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Abstract

Greedy Equivalence Search (GES) is a standard score-based causal discovery
algorithm that searches over Markov Equivalence Classes (MECs). Its efficient
implementation applies local MEC operators without enumerating all Directed
Acyclic Graphs (DAGs), and is sound and complete under score-equivalent criteria
such as BIC. We show that this version can fail for non-score-equivalent criteria
and propose SGES to address this issue. SGES samples DAGs from the MEC at each
step of forward and backward search and scores candidate operations individually.
This lets non-score-equivalent criteria exploit directional information, with the
sampling rate interpolating between efficient and original GES. We perform initial
experiments to show SGES finds more accurate causal structures than GES when
score equivalence is violated, and outline future directions for a PAC-style SGES.

1 Introduction

Discovering causal relationships is a central scientific problem. Controlled experiments are the gold
standard but are often expensive, ethically problematic, or impossible, so researchers typically rely on
observational data, motivating work on causal discovery from such data. Causal discovery methods
fall into two main categories: constraint-based approaches which use conditional independence tests
to eliminate causal edges and, score-based approaches, which search for the graph maximizing a
scoring criterion. A canonical score-based method is Greedy Equivalence Search (GES) [2]], which
uses criteria such as the Bayesian Information Criterion (BIC) [15] to measure how well a graph
explains the data. As the number of possible graphs grows super-exponentially in the number of
variables, exhaustive enumeration quickly becomes infeasible and necessitates the need for efficient
algorithms. Chickering [2] therefore proposed an efficient version of GES that searches over Markov
equivalence classes (MEC) — sets of directed acyclic graphs (DAGs) encoding the same conditional
independencies. This efficiency relies on the score equivalence assumption: all DAGs within the
same MEC receive the same score, enabling search over equivalence classes instead of DAGs.

Recent work has introduced scores that allow for identification of causal structures beyond the MEC
under additional modeling assumptions [6, 9, [11} [7]. These often exploit asymmetries between
predicting effects from causes and vice versa. While such scores have been used within efficient
GES with empirical success [6}12]], they are not score-equivalent and do not preserve its theoretical
guarantees. We address this by extending GES to non—score-equivalent settings in a theoretically
consistent way. Our Sampling-based GES (SGES) integrates the polynomial-time DAG sampling
algorithm of Wiendbst et al. [[18] into the search, sampling DAGs from the current MEC and using the
highest-scoring DAG to guide transitions between neighboring MECs. Our preliminary experiments
show SGES consistently recovers higher-quality causal structures than standard GES in these settings.
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2 Background and Notation

We consider m continuous-valued random variables X = {X3,..., X,,} with joint distribution
P(X). As required by GES, we assume causal sufficiency (no unobserved confounders) and acyclicity,
so causal relationships among X" can be represented by a causal DAG Gy, where nodes are variables
and directed edges between variables correspond to direct causal influences. We denote the causal
parents of X; with pa;, and assume the causal Markov and faithfulness conditions [13]]. Together
these imply that two (conditionally) independent variables in P(X) will not be connected by an
edge in Gyx. The true DAG Gx belongs to a Markov equivalence class (MEC) £(G x), which
contains all DAGs with the same skeleton—the undirected version of the graph—and the same set
of v-structures, i.e., triples (X,Y, Z) where Y has incoming edges from both X and Z, and X and
Z are non-adjacent. A MEC can be represented by a completed partially directed acyclic graph
(CPDAG), in which an edge is directed if its orientation is invariant across all members of the MEC,
and undirected otherwise.

Given an i.i.d. sample X of size n from P(X’) with |X| = n under aforementioned assumptions, GES
searches for MEC £* with Gx € £* such that,

& = argmaxS(X;E) .
Eeglm™

where £(™) denotes the set of all possible MECs over m variables and S is a scoring criterion that
evaluates how well a given MEC € reflects conditional independencies in X. To do so, GES performs
a two-phase greedy search. Starting with a DAG containing no edges, it iteratively adds edges in
a forward phase to increase the score until no improvement is possible, followed by a backward
phase that removes edges to further optimize the score. In particular, let £y be the MEC at the current
step of GES. Let Gy = {G | £(G) = &}, and let Sy = arg maxgeg, S(X; G). In forward (resp.
backward) phase GES evaluates all possible valid edge additions (resp. deletions) to find the next best
MEC &,. It calculates gain associated with an add (resp. remove) operation ) € ¥ as,

5(¢)=én6ag§5(X;G@w)—So, (1)

where G @ 1 is the DAG after applying ¢. Let ¢)* = argmax,cg, d(¢) with §(¢*) > 0, GES
computes the next G as G & *, its corresponding score S and the new MEC &, = E(G.).

Despite its greedy nature, GES asymptotically converges to the correct MEC under a consistent S
such as the BIC [15]].

Evaluating Eq. (I) requires exhaustive enumeration of DAGs within &, at each step and quickly
becomes infeasible due to exponential growth of search space as number of variables increases. To
circumvent this Chickering [2]] proposes an efficient search scheme which works for score-equivalent
criteria like BIC [15]]. A criterion is considered score-equivalent if S(X; G) = S(X; H) VG, H € £
for any MEC €. Under score-equivalence Chickering [2] introduces the INSERT resp. DELETE
operators such that the score change for each edge addition resp. removal can be directly evaluated
on CPDAGs. This bypasses exhaustive enumeration and allows for a faster traversal of search space
and still preserves consistency guarantees.

The efficient search however, comes at the cost of restricted identifiability. It renders efficient GES
unsuitable for scores that exploit additional assumptions on causal mechanisms, such as additive noise
[L6}[14] or non-linear functional relationships [SL9] to give identifiability beyond MEC [6}10L 1147} (8]].
While existing work has applied non score-equivalent criteria within GES [6} [12]] with empirical
success, we show next that this can violate the consistency guarantees of efficient GES.

3 GES for Non-Score-Equivalent Criteria

Consider three variables A, B, C' and their corresponding underlying DAG resp. CPDAG shown in
Fig. |1} Let S be any consistent but non-score equivalent criterion [6} [11]. Assume that GES using
S discovers the correct CPDAG at the end of its forward search phase. Moving to the backward-
search, GES evaluates whether or not the edge between B and C should be removed. This can be
evaluated in two different ways, namely DELETE[B — C|{A}] (meaning we delete B as a parent
of C, while keeping A as a parent) or DELETE[C — B|{A}]. For a score-equivalent criterion this
makes no difference because the max operator in Eq. (1) trivially simplifies to a single computation.



Figure 1: A directed acyclic graph over three variables (left), and its equivalent CPDAG (right).

Things, however, behave differently with S: the first operation DELETE[B — C|{A}] results in
deletion of a true parent of C', subsequently worsening the score, whereas the second operation
DELETE|[C — B|{A}] implies deleting a redundant parent of B and would improve the score.
Whether or not the edge between B and C' is removed depends on which DELFETE operator is used
to test this edge. This demonstrates that efficient implementations of GES may give a different result
depending on which DELETE(-) operator is chosen may not necessarily remain consistenlm

To make GES compatible for S, ideally we must compute Eq. (1) exactly by enumerating all DAGs
within a MEC. But we already know that this quickly becomes computationally prohibitive. As a
middle ground, we propose a sampling-based alternate — compute Eq. [T approximately by sampling
a user-specified fraction of DAGs for each 1. Formally,

5(¢) = max S(X; G &) — Sy )
GeGo

with Gy C Go. Defining Eq. (Z) in this way allows us to naturally interpolate between the efficient
and original GES. We refer to this new variant as Sampling GES (SGES).

To achieve this goal we can use any existing algorithm for sampling DAGs within a given MEC. We
propose to use the algorithm of Wienobst et al. [[18]] due to its polynomial time-complexity in contrast
to similar approaches having an exponential worst-case [4}[17, (1| 3]. The modularity of our proposed
approach makes it straightforward to implement and allows us to directly incorporate the sampling
procedure in any available implementation of GES. In the following, we implement our proposed
modification and analyze initial results.

4 Results

We implement SGES in Python, using the implementation of GES in causal-learn library [19]. We
directly incorporated the polynomial-time sampling algorithm from Wiendbst et al. [18] into the
forward and backward phases of GES. At each forward resp. backward phase step, we approximate
Eq. (1) using Eq. (Z). We generate a variety of synthetic data involving variables following linear,
polynomial, Gaussian process, randomly initialized Neural networks, and Sigmoid relationships
with independent additive Gaussian noise. We consider graphs of sizes m € {5,7,10}, evaluate
sample sizes n € {200, 500, 700, 1000} and measure performance on varying DAG sampling rate
f€{0,0.05,0.1,0.2,0.3}, where f = 0 means that we run the efficient GES.

We consider one score-equivalent criterion BIC [[15] and one non-score equivalent criterion, MDL
score of Mian et al. [[L1]] in our evaluation. We use BIC as a test-case to show that it may not behave
as a score-equivalent criteria for non-linear causal mechanisms and can still benefit from a sampling-
based procedure — a conclusion that we confirmed holds in our experiments. We evaluate the
goodness of discovered causal structures using the Structural Hamming Distance (SHD) which counts
the number of edges where the predicted causal graph differs from the true graph. For comparability
across different network sizes, we normalize SHD to be between 0 and 1 by dividing it by m(m — 1).

We report the results for different causal mechanisms in Fig. [2] where, with an exception of linear
mechanisms, we see a performance improvement going from GES to SGES for both BIC and MDL
scores. While the improvement for MDL is expected based on our theoretical understanding of
Eq. (I), we observe that BIC also benefits from a sampling-based procedure for non-linear case. This
is because for the latter case, the model itself does not stay score-equivalent and results in a model
misspecification for BIC. This in turn, is alleviated by the use of sampling. For the linear-case, since
score-equivalence holds within the model, we do not see any improvement between GES and SGES.

'We could construct a similar example using INSERT but we find the DELETE example more intuitive
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Figure 2: [SHD Lower is better] for random graphs of sizes m € {5, 10,15}. SGES improves over
efficient GES for all cases involving non-linear causal mechanisms.
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Figure 3: [SHD Lower is better] for random graphs of sizes m € {5,7,10}, sampling rate f €
{0,0.05,0.1,0.2,0.3}, and sample sizes n € {200, 500, 700, 1000}. (Left) Average SHD’s for MDL
resp. BIC scores with (dark color) sampling and without (light) sampling inside GES. (Middle)
Change in SHD as we increase the sampling frequency. We see that introducing sampling improves
performance. (Right) Changes in SHD with increasing n, performance improves as n increases.

For performance across varying graph sizes, we see in Fig. [3| that SGES improves over GES in all
cases. Our initial experiments further show that increasing the number of sample for Gy (ref. Eq. (2))
improves both BIC and MDL scores. The improvement however is more profound for the MDL
score as sampling increases the likelihood of evaluating the neighbouring states using the correct
candidate. We observe a similar trend as the number of samples used for causal discovery increases;
specifically, a higher sampling rate and a larger sample size lead to better performance.

5 Outlook and Conclusion

In this preliminary work, we identified a key limitation in current GES implementations: their handling
of non-score-equivalent criteria and the theoretical mismatch that arises when such criteria are used.
As an initial step toward addressing this gap, we proposed a sampling-based variant, SGES, which
samples a subset of DAGs from the MEC at each search step and evaluates the score using the best
DAG in the sample, in spirit similar to the original GES formulation. Our experiments over diverse
settings, show that SGES consistently outperforms GES, producing causal graphs that more closely
match the ground truth. While these results are promising, they mark only the beginning of a broader
research direction.

A clear drawback of SGES is its increased runtime due to the additional DAG sampling step. Although
partial mitigation is possible through score caching, future work will focus on improving sampling
efficiency. A natural extension is to replace uniform DAG sampling with an adaptive sampling
strategy that leverages prior information from the score function itself. That is, sampling graphs
with higher-scoring parent sets more frequently. Such priors could enable SGES to achieve the same
performance as uniform sampling with a lower sampling rate, reducing computational overhead.
Moreover, they could pave the way for a PAC-style version of SGES for certain additive-noise-based
scores [[L1}[12}[7], further narrowing the gap between theoretical guarantees and practical performance,
and is our current line of ongoing work.
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