al., 2024b) and with AliTok (Wu et al., 2025) using their original setting.
373 **Additionally, we also verify the effectiveness of our method on non-standard causal AR model such**
374 **as VAR (Tian et al., 2024) with more details in the Appendix A.**

375 **Training.** All models are trained for 400 epochs on 8 A800 GPUs (batch size 2048) with
376 AdamW (Loshchilov & Hutter, 2017), gradient clipping (norm= 1), and accumulation. The learning
377 rate warms to 4×10^{-4} over the first 100 epochs, then decays to 1×10^{-5} for the remaining 300
378 epochs. Class labels are dropped with probability 0.1 to enable classifier-free guidance at inference.

378 **reAR implementation.** We apply a linear schedule for annealing noise augmentation. Embedding
 379 regularization is implemented using a 2-layer MLP (hidden size 2048, weight $\lambda=1$): the shallow
 380 layer regularizes the current embeddings at $l=0$, while the deeper layer regularizes the decoding
 381 features at $\frac{3}{4}$ depth of the whole transformer ($l'=15/18/18$ for reAR-S/B/L).

383 4.2 MAIN RESULTS

385 **Generation Quality.** Table 1 shows that reAR achieves strong results even with a standard raster-
 386 order AR model and a simple 2D patch tokenizer. reAR-S outperforms prior raster AR models like
 387 LlamaGen-XL (Sun et al., 2024) (FID 2.00 vs. 2.34; IS 295.7 vs. 253.9) using only 14% of the
 388 parameters (201M vs. 1.4B), and surpasses advanced-tokenizer AR models such as WeTok (Zhuang
 389 et al., 2025) with just 13–15% of their size. It matches RAR (Yu et al., 2024a) and outperforms
 390 RandAR (Pang et al., 2025) under similar scales, and reAR-L exceeds MAR-L and VAR-d30 (Li
 391 et al., 2024; Tian et al., 2024). While diffusion and masked-generation models remain strong, reAR
 392 narrows the gap with far fewer training epochs. More qualitative results are shown in Appendix F.

393 **Generalization.** We also evaluate reAR on non-standard tokenizers TiTok (Yu et al., 2024b) and
 394 AliTok (Wu et al., 2025). Unlike RAR (Yu et al., 2024a), which helps mainly on bidirectional tok-
 395 enization, reAR consistently improves performance on both bidirectional (TiTok: 4.45 → 4.01) and
 396 unidirectional (AliTok: 1.50 → 1.42) tokenizers. Notably, it approaches diffusion-based REPA (Yu
 397 et al., 2024c) and outperforms Maskbit while using far fewer parameters (177M vs. 675M/305M).

398 **Scaling Effect.** We also study if the scaling behavior
 399 of the original AR model maintains with reAR.
 400 Specifically, we plot the FID under different train-
 401 ing epochs for each model size. As Figure 4 shows,
 402 the FID consistently decreases as model size and
 403 training iteration increase, revealing the potential of
 404 reAR on large-scale visual AR models.

405 **Sampling Speed.** Like other autoregressive mod-
 406 els (Sun et al., 2024; Luo et al., 2024), reAR ben-
 407 efits from KV-cache to achieve high sampling speed.
 408 We measure throughput on a single A800 GPU with
 409 batch size 128 (Figure 5). With KV-cache, autore-
 410 gressive models can run much faster than diffusion
 411 and MAR. Moreover, reAR-B-AliTok achieves lower FID with faster sampling speed even against
 412 parallel-decoding approaches such as Maskbit, TiTok, VAR, and RandAR.

414 4.3 ABLATION STUDIES

416 We conduct ablation studies on the key components of reAR, focusing on the weighting and layer
 417 selection for encoding/decoding regularization, as well as the strategy for noise augmentation.

418 **Regularization Layer.** We analyzed the optimal layers
 419 for embedding regularization using reAR-S trained for
 420 80 epochs without classifier-free guidance (Table 3). We
 421 ablated both the presence and placement of regularization
 422 and compared with the naive tied embedding strat-
 423 egy (Press & Wolf, 2016; Weber et al., 2024). For decod-
 424 ing regularization, early layers (e.g., layer 10) offer little
 425 benefit, while layer 15 performs best; applying it deeper
 426 slightly degrades performance. For encoding regulariza-
 427 tion, the first layer is optimal as it aligns best with the
 428 token embeddings, whereas deeper layers harm genera-
 429 tion quality. Notably, applying regularization to the lay-
 430 ers closest to the target embedding space in vanilla AR
 431 yields the best results—encoding at layer 0 and decoding
 at roughly $\frac{3}{4}$ depth. We hypothesize this placement mini-
 mizes interference with next-token prediction. Based on these findings, we use EN@0 + DE@15 for

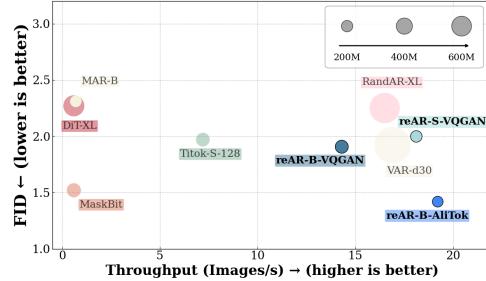


Figure 5: **Sampling Speed.** Comparison of different methods on FID and throughput (images/sec).

Table 3: **Ablation studies of embedding regularization.** We use ‘EN’ as the encoding regularization and ‘DN’ as the decoding regularization. For example, ‘DN@15’ means applying decoding regularization at the 15th layer of the transformer block.

Regularization settings	FID ↓	IS ↑
Vanilla AR	21.32	57.3
+ tied codebook embedding	21.08	57.2
+ DE@10	21.29	57.5
+ DE@15	20.03	61.0
+ DE@20	20.28	61.2
+ EN@0 + DE@20	19.83	61.7
+ EN@5 + DE@15	21.36	57.4
+ EN@0 + DE@15 (Final choice)	19.72	61.3
$\lambda := 0.5$	19.79	60.9
$\lambda := 1.5$	19.74	61.5

432 reAR-S and EN@0 + DE@18 for reAR-B/L. We provide a more detailed comparison of different
 433 choices of the decoding regularization layer in Appendix C.2.
 434

435 **Regularization Weight.** As shown in Table 3, regularization weight has a negligible impact on
 436 the quality of generation, likely because the AdamW optimizer is insensitive to the scale of the
 437 loss (Loshchilov & Hutter, 2017; Zhuang et al., 2022). For simplicity, we use $\lambda = 1$.

438 **Noise Augmentation.** We further ablate the design of
 439 noise augmentation, exploring two strategies: (1) assigning
 440 different noise levels to each token sequence, and (2)
 441 annealing the maximum noise level during training. Re-
 442 sults are summarized in Table 4, based on the default
 443 setting with codebook embedding regularization (EN@0
 444 + DE@15 for reAR-S). All models are trained for 400
 445 epochs to evaluate the effect of different schedules. We
 446 find that a fixed noise level of $\epsilon = 0.25$ improves FID
 447 from 2.12 to 2.08, while a higher level ($\epsilon = 0.5$) leads to
 448 training collapse (FID = 3.15). Randomizing the noise
 449 level within $[0, 0.5]$ further improves FID to 2.05. Incorporating an annealing schedule, where
 450 $f(t) = 1 - t$, yields a stronger result (2.02 FID). Finally, using a truncated linear schedule
 451 $f(t) = \max(0, 1 - \frac{4}{3}t)$ achieves the best performance of 2.00 FID. These results highlight the
 452 effectiveness of proper annealing noise augmentation.

453 **Joint Effect of Consistency Regularization.** As shown in Table 4, using only embedding regular-
 454 ization ($\epsilon=0$) yields an FID of 2.12, while using only noise augmentation yields 2.18. In contrast,
 455 combining the two further improves performance, reducing the FID of reAR-S to 2.00. This indi-
 456 cates that both noisy context regularization and codebook embedding regularization are important.

457 5 RELATED WORK

460 **Visual AR models** generate images by predicting pixels or patch tokens sequentially, each condi-
 461 tioned on previous context (Gregor et al., 2014; Van den Oord et al., 2016; Van Den Oord et al.,
 462 2016; Parmar et al., 2018; Chen et al., 2020). In this paper, we refer specifically to the visual AR
 463 model as the family using a unidirectional structure. Direct pixel-level modeling is expensive, so
 464 patch-based tokenizers (Van Den Oord et al., 2017; Esser et al., 2021) are used to compress local
 465 regions into discrete tokens. An AR model then predicts the token sequence (Esser et al., 2021;
 466 Sun et al., 2024; Luo et al., 2024). Prior work has focused on modular design, such as reducing
 467 quantization errors (Yu et al., 2023; Mentzer et al., 2023; Ma et al., 2025; Li et al., 2024) or ex-
 468 ploring tokenization beyond standard 2D grids (Yu et al., 2024b; Miwa et al., 2025; Sargent et al.,
 469 2025; Xiong et al., 2025). Others have studied sequence dependencies, imposing causality during
 470 tokenizer training (Wu et al., 2025; Bachmann et al., 2025; Pan et al., 2025) or randomizing token or-
 471 der (Pang et al., 2025; Yu et al., 2024a). While these works focus on the flaw of a single component,
 472 we provide a novel perspective on the inconsistency between the AR model and the tokenizer.

473 **Other visual generation paradigm** has advanced from Variational Autoencoders (VAEs) (Kingma
 474 & Welling, 2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) to modern
 475 approaches such as masked generative models (Chang et al., 2022; Yu et al., 2023; Weber et al.,
 476 2024) and diffusion-based models (Dhariwal & Nichol, 2021; Peebles & Xie, 2023; Ma et al., 2024;
 477 Yu et al., 2024c), apart from AR model. Recently, MAR (Li et al., 2024) was proposed to address
 478 quantization errors, and VAR (Tian et al., 2024) for next-scale prediction. However, they are not
 479 implemented in a decoder-only transformer, making them harder to incorporate with the standard
 480 AR used in large language models. We provide more discussion in Appendix D.

481 **Exposure bias** has been extensively studied in the language domain, with methods such as sched-
 482 uled sampling (Bengio et al., 2015). In the visual domain, RQ-Transformer (Lee et al., 2022) applies
 483 scheduled sampling, and IQ-VAE (Zhan et al., 2022) uses Gumbel-softmax to mix ground-truth and
 484 predicted tokens, though both approaches compromise the parallel training efficiency of decoder-
 485 only Transformers. More recently, video generation works have addressed exposure bias in au-
 486 toregressive diffusion models (Zhou et al., 2025; Huang et al., 2025), but these strategies are not
 487 applicable to discrete token prediction.

434 Table 4: **Ablation studies of noisy context
 435 regularization with annealing.**

436 Noise Augmentation settings	437 FID \downarrow
$\epsilon = 0.0$	2.12
$\epsilon = 0.5$	3.15
$\epsilon = 0.25$	2.08
$\epsilon \sim U(0, 0.5)$	2.05
$\epsilon \sim U(0, f(t)), f(t) = 1 - t$	2.02
$\epsilon \sim U(0, f(t)), f(t) = \min(0, 1 - \frac{4}{3}t)$ wo/ embedding regularization	2.00 2.18

486 **Representation Alignment.** Representation alignment has been explored in visual generation (Yu
487 et al., 2024c; Leng et al., 2025; Yao et al., 2025; Xiong et al., 2025). For example, REPA (Yu et al.,
488 2024c) incorporates DINO-v2 features to accelerate diffusion training, and Disperse Loss (Wang &
489 He, 2025) applies self-supervised objectives to improve diffusion representations. However, these
490 methods are either designed for encoder-only Transformers and diffusion models or often rely on
491 external visual encoders. In contrast, we aim to align the representations of the tokenizer and the AR
492 model itself, requiring no external models and fitting naturally into the vanilla AR training pipeline.
493

494 6 CONCLUSION 495

496 In this paper, we identify the key bottleneck of visual autoregressive generation as the mismatch
497 between the generator and the tokenizer, where the AR model struggles to produce token sequences
498 that can be effectively decoded back into images. To address this, we propose reAR, a simple
499 regularization method that substantially improves visual AR performance while remaining agnostic
500 to tokenizer design. We hope this work will encourage future research on unifying generators and
501 tokenizers within visual AR models, and more broadly, on developing unified multi-modal models.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541 ETHICS STATEMENT542
543 Our work introduces a regularization strategy to improve visual autoregressive models and con-
544 tributes toward the broader goal of unifying vision and language generation. While these advances
545 can benefit research on unified multimodal models, we acknowledge the potential risks associated
546 with generative technologies. In particular, improvements in fidelity and scalability may also lower
547 the barrier for misuse, such as the creation of misleading or harmful synthetic media.548
549 REPRODUCIBILITY STATEMENT550
551 We include all experiment details sufficient for reproducibility in Section. 4, Appendix A, Ap-
552 pendix B, and Appendix C. We provide the anonymous code [here](#) and will release the code once
553 the paper is accepted.554
555 REFERENCES556
557 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
558 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
559 report. *arXiv preprint arXiv:2303.08774*, 2023.560
561 Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oğuzhan Fatih Kar, Elmira Amir-
562 loo, Alaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. Flextok: Resampling images into
563 1d token sequences of flexible length. In *Forty-second International Conference on Machine
Learning*, 2025.564
565 Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L Yuille, Trevor Darrell, Jitendra
566 Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large vision models.
567 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
568 22861–22872, 2024.569
570 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
571 prediction with recurrent neural networks. *Advances in neural information processing systems*,
28, 2015.572
573 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
574 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition*, pp. 11315–11325, 2022.575
576 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
577 Generative pretraining from pixels. In *International conference on machine learning*, pp. 1691–
578 1703. PMLR, 2020.579
580 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
581 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.582
583 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
584 in neural information processing systems*, 34:8780–8794, 2021.585
586 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
587 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
588 tion*, pp. 12873–12883, 2021.589
590 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
591 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
592 inversion, 2022. URL <https://arxiv.org/abs/2208.01618>.593
594 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
595 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
596 processing systems*, 27, 2014.

594 Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive networks. In *International Conference on Machine Learning*, pp. 1242–1250. PMLR, 595 2014.

596

597 Qiyuan He and Angela Yao. Conceptrol: Concept control of zero-shot personalized image genera- 598 tion, 2025. URL <https://arxiv.org/abs/2503.06568>.

599

600 Qiyuan He, Jinghao Wang, Ziwei Liu, and Angela Yao. Aid: Attention interpolation of text-to-image 601 diffusion, 2024. URL <https://arxiv.org/abs/2403.17924>.

602

603 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 604 Prompt-to-prompt image editing with cross attention control, 2022. URL <https://arxiv.org/abs/2208.01626>.

605

606 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 607 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in 608 neural information processing systems*, 30, 2017.

609

610 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint 611 arXiv:2207.12598*, 2022.

612

613 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridg- 614 ing the train-test gap in autoregressive video diffusion. *arXiv preprint arXiv:2506.08009*, 2025. 615 URL <https://arxiv.org/abs/2506.08009>. Trains with AR rollout and KV-cached 616 self-generated history to directly tackle exposure bias.

617

618 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint 619 arXiv:1312.6114*, 2013.

620

621 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural 622 network representations revisited. In *International conference on machine learning*, pp. 3519– 623 3529. PMLR, 2019.

624

625 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image 626 generation using residual quantization. In *Proceedings of the IEEE/CVF conference on computer 627 vision and pattern recognition*, pp. 11523–11532, 2022.

628

629 Xingjian Leng, Jaskirat Singh, Yunzhong Hou, Zhenchang Xing, Saining Xie, and Liang Zheng. 630 Repa-e: Unlocking vae for end-to-end tuning with latent diffusion transformers. *arXiv preprint 631 arXiv:2504.10483*, 2025.

632

633 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image 634 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37: 635 56424–56445, 2024.

636

637 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint 638 arXiv:1711.05101*, 2017.

639

640 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2: 641 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint 642 arXiv:2409.04410*, 2024.

643

644 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao- 645 juan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv preprint 646 arXiv:2502.20321*, 2025.

647

648 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain- 649 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant 650 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

651

652 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. 653 Sdedit: Guided image synthesis and editing with stochastic differential equations. In *ICLR*. Open- 654 Review.net, 2022. URL <http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#MengHSSWZE22>.

648 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
 649 tion: Vq-vae made simple. *arXiv preprint arXiv:2309.15505*, 2023.
 650

651 Keita Miwa, Kento Sasaki, Hidehisa Arai, Tsubasa Takahashi, and Yu Yamaguchi. One-d-piece:
 652 Image tokenizer meets quality-controllable compression. *arXiv preprint arXiv:2501.10064*, 2025.
 653

654 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 655 McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
 656 editing with text-guided diffusion models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 657 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
 658 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 659 pp. 16784–16804. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/nichol22a.html>.
 660

661 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 662 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 663 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 664

665 Kaihang Pan, Wang Lin, Zhongqi Yue, Tenglong Ao, Liyu Jia, Wei Zhao, Juncheng Li, Siliang Tang,
 666 and Hanwang Zhang. Generative multimodal pretraining with discrete diffusion timestep tokens.
 667 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26136–26146,
 668 2025.
 669

670 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
 671 Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. In
 672 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 45–55, 2025.
 673

674 Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
 675 Dustin Tran. Image transformer. In *International conference on machine learning*, pp. 4055–
 676 4064. PMLR, 2018.
 677

678 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 679 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 680

681 Ofir Press and Lior Wolf. Using the output embedding to improve language models. *arXiv preprint
 682 arXiv:1608.05859*, 2016.
 683

684 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 685 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 686 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 687

688 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 689 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023.
 690 URL <https://arxiv.org/abs/2208.12242>.
 691

692 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 693 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 694 2016.
 695

696 Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode: Mode-seeking
 697 diffusion autoencoders for state-of-the-art image tokenization. *arXiv preprint arXiv:2503.11056*,
 698 2025.
 699

700 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 701 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 702 arXiv:2406.06525*, 2024.
 703

704 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Mini-
 705 mal and universal control for diffusion transformer, 2025. URL <https://arxiv.org/abs/2411.15098>.
 706

707 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 708 arXiv:2405.09818*, 2024.
 709

702 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 703 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 704 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

705 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 706 Scalable image generation via next-scale prediction. *Advances in neural information processing*
 707 *systems*, 37:84839–84865, 2024.

708 Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
 709 ditional image generation with pixelcnn decoders. *Advances in neural information processing*
 710 *systems*, 29, 2016.

711 Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
 712 In *International conference on machine learning*, pp. 1747–1756. PMLR, 2016.

713 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 714 *neural information processing systems*, 30, 2017.

715 Chaojun Wang and Rico Sennrich. On exposure bias, hallucination and domain shift in neural
 716 machine translation. *arXiv preprint arXiv:2005.03642*, 2020.

717 Runqian Wang and Kaiming He. Diffuse and disperse: Image generation with representation regu-
 718 larization. *arXiv preprint arXiv:2506.09027*, 2025.

719 Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-
 720 Chieh Chen. Maskbit: Embedding-free image generation via bit tokens. *arXiv preprint*
 721 *arXiv:2409.16211*, 2024.

722 Pingyu Wu, Kai Zhu, Yu Liu, Longxiang Tang, Jian Yang, Yansong Peng, Wei Zhai, Yang Cao, and
 723 Zheng-Jun Zha. Alitok: Towards sequence modeling alignment between tokenizer and autore-
 724 gressive model. *arXiv preprint arXiv:2506.05289*, 2025.

725 Tianwei Xiong, Jun Hao Liew, Zilong Huang, Jiashi Feng, and Xihui Liu. Gigatok: Scaling
 726 visual tokenizers to 3 billion parameters for autoregressive image generation. *arXiv preprint*
 727 *arXiv:2504.08736*, 2025.

728 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 729 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recog-
 730 nition Conference*, pp. 15703–15712, 2025.

731 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 732 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 733 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

734 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
 735 sive visual generation. *arXiv preprint arXiv:2411.00776*, 2024a.

736 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 737 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information*
 738 *Processing Systems*, 37:128940–128966, 2024b.

739 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 740 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 741 than you think. *arXiv preprint arXiv:2410.06940*, 2024c.

742 Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Kaiwen Cui, Changgong Zhang, and
 743 Shijian Lu. Auto-regressive image synthesis with integrated quantization. In *Proceedings of*
 744 *the European Conference on Computer Vision (ECCV)*, 2022. URL https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136760106.pdf. Uses Gumbel
 745 sampling with reliability-based scheduling to mitigate exposure bias in AR training.

746 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 747 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 748 *computer vision and pattern recognition*, pp. 586–595, 2018.

756 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
757 with masked transformers. *arXiv preprint arXiv:2306.09305*, 2023.
758

759 Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan,
760 and Xiangyu Zhang. Taming teacher forcing for masked autoregressive video generation. In
761 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7374–7384, 2025.
762

763 Shaobin Zhuang, Yiwei Guo, Canmiao Fu, Zhipeng Huang, Zeyue Tian, Ying Zhang, Chen Li, and
764 Yali Wang. Wetok: Powerful discrete tokenization for high-fidelity visual reconstruction. *arXiv
765 preprint arXiv:2508.05599*, 2025.
766

767 Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding adamw
768 through proximal methods and scale-freeness. *arXiv preprint arXiv:2202.00089*, 2022.
769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
A ADDITIONAL EXPERIMENTAL DETAILS
813
814
815
816
817
818
819
820

Dataset and Evaluation Protocol. For ImageNet evaluation, we follow the ADM protocol (Dhariwal & Nichol, 2021). Specifically, we compute both FID and IS using the ImageNet-1K validation split (50,000 images), and we generate 50,000 synthetic images with our model. We then compute FID between the generated set and the real validation set. During sampling, for classifier-free guidance, we adopt a power-cosine schedule as used in prior work (Zheng et al., 2023). For our reAR-S/B/L models, we set the guidance scale to 22, 14.5, and 10, respectively, and corresponding power scales to 2.75, 2.25, and 1.75. Across all models, we keep the temperature at 1.0 and do not use top-p or top-k sampling, so that improvements reflect model quality rather than sampling tricks. All the images generated and evaluated are fixed at the resolution of 256×256 .

Comparing methods. We divide the visual generation into seven classes in Table 1: Diffusion model, MAR (continuous masked generation), Mask. (discrete masked generation), VAR (next scale prediction with encoder-only transformer), Rand. Causal AR (introduce randomized order of token sequence), Tok. Causal AR (use an advanced tokenizer that is not rasterization order), Raster. Causal AR (the most standard visual AR based on patch tokens and rasterization order).

Model Configuration. We use the same VQGAN tokenizer from MaskGIT (Chang et al., 2022), a pure CNN that produces feature maps which are patchified into 16×16 patches and quantized via a codebook of size 1024. For the autoregressive backbone, we follow the visual transformer (ViT)-based architecture of RAR (Yu et al., 2024a) and DiT (Peebles & Xie, 2023), further inserting class conditioning via AdaLN layers as in DiT. To ensure fair comparison with RAR, we use learnable positional embeddings throughout. We apply dropout with probability 0.1 both in the feed-forward network and in attention layers. Additionally, the MLP ratio is kept as 4.0 in the feed-forward network, and the number of attention heads is fixed to 16 for all different settings. We also include QK-Norm in attention to enhance stability.

Training details. As we mentioned in Section 4.1, all models are trained for 400 epochs with a batch size of 2048 on a single node of 8 A800 GPUs. For reAR-S and reAR-B, we use gradient accumulation as 1, and for reAR-L, we use gradient accumulation over 2 steps with a batch size of 1024 to achieve the same effective batch size. Following prior work (Yu et al., 2024a), we linearly warm up the learning rate to 4×10^{-4} over the first 100 epochs and apply a cosine decay schedule to decrease the learning rate to 1×10^{-5} for the remaining 300 epochs. We use AdamW as the optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.96$, and weight decay of 0.03. The gradient clipping is applied with a maximum gradient norm of 1.0. We use mixed precision with bfloat16 to accelerate training.

Implementation details of reAR. Regarding noisy context regularization, the noise ratio is sampled from a range that is determined by the training procedure. Specifically, the noise ratio is sampled from $(0, f(t))$, where $f(t) = \min(0, 1 - \frac{4}{3}t)$ and t refers to the normalized training progress. For example, the noise ratio is sampled from $(0, \frac{1}{2})$ at the 150 epoch where $t = \frac{3}{8}$ over total 400 epochs. Regarding codebook embedding regularization, the 2-layer MLP with hidden size as 2048 is equipped with GeLU and maps the generator feature into the dimension of the corresponding codebook embedding. The parameter overhead of the MLP is 3.1M/3.1M/4.2M for reAR-S/B/L. Table 5 shows the training time cost on 8 A800 GPUs. This light-weight design only brings minimal training overhead while achieving superior performance with the same inference cost.

Experiments on VAR (Tian et al., 2024). VAR differs from standard autoregressive models such as VQGAN, TiTok, and AliTok, as it predicts the next scale or resolution and outputs multiple discrete tokens simultaneously rather than using a decoder-only transformer to predict a single next token. These differences lead to training and inference behaviors that diverge from standard AR, and we provide more details in Appendix D. Nevertheless, because VAR still generates discrete tokens autoregressively, it may also benefit from reAR. To test this, we apply reAR to VAR-d16 using the

821
822
823
824
825
Table 5: Comparison of computation overhead.

Method	Time / Epoch (min)	FID
AR-B	8.11	3.12
reAR-B	8.14	1.91
AR-L	15.99	3.02
reAR-L	16.05	1.86

826
827
828
829
830
831
832
833
834
Table 6: Evaluation of reAR on VAR

Method	FID	IS
VAR-d16	3.55	274.4
VAR-d16 (retrained w/ reAR)	3.39	276.6

Figure 6: Qualitative Results of VAR-d16 retrained with reAR.

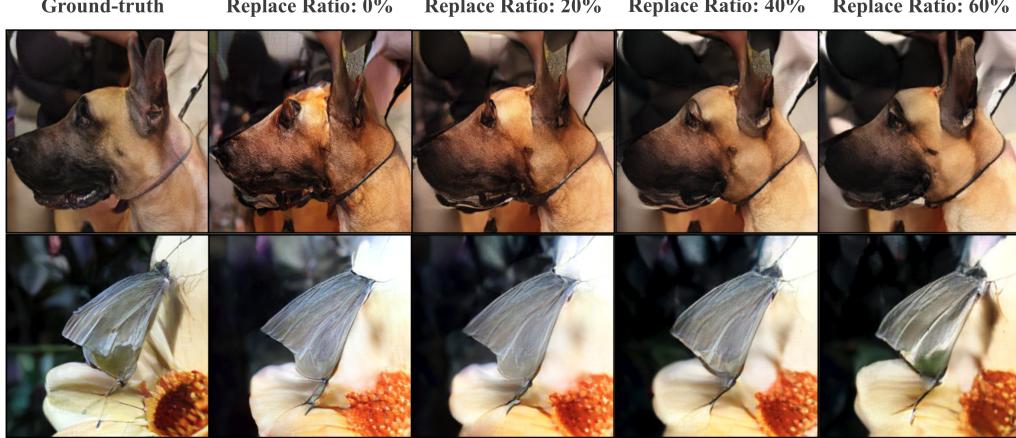


Figure 7: Visualization of analysis experiment on replacing tokens with more similar embedding.

same training settings as in our main experiments and same inference settings as in the original VAR paper. As shown in Table 6, reAR improves performance without tuning any training or inference hyperparameters, demonstrating its generalization ability.

B ANALYSIS DETAILS ON GENERATOR-TOKENIZER INCONSISTENCY

In this section, we present more details on the analysis experiments introduced in Section 3.1 on the generator-tokenizer inconsistency, including (i) evaluation metric (Section B.1), (ii) experiment settings (Section B.2), and (iii) Findings (Section B.3).

B.1 EVALUATION METRIC FOR STUDYING INCONSISTENCY

We provide additional results on the quantitative evaluation of the inconsistency between token sequences $\mathbf{x}_{1:N}$ and the corresponding decoded images $\hat{\mathbf{I}}$. We adopt two groups of metrics: (i) for token sequence quality, we use the *correct token ratio* (CTR) and *perplexity*, and (ii) for image quality, we use PSNR and LPIPS. Here, the LPIPS and PSNR are different from those in the reconstruction task, since the decoded image is obtained from the generated token sequence under teacher forcing. While this is not a direct evaluation of the generation quality, it serves as an intermediate proxy similar to the correct token ratio and perplexity, but in pixel space.

Evaluation on token sequence. CTR measures the fraction of correctly predicted tokens under teacher forcing, while perplexity reflects the uncertainty of the predicted token distribution. Formally, given ground-truth sequence $\mathbf{x}_{1:N}$ and autoregressive model p_θ , we define

$$\text{CTR} = \frac{1}{N} \sum_{i=1}^N \mathbf{1} \left[\arg \max_v p_\theta(v \mid \mathbf{x}_{1:i-1}) = x_i \right], \quad (8)$$

$$\text{Perplexity} = \exp \left(-\frac{1}{N} \sum_{i=1}^N \log p_\theta(x_i \mid \mathbf{x}_{1:i-1}) \right). \quad (9)$$

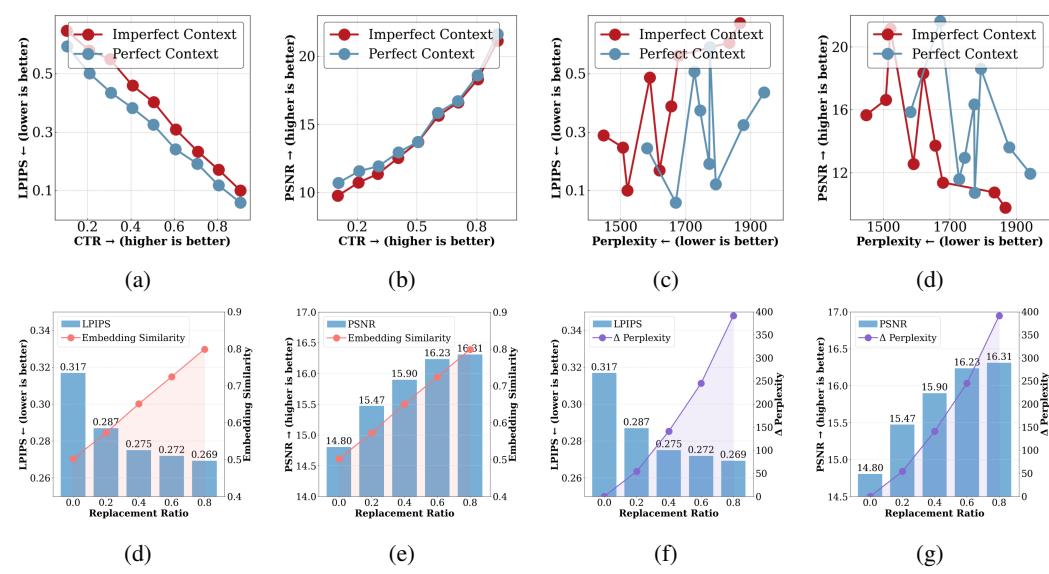


Figure 8: **Detailed analysis of generator–tokenizer inconsistency.** Results are evaluated with CTR (\uparrow), perplexity (\downarrow), PSNR (\uparrow), and LPIPS (\downarrow). (a–d): Exposure bias analysis—under the same CTR and lower perplexity, imperfect context yields higher LPIPS and lower PSNR. (e–g): Embedding unawareness analysis— Δ Perplexity denotes the increase from original to replaced sequences; even with similar CTR and lower perplexity, original predictions can give worse PSNR/LPIPS, showing that higher-quality token sequences can be decoded into worse images.

Evaluation on decoded image. To assess the quality of the decoded images $\hat{\mathbf{I}} = \mathcal{D}(\mathbf{z}^q)$, we report peak signal-to-noise ratio (PSNR) and learned perceptual image patch similarity (LPIPS). PSNR is a distortion-based metric that measures reconstruction fidelity relative to the ground-truth image \mathbf{I} :

$$\text{MSE} = \frac{1}{3HW} \sum_{c=1}^3 \sum_{i=1}^H \sum_{j=1}^W (I_{cij} - \hat{I}_{cij})^2, \quad (10)$$

$$\text{PSNR} = 10 \cdot \log_{10} \left(\frac{L^2}{\text{MSE}} \right), \quad (11)$$

where L is the maximum possible pixel value (e.g., 255 for 8-bit images). A higher PSNR indicates better pixel-wise reconstruction fidelity.

LPIPS, on the other hand, evaluates perceptual similarity by comparing deep features extracted from a pretrained network ϕ :

$$\text{LPIPS}(\mathbf{I}, \hat{\mathbf{I}}) = \sum_l \frac{1}{H_l W_l} \|w_l \odot (\phi_l(\mathbf{I}) - \phi_l(\hat{\mathbf{I}}))\|_2^2, \quad (12)$$

where $\phi_l(\cdot)$ denotes the activation map from layer l , and w_l are learned weights that calibrate the contribution of each layer. Lower LPIPS corresponds to higher perceptual similarity.

B.2 ANALYSIS EXPERIMENT SETTINGS

To analyze the inconsistency between token sequence behavior and decoded image quality, we study the relationship between token-level metrics (CTR, Perplexity) and image-level metrics (LPIPS, PSNR). The key challenge is to design controlled interventions such that one aspect of quality (token sequence or image) can be varied while holding the other approximately fixed, thereby revealing causal effects. In all experiments, we treat *correct token ratio* (CTR) as the control variable, since it is the most straightforward to manipulate, while Perplexity, LPIPS, and PSNR serve as dependent variables. This setup allows us to investigate how changes in token correctness propagate to perceptual differences in reconstructed images.

972 **Experiments on amplified exposure bias.** As discussed in Section 3.1, we design two decoding
 973 protocols to vary the amount of exposure bias under the same CTR level:
 974

- 975 • *Perfect Context (front-loaded):* Given a target CTR r , we fix the first $\lfloor rn \rfloor$ tokens to ground
 976 truth $x_{1:\lfloor rn \rfloor}$ and let the autoregressive model freely generate the remaining tokens. This
 977 minimizes exposure bias, since the context remains error-free until the switch point.
- 978 • *Imperfect Context (uniformly interleaved):* For the same CTR r , we randomly select $\lfloor rn \rfloor$
 979 positions in the sequence and load ground-truth tokens only at those positions. At all other
 980 positions, tokens are sampled autoregressively. This introduces earlier corruption into the
 981 context and amplifies exposure bias.

982 Both settings guarantee the same number of ground-truth tokens, so any difference in downstream
 983 LPIPS/PSNR is attributable to the severity of exposure bias. This isolates the tokenizer’s role in
 984 amplifying exposure bias during generation.

985 **Experiments on embedding unawareness.** While exposure bias focuses on *where* ground-truth
 986 tokens are inserted, embedding unawareness examines *what happens when incorrect tokens are re-
 987 placed by semantically similar alternatives*. During training, the autoregressive model is optimized
 988 for exact token prediction, whereas the tokenizer decoder operates in a continuous embedding space.
 989 To study this gap, we introduce a replacement ratio $r' \in [0, 1]$:

- 991 1. First, generate predictions $\hat{x}_{1:n}$ with teacher forcing. Identify all positions i where $\hat{x}_i \neq x_i$.
 992 2. For each such incorrect prediction, replace \hat{x}_i with probability r' by another token x'_i whose
 993 embedding $z^{q'}_i$ is the closest to the correct embedding z^q_i under cosine similarity, i.e.,

$$z^{q'}_i = \arg \min_{z^q \in \mathcal{Z} \setminus \{z^q_i\}} d(z^q, z^q_i).$$

- 995 3. The CTR remains unchanged, since replacements are only among incorrect predictions, but
 996 the embedding similarity of the sequence is improved.

1000 By varying r' , we control the degree of embedding similarity while holding CTR constant, and then
 1001 measure its effect on LPIPS and PSNR of the reconstructed images. This design allows us to directly
 1002 test whether embedding closeness—rather than token identity alone—affects perceptual quality.

1003 **Summary.** For both experiments, we additionally evaluate the perplexity of the token sequence un-
 1004 der the same CTR and study its correlation with LPIPS / PSNR as well. Together, these controlled
 1005 settings—Perfect vs. Imperfect Context for exposure bias, and embedding replacement for unawar-
 1006 ness—enable a systematic evaluation of how token-level inconsistencies translate into perceptual /
 1007 pixel-level degradation in decoded images.

1009 B.3 FINDINGS AND OBSERVATION

1011 **Results on exposure bias.** As shown in Figure 8(a–b), under the same CTR, sequences generated
 1012 with *imperfect context* lead to higher LPIPS and lower PSNR, indicating worse decoded images, es-
 1013 pecially at low CTR. A similar trend is observed with perplexity. Although perplexity cannot be di-
 1014 rectly controlled, varying CTR naturally induces different perplexity levels. Thus, in Figure 8(c–d),
 1015 we plot perplexity against PSNR/LPIPS under matched CTR. Even when the token sequence quality
 1016 appears worse (higher perplexity), images decoded from tokens generated with *perfect context* still
 1017 achieve better visual quality (lower LPIPS, higher PSNR) compared to those from *imperfect context*.
 1018 This highlights that a token sequence favored by the autoregressive model does not necessarily yield
 1019 a better decoded image.

1020 **Results on embedding unawareness.** As shown in Figure 8(e–g), increasing the replacement ratio
 1021 r' improves embedding similarity while keeping CTR unchanged. This leads to consistent improve-
 1022 ments in decoded image quality: LPIPS decreases and PSNR increases as more incorrect predictions
 1023 are replaced with embedding-nearest tokens. Importantly, even though perplexity rises due to these
 1024 replacements, the resulting images become visually closer to the ground truth. Figure 7 further illus-
 1025 trates this effect—images reconstructed from sequences with higher replacement ratios (20–60%)
 1026 recover clearer object structures (e.g., sharper outlines of the dog’s ears and the butterfly’s wings)

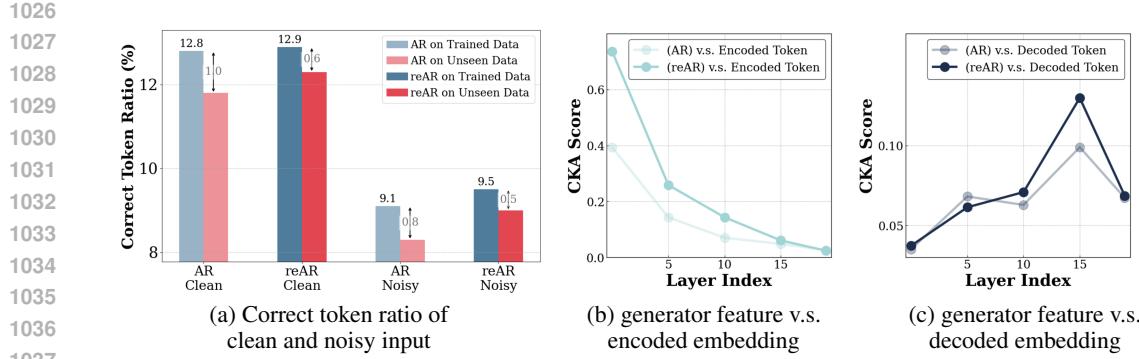


Figure 9: **Mitigating inconsistencies in visual autoregressive generation.** (a) reAR narrows the performance gap between trained and unseen data compared to vanilla AR and improves robustness under noisy inputs, indicating better generalization. (b, c) The CKA score demonstrates similarity between the feature and codebook embedding. reAR further aligns hidden features with the embedding of the current token in early layers and with the embedding of the next token in deeper layers.

compared to the 0% baseline. These results demonstrate that token correctness alone is insufficient to guarantee high-quality reconstructions; instead, embedding proximity plays a crucial role in aligning autoregressive predictions with tokenizer decoding.

C ANALYSIS ON THE EFFECT OF REAR

In this section, we present further analysis on the effect of reAR: (i) its effect on the token space (Section C.1) and (ii) its effect on the hidden features, which also includes the analysis on the choice of regularization layer as mentioned in Section 3.2 and Section 4.3.

C.1 IMPACT ON SAMPLED TOKEN SEQUENCE

We found that reAR improves the next token prediction on: (i) generalization and (ii) robustness.

Generalization. We compare the correct token ratio (CTR) of vanilla AR and reAR on both trained data¹ and unseen validation data from ImageNet-1K as shown in Figure 9(a). On clean inputs, reAR achieves nearly identical performance to vanilla AR on trained data (12.9 vs. 12.8), but obtains higher CTR on unseen data (12.3 vs. 11.8), indicating improved generalization. These results suggest that incorporating codebook embeddings provides a stronger inductive bias for visual signals, enabling the AR model to learn more generalizable representations.

Robustness. To examine the robustness gained from reAR, we randomly replace a fraction of current tokens with noise at a controlled rate. Figure 9 (a) also compares the CTR for clean sequences and for sequences with 10% of tokens replaced uniformly. Compared to vanilla AR, reAR gains higher CTR compared to AR on the noisy trained data (9.5 vs. 9.1). On the noisy and unseen data, the performance gap is even larger: reAR substantially outperforms vanilla AR (9.0 vs. 8.3). This result shows that reAR is more robust to the possible exposure bias.

C.2 IMPACT ON HIDDEN FEATURES OF DIFFERENT REGULARIZATION LAYER

To better understand how reAR interacts with hidden representations, we evaluate the similarity between generator features and tokenizer embeddings using centered kernel alignment (CKA) (Kornblith et al., 2019). Specifically, given two sets of feature representations $\mathbf{X} \in \mathbb{R}^{n \times d_x}$ and $\mathbf{Y} \in \mathbb{R}^{n \times d_y}$, we first compute their Gram matrices $\mathbf{K} = \mathbf{X}\mathbf{X}^\top$ and $\mathbf{L} = \mathbf{Y}\mathbf{Y}^\top$, and then center them as $\mathbf{K}_c = \mathbf{H}\mathbf{K}\mathbf{H}$ and $\mathbf{L}_c = \mathbf{H}\mathbf{L}\mathbf{H}$, where $\mathbf{H} = \mathbf{I}_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^\top$ is the centering matrix. The

¹To avoid class-wise bias, we sample 1000 images per class to match the validation setting.

1080 CKA score is defined as
 1081

$$1082 \text{CKA}(\mathbf{X}, \mathbf{Y}) = \frac{\langle \mathbf{K}_c, \mathbf{L}_c \rangle_F}{\|\mathbf{K}_c\|_F \|\mathbf{L}_c\|_F}, \quad (13)$$

$$1083$$

1084 where $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product and $\|\cdot\|_F$ is the Frobenius norm. Intuitively,
 1085 CKA measures the alignment between the pairwise similarity structures of two representations and
 1086 is invariant to isotropic scaling and orthogonal transformation. A higher CKA score indicates that
 1087 the hidden features of the generator are more similar to the corresponding tokenizer embeddings.

1088 **Analysis Target.** We aim to examine how hidden features within the decoder-only transformer
 1089 correlate with two types of embeddings: the *encoded embedding* \mathbf{z}_i^q , representing the codebook
 1090 vector of the current token, and the *decoded embedding* \mathbf{z}_{i+1}^q , corresponding to the codebook vector
 1091 of the next token. By comparing generator features against both embeddings, we can assess how
 1092 the autoregressive model’s hidden representations evolve—capturing alignment with the tokenizer’s
 1093 codebook while simultaneously encoding the current token and preparing to decode the next one.

1094 **Correlation between hidden features and embeddings.**

1095 To analyze how autoregressive representations evolve
 1096 with depth, we compute CKA similarity between hidden
 1097 features of a vanilla AR model and tokenizer embeddings
 1098 across layers (Figure 9(b–c)). Four key trends emerge:
 1099 (1) overall, CKA with the decoded embedding is lower
 1100 than with the encoded embedding, since the current token
 1101 is known while the next token remains uncertain; (2) sim-
 1102 ilarity to the encoded embedding is highest at the input
 1103 layer and decreases monotonically with depth; (3) sim-
 1104 ilarity to the decoded embedding gradually increases and
 1105 peaks around layer 15, roughly three-quarters of the full
 1106 architecture; and (4) similarity to the decoded embedding
 1107 drops again in the final layers. Together, these patterns suggest a natural progression: early layers
 1108 focus on encoding the current token and aggregating contextual information, while deeper layers
 1109 shift toward modeling the next-token embedding. The decline in the final layers likely reflects the
 1110 model’s need to project features onto a decision boundary for prediction, where the codebook em-
 1111 bedding itself may not form an optimal target. This also explains why directly tying AR outputs to
 1112 codebook embeddings can lead to suboptimal performance.

1113 **Choosing the regularization layer.** Motivated by these observations, we design reAR to apply
 1114 regularization at layers where the CKA similarity is naturally high—early layers for encoded em-
 1115 beddings and later layers for decoded embeddings. Intuitively, this choice minimizes conflict with
 1116 the primary next-token prediction objective, since these layers are already aligned with the tokenizer.
 1117 Importantly, we avoid imposing regularization at the very last layer. Instead, we place regulariza-
 1118 tion near the three-quarter depth of the model, where decoded embedding similarity is maximized.
 1119 Empirically, we find that applying reAR to nearby layers yields similar performance as Table 7,
 highlighting the flexibility of our method with respect to the choice of regularization layer.

1120 **Effect of reAR on feature alignment.** After introducing reAR, we observe consistent increases
 1121 in CKA similarity between generator features and both encoded and decoded embeddings (Fig-
 1122 ure 9(b–c)) at the target layer. In early layers, reAR strengthens alignment with encoded embed-
 1123 dings, helping the generator encode current tokens similar to the tokenizer. In deeper layers, reAR
 1124 improves similarity with decoded embeddings, ensuring that hidden features are better aligned with
 1125 the next token. This result indicates that reAR directly improves the consistency between the hidden
 1126 feature of the autoregressive model and the tokenizer.

1127 **D ADDITIONAL DISCUSSION ON THE RELATED WORK**

1129
 1130 In this section, we present a detailed discussion and comparison of related work. Diffusion models
 1131 have achieved great success in many downstream visual tasks, including image editing (Nichol et al.,
 1132 2022; Meng et al., 2022; He et al., 2024; Hertz et al., 2022) and personalized image generation (Gal
 1133 et al., 2022; Ruiz et al., 2023; He & Yao, 2025; Tan et al., 2025). By contrast, visual autoregressive
 models are less frequently used in these domains, mainly because their generation quality often

Regularization settings	FID \downarrow	IS \uparrow
DE@13	20.47	59.4
DE@14	20.17	60.8
DE@15	20.03	61.0
DE@16	20.11	60.5
DE@17	20.25	61.1

Table 7: **Analysis on nearby regularization layer.** We use ‘EN’ as the encoding regularization and ‘DN’ as the decoding regularization. For example, ‘DN@15’ means applying decoding regularization at the 15th layer of the transformer block.

lags behind that of diffusion models. A growing line of research aims to bridge this gap between visual autoregressive modeling and diffusion-based approaches. In the following, we mainly discuss that how these prior methods can be viewed through a unified lens: they address the inconsistency between the tokenizer (or tokenization scheme) and the autoregressive model. We also discuss how MAR and VAR differ from other autoregressive approaches, and highlight the distinction between our method and REPA, a regularization technique proposed for visual generation.

D.1 TOKENIZATION WITH RANDOMIZED ORDER

RandAR (Pang et al., 2025) introduces a positional token in front of each patch token to let the token be aware of its position in terms of tokenization. Specifically, given a 256 token sequence, it inserts additional 256 tokens, and the generator is required to learn the distribution of the total 512 tokens under permutation. During training and inference, the token sequence is always shuffled. It enables parallel decoding during inference by inserting multiple positional tokens simultaneously. However, RandAR can double the context and significantly increase the computation budget.

RAR (Yu et al., 2024a) introduces a learnable embedding of target position over each token. During training, it randomly shuffles the token sequence at a given probability, and the token is aware of its own position with the additional positional embedding. It slowly decreases the probability of shuffling and returns to standard rasterization order during training. During inference, it keeps the standard operation for the autoregressive generation.

Summary. Both RandAR and RAR use permutation during training so that the context of each token is not limited to the tokens that are on the left or the top of it, thereby introducing bidirectional context even using a decoder-only transformer. This mitigates the inconsistency between the tokenizer that also models bidirectional context, such as MaskGiT-VQGAN (Chang et al., 2022) or TiTok (Yu et al., 2024b). However, in terms of the advanced tokenizer already introduced, unidirectional dependency, such as AliTok (Wu et al., 2025) and FlexTok (Bachmann et al., 2025), may further amplify the inconsistency as Table 2 in the main text shows.

D.2 TOKENIZATION WITH 1D SEQUENCE OR UNIDIRECTIONAL DEPENDENCY

TiTok (Yu et al., 2024b) transforms an image into 1D discrete token sequence with query token using ViT. It firstly decouples the number of tokens from the number of patches and can further compress the number of tokens. However, the reconstruction quality of TiTok remains suboptimal compared to the patchify tokenizer. Additionally, although the represented token sequence is 1-dimensional, it's still in a bidirectional context instead of modeling unidirectional dependency. Therefore, the autoregressive model trained on it remains suboptimal as Table 2 in the main text shows.

GigaTok (Xiong et al., 2025) transforms the image into 1D discrete token sequence as well similar to TiTok. Additionally, it introduces the feature from DINO-v2, similar to REPA (Yu et al., 2024c) to regularize the hidden feature of the tokenizer decoder. This enables the tokenizer to scale up and stabilize training. However, it suffers from the same problem as TiTok, which still models bidirectional dependency.

FlexTok (Bachmann et al., 2025) firstly learns a continuous VAE with high fidelity. It then further resamples 1D discrete tokens from the 2D continuous token obtained from the VAE. Different from TiTok and GigaTok, it additionally employs a causal mask on the 1D sequence to model the unidirectional dependency, which is more consistent with an autoregressive model.

AliTok (Wu et al., 2025) introduces an Aligned Tokenizer that uses 1D sequences instead of the typical 2D patch grid, but with novel training to better align the tokenizer with autoregressive generation. Unlike standard patchified tokenizers, AliTok uses a causal decoder during tokenizer training to enforce unidirectional dependency among encoded tokens, so that tokens depend only on preceding ones. After that, it freezes the encoder and then uses a bidirectional decoder to refine the reconstruction quality. This unidirectional alignment improves compatibility with autoregressive models and leads to state-of-the-art generation metrics — our method still further enhances performance.

Summary. These works (e.g. TiTok (Yu et al., 2024b) and AliTok (Wu et al., 2025)) impose a 1D token sequence or enforce unidirectional dependency in the tokenization stage so that the tokenizer is more aligned with autoregressive models, which shows the importance of consistency between

1188 the tokenizer and autoregressive model. In our experiments, we further demonstrate that using
 1189 generator-tokenizer consistency regularization can further improve upon their performance.
 1190

1191 **D.3 REMARKS ON MAR AND VAR**
 1192

1193 **MAR** (Li et al., 2024) is a model paradigm that combines masked prediction and autoregressive
 1194 generation. Rather than generating tokens strictly in a raster (1D) order, MAR predicts multiple masked
 1195 tokens in parallel across iterations, while still enforcing an ordering among iterations. Importantly,
 1196 MAR uses continuous tokens instead of discrete ones and employs a diffusion-based head to model
 1197 the continuous distribution of token predictions.

1198 **VAR** (Tian et al., 2024) proposes a coarse-to-fine next-scale prediction strategy in image generation:
 1199 rather than predicting each patch or token in a raster order, VAR generates images scale by scale,
 1200 first at low resolution and then successively higher resolutions, where each finer scale is conditioned
 1201 on all previously generated coarser scales. Given tokens of previous scale, the model will provide
 1202 multiple mask tokens corresponding to the next scale, and decode them in parallel.

1203 **Summary.** Although MAR and VAR can be regarded as autoregressive since generation proceeds
 1204 in an autoregressive manner, they implement it with an encoder-only transformer or block causal
 1205 transformer. In MAR, the model receives masked tokens as input and learns to reconstruct the
 1206 masked positions, rather than predicting the next token in a decoder-only setup. In VAR, tokens
 1207 from the previous resolution provide the context for predicting multiple tokens at the next resolution
 1208 in parallel. Both model are different from standard AR paradigm of next token prediction.

1209
 1210 **D.4 REGULARIZATION ON GENERATION TECHNIQUE**
 1211

1212 **REPA** (Yu et al., 2024c) is a regularization technique for diffusion-transformer models that aligns
 1213 noisy intermediate states in the denoising process with clean image features from a pretrained visual
 1214 encoder. Rather than forcing the model to learn image representations from scratch under noisy
 1215 conditions, REPA adds a loss that encourages the hidden states of the diffusion model to match the
 1216 semantic structure of an external teacher (e.g., DINO, DINO-v2).

1217 **Comparison.** Unlike REPA, which focuses on accelerating the training of diffusion models, reAR
 1218 is designed to address the inconsistency between autoregressive models and their tokenizers. More-
 1219 over, while REPA relies on external feature extractors such as DINO-v2 (Oquab et al., 2023), reAR
 1220 directly leverages features from the tokenizer, which is already an integral component of the visual
 1221 generation pipeline. In addition, REPA is tailored to bidirectional transformers and is restricted to
 1222 2D tokenizers, whereas reAR is compatible with decoder-only transformers. For these reasons, we
 1223 do not apply REPA to visual autoregressive models, as it is less generalizable to visual AR training.

1224
 1225 **E DISCUSSION ON THE LIMITATION**
 1226

1227 Our method has several limitations that suggest promising directions for future work. First, the
 1228 choice of the decoding regularization layer is determined empirically. This issue is not unique to
 1229 our approach, as prior works that regularize intermediate representations, such as REPA (Yu et al.,
 1230 2024c) and Dispersive Loss (Wang & He, 2025), also depend on empirically selected layers in the
 1231 absence of a clear theoretical principle. Developing an adaptive or theoretically grounded strategy
 1232 for layer selection remains an open challenge and is more closely aligned with ongoing research in
 1233 automated architecture and hyperparameter search.

1234 Second, our experiments focus primarily on ImageNet, following common practice in foundational
 1235 visual generative modeling (Esser et al., 2021; Yu et al., 2024b; Wu et al., 2025). While this setup
 1236 enables controlled comparisons, we did not evaluate reAR on downstream text-guided generation
 1237 tasks. A comprehensive evaluation on standard text-to-image benchmarks would offer a clearer
 1238 assessment of practical utility, but is computationally demanding. We leave an expanded downstream
 1239 study for future work.

1240 Finally, although our empirical results demonstrate the effectiveness and generalization capability
 1241 of reAR and we provide direct CKA analysis on the hidden feature of transformer layers before
 1242 and after regularization, we do not provide a deeper theoretical analysis of the geometric factors

1242 underlying generator–tokenizer alignment. Understanding properties such as manifold structure or
1243 distributional behavior could yield a more principled perspective, but developing such a theoretical
1244 framework is non-trivial. We view this as an important direction for future research.
1245

1246 F QUALITATIVE RESULTS 1247

1248 We present comprehensive generated results of reAR-B-AliTok (Figure 10 to 18) and reAR-L-
1249 VQGAN (Figure 19 to 24). All results are generated with a constant guidance scale of 4.0.
1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1311 **Figure 10: Generated Results of reAR-B-AliTok of class ‘Cliff’**
1312
1313
1314
1315

1329 **Figure 11: Generated Results of reAR-B-AliTok of class ‘Goldfish’**
1330
1331
1332
1333

1347 **Figure 12: Generated Results of reAR-B-AliTok of class ‘Labrador retriever’**
1348
1349

Figure 13: Generated Results of reAR-B-AliTok of class ‘Ice cream’

Figure 14: Generated Results of reAR-B-AliTok of class ‘Lakeshore’

Figure 15: Generated Results of reAR-B-AliTok of class ‘Cheeseburger’

Figure 16: Generated Results of reAR-B-AliTok of class ‘Bridge’

Figure 17: Generated Results of reAR-B-AliTok of class ‘Balloon’

Figure 18: Generated Results of reAR-B-AliTok of class ‘Chihuahua’

Figure 19: Generated Results of reAR-L-VQGAN of class ‘Cock’

Figure 20: Generated Results of reAR-L-VQGAN of class ‘Green mamba’

Figure 21: Generated Results of reAR-L-VQGAN of class ‘Hermit crab’

Figure 22: Generated Results of reAR-L-VQGAN of class ‘Flamingo’

Figure 23: Generated Results of reAR-L-VQGAN of class ‘Hourglass’

Figure 24: Generated Results of reAR-L-VQGAN of class ‘Pirate’