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Abstract

Curriculum learning (CL) is an essential part of human learning, just as reinforce-
ment learning (RL) is. However, CL agents that are trained using RL with neural
networks produce limited generalization to later tasks in the curriculum. We show
that online distillation using learned informative rewards tackles this problem.
Here, we consider a reward to be informative if it is positive when the agent makes
progress towards the goal and negative otherwise. Thus, an informative reward
allows an agent to learn immediately to avoid states which are irrelevant to the task.
And, the value and policy networks do not utilize their limited capacity to fit targets
for these irrelevant states. Consequently, this improves generalization to later tasks.
Our contributions: First, we propose InfODist, an online distillation method that
makes use of informative rewards to significantly improve generalization in CL.
Second, we show that training with informative rewards ameliorates the capacity
loss phenomenon that was previously attributed to non-stationarities during the
training process. Third, we show that learning from task-irrelevant states explains
the capacity loss and subsequent impaired generalization. In conclusion, our work
is a crucial step toward scaling curriculum learning to complex real world tasks.

1 Introduction

Deep Reinforcement Learning (DRL) has recently shown good results on various real-world problems
(Akkaya et al., 2019; OpenAI, 2018; Silver et al., 2017; Tan et al., 2018; Becker-Ehmck et al.,
2020). Many of these methods rely heavily on curricula (e.g., via self-play or automatic domain
randomization). Considering the importance of curricula to human learning (Skinner, 1958; Peterson,
2004; Dapena, 2002), it is natural to expect further advances from improved curriculum learning.
Manually constructing a curriculum for each task is difficult, and automated curriculum learning
methods have thus seen a resurgence in current research (Schmidhuber, 1991; Bengio et al., 2009;
Schmidhuber, 2012; Portelas et al., 2020). However, these methods have failed to reach their potential
due to a host of reasons, including restricted task search spaces, inadequacies of exploration, and
failure of models to continually learn and generalize to more complex tasks in an open-ended fashion
(Wang et al., 2019; Jabri et al., 2019; Florensa et al., 2018).

Recent work suggests that the use of DRL in CL would produce limited generalization to downstream
tasks, not only due to non-stationarities inherent in DRL methods (Igl et al., 2021) but also due to the
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distribution shifts induced by the curricula. Igl et al. (2021) identify policy updates, the consequent
value updates and bootstrapping as three major sources of non-stationarity inherent in DRL. Kumar
et al. (2020) show that bootstrapping, in particular, leads to a capacity loss in the neural networks
used to approximate the policy or value. Lyle et al. (2022) ascribe this issue particularly to the
non-stationarity in the target values as the policy improves during the learning process. These works
use an estimate of the rank of the feature matrix in the penultimate layer of the value network to study
this capacity loss phenomenon. They attribute the impaired learning to the reduced discriminative
power of the value networks while training. A lower feature rank would imply that the network
cannot distinguish between as many states as it has the capacity for, i.e., the network suffers from
state aliasing. However, we contend that this is not just because of the changing output values, but
also due to the diversity of inputs seen during exploration. This may sound counterintuitive, since
exploration is fundamental to learning. We argue that while exploration helps us learn what to avoid,
it is often unnecessary to model the failure modes given limited network capacity. In many cases, it
is simply sufficient to know an approach is wrong without knowing why. Furthermore, it could be
detrimental if exploration induces the agent to alias states that are important for later tasks. Thus,
distillation methods (similar to (Igl et al., 2021; Siripurapu et al., 2020)) can be used to relearn the
task without spending too much capacity on known failure modes.

Exploration in RL is exponentially hard with respect to the task horizon. Lee et al. (2021) learn a
proximity function from expert demonstrations in goal-reaching tasks and use the differences of the
function to produce a reward. They show that such a function easily generalizes to unseen states and
is particularly useful for imitation learning in data-limited regimes. Building on this work, we find
that such learned informative rewards – corresponding to a notion of progress towards the goal – act
as an inductive bias for RL agents in learning representations that generalize well to more complex
downstream tasks in CL. Ideally, a maximally informative reward helps to illuminate the optimal
action for a state immediately, reducing the task horizon to 1. This reduces the task complexity to be
quadratic in the horizon, and therefore reduces the number of task-irrelevant states the agent visits
while learning. Thus, suggests a simple way to reduce irrelevant information learned by the agent,
similar to regularization methods (Hochreiter and Schmidhuber, 1994). We therefore attempt to learn
such an informative reward function from demonstrations. We then use this learned reward to train
an agent with better state representations. Fig. 1 gives a brief overview of our setting.

To summarize our contributions:

• We propose InfODist, a new online distillation method using informative rewards that
improves curriculum learning.

• We find that using informative rewards improves utilization of capacity, as measured by the
rank of the value network’s features in the penultimate layer.

• We find that avoiding learning from task-irrelevant states explains the improved capacity
utilization.

2 Background

In the following section, we describe related work, explain how our method differs from prior work
and provide a short summary of the work we build upon.

Using a proximity functions as an informative reward. Lee et al. (2021) improve generalization
to unseen states in Imitation Learning (IL) by learning a proximity function. Essentially, they show
that learning a temporal distance measure from expert demonstrations, helps the learned reward
function to extract more information from the limited demonstrations, enabling it to generalize better
to unseen states. Furthermore, they compare the IL performance in settings where the demonstrations
are limited in diversity and show that their method outperforms other IL methods, including those that
learn from observations and also demonstrations in some cases. In our work, we use their proximity
function as an informative reward for online policy distillation in CL, to minimize task-irrelevant
exploration, and consequently non-stationarity during training. We show that distillation using such
informative rewards produces policies that generalize to unseen environments (particularly ones
containing unseen objects and action consequences) as opposed to rewards that generalize to unseen
states. Also, we use more complex procedurally generated grid worlds and adapt their method to
work in our setting.
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Figure 1: Curriculum stages with InfODist (a) and Effect of using informative rewards (b). The
stages of the curriculum are depicted in (a). Plain curriculum learning involves training on Env 1
and directly transferring to Env 2. To improve generalization, we use an Inverse RL step (Learns an
informative reward) and an online distillation step (Trains an agent from scratch using the learned
reward) on Env 1 to help improve learned feature representations. On the right, we show that doing
so improves results significantly in comparison with existing baselines that tackle non-stationarity
(Distill) and capacity issues (Capacity) in DRL. We find, that only InfODist learns to solve certain
hard exploration environments, while all other methods fail to learn at all. (The shaded region depicts
the min-max envelope of 3 seeds)

Role of non-stationarity in generalization. Generalization impairment due to non-stationarity has
already been well studied in both Supervised Learning (Ash and Adams, 2019) and Reinforcement
Learning (Igl et al., 2021; Fedus et al., 2020; Lyle et al., 2022; Steinparz et al., 2022). Igl et al. (2021)
propose iterated network distillation as a solution to tackle any non-stationarity that arises in the
context of DRL. However, using iterated distillation can erase information about failure modes that
are learned by the policy during the early stages of training. This is because later distillation stages
rely on replay-buffer data that may no longer contain the initial learning phases. While it is valid to
lose the detailed modelling of the failure modes, we still need to know what to avoid. Furthermore,
naive distillation could force the network to overfit to the training task (by making strong assumptions
given the limited data) and consequently impair generalization to more complex downstream tasks.
Our generalization experiments suggest this is indeed the case. Hence, we propose to use an online
distillation by learning a task-irrelevant-exploration-minimizing reward function that provides both
positive and negative reinforcement, i.e., the agent learns both what to do and what to avoid.

Measuring network capacity using feature rank. Kumar et al. (2020) showed that it is possible to
observe the adverse effects of bootstrapping by looking at the rank of the features in the penultimate
layer of the value network. Lyle et al. (2022) use similar methods to show that this is due to
distribution shifts (concept shifts in particular). First, using the ability to fit random targets, they show
in the supervised setting that networks iteratively trained on randomly sampled conditional target
label distributions (concept shifts) exhibit increasing loss with further iterations (negative forward
transfer). However, when the network is sufficiently large (over-parametrized regime), they show
that this effect is reversed, and positive forward transfer is observed. Furthermore, Lyle et al. (2022)
shows that we are usually in the under-parametrized regime in DRL, and the networks exhibit the
expected negative forward transfer to random targets. Second, they use a feature rank measure to
show a positive correlation between training performance and feature rank and find that methods that
use a dense reward improve feature rank and performance.

While our results corroborate these findings, we further find that it is not merely the reward’s density
but rather the reward’s informativeness that significantly improves the feature rank. Further, we show
that informative rewards reduce the number of irrelevant states visited by the agent, leading to better
capacity utilization and feature rank. We also go on to demonstrate its impact in the curriculum
learning setting, where we obtain significantly better generalization compared with methods that
merely alleviate distribution shifts using distillation. Furthermore, we also use a slightly different
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version of feature rank that not only considers non-zero singular values but rather the uniformity of
the singular values by using an entropy formula (Roy and Vetterli, 2007). Lyle et al. (2022) adapt
a method from continual learning, which they call InFeR. InFeR adds multiple linear heads to the
penultimate layer and trains these heads to predict the same values that the augmented network
does at initialization. This tends to behave as a regularization that prevents the rank from collapsing
lower than the number of heads used. While this method does work as intended, we also show that
preventing rank collapse is insufficient for improving generalization to downstream tasks.

Minimizing exploration for bootstrapping RL. Jump-Start RL (JSRL) (Uchendu et al., 2022) is
a recent method that proposes to accelerate RL by producing a starting state distribution very close to
the goal state and then moving away from the goal during training. They mainly address to offline RL,
followed by the online fine-tuning setting (i.e., the task does not change or increase in complexity).
They show that using a guiding policy during online fine-tuning in the limited data regime performs
significantly better than other IL and RL baselines. However, they do not directly address the transfer
problem in curriculum learning. We show that JSRL indeed transfers well because of its ability to
reduce task-irrelevant exploration, but it does not perform as well as InfODist.

Informative reward functions with return equivalence. RUDDER (Arjona-Medina et al., 2019;
Patil et al., 2022; Dinu et al., 2022; Holzleitner et al., 2020; Widrich et al., 2021) learns to assign
credit such that the expected sum of future rewards is zero under the current policy. RUDDER uses a
lessons buffer to store trajectories from the current policy or an expert to learn a reward redistribution
that satisfies return equivalence. Return equivalence ensures that the reward redistribution does not
modify the task specified by the original MDP. In contrast, we relax this constraint but rely on the
generalization ability of neural networks to capture the task definition from the expert trajectories.
While we lose guarantees that the learned reward accurately represents the task defined by the original
reward function, we argue that for most real-world tasks, it is incredibly hard to define a reward
function that accurately represents the desired behavior. Hence, we justify relaxing this constraint, to
allows us to redefine the reward and make learning easier (minimize states visited). Furthermore,
in our setting, we consider only goal-reaching tasks in the curriculum and do not require return
equivalence. Our experiments use the proximity function as our informative reward function.

To summarize, we conclude that the problem we address has not been dealt with in prior work, and
our results provide a novel insight into improving generalization in CL.

3 Methodology

In this section, we first formalize the problem setting, then we discuss how we learn the informative
reward, and finally, we describe the baselines used to substantiate our claims.

3.1 Preliminaries

Here, we formalize our problem setting. We define the MDP M as the six tuple (S,A,R, P, ρ0, γ),
where S and A are the state and action spaces respectively. R : S ×A× S → R is a scalar reward
function. P (st+1 | st, at) represents the transition probability distribution. ρ0 is the initial state
distribution and γ ∈ [0, 1) is a discount factor commonly used to ensure that the discounted sum of
rewards converges given an infinite horizon. For the experiments, however, we use a fixed horizon H .
A policy πθ(at | st) is the distribution of actions taken by an agent in each state st of the MDP, which
is commonly approximated using a deep neural network parametrized by θ. The learned informative
reward function Rinf

ϕ (st, at, st+1), is parametrized by ϕ. It suffices to say that an informative reward
is one that tells the agent what to do at every state immediately, i.e. moving temporally closer to the
goal produces a positive reward without delay or otherwise a negative reward. In other words, we
expect that the reward captures the notion of progress towards the goal (see Fig. 2). Such a reward
ensures that visiting task-irrelevant states is immediately penalized.

We assume we have a minimal curriculum of two task MDPs M1 and M2. Both of them are assumed
to be goal reaching tasks and M2 is a more complicated version of M1, in that:

a) It contains objects that are not seen, and or necessitates actions that are not used in M1.
b) Only agents which solve M1 are even capable of solving M2 in a reasonable time frame.

4



Our assumption ensures that M2 as defined necessitates a CL method (barring the use of manually
engineered rewards). To test for generalization, we train the agent first on M1, followed by transfer
to M2 (it should also work for M3,M4...). Ideally, we want the environment to be complex enough
for it to possess diverse task-irrelevant information and to also induce the state aliasing effect. For
simpler environments, we find all baselines have very similar performances, making it difficult to
analyze the phenomenon that we are interested in.

3.2 Learning informative rewards

Next, we describe how we can learn the informative reward that we need to minimize exploration.
Lee et al. (2021) define the proximity function fϕ(st), as an exponential of the temporal distance
(T − t) to the goal fϕ(st) ∼ δ(T−t), δ ∈ (0, 1), i.e. 1 if close to the goal and 0 if far away. They
take differences of such a function as a reward Rinf

ϕ (st, at, st+1) = fϕ(st+1)− fϕ(st). Hence, their
reward corresponds to the notion of progress towards the goal and helps us to minimize exploration.
The proximity function corresponds to a value function when the goal has a reward 1, using a discount
γ = δ. Hence, this is similar to RUDDER’s notion of informativeness, which also proposes taking a
difference of the value function.

Additionally, Lee et al. (2021) use an ensemble of K proximity functions fk
ϕ (st) and add an un-

certainty penalty Uϕ(st+1) :=
√

Var[fk
ϕ (st+1)] to prevent the agent from visiting states where the

proximity function variance is high.

Rinf
ϕ (st, at, st+1) = fϕ(st+1)− fϕ(st)− λUϕ(st+1)

Furthermore, they continue training the proximity function to estimate 0 for the student’s states, since
the limited expert trajectories are not sufficient to learn such a function fully on states not visited by
the expert. Hence, they propose the following loss:

Lϕ = Eτe
i ∼De,st∼τe

i

[
fϕ (st)− δ(Ti−t)

]2
+ Eτ∼πθ,st∼τ [fϕ (st)]

2
,

where De is the expert dataset and τei is a trajectory sampled from it. Unlike IL, we have access to
the goal termination conditions for both tasks, to make use of during the online distillation. Hence,
we modify this loss function to include successful samples from the student to expedite learning on
the procedurally generated environments that we use.

Lϕ = Eτe
i ∼{De,Dπθ

s },st∼τe
i

[
fϕ (st)− δ(Ti−t)

]2
+ Eτ∼πθ,st∼τ [fϕ (st)]

2
,

where Dπθ
s is the set of successful trajectories sampled by the student πθ. To conclude, we use

the proximity function as our informative reward function, since it captures this notion of progress
towards the goal (see example in Figure 2). Any path that leads to failure modes or irrelevant states
would produce an immediate negative reward and consequently allow our agent to avoid visiting such
states.

3.3 Baselines and Implementation

In this section we describe the baselines, how we adapt them to CL and finally why we chose them.
To evaluate the advantages of using an informative reward for improving transfer in CL, we consider
three baselines apart from Sparse, which is vanilla CL (because it uses a sparse reward to train on
M1). It involves simply training an RL agent on M1 and transferring it to M2.

First, we have Iterated Relearning (ITER) (Igl et al., 2021), which we refer to as Distill to better
distinguish methods. ITER is explicitly designed to handle non-stationarity in DRL via iterated
distillation. Their distillation process combines both offline loss terms with behavioral cloning (BC)
terms, where the BC terms are annealed to zero over the distillation process. We can see this as offline
distillation in contrast to our method. The student is then hot-swapped with the teacher during training
on M1 and thus at the end of training, we have an agent that has experienced less non-stationarity
overall. We then transfer this agent to the more complex tasks corresponding to M2 to evaluate how
well it transfers. We specifically chose this baseline because it addresses non-stationarity directly
rather than exploration. This should help us rule out whether it is purely a non-stationarity problem.
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(a) (b)

Figure 2: What is an informative reward? While dense rewards may have spurious optima, an
informative reward is positive when the agent makes progress towards the goal and negative otherwise.
Taking the differences of the scaled Manhattan distance from each tile to the next tile (right) produces
an informative reward for the agent.

Second, we have Initial Feature Regularization (InFeR) (Lyle et al., 2022), which we refer to as
Capacity. In InFeR, the authors adapt a method based on Benjamin et al. (2018) designed to tackle
catastrophic forgetting. They apply an l2 penalty on outputs from a set of auxiliary network heads
such that the outputs do not change from their values at the start of training. This protects the network
from the rank collapse phenomenon, (Kumar et al., 2020) (see Fig. 5) as the penultimate features are
forced to have projections along each independently initialized linear head layer. We performed a
hyperparameter search to identify the combination of the number of heads, an amplification term β
and a loss weight α that achieves comparable performance on M1. Then we transfer this agent to M2

where we use plain PPO to evaluate the learned features. We chose this baseline because it addresses
network capacity directly, without dealing with either non-stationarity or exploration. This helps us
rule out whether it is purely a capacity problem.

Third, we consider Jump-Start Reinforcement Learning (JSRL) (Uchendu et al., 2022), which we
refer to as Explore. We describe JSRL in more detail in Section 2. We modify their approach slightly.
They consider two settings, one where the roll-in is randomly sampled from [0, H) and another where
a roll-in schedule is fixed a priori to decrease during the training. We start with a fixed roll-in set
to a constant R = 10, and then reduce the roll-in for the next episode by 1 if the agent solves the
previous episode or increase by 1 if it fails. Also, we restrict the roll-in value to lie in range (0, R].
Using this, we have a natural curriculum for the roll-in, which is decided by the performance of the
agent directly. We thus train an agent in such a fashion on M1 and then transfer the learned weights
to a plain PPO agent on M2. We chose this baseline because it indirectly attempts to minimize
task-irrelevant exploration, without dealing with capacity. But it does add additional non-stationarity
to the task in the form of a moving initial state distribution. This should also help us understand to
what extent the problem is linked to exploration.

Finally, for all baselines and experiments, we train using an actor-critic method, PPO (Schulman
et al., 2017), which uses function approximators for both the value and the policy.

4 Experiments and results

In this section, we describe the three major experiments we perform and discuss the results obtained.

First, we construct challenging curricula using the MiniGrid environment (Chevalier-Boisvert et al.,
2022). In our case, for the first task M1, we consider the MiniGrid-MultiRoom-N2-v0 environment
(2-room), which consists of two procedurally generated rooms in a 13× 13 grid with the agent in the
first room and a green goal square in the second room. To reach the goal, the agent needs to learn
to navigate to the door, open it, and then move to the goal square within a horizon of 40 steps. For
M2, we consider a set of 6 different, more difficult versions of the 2-room environment, as shown in
Fig. 3. To make the tasks moderately challenging, for each of the environments, we set the horizon
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Figure 3: Multiroom curriculum. We first train the agent using various methods on 2-room (M1)
and evaluate the generalization capability of the learned policy by transferring them to 6 different,
more complex settings (M2) that involve picking up/dropping keys, boxes, balls and avoiding lava.
While merely adding a room can be seen as an extrapolation of the original 2-room setting, all the
tasks involve objects (lava, key, box, ball) or actions (pick, avoid, drop) that the agent has never seen
or taken before and hence measure generalization capability. The environments are procedurally
generated every episode, making this a challenging test.

based on the number of rooms, with 20 steps per room. Hence, all the 2-room environments have a
horizon for 40 and the 3-room environments have a horizon of 60.

The first experiment involves standard curriculum learning. We use a particular method to train on M1

and then evaluate generalization to M2 by initializing the agent with the weights trained on M1. We
always train three seeds and transfer the best performing seed. Thus, our first experiment (see Fig. 4)
tests how well each method above generalizes to the downstream task. In Fig. 4, we show that online
distillation with an informative reward produces the best downstream generalization in comparison
with all other methods. We observe that methods which indirectly reduce task-irrelevant exploration
like JSRL (Explore) come next. Methods which tackle non-stationarity like ITER (Distill) come next.
This suggests that reducing exploration directly is more useful in our setting. Finally, the vanilla CL
baseline, sparse performs somewhat better than the InFeR (Capacity) baseline which regularizes a
capacity measure (feature rank) showing that directly regularizing feature rank can have a detrimental
effect on transfer as it would be easy for a network to memorize irrelevant state-information.

Second, we count the number of times that the agents visit a randomly sampled square (In the first
room) in the 2-room environment while training using the respective methods (see Fig. 5(a)). As
expected, methods which aim to minimize task-irrelevant exploration reduce the diversity of states
visited by the agent during the course of learning. Other methods do not have a noticeable effect on
exploration.

Third, we measure the feature rank using an entropy based measure Roy and Vetterli (2007) of the
features in the penultimate layer using states sampled from a vanilla RL expert trained on 2-room.
Here, we find that the feature rank regularization methods indeed help to avoid the rank collapse
phenomenon (see Fig. 5(b)). Furthermore, we find that an informative reward (InfODist) prevents
rank collapse to an extent and also leads to much higher rank after training. This is likely because it
reduces state aliasing, as the reward helps to focus learning only on task-relevant states. Furthermore,
JSRL (Explore), which also indirectly minimizes task-irrelevant exploration, has a very low feature
rank because it initially sees states from a localised distribution near the goal. However, despite
having additional non-stationarity in the form of a moving initial state distribution ρ0, it still achieves
a high feature rank at the end of training, and we consequently see that methods which achieve higher
feature rank naturally tend to perform better on downstream tasks than ones that don’t.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Generalization to downstream tasks Generalization results after training an agent on the
plain 2-room environment M1 using 5 different methods and transferring that agent to 6 complex
downstream tasks with differing difficulties representing M2 (see Fig. 3). We find that the InfODist,
where we use a proximity function as an informative reward, generalizes well to even the most
complex environments involving unseen objects such as lava, keys, balls and boxes. Explore, which
also minimizes task-irrelevant exploration by rolling in with a guide policy, performs slightly worse.
Distill, which uses offline distillation (Combining BC and Offline RL terms) is next, showing that
minimizing non-stationarity also works. The vanilla CL baseline, sparse performs better than Capacity,
which explicitly regularizes network capacity (feature rank). This shows that regularizing feature rank
is not as powerful as minimizing task-irrelevant exploration or non-stationarity. This makes intuitive
sense, since a network may find it easy to buff up its rank by memorizing irrelevant state information.
Finally random is a vanilla PPO baseline which fails to learn all but the first task showing that our
choices of M2, indeed, require training on M1 and are challenging choices to evaluate generalization
in CL. (Note: the shaded area corresponds to min-max envelope of 3 seeds per baseline)
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(a) (b)

Figure 5: State visitation counts (a) and Mean feature rank (b) In (a), we show the number of
times the agent visits a randomly sampled square in the first room during a particular episode. We
see that using an informative reward significantly reduces the number of times the agent visits the
chosen square, which is unlikely to lie on the shortest path to the goal. Furthermore, we see that
while Explore minimizes this measure, it only succeeds in the initial stages due to the roll-in taking
it towards the goal, which leads to episode termination lowering its chances of visiting our chosen
square. Other methods do not reduce task-irrelevant exploration. In (b), we show a measure of the
feature rank in the penultimate layer of the value network for data collected from a vanilla RL expert
in 2-room. We see that using an informative reward reduces the initial drop in the feature rank due to
zero rewards in the sparse setting. Furthermore, we observe that the feature rank is improved not
because the reward is dense (Dense, a Gaussian noise reward is worse than the sparse reward) but
because the reward is informative of the task and reduces exploration. We also note the correlation
between the higher variance in state visitation and the feature rank, especially for the sparse reward,
and the trend holds within the seeds as well. The feature rank drops very low immediately for Explore
because the starting state distribution is very limited. The feature rank catches up to its real value
once the roll in vanishes. And finally, we also see that the capacity regularization in Capacity directly
prevents the feature rank from dropping too low.

5 Conclusion

Informative reward functions simplify the exploration problem, reducing non-stationarity and improv-
ing generalization to downstream tasks. While they also improve capacity utilization as measured
by penultimate layer feature rank measures, we find that such measures, when directly optimized
for, stop being good measures. To summarize our main experimental findings: First, we find that
online distillation via informative rewards is effective in improving generalization in curriculum
learning and, in particular, more effective than other methods that directly target non-stationarity or
capacity measures. Second, we found that informative rewards lead to improved capacity utilization
by visualizing the penultimate layer feature ranks. Further, we find that feature ranks are good
capacity measures only when they are not optimized for. Finally, we validated that the improvements
in generalization relate to the reduction in learning from task-irrelevant states by measuring state
visitation counts.

Limitations and future outlook. First, while our method improves upon other curriculum learning
baselines, the curriculum still needs to be provided manually, and we do not address the problem of
curriculum generation. Furthermore, while capacity is efficiently utilized, we do not have a way of
increasing capacity on the fly, apart from initializing the retraining process with a larger network. On
the flip side, the online distillation using a learned reward function makes it agnostic to the learning
algorithm used. This makes our method complementary to improvements in learning algorithms.
Although we use complex visual environments with procedural generation, our analysis only covers
goal reaching tasks in discrete environments. Furthermore, the proximity function is not an ideal way
to minimize task-irrelevant exploration for online distillation as it does not always produce students
which perform better than the teachers, but for the purpose of our experiments (since we take the best
performing seed out of 3), we found it sufficient. Identifying the ideal way to learn such informative
rewards is left for future work.
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