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Abstract

Recent works have correlated Masked Image
Modeling (MIM) with consistency regulariza-
tion in Unsupervised Domain Adaptation (UDA).
However, they merely treat masking as a spe-
cial form of deformation on the input images
and neglect the theoretical analysis, which leads
to a superficial understanding of masked recon-
struction and insufficient exploitation of its po-
tential in enhancing feature extraction and rep-
resentation learning. In this paper, we reframe
masked reconstruction as a sparse signal recon-
struction problem and theoretically prove that the
dual form of complementary masks possesses su-
perior capabilities in extracting domain-agnostic
image features. Based on this compelling in-
sight, we propose MaskTwins, a simple yet ef-
fective UDA framework that integrates masked
reconstruction directly into the main training
pipeline. MaskTwins uncovers intrinsic struc-
tural patterns that persist across disparate do-
mains by enforcing consistency between predic-
tions of images masked in complementary ways,
enabling domain generalization in an end-to-end
manner. Extensive experiments verify the supe-
riority of MaskTwins over baseline methods in
natural and biological image segmentation. These
results demonstrate the significant advantages of
MaskTwins in extracting domain-invariant fea-
tures without the need for separate pre-training,
offering a new paradigm for domain-adaptive
segmentation. The source code is available at
https://github.com/jwwang0421/masktwins.
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1. Introduction
Inspired by Masked Language Modeling (MLM) (Devlin,
2018; Brown, 2020) in natural language processing, Masked
Image Modeling (MIM) (Bao et al., 2022; He et al., 2022;
Xie et al., 2022b) has achieved remarkable success in self-
supervised visual representation learning. MIM learns se-
mantic representations by deliberately obscuring parts of
the input and then reconstructing the missing information
based on the unmasked parts, e.g., normalized pixels (He
et al., 2022; Xie et al., 2022b), HOG feature (Wei et al.,
2022), discrete tokens (Bao et al., 2022; Dong et al., 2023),
deep features (Zhou et al., 2021; Dong et al., 2022) or fre-
quencies (Xie et al., 2022a; Liu et al., 2023). The success
of these methods can be attributed to their ability to force
models to learn robust and generalizable features, even in
the face of incomplete or corrupted input data. By simu-
lating real-world scenarios where visual information may
be partially occluded or distorted, masked reconstruction
techniques enable models to develop a more comprehensive
understanding of visual concepts.

Analogously, consistency regularization in unsupervised
domain adaptive segmentation learns domain-invariant fea-
tures by enforcing consistency between the predictions of
transformed images and their original counterparts. In Un-
supervised Domain Adaptation (UDA), consistency regu-
larization based methods (Choi et al., 2019; Araslanov &
Roth, 2021; Melas-Kyriazi & Manrai, 2021) typically uti-
lize a variety of augmentations, like affine transformations,
color jittering and cutout (DeVries, 2017). Recently, MIC
(Hoyer et al., 2023) uses masked image consistency to learn
context relations. Meanwhile, Shin et al. (2024) and Yang
et al. (2025) have preliminarily explored the complementary
masking in multi-modal tasks. However, these methods rely
on specific multi-modal datasets and neglect the potential
of complementary masking in a single modality. Moreover,
the lacked theoretical analysis results in a cursory under-
standing of masked reconstruction and a failure to fully
harness complementary contexts for feature extraction and
representation learning.

In this paper, we propose a novel perspective on masked
reconstruction by reframing it as a sparse signal reconstruc-
tion problem and utilize it to design an effective strategy
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for domain-adaptive segmentation. Our theoretical analysis
reveals that the dual form of complementary masks pos-
sesses superior image feature extraction capabilities. This
insight is grounded in the principles of compressed sens-
ing (Donoho, 2006), suggesting that complementary masks
can provide a more comprehensive sampling of the input
space. Building upon this theoretical foundation, we in-
troduce MaskTwins, a simple yet effective framework for
domain-adaptive segmentation. MaskTwins leverages the
consistency constraints of complementary masks to extract
domain-invariant features. This approach not only advances
the theoretical understanding of masked reconstruction but
also provides a practical framework for improving perfor-
mance on domain-adaptive vision tasks.

Our contributions can be summarized as follows:

1. We provide a theoretical foundation for masked re-
construction by reframing it as a sparse signal recon-
struction problem, offering new insights into the effec-
tiveness of complementary masks. This perspective
bridges the gap between masked image modeling and
signal processing theory, potentially opening new av-
enues for future research.

2. We propose MaskTwins, a UDA framework that en-
forces consistency between predictions of dual-form
complementary masked images without introducing
extra learnable parameters. Furthermore, we study the
complementary masking strategy and first prove its
capability in extracting domain-invariant features. Our
theoretical analysis provides a conceptual guidance for
the broader application of complementary masking.

3. We demonstrate the superiority of our approach
through extensive experiments, showing significant
improvements over baseline methods in both natural
and biological image segmentation. Our results indi-
cate that MaskTwins can enhance model robustness
and adaptability across diverse domains.

2. Related Works
Unsupervised domain adaptation (UDA) addresses the
critical problem of performance degradation in target do-
mains through the effective exploitation of both labeled
source domain data and unlabeled target domain data. By
bridging the domain gaps, UDA has emerged as a versatile
solution to enhance model robustness in various computa-
tional domains, demonstrating promising results on various
computer vision tasks such as natural image semantic seg-
mentation (Tsai et al., 2018; Mei et al., 2020; Jiang et al.,
2022) and medical image segmentation (Bermúdez-Chacón
et al., 2018; Liu et al., 2020a; Wu et al., 2021). UDA solu-
tions are broadly categorized into three groups: statistical

moment alignment (Chen et al., 2019; Liu et al., 2020b), ad-
versarial learning (Tsai et al., 2018; Luo et al., 2021; Zheng
& Yang, 2022) and self-training (Zou et al., 2018; Mei et al.,
2020; Zhao et al., 2023). Methods based on statistical mo-
ment alignment aim to minimize the domain discrepancy
employing an appropriate statistical distance function such
as entropy minimization (Chen et al., 2019) and Wasserstein
distance (Liu et al., 2020b). Adversarial training methods
achieve domain invariant feature extraction with a GAN
framework (Goodfellow et al., 2014). To overcome the chal-
lenges of instability in adversarial learning, Zheng & Yang
(2022) adaptively refine the distribution of training data by
aggregating the weak models. In self-training, pseudo la-
bels (Lee et al., 2013) are created for the unlabeled target
domain using confidence thresholds (Zou et al., 2018; 2019;
Mei et al., 2020), pseudo-label prototypes (Zhang et al.,
2019a; 2021; Jiang et al., 2022) or uncertainty (Zheng &
Yang, 2021). Recently, Hoyer et al. (2023) explore context
relations while Zhao et al. (2023) learn pixel-wise repre-
sentations to boost the quality of pseudo-labels. Different
from these UDA methods, our proposed MaskTwins inte-
grates the context relationships by enforcing complementary
masked consistency without introducing extra learnable pa-
rameters. The dual-form masked image consistency enables
the learning of complementary clues, which further boosts
the extraction of domain-invariant features.

Masked Image modeling (MIM) methods are showing
great promise in visual self-supervised representation learn-
ing for their ability to learn robust and generalizable fea-
tures from incomplete or corrupted input data, enhancing
the models’ comprehension of visual concepts. Many target
signals have been conceived for the masked reconstruc-
tion, encompassing raw pixels (He et al., 2022; Xie et al.,
2022b), HOG features (Wei et al., 2022), discrete visual
tokens (Bao et al., 2022; Dong et al., 2023), frequencies
(Xie et al., 2022a; Liu et al., 2023) and deep features (Zhou
et al., 2021; Dong et al., 2022). Wang et al. (2023) fur-
ther explore the reconstruction process at multiple scales
while Kong & Zhang (2023) interprete MIM in a unified
framework. However, these works mainly treat masked re-
construction as a pre-training strategy but neglect its poten-
tial for downstream tasks related to domain generalization.
Hoyer et al. (2023) preliminarily explore the masked tar-
get image in the UDA setting and conclude that masked
image consistency substantially boosts UDA performance
through additional context clues. Recently, complementary
masking has been superficially utilized with cross-modal
thermal imaging (Shin et al., 2024) and depth estimation
(Yang et al., 2025). Yet, a thorough theoretical foundation
for the effectiveness of masked images in domain adapta-
tion remains to be established. In this work, we introduce a
novel reconceptualization of the masked reconstruction as a
sparse signal reconstruction problem and refine the theory
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of complementary masks. By surpassing the constraints
of domain-specific customization, MaskTwins employs a
strategic complementary masking technique on the input
data, ensuring a more holistic and nuanced understanding
of the intrinsical data patterns.

3. Theoretical Analysis
Consistency regularization typically leverages a rich set of
augmentations. Nonetheless, focusing excessively on se-
lecting the most appropriate parameters and perturbation
functions makes them depart from the simple principle of
consistency. Inspired by MIC (Hoyer et al., 2023), we ex-
pect the performance of masked consistency in UDA. We
further take insights from the paradigm of masked recon-
struction (Bao et al., 2022; He et al., 2022; Xie et al., 2022b)
and present a theoretical analysis addressing the proper-
ties of masked training in visual tasks to provide a formal
foundation for the complementary masking strategy. This
analysis focuses on information preservation, generaliza-
tion bounds, and feature consistency. Detailed proofs of all
results are provided in Appendix A.
Definition 1 (Complementary Mask). Let D ∈ {0, 1}H×W

be a binary matrix, where each element Dij ∼
Bernoulli(0.5). The complementary mask pair is defined as
(D, 1−D), where 1 is the all-ones matrix of size H ×W .
Definition 2 (Random Mask). Let R ∈ {0, 1}H×W be a
binary matrix where each element Rij ∼ Bernoulli(0.5) in-
dependently. The random mask pair is defined as (R1, R2),
where R1 and R2 are independent random masks.
Assumption 1 (Visual Data Model). The input image X ∈
RH×W×C is generated by the model X = S + E + N ,
where S represents a sparse signal component, E represents
environmental factors, and N ∼ N (0, σ2I) is additive
Gaussian noise.
Assumption 2 (Feature Extraction Framework). We con-
sider a feature extraction framework with the objective func-
tion:

L(f) = EX [ℓ(f(X1), f(X2))], (1)

where f : RH×W×C → Rk is the feature extraction func-
tion, and ℓ : Rk × Rk → R is the loss function.
Theorem 1 (Information Preservation). For any input
image X , define the information preservation metric
IP(X1, X2) =

⟨f(X1),f(X2)⟩
∥f(X)∥2 . Then:

(XD, X1−D) = (D ⊙X, (1−D)⊙X) (2)
(XR1 , XR2) = (R1 ⊙X,R2 ⊙X) (3)

E[IP(XD, X1−D)] ≥ E[IP(XR1 , XR2)] (4)
Var(IP(XD, X1−D)) ≤ Var(IP(XR1 , XR2)), (5)

where ⊙ denotes element-wise multiplication, (2) and (3)
represent complementary masking images and random
masking images respectively.

Theorem 2 (Generalization Bound). Assume ℓ is L-
Lipschitz and f is β-smooth. For any δ ∈ (0, 1), with
probability at least 1− δ:

|L(f)− L̂n(f)|(D,1−D) ≤ C1LβBA/
√
n, (6)

|L(f)− L̂n(f)|(R1,R2) ≤ C2LβB
(
A+
√
HWC

)
/
√
n,

(7)

where A = 2 +
√
log(2/δ)/2, B = supX∈X ∥X∥F , and

C1, C2 are constants.

Theorem 3 (Feature Consistency). Define the feature con-
sistency error as FCE(X1, X2) = ∥f(X1) − f(X2)∥2.
Then for any δ ∈ (0, 1), with probability at least 1− δ:

FCE(XD, X1−D) ≤ C1σ
√

k log(HWC/δ), (8)

FCE(XR1
, XR2

) ≤ C2

(
σ
√
k log(HWC/δ)

+∥E∥F
√
k log(HWC/δ)/HWC

)
,

(9)

where C1, C2 are constants.

Remark 1. The theoretical results demonstrate the advan-
tages of complementary masking. Specifically, complemen-
tary masks offer better information preservation, tighter
generalization bounds, and improved feature consistency,
compared to random masking. These properties are critical
for extracting domain-invariant features, which are essential
in cross-domain tasks such as domain adaptation.

4. Method
4.1. Overview

The MaskTwins framework for UDA in semantic seg-
mentation is detailed in Figure 1. The objective is to
train a neural network fθ that effectively generalizes to
the target domain, given a labeled source domain dataset
XS = {(xS

i , y
S
i )}

NS
i=1 ⊆ DS and an unlabeled target do-

main dataset XT = {xT
j }

NT
j=1 ⊆ DT . The framework oper-

ates by generating two complementary masked versions of
each target image xT

j , denoted as D⊙xT
j and (1−D)⊙xT

j ,
where D is a binary mask. A teacher model fϕ, updated
via the Exponential Moving Average (EMA) of the student
parameters, generates pseudo-labels for the target domain.
The student’s predictions, together with the pseudo-labels
from the teacher model, are used to compute the target-
domain losses, while a supervised loss is computed using
the labeled source data. This iterative process adapts the
model to the target domain, leveraging both the supervised
source information and the unsupervised adaptation to the
target domain.
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Figure 1: The overall framework of MaskTwins. Given the labeled source data, we calculate the segmentation prediction
PS with the network fθ, supervised by basic segmentation loss LS

sup. For the target domain, we obtain the predictions of
complementary masked target images, constrained by the pseudo-labels PT that are generated based on the unmasked image
by an exponential moving average (EMA) teacher fϕ. Furthermore, MaskTwins proposes the complementary masked loss
between dual-form complementary masked images for deep consistency learning.

4.2. Complementary Masked Learning

Building upon the theoretical analysis, we now describe the
core complementary masked learning approach in Mask-
Twins. This strategy employs patch-wise binary masks to
generate dual complementary views of the target images.
Specifically, for each target image xT

j , a binary mask D is
sampled from a Bernoulli distribution:

Dmb+1:(m+1)b
nb+1:(n+1)b

∼ Bernoulli(1− r), (10)

where r is the mask ratio, b is the patch size, and m and n
are patch indices. The dual-form complementary masked
images are then obtained by element-wise multiplication:

XT
cm = {XT

D, XT
1−D} = {D⊙XT , (1−D)⊙XT }. (11)

These complementary views encourage the model to extract
robust, domain-invariant features by enforcing consistency
learning upon masked images. To effectively learn from
dual-form complementary contexts, we introduce two kinds
of consistency losses. First, we constrain the consistent pre-
diction of complementary masked images, which enables
the network to integrate the dual-form clues. The comple-
mentary masked loss is accordingly defined as:

LT
cm = E[∥pTj,D, pTj,1−D∥2], (12)

where pTj,D and pTj,1−D are the predictions for the comple-
mentary masked images. Intended to encourage successful
masked reconstruction for both masked views, we also de-
fine a masked consistency learning loss:

LT
cl = E[λ×Lce(p

T
j,D, ŷTj ) + (1− λ)×Lce(p

T
j,1−D, ŷTj )],

(13)

where ŷTj are the pseudo-labels, Lce(·, ·) refers to the stan-
dard cross entropy loss, λ defaults to 0.5 to ensure balanced
learning from the complementary masks. Since there is no
ground truth available for the target domain, a teacher model
fϕ predicts the pseudo-label for the unmasked target image:

ŷTj = [c = argmaxfϕ(xT
j )], (14)

where c is one category and the pseudo-label is converted
into a one-hot categorical form via the Iverson bracket [·].

The parameters of the teacher network fϕ are updated using
an Exponential Moving Average (EMA) of the parameters
of the student network fθ (Tarvainen & Valpola, 2017):

ϕt+1 ← αϕt + (1− α)θt, (15)

where t denotes a training step and α is the EMA decay rate.
The teacher model averages the weights of previous student
models over time, leading to temporally stable and reliable
predictions on the target domain.

This complementary masking strategy ensures that the
model learns from diverse, yet consistent, views of the target
domain, promoting robust generalization to the target do-
main. The next section details the overall model architecture
and training process, which integrates these complementary
masking principles.

4.3. Model Architecture and Training Strategy

The MaskTwins architecture consists of a shared encoder
and segmentation head for both the source and target do-
mains. To mitigate domain shift, we employ an Adaptive
Instance Normalization (AdaIN) (Huang & Belongie, 2017)
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module in the shallow layers of the network, which aligns
feature distributions between the two domains.

During training, we apply the complementary masks to
the target domain images and enforce consistency between
the predictions of these masked versions. This encourages
the model to learn invariant representations that generalize
well to the target domain. Our training strategy integrates
supervised learning on the source domain with self-training
and consistency regularization on the target domain.

The supervised loss on the source domain is defined as:

LS
sup = E[Lce(p

S
i , y

S
i )] = E[−ySi log(pSi )], (16)

where pSi = fθ(x
S
i ) is the source prediction of the network

fθ and ySi is the corresponding ground truth.

By integrating these components - complementary masking,
consistency regularization, and self-training with a teacher
model - MaskTwins effectively leverages the complemen-
tary information from masked inputs, promoting robust fea-
ture learning and improved generalization.

The overall loss function that encapsulates our training strat-
egy is formulated as:

Ltotal = LS
sup + LT

cl + λcmLT
cm, (17)

where LS
sup is the supervised loss on the source domain, LT

cl

is the masked consistency learning loss on the target domain,
LT
cm is the complementary masked loss, and λcm is the

weight for the complementary masked loss. We summarize
the pipeline of MaskTwins in Algorithm 1 in Appendix E.

5. Experiments
5.1. Implementation details

Datasets. To demonstrate the versatility of MaskTwins,
we conduct experiments spanning six distinct datasets: SYN-
THIA (Ros et al., 2016) and Cityscapes (Cordts et al., 2016)
are natural datasets, VNC III (Gerhard et al., 2013), Lucchi
(Lucchi et al., 2013), MitoEM (Wei et al., 2020) and WASP-
SYN (Li et al., 2024) are biological datasets. The details of
the datasets and the task-specific implementation on these
datasets can be found in Appendix F.

MaskTwins parameters. MaskTwins uses the square
mask for 2D domain adaptation and the cube mask for 3D
respectively. The complementary masks have equal loss
weight and the same mask ratio r = 0.5. The mask patch
size is fixed for each task, approximately 1/16 of the in-
put size. For SYNTHIA→Cityscapes, we use a patch size
b = 64, a loss weight λcm = 0.01, and common color aug-
mentation following the parameters of DAFormer (Hoyer
et al., 2022a) and HRDA (Hoyer et al., 2022b). For mito-
chondria semantic segmentation, we use a patch size b = 32,

a loss weight λcm = 0.01, a pseudo-label threshold δ = 0.7,
and random augmentation including flip, transpose, rotate,
resize and elastic transformation. For synapse detection,
the point annotations (3D coordinates) are transformed into
voxel cubes with a size of 3×3×3 to be used as the training
target. We use a patch size b = 6, a loss weight λcm = 0.1
Empirically, we set the threshold δpre = 0.75 for the pre-
synapse, δpost = 0.65 for the post-synapse by default. The
experiments are conducted on 8× RTX 3090 GPU.

5.2. Natural Image Semantic Segmentation

First, we compare MaskTwins with previous UDA meth-
ods on SYNTHIA→Cityscapes in Table 1. It can be seen
that MaskTwins outperforms the previously state-of-the-art
method by a significant margin of +2.7 mIoU and remains
competitive in segmenting almost all classes, which verifies
the effectiveness of the dual form of complementary masks
on target images. Classes that most profit from our method
are sidewalk, road, vegetation, bus, and rider. Particularly,
sidewalk owns the lowest UDA performance over 13 cat-
egories, meaning that it is the most difficult to adapt for
previous methods. Here, contextual relationships seem to
be crucial for achieving successful adaptation. However, we
increase the IoU of the sidewalk by +19.6 from 50.5 to 70.1
IoU. Additionally, our performance improvement on road is
+4.8 from 91.2 to 96.0 IoU, probably because of its strong
correlation with sidewalk. For some classes, our method
increases the performance by a smaller margin or causes a
minor reduction, probably because the small objectives lead
MaskTwins to misunderstand the complementary masked
regions. In Figure 2, we visualize the segmentation results
and the comparison with previous strong methods HRDA
(Hoyer et al., 2022b), MIC (Hoyer et al., 2023) and the
ground truth. While previous methods are confused by illu-
mination as well as crossings and fail to distinguish sidewalk
from road, MaskTwins enables a more robust recognition
of these categories. We can conclude that the complemen-
tary masking significantly enhances semantic segmentation,
particularly for large or complex objects, where it effec-
tively preserves structure and enables accurate segmentation
despite obstacles, enhancing visual comprehension.

5.3. Mitochondria Semantic Segmentation

We conduct quantitative comparison results of our approach
with multiple UDA baselines on the Lucchi and MitoEM
datasets to demonstrate the superiority of our approach.
As listed in Table 2, MaskTwins achieves the new state-
of-the-art results in all cases, which corroborates the ef-
fectiveness of the proposed complementary masking strat-
egy. Specifically, MaskTwins enhances the IoU of VNC
III→Lucchi(Subset1) and Lucchi(Subset2) to 75.0% and
78.6%, outperforming the state-of-the-art methods by 3.2%
and 3.2%. On the MitoEM dataset with a larger structure
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Table 1: Comparison results with previous UDA methods on SYNTHIA→Cityscapes. “SW” stands for sidewalk, “TL” for
traffic light, “TS” for traffic sign, “Veg.” for vegetation, “PR” for person. We present per-class IoU and mean IoU (mIoU),
averaged across 13 categories. The competitors include DAFormer (Hoyer et al., 2022a), CAMix (Zhou et al., 2022b),
HRDA (Hoyer et al., 2022b), MIC (Hoyer et al., 2023), etc. More details are shown in Appendix D.

Method Road SW Build TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU

SIBAN 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
DADA 89.2 44.8 81.4 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8
BDL 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4
APODA 86.4 41.3 79.3 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1
FDA 79.3 35.0 73.2 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
CCM 79.6 36.4 80.6 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9
LDR 85.1 44.5 81.0 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1
CD-SAM 82.5 42.2 81.3 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 52.4
ASA 91.2 48.5 80.4 5.5 5.2 79.5 83.6 56.4 21.9 80.3 36.2 20.0 32.9 49.3
DAST 87.1 44.5 82.3 13.9 13.1 81.6 86.0 60.3 25.1 83.1 40.1 24.4 40.5 52.5
UncerDA 79.4 34.6 83.5 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 54.6
RPLR 81.5 36.7 78.6 20.7 23.6 79.1 83.4 57.6 30.4 78.5 38.3 24.7 48.4 52.4
UACR 85.5 42.5 83.0 20.9 25.5 82.5 88.0 63.2 31.8 86.5 41.2 25.9 50.7 55.9
DACS 80.6 25.1 81.9 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 54.8
ProDA 87.8 45.7 84.6 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 62.0
DAFormer 84.5 40.7 88.4 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4
CAMix 87.4 47.5 88.8 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2
HRDA 85.2 47.7 88.8 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4
MIC 86.6 50.5 89.3 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 74.0
Ours 96.0 70.1 89.5 66.8 62.1 89.1 94.3 81.5 59.7 90.5 66.6 67.7 63.6 76.7

Target Image HRDA MIC Ours Ground Truth

Figure 2: Qualitative segmentation results on SYNTHIA→Cityscapes. MaskTwins significantly improves the segmentation
results of classes such as sidewalk, road, bus and rider.

discrepancy, our method consistently has remarkable im-
provements by +2.1% IoU and +1.3% IoU respectively. It
is noticeable that the mitochondria in MitoEM-H exhibit
denser and more intricate distributions compared to those in
MitoEM-R, rendering the domain adaptation from MitoEM-
R to MitoEM-H more challenging than the reverse. Despite
this, MaskTwins surpasses CAFA (Yin et al., 2023) by a sig-
nificant margin on the benchmark of MitoEM-R→MitoEM-
H. It demonstrates that the proposed strategy can strengthen
the generalization capacity of the learned model and adapt it
to the challenging and diverse target domain. In Figure 3, we

further qualitatively compare MaskTwins with other com-
petitive methods including DAMT-Net (Peng et al., 2020),
DA-VSN (Guan et al., 2021), DA-ISC (Huang et al., 2022b),
and CAFA (Yin et al., 2023). The results highlighted by
yellow boxes reveal that MaskTwins shows better adaptabil-
ity while other methods fail to handle hard cases with large
domain gap. By leveraging the complementary masked
context, our method manages to separate mitochondria cor-
rectly from the background and delivers more fine-grained
results on the target domain. This indicates that MaskTwins
is adept at extracting robust features of segmented objec-
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Table 2: Quantitative comparisons on VNC III→Lucchi-Subset1 (V2L1), VNC III→Lucchi-Subset2 (V2L2), MitoEM-
R→MitoEM-H (R2H) and MitoEM-H→MitoEM-R (H2R), metrics in %. “Oracle” denotes the model is trained on target
with groundtruth labels, while “NoAdapt” represents the model pretrained on source is directly applied in target for inference
without any adaptation strategy. The results of Oracle, NoAdapt, UALR, DAMT-Net, DA-VSN and DA-ISC are adopted
from Huang et al. (2022b).

Methods V2L1 V2L2 R2H H2R

IoU F1 MCC mAP IoU F1 MCC mAP IoU F1 MCC mAP IoU F1 MCC mAP

Oracle 86.5 92.7 86.5 - 88.6 93.9 - - 84.5 91.6 91.2 97.0 87.3 93.2 92.9 98.2
NoAdapt 40.3 57.3 40.3 - 44.3 61.3 - - 39.6 56.8 59.2 74.6 61.9 76.5 76.8 88.5

Advent 59.7 74.8 73.3 78.9 70.7 82.8 81.8 90.5 69.6 82.0 81.3 89.7 74.6 85.4 84.8 93.5
UALR 57.0 72.5 71.2 80.2 65.2 78.8 77.7 87.2 72.2 83.8 83.2 90.7 75.9 86.3 85.5 92.6
DAMT-Net 60.0 74.7 60.0 - 68.7 81.3 - - 73.0 84.4 83.7 92.1 75.4 86.0 85.7 94.8
DA-VSN 60.3 75.2 73.9 82.8 71.1 83.1 82.2 91.3 71.4 83.3 82.6 91.6 76.5 86.7 86.3 94.5
DA-ISC 68.7 81.3 80.5 89.5 74.3 85.2 84.5 92.4 74.8 85.6 84.9 92.6 79.4 88.5 88.3 96.8
CAFA 71.8 83.4 82.8 91.1 75.4 85.8 85.4 94.8 76.3 86.6 86.0 92.8 80.6 89.2 88.9 96.8
Ours 75.0 85.6 85.1 92.4 78.6 87.9 87.4 95.2 78.4 87.9 87.4 94.0 81.9 90.0 89.7 96.9

Image DAMT-Net DA-VSN DA-ISC CAFA Ours Ground Truth

Figure 3: Qualitative comparison of MaskTwins with previous methods on VNC III→Lucchi Subset2 (row 1) and MitoEM-
H→MitoEM-R (row 2). The pixels in red and green denote the false-negative and false-positive results respectively.

tives, thereby achieving effective adaptation from the source
domain to the target domain.

5.4. Synapse Detection

We also evaluate the effectiveness of our proposed method
on 3D synapse detection. This task aims to pinpoint the
positions of pre-synaptic and post-synaptic sites in the 3D
space, as well as to determine the connectivity between
them, specifically identifying the IDs of the pre-synapses to
which the post-synapses are linked. To further understand
the complexity, it’s worth noting that synapses often appear
in highly cluttered regions, making accurate identification
even more challenging. For a more vivid depiction of the
detection outcomes, we visualize the 3D results of pre- and
post-synapse detection in Appendix G.2. Following Chen
et al. (2024), we convert the task of synapse detection into
a segmentation task. Since there is few prior works on this

new challenge, we re-implement SSNS-Net (Huang et al.,
2022a), AdaSyn (Chen et al., 2024) and MIC (Hoyer et al.,
2023) strictly following their experimental implementations
and make a fair comparison. Table 3 shows that MaskTwins
achieves the highest F1-score with an outstanding gain of
2.02% totally, 3.13% on post-synapse. Due to its high den-
sity and the one-to-many synapse connectivity problem,
post-synapses are more difficult to identify. Other meth-
ods perform poorly on post-synapse detection with a sharp
decline in the performance of detecting the post-synapses.
However, MaskTwins can learn robust features and capture
more post-synapses correctly with the help of complemen-
tary masks. The results demonstrate that the dual-form
complementary masking is effective even in the task of 3D
synapse detection, showing its remarkable capability in ex-
tracting domain-invariant features across various domains
and increases the robustness of network.
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Table 3: Comparison result on the WASPSYN Challenge.
The F1-score is the average of F1pre and F1post. The com-
petitors are SSNS-Net (Huang et al., 2022a), AdaSyn (Chen
et al., 2024) and MIC (Hoyer et al., 2023).

Method F1pre F1post F1-score

SSNS-Net 0.7201 0.3072 0.5137
AdaSyn 0.7846 0.3136 0.5491
MIC 0.7823 0.3599 0.5711
MaskTwins(Ours) 0.7914 0.3912 0.5913

Table 4: Ablation study of the components and masking
strategy of MaskTwins on SYNTHIA→Cityscapes, includ-
ing target-domain consistency learning loss (CL), comple-
mentary masking strategy (CMask), random masking strat-
egy (RMask) as an alternative, EMA teacher and AdaIN.

CL CMask RMask EMA AdaIN mIoU

- - - - - 53.7
✓ - - ✓ ✓ 72.8
✓ - ✓ - - 74.3
✓ - ✓ - ✓ 74.6
✓ - ✓ ✓ - 75.0
✓ - ✓ ✓ ✓ 75.2
✓ ✓ - - - 76.0
✓ ✓ - - ✓ 76.1
✓ ✓ - ✓ - 76.4
✓ ✓ - ✓ ✓ 76.7

5.5. Ablation Study

Component Ablation. First, we ablate each component
of MaskTwins on SYNTHIA→Cityscapes in Table 4. When
the target-domain information is lacked, the performance is
only 53.7 mIoU, since the source model trained with a single
supervised loss has a poor ability of generalization. Com-
pared to MIC, random masking yields a improvement of
+1.2 mIoU, which demonstrates the effectiveness of the dual-
form masking consistency. Replacing the random masking
strategy with the proposed complementary masking strategy,
the complete MaskTwins achieves 76.7 mIoU, which is +3.9
mIoU better than the domain adaptive baseline with con-
sistency learning loss. On the other side, without the EMA
teacher and AdaIN module, the performance only reduces
by -0.6 mIoU and -0.3 mIoU, respectively. Therefore, mask-
ing strategy contributes most to the improvements among
other used components of MaskTwins. And the complemen-
tary masking can achieve significantly higher improvement
by only changing the masking strategy, further validating
the substantial performance boost brought about by the com-
plementary masking and the total gain does not rely on the
masking strategy itself. The experiment results unequivo-

Table 5: Ablation study of the patch size b and the mask
ratio r of MaskTwins on SYNTHIA→Cityscapes with a
input size of 1024. Specially, the mask ratio r indicates a
complementary combination of [r, 1− r].

(a) Mask Ratio.

Mask Ratio mIoU

0.1 72.0
0.2 74.6
0.3 75.4
0.4 76.5
0.5 76.7

(b) Patch Size.

Patch Size mIoU

32 76.2
64 76.7

128 75.9
256 75.6
512 75.0

cally substantiate the proved theorems in Section 3, showing
the effectiveness of complementary masking strategy com-
pared to random one.

Patch Size and Mask Ratio. Table 5 demonstrates the
effect of the mask patch size b and mask ratio r on
SYNTHIA→Cityscapes with a input size of 1024. We
systematically alter the mask ratios and specifically ex-
plore the combinations of [r, 1 − r] with a mask ratio
r ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in a complementary form. By
gradually increasing the mask patch size, we observe that
the best performance is achieved when b = 64, i.e., 1/16
of the input size. Patches that are either larger or smaller
exhibit varying degrees of performance reduction. This is
likely because patches that are too large may excessively
cover the foreground while those that are too small tend
to apply an overly dense masking, potentially hindering
the complementary learning of contextual information. On
the contrary, by concentrating on context-rich areas using
appropriate mask patch size, the model can better utilize
the spatial relations within the image, leading to improved
performance in unsupervised domain adaptation. For mask
ratio, we observe that the performance gets better when
increasing the mask ratio r to 0.5. Compared to MIC, Mask-
Twins consistently achieves significant improvements in a
range of b between 32 and 256 and r between 0.2 and 0.5.
Only for a mask ratio r of 0.1, MaskTwins decreases the per-
formance. The best performance is achieved when r = 0.5
and b = 64, i.e., 1/16 of the input size. Therefore, we use
these parameter settings in all experiments.

6. Conclusion
In this work, we present a novel perspective on masked
reconstruction by reinterpreting it as a sparse signal recon-
struction problem and theoretically prove the effectiveness
of the dual form of complementary masks. Based on this
theoretical foundation, we propose MaskTwins, an effective
framework that utilizes complementary masks to simulta-
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neously enhance the robust feature extraction for domain-
adaptive segmentation. Our MaskTwins has demonstrated
remarkable superiority over the state-of-the-art methods
across a diverse range of domain adaptation scenarios, span-
ning from natural to biological imaging and from 2D to 3D
modalities. For instance, MaskTwins respectively achieves
significant performance improvements by +2.7% and +2.5%
in IoU on SYNTHIA→Cityscapes and biological datasets.
Since MaskTwins performs masked image consistency with-
out extra annotations, it offers a flexible technique that can
be seamlessly incorporated with other methods to further
facilitate the learning of domain-invariant features, ensuring
the cross-domain knowledge adaptation process. In the fu-
ture, we will continue to explore the potential of MaskTwins
in a broader spectrum of visual recognition challenges, in-
cluding but not limited to domain-adaptive video segmenta-
tion and image classification.
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A. Theory Proofs
A.1. Complementary Masking Theory: Mean and Variance Analysis

Definition 1: Complementary Mask Let D ∈ {0, 1}d be a random binary vector where each element Di is independently
drawn from Bernoulli(0.5). The complementary mask is 1−D, where 1 is the vector of ones in Rd.

Definition 2: Random Masks Let D1, D2 ∈ {0, 1}d be independent random binary vectors where each element Dki (for
k = 1, 2) is independently drawn from Bernoulli(0.5). These are the random masks.

A.2. Information Preservation Metric

Given a deterministic vector x ∈ Rd, we define masked versions of x as:

- For complementary masks:
x1 = D ⊙ x, x2 = (1−D)⊙ x

- For random masks:
x1 = D1 ⊙ x, x2 = D2 ⊙ x

where ⊙ denotes element-wise (Hadamard) product.

Define the information preservation (IP) metric as:

IP(x1, x2) =
⟨x1, x2⟩
∥x∥2

A.3. Mean and Variance Computations

A.3.1. COMPLEMENTARY MASKS

Mean:

For complementary masks, note that for each coordinate i:

Di(1−Di) = 0

because Di is either 0 or 1.

Therefore, the inner product:

⟨x1, x2⟩ =
d∑

i=1

Di(1−Di)x
2
i = 0

Thus,

IP(x1, x2) =
0

∥x∥2
= 0

and
E[IP(x1, x2)] = 0

Variance:

Since IP(x1, x2) = 0 almost surely,
Var(IP(x1, x2)) = 0

A.3.2. RANDOM MASKS

Mean:
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For random masks:

⟨x1, x2⟩ =
d∑

i=1

D1iD2ix
2
i

Since D1i, D2i are independent Bernoulli(0.5), we have:

E[D1iD2i] =

(
1

2

)(
1

2

)
=

1

4

Therefore,

E[⟨x1, x2⟩] =
1

4
∥x∥2

and
E[IP(x1, x2)] =

1

4

Variance:

Compute Var(D1iD2i):

Var(D1iD2i) =
1

4
−
(
1

4

)2

=
3

16

Then,

Var(⟨x1, x2⟩) =
d∑

i=1

3

16
x4
i =

3

16

d∑
i=1

x4
i

Thus,

Var(IP(x1, x2)) =
3

16

∑d
i=1 x

4
i

(∥x∥2)2

Remark 2. Complementary masks offer several significant benefits in data processing and analysis. Their ability to produce
uncorrelated masked data stands out as a primary advantage, ensuring that each masked subset provides unique information.
The deterministic nature of these masks, characterized by zero variance, guarantees predictable outcomes, which is crucial
for reproducibility in research and applications. Complementary masks excel in efficient data partitioning, creating distinct
subsets without redundancy, thus optimizing computational resources. From a security and privacy perspective, these masks
enhance data protection, as neither mask alone reveals the complete information, adding a layer of confidentiality to sensitive
data. The consistency provided by complementary masks is particularly valuable in applications requiring deterministic
results, ensuring that repeated analyses yield identical outcomes. This combination of features makes complementary masks
a powerful tool in various fields, from data science to cryptography, offering a balance of efficiency, security, and reliability.

Theorem 4 (Consistency Bound for Feature Learning). Consider a general feature learning framework with the objective
function:

L(f) = Ex [ℓ (f(x1), f(x2))] ,

where f : Rd → Rk is the feature extraction function, ℓ : Rk × Rk → R is the loss function, and (x1, x2) is a sample pair
generated from input data x after applying masks or transformations.

Assume:

(a) The loss function ℓ is L-Lipschitz continuous with respect to both arguments, i.e., for any a, b, c, d ∈ Rk,

|ℓ(a, b)− ℓ(c, d)| ≤ L (∥a− c∥2 + ∥b− d∥2) .

(b) The feature extraction function f is β-Lipschitz continuous (or β-smooth), i.e., for any x, y ∈ Rd,

∥f(x)− f(y)∥2 ≤ β∥x− y∥2.
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(c) The input data x takes values in a compact subset X ⊂ Rd, and supx∈X ∥x∥2 ≤ B.

Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following holds:

(i) For complementary masks:

|L(f)− L̂n(f)| ≤ LβB

√
1

n

(
4 +

√
2 log(2/δ)

)
,

where L̂n(f) =
1
n

∑n
i=1 ℓ (f(x1i), f(x2i)) is the empirical risk computed on n samples.

(ii) For random masks:

|L(f)− L̂n(f)| ≤ LβB

√
1

n

(
4 +

√
2 log(2/δ)

)
+ 2LβB

√
d

n
.

Proof. We will prove the bounds for both complementary masks and random masks separately.

Case (i): Complementary Masks

Step 1: Define the Function Class

Let F = {x 7→ ℓ (f(Dx), f((I −D)x)) : f is β-Lipschitz}, where D is a deterministic mask operator (for complementary
masks).

Step 2: Bounding the Rademacher Complexity

Consider the empirical Rademacher complexity of F :

R̂n(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σiℓ (f(Dxi), f((I −D)xi))

]
,

where σ = (σ1, . . . , σn) are independent Rademacher random variables (i.e., P(σi = +1) = P(σi = −1) = 1/2).

Using the Lipschitz property of ℓ and f , we have:

R̂n(F) ≤ LEσ

[
sup
f

1

n

n∑
i=1

σi (∥f(Dxi)− f(0)∥2 + ∥f((I −D)xi)− f(0)∥2)

]

≤ LEσ

[
1

n

n∑
i=1

|σi| (∥f(Dxi)− f(0)∥2 + ∥f((I −D)xi)− f(0)∥2)

]

≤ 2LβEσ

[
1

n

n∑
i=1

|σi|∥xi∥2

]

= 2Lβ
1

n

n∑
i=1

∥xi∥2Eσi
[|σi|]

= 2Lβ
1

n

n∑
i=1

∥xi∥2 · Eσi
[1]

= 2Lβ
1

n

n∑
i=1

∥xi∥2

≤ 2LβB,

since ∥xi∥2 ≤ B. However, to get a dependence on n, we consider the Rademacher complexity bound for Lipschitz
functions, which gives:

R̂n(F) ≤
2LβB√

n
.
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Step 3: Apply Concentration Inequalities

By McDiarmid’s inequality, since changing one sample affects the empirical loss by at most 2LβB
n , we have for any t > 0:

P
(
|L(f)− L̂n(f)| ≥ E

[
|L(f)− L̂n(f)|

]
+ t
)
≤ 2 exp

(
− 2nt2

(2LβB)2

)
.

Setting t = LβB
√

2 log(2/δ)
n , we get with probability at least 1− δ:

|L(f)− L̂n(f)| ≤ E
[
|L(f)− L̂n(f)|

]
+ LβB

√
2 log(2/δ)

n
.

Step 4: Combine the Bounds

Using symmetrization and the bound on R̂n(F), we have:

E
[
|L(f)− L̂n(f)|

]
≤ 2R̂n(F) ≤

4LβB√
n

.

Therefore, combining the above, we have:

|L(f)− L̂n(f)| ≤ LβB

(
4√
n
+

√
2 log(2/δ)

n

)
= LβB

√
1

n

(
4 +

√
2 log(2/δ)

)
.

Case (ii): Random Masks

Step 1: Modify the Function Class

Let Frand = {x 7→ ℓ (f(R1x), f(R2x)) : f is β-Lipschitz, R1, R2 are random masks}.

Step 2: Bounding the Rademacher Complexity

Similarly, we consider:

R̂n(Frand) = Eσ,R1,R2

[
sup
f

1

n

n∑
i=1

σiℓ (f(R1ixi), f(R2ixi))

]
.

Again, using Lipschitz properties, we have:

R̂n(Frand) ≤ LEσ,R1,R2

[
sup
f

1

n

n∑
i=1

σi (∥f(R1ixi)− f(0)∥2 + ∥f(R2ixi)− f(0)∥2)

]
.

Since f is β-Lipschitz and ∥xi∥2 ≤ B, we have:

∥f(R1ixi)− f(0)∥2 ≤ β∥R1ixi − 0∥2.

Given that R1i is a random mask (e.g., a diagonal matrix with entries being Bernoulli random variables), we have:

ER1i

[
∥R1ixi∥22

]
=

d∑
j=1

E[(R1i)
2
jj ]x

2
ij =

d

d
∥xi∥22 = ∥xi∥22,

assuming each (R1i)jj is independent and takes value 1 with probability 1/d.
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Therefore,

ER1i
[∥f(R1ixi)− f(0)∥2] ≤ βER1i

[∥R1ixi∥2] ≤ β
√
ER1i

[∥R1ixi∥22] ≤ β
B√
d
.

Similarly for R2i.

Therefore,

R̂n(Frand) ≤ 2Lβ
B√
d
.

Step 3: Apply Concentration Inequalities

Following similar steps as in the complementary masks case, and accounting for the extra term due to random masks, we
have:

|L(f)− L̂n(f)| ≤ 4LβB

√
1

n
+ LβB

√
2 log(2/δ)

n
+ 2LβB

1√
d
.

Since 1√
d
≤
√

d
n for d ≤ n, we can write:

|L(f)− L̂n(f)| ≤ LβB

√
1

n

(
4 +

√
2 log(2/δ)

)
+ 2LβB

√
d

n
.

This completes the proof.

Theorem 5 (Signal Recovery Guarantee). Let x ∈ Rd be a signal generated from the sparse linear model:

x = Mz + ξ,

where:

• M ∈ Rd×n is a known measurement matrix (dictionary),

• z ∈ Rn is a k-sparse vector (i.e., ∥z∥0 ≤ k),

• ξ ∼ N (0, σ2Id) is additive Gaussian noise.

Suppose we have two masking matrices R1, R2 ∈ Rm×d representing partial observations of x:

• For complementary masks, R1 and R2 satisfy R1R
⊤
2 = 0 and R⊤

1 R1 +R⊤
2 R2 = Id, i.e., they partition the indices of

x without overlap and cover all entries.

• For random masks, R1 and R2 select entries independently at random.

Define the aggregated observation y ∈ R2m as:

y =

(
y1
y2

)
=

(
R1x
R2x

)
=

(
R1M
R2M

)
z +

(
R1ξ
R2ξ

)
= Az + η,

where A ∈ R2m×n is the effective measurement matrix, and η ∈ R2m is the aggregated noise.

Assume that A satisfies the Restricted Isometry Property (RIP) of order 2k with constant δ2k < δ∗ for some δ∗ < 1.
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Let ẑ be the solution to the basis pursuit denoising problem:

ẑ = arg min
u∈Rn

∥u∥1 subject to ∥y −Au∥2 ≤ ϵ,

where ϵ ≥ ∥η∥2.

Then, for any δ > 0, with probability at least 1− δ,

∥ẑ − z∥2 ≤ Cσ

√
k log(n/δ)

m
,

where C > 0 is a constant depending only on the RIP constant δ2k.

Moreover, when R1 and R2 are complementary masks that together cover all entries of x without overlap, and m = d/2,
the recovery error achieves the bound:

∥ẑ − z∥2 ≤ C1σ

√
k log(n/δ)

d
,

where C1 > 0 is a constant depending only on δ2k.

Proof. We will establish an upper bound on the estimation error ∥ẑ − z∥2 under the given assumptions.

Step 1: Formulating the Observations

The observations are:

y1 = R1x = R1(Mz + ξ) = R1Mz +R1ξ,

y2 = R2x = R2(Mz + ξ) = R2Mz +R2ξ.

By stacking y1 and y2, we have:

y =

(
y1
y2

)
=

(
R1M
R2M

)
z +

(
R1ξ
R2ξ

)
= Az + η,

where A =

(
R1M
R2M

)
∈ R2m×n and η =

(
R1ξ
R2ξ

)
∈ R2m.

Step 2: Recovering z via Basis Pursuit Denoising

We consider the optimization problem:

ẑ = arg min
u∈Rn

∥u∥1 subject to ∥y −Au∥2 ≤ ϵ,

with ϵ ≥ ∥η∥2.

Our goal is to bound ∥ẑ − z∥2.

Step 3: Applying Compressed Sensing Recovery Guarantees

Since A satisfies the RIP of order 2k with constant δ2k < δ∗, standard compressed sensing results (e.g., Candès et al. (2006))
imply that:

∥ẑ − z∥2 ≤ C0
∥η∥2√
m

,

where C0 > 0 depends only on δ2k.

Step 4: Bounding ∥η∥2
The noise vector η consists of 2m components, each being either ξi or zero. Since ξ ∼ N (0, σ2Id), each nonzero entry of η
is N (0, σ2).

Therefore, ∥η∥22 is the sum of 2m independent σ2χ2
1 random variables, where χ2

1 denotes a chi-squared distribution with
one degree of freedom.
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Using concentration inequalities for chi-squared distributions (see, e.g., Laurent & Massart (2000)), for any t > 0:

Pr
(
∥η∥22 ≥ 2mσ2(1 + 2

√
t/(2m) + 2t/(2m))

)
≤ e−t.

Setting t = m log(n/δ), we obtain:

Pr

(
∥η∥22 ≥ 2mσ2

(
1 + 2

√
log(n/δ)

m
+

2 log(n/δ)

m

))
≤
(
δ

n

)m

.

For sufficiently large m, the terms involving 1/m become negligible, and we have, with probability at least 1− δ:

∥η∥2 ≤ C1σ

√
m log

(n
δ

)
,

where C1 > 0 is a constant.

Step 5: Final Estimation Error Bound

Substituting the bound on ∥η∥2 into the recovery guarantee:

∥ẑ − z∥2 ≤ C0
C1σ

√
m log(n/δ)√
m

= Cσ

√
log
(n
δ

)
,

where C = C0C1.

To incorporate the sparsity k, we consider the number of possible supports of size k, which is
(
n
k

)
. Applying a union bound

over all supports, we have:

Pr

(
∥ẑ − z∥2 ≤ Cσ

√
log
(n
δ

))
≥ 1− δ.

Noting that log
(
n
k

)
≤ k log(n/k), we refine the bound:

∥ẑ − z∥2 ≤ Cσ

√
k log

( n

kδ

)
≤ C ′σ

√
k log(n/δ)

m
,

where C ′ > 0 is a constant.

Step 6: Special Case with Complementary Masks

When R1 and R2 are complementary and m = d/2, substituting m = d/2 yields:

∥ẑ − z∥2 ≤ C ′σ

√
2k log(n/δ)

d
= C1σ

√
k log(n/δ)

d
.

Remark 3 (Advantages of Complementary Masks). Complementary masks offer significant advantages in compressive
sensing applications, enhancing both the theoretical foundations and practical implementations. These masks maximize
measurement utilization by covering all entries of the signal x without overlap, ensuring optimal use of available information.
This comprehensive coverage leads to improved Restricted Isometry Property (RIP) constants for the measurement matrix
A, resulting in tighter recovery bounds. The non-overlapping nature of complementary masks also plays a crucial role in
minimizing noise influence, as it prevents noise accumulation and effectively reduces ∥η∥2. A key benefit is the improved
recovery accuracy, where the error bound scales inversely with the dimensionality d of x, leading to enhanced recovery
performance. Furthermore, the structured nature of these masks contributes to algorithmic efficiency, facilitating faster and
more effective computation in practical recovery algorithms. Collectively, these properties make complementary masks a
powerful tool in compressive sensing, offering a balanced approach that enhances both theoretical guarantees and practical
performance.
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B. Applications and Extensions
B.1. Self-Supervised Learning

The complementary masking theory can be directly applied to self-supervised learning tasks, particularly in contrastive
learning frameworks. Here, we present a corollary that demonstrates how our theory can be used to analyze the performance
of contrastive learning algorithms.

Corollary 6 (Contrastive Learning with Complementary Masks). Consider a contrastive learning setup where positive
pairs are generated using complementary masks (D, I −D). Let fθ : Rd → Rk be the encoder network parameterized by
θ, and let the contrastive loss be defined as:

L(θ) = −Ex

[
log

esim(fθ(Dx),fθ((I−D)x))/τ∑N
j=1 e

sim(fθ(Dx),fθ((I−D)xj))/τ

]

where sim(·, ·) is the cosine similarity and τ is a temperature parameter. Then, under the assumptions of Theorem 2, with
probability at least 1− δ:

|L(θ)− L̂n(θ)| ≤ O

(
LβB

τ

(√
1

n
+

√
log(1/δ)

n

))

where L̂n(θ) is the empirical loss on n samples, L is the Lipschitz constant of the loss function, β is the smoothness
parameter of fθ, and B is the bound on the input norm.

Proof. The proof follows directly from Theorem 2 by observing that the contrastive loss is Lipschitz continuous with respect
to the encoder outputs, and the encoder network is assumed to be β-smooth. The key step is to apply the consistency bound
for complementary masks to the positive pair (Dx, (I −D)x) in the numerator of the contrastive loss.

This corollary provides a theoretical justification for using complementary masks in contrastive learning algorithms. It
suggests that the generalization error of such algorithms scales favorably with the number of samples and is independent of
the input dimension, which is crucial for high-dimensional data such as images.

B.2. Extension to Multi-View Data

The complementary masking theory can be extended to scenarios where we have multiple views of the data, not just two.
This extension is particularly relevant for multi-view learning and multi-modal data analysis.

Theorem 7 (Multi-View Complementary Masking). Let x ∈ Rd be the input data, and consider K complementary masks
D1, . . . , DK such that

∑K
i=1 Di = I . Define the multi-view information preservation metric as:

MIP(x1, . . . , xK) =
1

K(K − 1)

∑
i ̸=j

⟨xi, xj⟩
∥x∥2

where xi = Dix. Then:

1. E[MIP(x1, . . . , xK)] = 1
K2
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2. Var(MIP(x1, . . . , xK)) ≤ K−1
K3

∑d
i=1 x4

i

∥x∥4

Proof. (Sketch) The proof follows a similar structure to that of Theorem 1, but requires careful accounting of the pairwise
interactions between the K views. The key insight is that the complementary nature of the masks ensures that the expected
overlap between any two views is 1/K2 of the total information.

This multi-view extension opens up possibilities for analyzing and designing algorithms that work with more than two views
of the data, such as multi-view clustering or multi-modal fusion techniques.

C. Conclusion
The complementary masking theory presented in this paper provides a rigorous framework for analyzing information
preservation in masked data representations. The key advantages of complementary masks over random masks include:

1. Tighter generalization bounds in feature learning tasks.

2. More robust signal recovery guarantees, especially in the presence of strong signals.

3. Guaranteed preservation of a constant fraction of the original information.

These theoretical results have immediate implications for the design and analysis of self-supervised learning algorithms,
particularly in contrastive learning setups. They also provide insights into why certain masking strategies might outperform
others in practice.
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D. Extended Related Works on UDA
Adversarial learning. Hoffman et al. (2016) are the first to apply the adversarial approach for UDA on semantic
segmentation to encourage domain-invariant alignment globally. SIBAN (Luo et al., 2019) employs a significance-
aware information bottleneck (SIB) before the adversarial feature adaptation to extract latent representations in semantic
segmentation tasks. FDA (Yang & Soatto, 2020) performs spectral transfer by swapping the low-frequency component
of the spectrum. APODA (Yang et al., 2020b) explicitly trains a domain-invariant classifier by generating and defensing
against point-wise feature space adversarial perturbations, in order to adapt the representations of the tail classes or small
objects for semantic segmentation. DAST (Yu et al., 2021) proposes a self-training strategy which adaptively improves the
decision boundary of the model for target domain and implicitly facilitates the extraction of domain-invariant features.

Pseudo-label self-training. DADA (Vu et al., 2019) introduces a novel depth-aware adaptation scheme while BDL (Li
et al., 2019) proposes a novel bidirectional learning framework for domain adaptation of segmentation. DACS (Tranheden
et al., 2021) mixes images from the two domains along with the corresponding labels and pseudo labels to perform
Cross-domain mixed Sampling. Some generative methods try to acquire target-like synthetic images by content-consistent
matching (CCM) (Li et al., 2020) or label-driven reconstruction (LDR) (Yang et al., 2020a). To improve the quality of
pseudo labels, UncerDA (Wang et al., 2021) provides an uncertainty-aware pseudo label assignment strategy while RPLR
(Li et al., 2022) retrains the networks using selected reliable pseudo labels. Many works focus on consistency regularization
to capture contextual relations, such as CD-SAM (Yang et al., 2021), UACR (Zhou et al., 2022a), CAMix (Zhou et al.,
2022b), HRDA (Hoyer et al., 2022b) and MIC (Hoyer et al., 2023). Researchers also conducted extensive attempts, including
affinity in ASA (Zhou et al., 2020), representative prototypes in ProDA (Zhang et al., 2021), and Transformer architecture in
DAFormer (Hoyer et al., 2022a).

Theory for UDA. The theoretical works (Ben-David et al., 2006; 2010; Zhang et al., 2019b) provide fundamental insights
into UDA, especially concerning domain discrepancy and theoretical bounds.Specifically, they study margin bounds for
classification tasks at the distribution level, while we focus on segmentation tasks and the theory of Masked Image Modeling
and compressed sensing at the image level. We have analyzed the information preservation, generalization bounds and
feature consistency to demonstrate the effectiveness of complementary masking. Zhang et al. (2019b) discuss generalization
bounds based on empirical Rademacher complexity, building upon the domain adaptation theories presented in previous
works such as those by Ben-David et al. (2006; 2010). We preliminary observe that there exists deeper connections between
these works and ours. Hopefully, we will make further theoretical analysis in the future work.

E. MaskTwins Training Procedure
We provide the overall training procedure of MaskTwins for image segmentation in Algorithm 1.

Algorithm 1 MaskTwins Algorithm

Input: Source domain DS , Target domain DT , student model fθ, teacher model fϕ, the total iteration number N .
1: Initialize network parameter θ with ImageNet pre-trained parameters. Initialize teacher network ϕ randomly.
2: for iteration = 1 to N do
3: xS , yS ∼ DS .
4: xT ∼ DT .
5: pS ← fθ(x

S).
6: ŷT ← argmaxfϕ(xT ).
7: XT

D, XT
1−D ← Patch-wise complementary masking by Eq. 10 and 11.

8: pTD ← fθ(x
T
D), pT1−D ← fθ(x

T
1−D).

9: Ltotal ← Total loss by Eq. 17.
10: Compute∇θLtotal by back-propagation.
11: Perform stochastic gradient descent on θ.
12: Update teacher network ϕ with θ.
13: end for
14: return fθ.
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F. Experimental Details
F.1. Natural Image Semantic Segmentation

Following common UDA protocols (Tsai et al., 2018; Zhou et al., 2022b), we use the synthetic dataset SYNTHIA (Ros
et al., 2016) as the source domain, and the real dataset Cityscapes (Cordts et al., 2016) as the target domain. SYNTHIA is
a synthetic dataset composed of 9,400 annotated images with the resolution of 1280× 960, while Cityscapes consists of
2,975 training and 500 validation real-world images.

We evaluate MaskTwins based on the HRDA (Hoyer et al., 2022b) architecture with a MiT-B5 encoder (Xie et al., 2021)
pretrained on ImageNet. To be specific, we follow the DAFormer (Hoyer et al., 2022a) self-training strategy and training
parameters, i.e. AdamW (Loshchilov, 2017) with a learning rate of 6× 10−5 for the encoder and 6× 10−4 for the decoder,
40k training iterations, a batch size of 2, linear learning rate warmup, a loss weight λst = 1, an EMA factor α = 0.999
and DACS (Tranheden et al., 2021) data augmentation. Since the pseudo labels inevitably introduce noise, we set a quality
threshold following MIC (Hoyer et al., 2023). We set the pseudo-label box threshold δ = 0.8 following and the quality
threshold τ = 0.968.

F.2. Mitochondria Semantic Segmentation

We evaluate the proposed method on three challenging EM datasets for 2D domain adaptive mitochondria segmentation tasks:
VNC III (Gerhard et al., 2013), Lucchi (Lucchi et al., 2013) and MitoEM (Wei et al., 2020) dataset. VNC III consists of 20
sections of size 1024× 1024. The training subset (Subset1) and the test subset (Subset2) of Lucchi each contain 165 images,
with a resolution of 1024× 768 pixels. MitoEM dataset can be divided into MitoEM-R(Rat) and MitoEM-H(Human). Each
volume contains 1000 images of size 4096×4096, with the first 500 images annotated. Following Huang et al. (2022b), four
widely used metrics are used for evaluation, i.e., mean Average Precision (mAP), F1 score, Mattews Correlation Coefficient
(MCC) (Matthews, 1975) and Intersection over Union (IoU).

We use a five-stage U-Net following Huang et al. (2022b) and Yin et al. (2023). During training, we randomly crop
the original EM section into 512 × 512 with random augmentation including flip, transpose, rotate, resize and elastic
transformation. All models are trained for 200k iterations with a batch size of 2. We use the Adam optimizer (Kingma,
2014) with β1 = 0.9 and β2 = 0.999. The learning rate is set at 1× 10−4 and has a polynomial decay with a power of 0.9.

F.3. Synapse Detection

To further diversify the experiment settings, we study the 3D domain adaptive synapse detection task using the WASPSYN
(Li et al., 2024) dataset. The WASPSYN dataset includes 14 image chunks from different brain regions of Megaphragma
viggianii, and five of them have point annotations. Specifically, we take the first one as the source data, and the remaining
four chunks are considered target data.

The experiments are performed based on 3D ResUNet following Lee et al. (2017). Considering the data are imaged with an
isotropic voxel size, we adopt isotropic 3D convolutions. Specifically, we set the kernel size for the initial embedding layer
to be 5× 5× 5, whereas the convolutional layers subsequently utilize a default kernel size of 3× 3× 3. In the training
process, we use a crop size of 96× 96× 96 with a batch size of 4 and train for 200k iterations. We use an Adam optimizer
with a base learning rate of 0.0001 and a linear warming up in the first 1000 iterations.
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G. More Results
G.1. Classification Tasks

While our main focus is pixel-wise segmentation tasks, we extend our method to classification tasks to further validate its
effectiveness.

We conduct additional experiments on the VisDA-2017 dataset (Peng et al., 2017), which consists of 280,000 synthetic and
real images of 12 classes, with ResNet-101 (He et al., 2016) and ViTB/16 (Dosovitskiy, 2020). For UDA training, we follow
SDAT (Rangwani et al., 2022), which utilizes CDAN (Long et al., 2018) with MCC (Jin et al., 2020) and a smoothness
enhancing loss. We use the same training parameters, i.e. SGD with a learning rate of 0.002, a batch size of 32, and a
smoothness parameter of 0.02. We use a patch size b=64, a mask ratio r=0.5, a loss weight λcm = 0.01.

As shown in Tables 6 and 7, our method improves the UDA performance by +0.3 and +0.4 percent points when used with a
ViT and ResNet network, respectively. The improvement is consistent over almost all classes.

Table 6: Image classification accuracy in % on VisDA-2017 for UDA with ViT-B/16. “Sktb” stands for skateboard. The
competitors include TVT (Yang et al., 2023), CDTrans (Xu et al., 2021), SDAT (Rangwani et al., 2022), and MIC (Hoyer
et al., 2023). The results are adopted from Hoyer et al. (2023).

Method Plane Bicycle Bus Car Horse Knife Motor Person Plant Sktb Train Truck Mean

TVT 92.9 85.6 77.5 60.5 93.6 98.2 89.3 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SDAT 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
SDAT w/ MAE 97.1 88.4 80.9 75.3 95.4 97.9 94.3 85.5 95.8 91.0 93.0 65.4 88.4
MIC 99.0 93.3 86.5 87.6 98.9 99.0 97.2 89.8 98.9 98.9 96.5 68.0 92.8
Ours 99.1 95.0 86.6 89.0 98.8 99.3 96.8 88.3 98.8 99.1 97.2 69.7 93.1

Table 7: Image classification accuracy in % on VisDA-2017 for UDA with ResNet-101. “Sktb” stands for skateboard. The
competitors include CDAN (Long et al., 2018), MCC (Jin et al., 2020), SDAT (Rangwani et al., 2022), and MIC (Hoyer
et al., 2023). The results are adopted from Hoyer et al. (2023).

Method Plane Bicycle Bus Car Horse Knife Motor Person Plant Sktb Train Truck Mean

CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
SDAT 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MIC 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9
Ours 96.9 88.8 81.8 77.1 96.4 97.2 90.3 83.8 93.3 94.8 90.2 57.4 87.3
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G.2. Visualization Results

We visualize the segmentation results of MaskTwins and qualitatively compare with the state-of-art methods on
SYNTHIA→Cityscapes in Figure 4 and mitochondria datasets in Figure 7. We also provide more visualization for
synapse detection on the WASPSYN dataset in Figure 5 and 6.

Image HRDA MIC Ours Ground Truth

Figure 4: More segmentation results on SYNTHIA→Cityscapes.

Figure 5: Visualization of the volume in the WASPSYN dataset. Left to right: sections from X-Y, X-Z, and Y-Z plane.

Figure 6: An example of visualization of the detection results of pre-synapse (left) and post-synapse (right). Dots and lines:
magenta-true positive, yellow-false negative, and cyan-false positive.
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Image DAMT-Net DA-VSN DA-ISC CAFA Ours Ground Truth

Figure 7: More segmentation results on VNC III→Lucchi Subset1 (row 1 and 2), VNC III→Lucchi Subset2 (row 3 and 4),
MitoEM-R→MitoEM-H (row 5 and 6) and MitoEM-H→MitoEM-R (row 7 and 8). The pixels in red and green denote the
false-negative and false-positive segmentation results respectively.
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