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ABSTRACT

In the era of Large Language Models (LLMs), Mixture-of-Experts (MoE) architec-
tures offer a promising approach to managing computational costs while scaling
up model parameters. Conventional MoE-based LLMs typically employ static
Top-K routing, which activates a fixed and equal number of experts for each token
regardless of their significance within the context. In this paper, we propose a novel
Ada-K routing strategy that dynamically adjusts the number of activated experts
for each token, thereby improving the balance between computational efficiency
and model performance. Specifically, our strategy incorporates learnable and
lightweight allocator modules that decide customized expert resource allocation
tailored to the contextual needs for each token. These allocators are designed to be
fully pluggable, making it broadly applicable across all mainstream MoE-based
LLMs. We leverage the Proximal Policy Optimization (PPO) algorithm to facil-
itate an end-to-end learning process for this non-differentiable decision-making
framework. Extensive evaluations on four popular baseline models demonstrate
that our Ada-K routing method significantly outperforms conventional Top-K
routing. Compared to Top-K, our method achieves over 25% reduction in FLOPs
and more than 20% inference speedup while still improving performance across
various benchmarks. Moreover, the training of Ada-K is highly efficient. Even for
Mixtral-8x22B, a MoE-based LLM with more than 140B parameters, the training
time is limited to 8 hours. Detailed analysis shows that harder tasks, middle layers,
and content words tend to activate more experts, providing valuable insights for
future adaptive MoE system designs. The code and checkpoints will be released at
https://github.com/ivattyue/Ada-K.

1 INTRODUCTION

Over the past few years, the rapid development of Large Language Models (LLMs) (Brown et al.,
2020b; Raffel et al., 2020; Touvron et al., 2023a; Chiang et al., 2023) has marked a significant leap
towards Artificial General Intelligence (AGI). Generally, increasing the number of parameters in an
LLM enhances its performance across diverse tasks, demonstrating emergent capabilities (Kaplan
et al., 2020; Brown et al., 2020a). However, this improvement comes with substantial computational
costs for both training and inference, posing barriers to the broad application and efficiency.

In response to these challenges, the Mixture-of-Experts (MoE) (Jacobs et al., 1991; Eigen et al.,
2013) architecture has gained popularity as a scalable solution that balances parameter increase with
computational cost. MoE implementations in Transformers (Vaswani et al., 2017) have shown that
significant model scaling can be achieved without a proportional rise in computational burden, thus
maintaining efficient performance. These successes highlight the promising potential of MoE-based
LLMs (Jiang et al., 2024; Team; Dai et al., 2024).

The core of the MoE architecture comprises a set of expert networks governed by a routing strategy.
This routing strategy, executed via a learnable router (Fedus et al., 2022a; Du et al., 2022a), selectively
assigns each token to a limited number of experts. This sparse expert selection is pivotal for MoE
efficiency. The most common routing strategy is Top-K routing (Shazeer et al., 2017b). It selects the
best-suited experts for each input based on preliminary probability calculations, activating the top k
experts. Although recent studies (Zoph et al., 2022; Lewis et al., 2021a) have introduced adjustments
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to ensure more balanced activation across experts, a major limitation remains: the fixed activation
numbers does not account for the varying importances of different tokens.

The importances of tokens can vary significantly, potentially influenced by factors such as the different
demands of tasks (Rogers et al., 2021), the inherent characteristics of words (Schick & Schütze, 2020),
and the contexts in which they are used (Guu et al., 2020). This oversight of token differences can
lead to resource inefficiencies. Simpler tokens with minimal semantic significance may receive more
processing power than needed, leading to inefficiencies. Conversely, more complex tokens—those
representing critical information or requiring advanced logical reasoning—might not get adequate
attention. This misallocation of expert resources not only suboptimizes performance but also hinders
further improvements in computation efficiency.

To address the limitations of traditional Top-K routing in MoE models, we propose a novel, learnable
Ada-K routing strategy that adapts expert allocation based on each token’s inherent importance and
difficulty. Specifically, this strategy introduces a pluggable, lightweight allocator, easily integrable
into existing MoE-based LLMs. The allocator dynamically determines the optimal number of experts
for each token by sampling from the probability distribution it outputs over the possible expert counts.
However, this sample operation is inherently non-differentiable. Hence, we employ the Proximal
Policy Optimization (PPO) algorithm (Stiennon et al., 2020; Nakano et al., 2021) to optimize the
allocators end-to-end, towards ideal balance between model performance and efficiency.

We validate the effectiveness of our proposed Ada-K routing strategy by integrating it into four
popular MoE-based LLMs and assessing their performance across multiple benchmarks. Compared
to baseline models utilizing Top-K routing, our Ada-K routing consistently reduces the number
of activated experts by 30% to 40%, while simultaneously enhancing overall performance. This
reduction in expert activation directly translates to computational gains, achieving more than a 25%
reduction in FLOPs and a 20% speedup in inference time. Notably, this favorable balance is attained
with minimal additional training, requiring the tuning of only approximately 2M parameters, with
training times under 8 hours for all baseline models.

Furthermore, we conduct a detailed analysis of the Ada-K routing strategy at the task, layer, and
token levels. Our findings indicate that harder tasks, middle layers, and content words tend to activate
more experts, demonstrating the strategy’s ability to allocate computational resources efficiently
based on the importance of input tokens. These conclusions also provide valuable insights for future
adaptive MoE system designs. Our contributions are summarized as follows:

• An advanced dynamic routing strategy. We propose a dynamic Ada-K routing strategy
that adjusts the activated experts number on a per-token basis to enhance the conventional
Top-K routing. Compared to Top-K routing, Ada-K routing manages to save over 25%
FLOPs and achieve more than 20% acceleration in inference, while enhancing performance.

• An efficient RL-based training framework. We introduce a learnable and lightweight allo-
cator module that determines the optimal number of activated experts for each token through
end-to-end training. Reinforcement learning techniques have been carefully designed and
introduced to facilitate the training of this non-differentiable decision-making framework.

• Comprehensive quantitative and qualitative experiments. We extensively evaluate our
method across four popular MoE-based LLMs, ranging from 14.3B to 140B parameters.
Ada-K routing demonstrates consistent advantages over these baselines. The effectiveness
of our proposed method is further validated by extensive qualitative analyses.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS

The sparse Mixture-of-Experts (MoE) layer, which includes a predetermined number of experts and
a routing network, is initially introduced to enhance the capacity of deep neural networks for NLP
tasks in LSTM models (Shazeer et al., 2017a). This architecture is later extended to Transformers
(Lepikhin et al., 2020) and adapted for computer vision (Riquelme et al., 2021; Daxberger et al.,
2023), gaining popularity due to its robust scaling properties (Du et al., 2022b; Clark et al., 2022). In
the MoE framework, extensive research has focused on refining routing algorithms (Hazimeh et al.,
2021; Lewis et al., 2021b; Roller et al., 2021; Zhou et al., 2022). Approaches range from random
routing (Zuo et al., 2021) and activating all experts via weighted averages (Eigen et al., 2013), to
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Figure 1: Comparison of Top-K and Ada-K routing strategies for MoE: (a) In Top-K routing, each
token consistently selects a fixed number of k experts based on predefined model configuration. (b)
In Ada-K routing, each token dynamically activates a customized number of experts via our newly
introduced learnable allocator module.

selectively engaging a single or multiple experts (Fedus et al., 2022b; Du et al., 2022b). However, they
universally deploy a fixed number of experts, irrespective of the differing complexities of input tokens
(Lepikhin et al., 2020; Fedus et al., 2022b). In our study, we introduce a parameter-efficient and
data-efficient training framework that introduces lightweight learnable modules, i.e. allocators. These
allocators seamlessly work with routers to dynamically assign expert resources across individual
tokens. Our framework markedly reduces computational costs while achieving improved performance
compared to the baseline models.

2.2 REINFORCEMENT LEARNING IN LLMS

Recent advancements in Large Language Models (LLMs) have been significantly influenced by
Reinforcement Learning (RL). For instance, the Reinforcement Learning from Human Feedback
(RLHF) approach has demonstrated efficacy in aligning LLMs with human-centric values and
preferences (Bai et al., 2022; Ouyang et al., 2022; Cheng et al., 2024). This method involves training
a reward model (RM) that encapsulates human preferences and subsequently refining LLMs based on
the reward signals generated by the RM. Additionally, some studies (Lee et al., 2023; Xu et al., 2023;
Yue et al., 2024) have investigated the LLM-centric multimodal representation learning, utilizing RL
to improve the alignment between the semantic spaces of LLMs and visual concepts. Typically, they
often leverage the Proximal Policy Optimization (PPO) algorithm (Stiennon et al., 2020; Nakano
et al., 2021) to perform parameter optimization. In this work, we present a novel PPO-based training
framework tailored for MoE, a widely-used architecture in modern LLMs. This plug-and-play
framework seamlessly integrates with MoE models and its variants. We execute end-to-end agents
training via RL, with these agents tasked with resource scheduling for expert activation, thereby
significantly enhancing the inference efficiency.

3 METHOD

3.1 PRELIMINARY

We first provide a concise overview of the sparse Top-K routing MoE model. Structurally, an MoE
layer substitutes the feed-forward network (FFN) sub-block of the original Transformer layer with an
expert network comprising N experts E = {e1, e2, ..., eN} . For each token xi in the input sequence
X , the activation probabilities for each expert are determined via a router layer W :

P(xi) = Softmax (W · xi) (1)

with W ∈ RC×N being a lightweight, trainable projection matrix. Top-K routing MoE employs a
routing strategy where the k experts with the highest weights in P(xi) are selected. The weights of
the chosen experts are then normalized, while that of the remaining experts are set to zero, indicating
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their inactivity:

g(xi) =
P(xi)∑

j∈TopK(P) Pj
· 1i∈TopK(P) (2)

where 1i∈TopK(P) is an indicator function that is 1 if i ∈ TopK(P) and 0 otherwise. The final
output, derived from g(xi), is a weighted average of the k chosen experts:

MoE(xi) =

N∑
n=1

gn(xi) · en(xi) (3)

3.2 ADA-K ROUTING

In this section, we introduce the proposed Ada-K routing framework outlined in Figure 1. It enhances
the conventional Top-K routing by incorporating a novel component called allocator. The allocator
works synergistically with the original router to dynamically perform expert allocation for each token
xi. Structurally, the allocator is a lightweight, trainable linear layer, similar to the router, and is
responsible for determining the optimal number of experts k∗ for each token. The allocator takes xi

as the input and then produces a probability distribution over the possible number of experts:

Palloc(xi) = Softmax(Walloc · xi) (4)

Based on this distribution, k∗ is obtained through a non-differentiable sampling operation.

k∗ ∼ Palloc(xi) (5)

Subsequently, k∗ and xi are passed to the router, which then activates the top k∗ experts to produce
the weighted representations as described in Sec 3.1. However, direct optimization for these allocators
via backpropagation is precluded due to the non-differentiable nature of the sampling operation during
the forward pass. To address this challenge, we propose a RL-based optimization framework, which
will be detailed in the following section.

3.3 LEARNING STRATEGY

In our proposed framework, the entire training is specifically tailored to the newly introduced alloca-
tors, with the original LLM maintained in a frozen state to preserve its inherent capabilities.

The training objective is to enhance both performance and efficiency, which can be decomposed into
optimizing linguistic capabilities and minimizing the average number of activated experts. Regarding
linguistic capabilities, we design a PPO loss, which circumvents the need for differentiable action
sampling. Regarding the activated expert counts, we incorporate a regularization loss to minimize the
expectation value of the allocator’s output distribution.

PPO Loss. In the setting of RL, the allocator of l-th layer is considered as an agent with a
policy π parameterized by θl. We introduce a warm-start strategy to initialize θl, which will be
discussed later. The representation of xi at l-th layer is regarded as the state sl. The number of
activated experts ĉl, determined through sampling, serves as the action taken under policy πθl ,
i.e., ĉl ∼ πθl(·|sl). The objective is to maximize the expected return E[

∑L
l=1 γ

l−1R(ĉl, sl)] over the
policy π, where γ serves as the discounted factor, γ ∈ (0, 1], and L represents the number of layers
in the model. We define the reward as follows:

R(ĉl, sl) = logP(xi|x1, . . . , xi−1) · 1l=L (6)

where only the allocator at the last layer receives the log likelihood as the reward. In other words, the
expected return could be simplified as E[γL−1 logP(xi|x1, . . . , xi−1)]. Through the reward defined
in this way, maximizing the expected return is equivalent to minimizing caption loss in NLP. We
employ the PPO algorithm (Stiennon et al., 2020; Nakano et al., 2021) to optimize the policy within
the trust region for stable training. The RL loss function is formulated as follows:

LRL(θ) = −El [min (r(θl)Al, clip (r(θl), 1− ϵ, 1 + ϵ)Al)] (7)

where ϵ is a hyperparameter and clip function is introduced to constrain values within a specified
range. The importance sampling ratio r(θl) is formulated as follows:

r(θl) = πθl(ĉl|sl)/πθold
l
(ĉl|sl) (8)
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where θold
l is the policy parameters before update. In standard PPO algorithm, it needs another value

function to compute the advantage, which requires additional network and computations. Alterna-
tively, we apply the form of advantage function in reinforce with baseline algorithm (Sutton & Barto,
2018) formulated in Eq.(9), where the baseline is employed to reduce variance theoretically:

Al(ĉl, sl) =

L∑
m=l

γm−l [R(ĉm, sm)−R(c∗m, s∗m)] = γL−l [R(ĉL, sL)−R(c∗L, s
∗
L)] (9)

The superscript * denotes the baseline, which is define as default Top-K routing. There is no need of
gradients for action ĉl, reward R(ĉl, sl), advantage A(ĉl, sl), and old sampling probability πθold

l
(ĉl|sl),

only latest sampling probability πθl(ĉl|sl) needs to calculate gradient in training loss.

Activation Regularization Loss. The regularization loss reduces the activated expert counts by
optimizing the expectation of the distribution produced by every allocator:

Lreg(θ) =
1

L

L∑
l=1

N∑
n=1

n · Pθl(n) (10)

The final loss is a combination of the PPO loss and regularization loss, where λ is a hyper-parameter
to control the reduction degree of the activated expert counts.

L(θ) = LRL(θ) + λLreg(θ) (11)

Warm Start. Given the large decision space encompassing all expert counts, allocators require
an effective parameter initialization to mitigate instability and inefficiency caused by arbitrary or
incorrect choices. In this paper, we propose a warm-start approach "P-Warm" to pre-train the
allocators. This pre-training process utilizes the nucleus sampling (Holtzman et al., 2019) (i.e.,
Top-P) to generate pseudo-labels. Specifically, we first choose the minimal subset of experts whose
cumulative probability, as determined by the original router, surpasses the threshold p. As illustrated in
the Eq.(12), for a given token xi, the number of experts within the subset is denoted by ni(p):

ni(p) = argmin
k∈{1...,N}

∑
j<=k

P↓
i,j ≥ p (12)

where P↓
i,j represents the probability distribution arranged in descending order. For each baseline,

we compute the average expert counts across different p values using a moderate amount of token set
T . The p value whose average counts is closest to the default activation value is then selected.

p∗ = argmin
p

| 1
T

T∑
i=1

ni(p)− k|. (13)

Finally, for every token xj in the training dataset, we utilize nj(p
∗) as pseudo labels to facilitate the

warm start training of the allocators.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Table 1: Architecture details of four baseline models.

Config Mixtral Mixtral DeepSeek Qwen1.5
8x22B 8x7B MoE-16B MoE-A2.7B

Top-K 2 2 6 4
Shared Experts 0 0 2 4
Routed Experts 8 8 64 60
MoE Layers 56 32 27 24

Activated Params 39.0B 12.9B 2.8B 2.7B
Total Params 140.6B 46.7B 16.4B 14.3B

Model Settings. We verify the effective-
ness and universality of our proposed train-
ing framework on four prevailing MoE based
LLMs, i.e. Mixtral-8x22B (Jiang et al.,
2024), Mixtral-8x7B (Jiang et al., 2024),
DeepSeek-MoE-16B (Dai et al., 2024) and
Qwen1.5-MoE-A2.7B (Team). The archi-
tectural details of the four baseline models
are presented in Table 1. Mixtral-8x7B and
Mixtral-8x22B utilize a standard Top-K
routing strategy for all experts. Additionally, DeepSeek-MoE-16B and Qwen1.5-MoE-A2.7B classify
experts into shared and routed categories. Each token inherently activates all shared experts and
selects the Top-K experts from the routed categories. Ada-K is applicable to any routing-based
expert module. Besides, we keep the shared experts when present.
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Benchmark and Evaluation Details. Following previous works (Touvron et al., 2023b; Le Scao
et al., 2023; Li et al., 2023; Black et al., 2022), we employ the lm-evaluation-harness (Gao et al.,
2021) to evaluate our model. This tool serves as the backend for the HuggingFace Open LLM
Leaderboard (Beeching et al., 2023). Our model is assessed on 6 key benchmarks aligned with Open
LLM Leaderboard. We firstly examine the model’s accuracy across various benchmarks. Then, we
evaluate the computational cost with four metrics: average activated expert counts per token (Act),
activation reduction rate (Rate), total floating point operations (FLOPs), and inference time speedup
(Speedup). "Rate" is calculated as (1−Act/k)× 100%, where k represents the default activation
value. "Speedup" is the cumulative total across six benchmarks and "FLOPs" is measured by one
single sample with a length of 256. Refer to Appendix for additional details.

Table 2: Training overhead of four baseline models.

Baseline Model Total Trainable Training
Params Params Hours

Mixtral-8x22B 140.6B 2.75M 7.92h
Mixtral-8x7B 46.7B 1.05M 4.96h
DeepSeek-MoE-16B 16.4B 3.54M 1.79h
Qwen1.5-MoE-A2.7B 14.3B 2.95M 1.58h

Training Details. We adopt AdamW
(Loshchilov & Hutter, 2017) as the opti-
mizer. All baseline models are trained for
one epoch using a consistent set of 10k sam-
ples. The batch size and learning rate is set
to 64 and 1e-3, respectively. We leverage 2
PPO epochs for reinforcement learning. For
all four baseline models, we uniformly set λ
as 3e-3. This ratio prioritizes ensuring a suf-
ficient reduction rate, while guarantee a performance advantage over the original model. The training
overhead for is relatively efficient. As shown in Table 2, the trainable parameters for all baseline
models are on the scale of 1M, which is negligible compared to the total parameters. Additionally, we
present the training hours for the four baseline models. We employ 16 NVIDIA A800 GPUs to train
Mixtral 8x22B, whereas each of the other three utilizes 8 NVIDIA A800 GPUs. The training time for
all baseline models is limited to 8 hours. Further details can be found in the Appendix.

4.2 PERFORMANCE EVALUATION

Table 3: Performance for four baseline models across six benchmarks. Results using default Top-K
routing and our method are highlighted in brown and blue , respectively. Each arrow and its
associated numeric annotation indicate the performance disparity with the default Top-K baseline.

Method Accuracy Computation

ARC-C Hella MMLU GSM Truth Wino Average Act ↓ Rate ↑ FLOPs ↓ Speedup ↑
Mixtral-8x22B
Top-K (k = 1) 66.22 85.43 73.15 70.96 61.54 82.77 73.35 ↓5.80 1.00 50.0% 11.38T 1.39×
Top-K (k = 2) 72.70 89.08 77.77 82.03 68.14 85.16 79.15 2.00 0.0% 20.04T 1.00×
Ada-K 73.57 89.76 78.22 82.98 69.97 85.02 79.92 ↑0.77 1.31 34.4% 14.08T 1.31×
Mixtral-8x7B
Top-K (k = 1) 60.41 83.13 64.71 40.71 34.67 75.77 59.90 ↓7.68 1.00 50.0% 3.68T 1.35×
Top-K (k = 2) 66.72 86.48 70.39 58.38 41.25 82.24 67.58 2.00 0.0% 6.56T 1.00×
Ada-K 68.49 87.23 70.40 58.61 42.85 81.45 68.19 ↑0.61 1.40 30.0% 4.42T 1.28×
Qwen1.5-MoE-A2.7B
Top-K (k = 2) 51.88 77.99 59.20 14.21 38.87 70.11 52.04 ↓2.39 2.00 50.0 % 0.88T 1.25×
Top-K (k = 3) 52.78 78.69 60.65 14.78 40.96 72.20 53.34 ↓1.09 3.00 25.0 % 1.00T 1.14×
Top-K (k = 4) 54.69 79.45 61.30 15.62 42.50 73.00 54.43 4.00 0.0% 1.23T 1.00×
Ada-K 54.41 79.65 60.99 21.21 41.96 72.53 55.13 ↑0.70 2.58 35.5% 0.92T 1.22×
DeepSeek-MoE-16B
Top-K (k = 3) 51.37 78.33 40.11 12.59 30.16 72.22 47.46 ↓2.45 3.00 50.0% 0.96T 1.27×
Top-K (k = 4) 52.73 79.44 43.04 14.86 30.34 72.88 48.87 ↓1.04 4.00 33.3% 1.08T 1.18×
Top-K (k = 5) 52.39 79.71 44.00 15.30 30.92 73.72 49.34 ↓0.57 5.00 16.7% 1.20T 1.08×
Top-K (k = 6) 52.22 79.84 44.72 16.45 31.07 75.14 49.91 6.00 0.0% 1.36T 1.00×
Ada-K 53.44 80.24 44.98 16.86 31.83 75.92 50.55 ↑0.64 3.61 40.0% 1.00T 1.24×

For the four baselines, the relevant accuracy and computation metrics (detailed in Sec 4.1) are
reported in Table 3. Additionally, we present the metrics of the baseline models under a lower Top-K
activation level (e.g., k = 1 for Mixtral-8x7B) as a supplementary comparison. The implementation
of Ada-K routing leads to a significant and consistent improvement in accuracy across all baselines
compared to the default settings. This enhancement is particularly noteworthy, as models employing
Ada-K routing not only achieve these accuracy gains but also reduce FLOPs by over 25% and
accelerate inference by more than 20%, demonstrating a compelling balance between performance
and efficiency. We believe these results arises from a more effective expert resource allocation.
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4.3 ABLATION STUDY

In this section, we perform a comprehensive ablation analysis of the proposed training framework. It
should be noted that the conclusions are consistent across four baseline models. However, due to
space limitations, we uniformly present the numerical results based on Qwen1.5-MoE-A2.7B.
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Figure 2: Trade-off curve between perfor-
mance and activation reduction rate.

Trade-off between performance and activation re-
duction rate. We first investigate the trade-off be-
tween the activation reduction rate and model per-
formance. As detailed in Sec 4.1, the results in
Table 3 are based on a fixed value of λ (i.e., 3e-3)
in Equation 11. Actually, Ada-K could facilitates a
more flexible balance between accuracy and compu-
tational efficiency through it. By varying λ, we gen-
erate 15 data points to construct the trade-off curve
illustrated in Figure 2. The trade-off point in the
figure correspond to Table 3. Analysis reveals that,
prior to the trade-off point, accuracy declines grad-
ually with increasing activation reduction. However,
beyond this point, the rate of decline accelerates
sharply. Importantly, our method consistently sur-
passes the default Top-K model until the activation
reduction rate reaches approximately 44%. Compared to traditional Top-K routing, Ada-K provides
both adjustable flexibility and a more effective balance between performance and efficiency.

Table 4: Ablation study about the dynamic
routing. The results of default Top-K rout-
ing and our method are highlighted in brown
and blue , respectively.

Route Tuned Acc Rate

Top-K (k = 2)
✗ 52.54 ↓1.89 50.0%
✓ 52.85 ↓1.58 50.0%

Top-K (k = 3)
✗ 53.34 ↓1.09 25.0%
✓ 53.44 ↓0.99 25.0%

Top-K (k = 4)
✗ 54.43 0.0%
✓ 53.89 ↓0.54 0.0%

MoED (p = 0.3) ✓ 53.45 ↓0.98 32.4%
MoED (p = 0.4) ✓ 53.60 ↓0.83 28.6%

D2D (τ = 0.1) ✓ 53.73 ↓0.70 27.8%
D2D (τ = 0.2) ✓ 53.64 ↓0.79 31.5%

Ada-K ✓ 55.13 ↑0.70 35.5%

Effect of dynamic routing. To the best of our
knowledge, Ada-K is the first learnable dynamic
expert allocation strategy. In this section, we aim
to explore and validate the advantages of this pure
dynamic paradigm. Actually, as shown in Table
3, at comparable activation reduction rates, base-
line models with lower Top-K activation levels ex-
hibit a significant performance gap when compared
to Ada-K routing. To adapt these baseline mod-
els, which have reduced numbers of active experts,
to their new activation patterns, we fine-tune their
routers using the same 10K dataset as Ada-K. This
process effectively imparts a pseudo-dynamic qual-
ity to the static Top-K routing. Additionally, some
prior works (e.g., MoE-D (Huang et al., 2024) and
D2DMoE (Piórczyński et al., 2023) achieve quasi-
dynamic routing through fixed thresholds. They
determine the activation of each expert by compar-
ing the routers’ output against these thresholds. We
also include these methods in our comparison by reproducing them using their official code. The
results in Table 4 suggest that improving the adaptability of static routing leads to modest performance
gains relative to the original baselines. Additionally, threshold-based routing demonstrates a slight
advantage over static routing. However, these methods still fall significantly short compared to
Ada-K, highlighting the critical need for a dynamic and efficient expert allocation strategy.

Table 5: Ablation study about the activation
regularization methods. The results of default
Top-K routing and our method are highlighted
in brown and blue , respectively.

Method Acc Act Rate

Original 54.43 4.00 0.0%

As Reward 54.64 ↑0.21 2.56 36.0%
As Loss 55.13 ↑0.70 2.58 35.5%

Effect of activation regularization. In this sec-
tion, we explore different schemes for reducing ex-
pert activations. The related results are reported in
Table 5. Since the expectation of each allocator’s
output distribution is differentiable, it allows for
direct optimization via backpropagation (row "As
Loss"). So we choose it as the default method. Al-
ternatively, combining the language modeling likeli-
hood and the activate expert count of each token to
form a reward presents another viable strategy (row
"As Reward"). It introduces a reward-level trade-off
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where all training objectives are uniformly optimized through the PPO loss. For fair comparison, we
employ the same training data and ensure consistent activation reduction rates. The results indicate
that direct optimization of expectations yields marginally better performance than treating them as
rewards. However, the difference is not significant. It highlights the effectiveness and robustness of
Ada-K routing training.

Table 6: Ablation study about the training data
type. The results of default Top-K routing
and our method are highlighted in brown and
blue , respectively.

Data Type Acc Act Rate

Original 54.43 4.00 0.0%

Pretrain 55.78 ↑1.35 2.68 33.0%
SFT 55.13 ↑0.70 2.58 35.5%

Effect of training data. In this section, we exam-
ine the impacts of varying training data, i.e. pretrain
and supervised fine-tuning (SFT) data. For fair-
ness, each data type comprises 10k samples sourced
from prominent open-source corpus. We report the
training results in Table 6. The results indicate that
the training is not sensitive to the data domain. It
achieves comparable performance across two data
settings, demonstrating both the effectiveness and
robustness of Ada-K routing training. We detail
the collection and organization processes for two
types of data in the Appendix.

Table 7: Ablation study about the warm up
strategy. The results of default Top-K routing
and our method are highlighted in brown and
blue .

Strategy Acc Act Rate

Original 54.43 4.00 0.0%

✗ 54.18 ↓0.25 2.88 28.0%

K-Warm 54.97 ↑0.54 2.60 35.0%
P-Warm 55.13 ↑0.70 2.58 35.5%

Effect of warm up strategy. In this section, we
conduct an ablation study on different warm start
strategies. The results are reported in Table 7. If
no warm-up strategy is employed, the allocators are
initialized randomly (the second row). The K-Warm
strategy involves pretraining the allocators to con-
sistently output k. For P-Warm, as detailed in Sec
3.3, pseudo-labels are generated using a specific p
value. The findings indicate that both the K-Warm
and P-Warm strategies obviously surpass the perfor-
mance of the default baseline, whereas the random
strategy shows only comparable performance. It is
largely due to the pre-training mitigates the sam-
pling arbitrariness caused by random initialization,
facilitating the learning of more optimal strategies. Additionally, the more flexible warmup strategy
P-Warm yields marginally improved performances compared to the static K-Warm.

4.4 VISUALIZATION AND ANALYSIS

In this section, we provide a detailed analysis and visualization of the policies learned by the agents
(i.e., allocators) after training with Ada-K routing. Due to space limitations, we uniformly present
the numerical results based on Qwen1.5-MoE-A2.7B.

Expert resource allocation is more adaptive. We initially analyze the probability distribution
of activated expert counts per token: P(k) = r(k)∑N

n=1 r(n)
, where r(k) represents the number of

tokens activating k experts. The results for each benchmark are illustrated in Figure 3 using a
logarithmic scale for enhanced clarity. The analysis reveals: (1) The decision space available to
trained allocators ranges from 1 to the total number of experts, ensuring adaptive resource allocation.
(2) The training effectively reduces the activation levels of the majority of tokens to approximately 2 or
3. Concurrently, around 10% of essential tokens are identified and subjected to enhanced processing
by engaging more than the default number of experts. (3) The expert activation distribution differs
across benchmarks, demonstrating that the trained allocators are capable of adapting to diverse
domains and devise customized solutions accordingly.

Middle layers tend to activate more experts. As illustrated in Figure 4, variations in layer depth
consistently impact average expert activations across multiple benchmarks. Specifically, both the
shallow and deep layers utilize fewer experts, whereas the intermediate layers employ a higher number
of experts. We hypothesize that this can be attributed to the varying complexities at different stages
of processing. Shallow layers mainly engage in basic feature extraction, e.g. recognizing simple
syntactic patterns and semantic elements, which might generally necessitates minimal specialized
knowledge and thus reduces the requirement for experts. Conversely, middle layers might play a
pivotal role in more intricate tasks, including the integration of basic features into sophisticated
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Figure 3: Probability distribution curves of ex-
pert activations per token across six benchmarks.
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Figure 4: Curves of expert activations per layer
across six benchmarks.

representations, ambiguity resolution, and the comprehension of contextual nuances. These tasks
could likely benefit from a diverse array of specialized inputs, possibly necessitating a larger pool of
experts to enhance the processing robustness. In contrast, deep layers might primarily concentrate
on refining these integrated features and finalizing the output, mainly involving the application and
optimizing of processed information, which can typically be achieved with fewer experts.

Content words tend to activate more experts. To evaluate the impact of token attributes, we
statistically analyze both part-of-speech (POS) and expert activations for a total of 51 million tokens
across six benchmarks. To reduce variability due to randomness, our analysis only includes tokens
that occur more than 1,000 times within these corpora. POS tagging is performed using the NLTK
toolkit (Bird, 2006). We calculate average activations for prevalent POS categories, namely nouns,
verbs, conjunctions, adjectives/adverbs, and punctuation. The findings presented in Figure 5 suggest
that enhanced expert resource tends to concentrate on verbs and nouns, which are central to syntactic
construction and convey clear semantic meanings. In contrast, the expert activations on elements with
weaker semantic content, e.g. special symbols and conjunctions, are relatively less. This conclusion
largely substantiates the intuitive basis for our research motivation. The strategies learned by the
agents (i.e., allocators) tend to allocate more expert resources to tokens rich in semantic information,
allowing for thorough modeling. Conversely, tokens with weaker semantics require only minimal
expert resources for effective representation. This more rational resource allocation strategy benefits
both semantic understanding and computational efficiency.

Load balance is maintained. In this section, we investigate whether the previously established
expert load balance of the default Top-K model is maintained after fine-tuning with our Ada-K
routing. Intuitively, since the router that determines expert allocation remains frozen throughout the
training process, our framework is anticipated to minimally disturb the original load balance. We
assess the activation probability of each expert across six benchmarks, as illustrated in Figure 6. The
results demonstrate that the load on each expert remains nearly unchanged before and after training,
preserving a nearly uniform distribution.
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Figure 5: Average expert activation
number per token across different
parts of speech.
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Figure 6: Distribution curves of expert workloads before and
after Ada-K fine-tuning. The gray horizontal line represents
the uniform distribution of expert activations.
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Table 8: Average activated experts and accuracy
delta across tasks of varying difficulty levels.
∆Acc represents the absolute performance im-
provement compared to default Top-K routing.

Benchmarks Act ∆Acc

ARC-E 2.23 -0.40
ARC-C 2.84 +0.12

Collection 2.58 +0.70
BBH 3.43 +5.54

Table 9: The relationship between the ratio of
layers equipped with the allocator to all layers
and the corresponding metrics. The results with
default setting are highlighted in blue .

Ratio Training Training Acc FLOPsParams Time

0.125 0.37M 1.54h 54.98 1.19T
0.25 0.74M 1.55h 55.06 1.14T
0.5 1.48M 1.56h 55.15 1.04T
1.00 2.95M 1.58h 55.13 0.92T

Hard tasks tend to activate more experts. As shown in Table 8, we examine the effect of task
difficulty on activated expert counts across both intra-benchmark and inter-benchmark dimensions.
For both dimensions, we report the average number of activated experts and the performance gains
(relative to the default Top-K setting) of our method. For intra-benchmark dimension, we leverage
ARC, a multiple-choice question-answering dataset consisting of science exam questions for grades 3
to 9, we analyze two levels of task difficulty, namely Easy (E) and Challenge (C). For inter-benchmark
dimension, we compare the commonly used six benchmarks (detailed in Sec 4.1) with BBH (BIG-
Bench Hard) (Suzgun et al., 2022). BBH comprises 23 demanding tasks that require sophisticated
cognitive skills such as multi-hop reasoning, causal inference, and logical deduction, markedly
exceeding the difficulty of the collection of six benchmarks. The results indicate that model with
Ada-K routing activates more experts on harder tasks (i.e., 2.23 vs. 2.84 for intra-benchmark and
2.58 vs. 3.43 for inter-benchmark).

Furthermore, we discover that the model with Ada-K excels at handling challenging tasks. Specif-
ically, for the intra-benchmark dimension, our method demonstrates a moderate performance loss
compared to the baseline with Top-K routing in ARC-E. However, when the task difficulty is in-
creased to ARC-C, the model with Ada-K exhibits a performance advantage. Similar conclusions
are even more evident in the inter-benchmark dimension. This indicates that, when faced with highly
complex tasks, the flexibility of Ada-K in concentrating expert resources on key tokens enables more
effective modeling of the tasks, leading to improved adaptability.

Equipped more layers with allocator yields better performance. In this section, we investigate the
impact of varying allocator deployment ratios. By default, we integrate an allocator at each layer of
the baseline models. The relevant results are presented in Table 9. All selected layers are sampled
at equal intervals across the model. Our findings indicate that, due to the lightweight nature of the
allocators, even when all layers are equipped with them, the number of trainable parameters remains
minimal, resulting in only a negligible increase in time overhead. Moreover, while this effect does
not significantly impact accuracy in benchmark evaluations, equipping more layers with an allocator
clearly reduces computational overhead. Consequently, deploying allocators on a per-layer basis
emerges as the optimal choice, as it enables a more refined expert allocation strategy at each layer,
facilitating the scheduling of expert computations throughout the model.

5 CONCLUSION

In this paper, we present a novel Ada-K routing strategy for MoE-based LLMs, which dynamically
adjusts the number of activated experts based on token importance. Ada-K routing enhances the
balance between computational efficiency and model performance through a lightweight allocator
module optimized via PPO algorithm. Extensive evaluations demonstrate that Ada-K routing
significantly reduces expert activation by 30%-40% while improving benchmark performance across
various MoE-based LLMs. This reduction in expert activation directly translates to computational
gains, achieving more than a 25 % reduction in FLOPs and a 20% speedup in inference time,
showcasing practical efficiency gains for large-scale applications. Moreover, this method is highly
efficient, requiring minimal additional training, and can be easily integrated into existing MoE-based
LLMs with low training overhead. Our analysis also provides valuable insights into adaptive resource
allocation in large MoE models.
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A EVALUATION BENCHMARKS

Following previous works (Team; Jiang et al., 2024; Dai et al., 2024), we assess models across six
standard benchmarks utilizing the Eleuther AI Language Model Evaluation Harness, a comprehensive
framework designed to evaluate generative language models on a diverse array of tasks. These tasks
include AI2 Reasoning Challenge (ARC-C) (Clark et al., 2018), HellaSwag (Hella) (Zellers et al.,
2019), MMLU (Hendrycks et al., 2020), TruthfulQA (Truth) (Lin et al., 2021), Winogrande (Wino)
(Sakaguchi et al., 2021) and GSM8K (GSM) (Cobbe et al., 2021). In these evaluations, higher
scores indicate better performance. We selected these benchmarks because they assess a range of
reasoning abilities and general knowledge across multiple disciplines in both zero-shot and few-shot
scenarios.

Table 10: Details of benchmarks. We follow the setting of HuggingFace Open LLM Leaderboard.

Benchmark #shots # Samples Details

ARC-C (Clark et al., 2018) 25 2.59k A set of grade-school science questions.

HellaS (Zellers et al., 2019) 10 70k A test of commonsense inference,
which is easy for humans but challenging for SOTA models.

MMLU (Hendrycks et al., 2020) 5 14.9k
A test to measure a text model’s multitask accuracy.
The test covers 57 tasks including elementary mathematics,
US history, computer science, law, and more.

GSM8K (Cobbe et al., 2021) 5 8.5k Diverse grade school math word problems to measure a model’s
ability to solve multi-step mathematical reasoning problems.

TruthQA (Lin et al., 2021) 0 0.8k A test to measure a model’s propensity to reproduce falsehoods commonly found online.

WinoG (Sakaguchi et al., 2021) 5 44k An adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.

B IMPLEMENTATION DETAILS

In this section, we detail the training protocols of the proposed framework. The specific hyper-
parameter configurations for training are reported in Table 11. These protocols are applicable to all the
baseline models, utilizing 8 A800-80G GPUs. Throughout all training phases, we consistently conduct
a single epoch to prevent overfitting. The batch size per GPU is set at 8. Gradient checkpointing is
activated for both training phases to enhance memory efficiency.

Table 11: Additional training details.

Configuration Fine-tuning
Warm-Start PPO

Optimizer AdamW AdamW
Base LR 1e-3 1e-3
Precision bf16 bf16

Weight Decay 0.1 0.1
Batch Size 64 64

LR Decay Schedule cosine constant
Gradient Checkpoint True True

Training Epochs 1 1
Max Length 2048 2048
Threshold p 0.3 –

Regularization Coef – 3e-3
PPO Epoch – 2

C CHOICE OF λ

In this section, we present the trade-off curves obtained by scanning λ for the remaining three baseline
models. The patterns observed are similar: as the compression rate increases, the accuracy initially
decreases gradually, but the rate of decline accelerates thereafter. We uniformly select λ = 3× 10−3

as the optimal balance point across all models.

D TRAINING CURVES

In this section, we present the advantage and loss curves of four baseline models during training,
which are calculated according to Eq.(9) and Eq.( 11), respectively. Generally, a consistent trend
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Figure 7: Trade-off curve between perfor- mance and activation reduction rate for other three baseline
models.

across all four MoE models is observed: a gradual decrease in loss and an increase in advantage over
the course of training. This suggests that the models effectively explored and adopted more optimal
strategies, leading to higher rewards.

(a) Qwen1.5-MoE-A2.7B (b) DeepSeek-MoE-16B

(c) Mixtral-8×7B (d) Mixtral-8×22B

Figure 8: Loss and advantage curves for four baseline models

E TRAINING DATA

Table 12: Datasets used for training. We collect data from various sources to empower the model
with a broad spectrum of linguistic capabilities. We ensure that all datasets are publicly available in
the community.

Usage Source #Sample

Supervised Fine-tuning Alpaca GPT4, UltraChat 200k, LIMA, OpenPlatypus 10.2kCodeAlpaca 20k, Wiki QA, MathInstruct

Pretrain Wiki Demo, RedPajama V2, Wikipedia, StarCoder 10.1k

16



Published as a conference paper at ICLR 2025

In this section, we introduce the data utilized in our training. For default setting, we employ a
dataset comprising 10k randomly sampled from mainstream public supervised fine-tuning datasets.
Additionally, the sources of the pretrain corpora used in the ablation experiments are also reported
in Table 12. All these data are widely employed in the training of prevalent LLMs (Touvron et al.,
2023a; Taori et al., 2023; Chiang et al., 2023).
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