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ABSTRACT

Discovering what is learned by neural networks remains a challenge. In self-
supervised learning, classification is the most common task used to evaluate how
good a representation is. However, relying only on such downstream task can limit
our understanding of how much information is retained in the representation of a
given input. In this work, we showcase the use of a conditional diffusion based
generative model (RCDM) to visualize representations learned with self-supervised
models. We further demonstrate how this model’s generation quality is on par with
state-of-the-art generative models while being faithful to the representation used
as conditioning. By using this new tool to analyze self-supervised models, we
can show visually that i) SSL (backbone) representation are not really invariant to
many data augmentation they were trained on. ii) SSL projector embedding appear
too invariant for tasks like classifications. iii) SSL representations are more robust
to small adversarial perturbation of their inputs iv) there is an inherent structure
learned with SSL model that can be used for image manipulation.

Earth from . . . space1 an untrained representation a supervised representation a SSL representation

1 INTRODUCTION AND MOTIVATION

Approaches aimed at learning useful representations, from unlabeled data, have a long tradition in ma-
chine learning. These include probabilistic latent variable models and variants of auto-encoders (Ack-
ley et al., 1985; Hinton et al., 2006; Salakhutdinov et al., 2007; Vincent et al., 2008; Kingma &
Welling, 2014; Rezende et al., 2014), that are traditionally put under the broad umbrella term of unsu-
pervised learning (Bengio et al., 2013). More recent approaches, under the term of self-supervised
learning (SSL) have used various kinds of ”pretext-tasks” to guide the learning of a useful repre-
sentations. Filling-in-the-blanks tasks, proposed earlier in (Vincent et al., 2008; 2010), later proved
remarkably successful in learning potent representations for natural language processing (Vaswani
et al., 2017; Devlin et al., 2019). Pretext tasks for the image domain include solving Jigsaw-puzzles
(Noroozi & Favaro, 2016), predicting rotations or affine transformations (Gidaris et al., 2018; Zhang
et al., 2019b) or discriminating instances (Wu et al., 2018; van den Oord et al., 2018). The latest,
most successful, modern family of SSL approaches for images (Misra & Maaten, 2020; Chen et al.,
2020; Chen & He, 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021; Zbontar et al.,
2021; Bardes et al., 2021), have two noteworthy characteristics that markedly distinguish them from

1We use representations of the real picture of Earth on the left (source: NASA) as conditioning for RCDM.
We show samples (resolution 256× 256) in cases where the representations (2048-dimensions) were obtained
respectively with a random initialized ResNet50, a supervised-trained one, and a SSL-trained one. More samples
in Fig. 34.
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traditional unsupervised-learning models such as autoencoder variants or GANs (Goodfellow et al.,
2014): a) their training criteria are not based on any input-space reconstruction or generation, but
instead depend only on the obtained distribution in the representation or embedding space b) they
encourage invariance to explicitly provided input transformations a.k.a. data-augmentations, thus
injecting important additional domain knowledge.

Despite their remarkable success in learning representations that perform well on downstream
classification tasks, rivaling with supervised-trained models (Chen et al., 2020), much remains to be
understood about SSL algorithms and the representations they learn. How do the particularities of
different algorithms affect the representation learned and its usefulness? What information does the
learned representation contain? Empirical analyses have so far attempted to analyse SSL algorithms
almost exclusively through the limited lens of the numerical performance they achieve on downstream
tasks such as classification. Contrary to their older unsupervised learning cousins, due to characteristic
a) highlighted above, modern SSL methods do not provide any direct way of mapping back the
representation in image space, to allow visualizing it. The main goal of our work is thus to enable the
visualization of representations learned by SSL methods, as a tool to improve our understanding.

More precisely, we suppose that we are given a mapping function f – a (part of) a SSL or otherwise
trained neural network – that takes an input image x ∈ X and maps it to a representation h ∈ H as in
h = f(x). The input space X will typically be RGB pixel space represented as X = [−1, 1]D, and
the representation space H will be the output space of a deeper layer. We denote the representation
space’s dimension by K as in H = RK . Now we want, when given a specific representation h ∈ H,
to visualize what inputs x yield this representation. As f is typically not bijective, e.g. if it computes
a higher level representation of reduced dimension, there may be many inputs that yield that same
representation, most of which will not resemble natural images. Our approach (Section 3) thus aims
at finding inputs that not only map to the target h but are also visually recognizable images. For
this we build a conditional generative model that (implicitly) models p(x|h) and allows to sample
diverse x′ ∼ p(x|h). For reasons that we will explain later, we opted for a conditional diffusion
model, inspired by Dhariwal & Nichol (2021), for our conditional generative model.

This paper’s main contributions are:
• To devise a conditional diffusion model architecture (RCDM) suitable for conditioning on

large vector representations s.a. SSL representations. Our model provides high-quality images,
measured in term of FID, on par with state-of-the-art models (Tab. 2a), and is suited for
out-of-distribution samples (see Fig. 1). The conditionally generated images are also highly
representation-faithful i.e. they closely match the representations of the images used for the
conditioning (Tab. 2b, Fig. 24).

• To showcase its usefulness for qualitatively analyzing SSL representations and embeddings
(also in contrast with supervised representations), by shedding light on what information about
the input image is or isn’t retained in them.

Specifically, by repeatedly sampling from a same conditioning representation, one can observe which
aspects are common to all samples, thus identifying what is encoded in the representation, while the
aspects that vary greatly show what was not retained in the representation. We make the following
observations: (i) SSL projector embeddings appear most invariant, followed by supervised-trained
representation and last SSL representations2 (Fig. 3). (ii) SSL-trained representations retain more
detailed information on the content of the background and object style while supervised-trained
representations appear oblivious to these (Fig. 4). (iii) despite their invariant training criteria, SSL
representations appear to retain information on object scale, grayscale vs color, and color palette
of the background, much like supervised representation (Fig. 4). (iv) Supervised representations
appear more susceptible to adversarial attacks than SSL ones (Fig. 5,30). (v) We can explore and
exploit structure inside SSL representations leading to meaningful manipulation of image content
(s.a. splitting representation in foreground/background components to allow background substitution)
(Fig, 6, 31, 32).

2 RELATED WORK

Deterministic visualization methods: Many early works (Erhan et al., 2009; Zeiler & Fergus,
2014; Simonyan et al., 2013; Selvaraju et al., 2016; Smilkov et al., 2017) used gradient based

2The representation that is produced by a Resnet50 backbone, before the projector.
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techniques to visualize what is learned by neural networks. This led to successful interpretability of
DNs internal features, especially when applied on a unit belonging to the first few layers of a DN
(Cadena et al., 2018). More recently, Caron et al. (2021) used the attention mask of transformers to
perform unsupervised object segmentation. By contrast, our method is not model dependent, we can
plug any type of representation as conditioning for the diffusion model. Another possibility, explored
in Zhao et al. (2021); Appalaraju et al. (2020); Ericsson et al. (2021), is to learn to invert the DN
features through a Deep Image Prior (DIP) gθ as in minθ d(gθ(f(x)),x). In fact, as we experimented
in Appendix A, performing unconstrained gradient based optimization of a sample to match a target
representation leads to unrealistic generation. The use of DIP however requires to retrain the DIP
network for each feature-image pairs and only quantify how much information about x is retained in
f(x) while we are interested in finding all the xs that are seen to have the same information content.

Generative models: Several families of techniques have been developed as generative models, that
can be trained on unlabeled data and then employed to generate images. These include auto-regressive
models (Van Den Oord et al., 2016), variational auto-encoders (Kingma & Welling, 2014; Rezende
et al., 2014), GANs (Goodfellow et al., 2014), autoregressive flow models (Kingma et al., 2016),
and diffusion models (Sohl-Dickstein et al., 2015). Conditional versions are typically developed
shortly after their unconditional versions (Mirza & Osindero, 2014; van den Oord et al., 2016). In
principle one could envision training a conditional model with any of these techniques, to condition
on an SSL or other representation for visualization purpose, as we are doing in this paper with a
diffusion model. One fundamental challenge when conditioning on a rich representation such as
the one produced by a SSL model, is that for a given conditioning h we will usually have available
only a single corresponding input instance x, precious few to learn a distribution. This can lead
model training astray. By contrast a particularly successful model such as the conditional version of
BigGAN (Brock et al., 2019) conditions on a categorical variable, the class label, that for each value
of the conditioning has a large number of associated x data.

One closely related work to ours is the recent work on Instance-Conditioned GANs (IC-GAN) of
Casanova et al. (2021). Similar to us it also uses SSL or supervised representations as conditioning
when training a conditional generative model, here a GAN (Goodfellow et al., 2014), specifically a
variant of BigGAN (Brock et al., 2019) or StyleGAN2 (Karras et al., 2020). However, the model is
trained such that, from a specific representation h, it learns to generate not only images that should
map to this representation, but a much broader neighborhood of the training data. Specifically up
to 50 training points that are nearest neighbors in representation space to h. It remains to be seen
whether such a GAN architecture could be trained successfully without resorting to a nearest neighbor
set. IC-GAN is to be understood as a conditional generative model of an image’s broad neighborhood,
and the primary focus of this work was on developing a superior quality controllable generative
model. By contrast we want to sample images that map as closely as possible to the original image
in the representation space, as our focus is to build a tool to analyse SSL representations, to enable
visualising what images correspond precisely to a representation. (See Fig. 24 for a comparison.)

As previously stated, our choice of a diffusion-based model rather than a GAN was motivated by the
simple stable training of such models, by the high quality of generated images demonstrated with the
model we build on Dhariwal & Nichol (2021) that rivals that of GAN, and by the similarity of the
input-space gradient-based sampling procedure with the simple approach we explored in Appendix A.
While conditional versions of their diffusion model were already developed in Dhariwal & Nichol
(2021), these were unsuitable for conditioning on high dimensional distributed representation s.a.
those obtained with SSL models, as we discussed in details in section 3. This prompted us to develop
the architecture variant of this paper. Despite their qualities, diffusion models also have drawbacks,
in particular they are resource-hungry and slow for generation. It is thus very likely that alternative
approaches for representation-conditioned generative models will be developed and employed for
analysis and visualisation purposes in the future.

Lastly, a few approaches have focused on conditional generation to unravel the information encoded
in representations of supervised models. In Shocher et al. (2020), a hierarchical LSGAN generator
is trained with a class-conditional discriminator (Zhang et al., 2019a). While the main applications
focused on inpainting and style-transfer, this allowed to visually quantify the increasing invariance
of representations associated to deeper and deeper layers. This method however requires labels to
train the generator. On the other hand, Nash et al. (2019) proposed to use an autoregressive model, in
particular PixelCNN++ (Salimans et al., 2017), to specifically study the invariances that each layer
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of a DN inherits. In that case, the conditioning was incorporated by regressing a context vector to
the generator biases. As far as we are aware, PixelCNN++ generator falls short on high-resolution
images e.g. most papers focus on 32 × 32 Imagenet. Lastly, Rombach et al. (2020) proposes to
learn a Variational AutoEncoder that is combined with an invertible neural network (INN) whose
role is to model the relation between the VAE latent space and the given representations. To allow
for interpretable manipulation, a second invertible network (Esser et al., 2020) is trained using
labels to disentangle the factors of variations present in the representation. By contrast we train
end-to-end a single decoder to model the entire diversity of inputs that correspond to the conditioning
representation, without imposing constraints of a structured prior or requiring labels for image
manipulation.

3 CONDITIONING A DIFFUSION MODEL ON REPRESENTATION h

We propose to build a novel conditional diffusion process whose goal is to directly generate realistic
images that match a given target representation. Given a representation h the failure of the method in
Appendix A suggests we need a way to further constrain the type of samples we generate, beyond the
mere constraint of belonging to S(h). More precisely, we want to be able to sample, among S(h),
inputs that are more like the training data (here natural images), i.e. that are likely under the same
distribution. That is we would like not merely to find x′ ∈ S(h) but rather to sample x′ ∼ p(x|h).
Informally we might picture the set of likely natural images (points whose density p(x) is above some
threshold) as a subset of X that we will loosely refer to as the ”data manifold” M. Where our first
approach attempted to sample points more or less uniformly within S(h), modeling and sampling
form p(x|h) will more likely produce points from M∩ S(h). We propose to train a conditional
diffusion model to implicitly model p(x|h) and allow sampling from it.

While we could have considered other conditional generative approaches (we discussed some of the
alternatives in section 2), the choice of the reverse diffusion approach (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019; 2020; Song et al., 2021a;b; Nichol & Dhariwal, 2021) is
not entirely arbitrary. It is motivated by the remarkable quality of image generation they recently
proved capable of (Dhariwal & Nichol, 2021), as well as the closeness of their Langevin-MCMC-
like generation process to the input-gradient-directed optimization we used to obtain samples in
Appendix A. Indeed sampling from an reverse diffusion model similarly starts from a random noise
image, and takes multiple steps in input space that can be thought of as (noisy) gradient steps on an
(implicit) energy function (Ho et al., 2020; Song et al., 2021a;b) Informally, one can think of these
steps as progressively moving this initial random point closer to the ”data manifold” M. A reverse
diffusion conditioned on h will move it towards M ∩ S(h). The three sampling approaches are
depicted and contrasted in Fig. 11a.

We base our work on the Ablated Diffusion Model (ADM) developed by Dhariwal & Nichol (2021)
which uses a UNet architecture (Ronneberger et al., 2015) to learn the reverse diffusion process.Our
conditional variant – called Representation-Conditionned Diffusion Model (RCDM) – is illustrated in
Fig. 11b. To suitably condition on representation h = f(x), we replaced the Group Normalization
layers of ADM by conditional batch normalization layers (Dumoulin et al., 2017) that take h as
conditioning3. More precisely we apply a fully connected layer to h that reduces dimension to a
vector of size 512. This vector is then given as input to multiple conditional batch normalization
layers that are placed in each residual block of the diffusion model.

In contrast with Dhariwal & Nichol (2021) we don’t use the input gradient of a classifier to bias the
reversed diffusion process towards more probable images, nor do we use any label information for
training our model – recall that our goal is building a visualization tool for SSL models that train
on unlabeled data. Our batch normalization based conditioning is also different from the approach
that was used by Dhariwal & Nichol (2021) when conditioning their super-resolution model on a
low-resolution image. Their technique of upscaling and appending the conditioning image as extra
channels to the input would not work for our application. Our representation h typically has 2048
”channels” with no spatial extent: upscaling it to the size of the input image would blow up memory
constraints.
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(a) (b)

(c)
Figure 1: a) In distribution conditional image generation. An image from ImageNet validation set
(first column) is used to compute the representation output by a trained SSL model (Dino). The
representation is used as conditioning for the diffusion model. Resulting samples are shown in the
subsequent columns (see Fig. 12). We observe that our conditional diffusion model produces samples
that are very close to the original image. b) Out of distribution (OOD) conditional. How well does
RCDM generalize when conditioned on representations given by images from a different distribution?
(here a WikiMedia Commons image, see Fig. 13 for more). Even with OOD an conditionning,
the images produced by RCDM are very close visually to the original image. c) Interpolation
between two images from ImageNet validation data. We apply a linear interpolation between the
SSL representation of the images on the first column and the representation of the images on the last
column. We use the interpolated vector as conditioning for our model that produce the samples that
are showed in column 2 to column 6. Fig. 16 in appendix shows more sampled interpolation paths.

(a) We report results for ImageNet to show that our
approach is reliable for generating images which look
realistic. Since the focus of our work is not generative
modelling but to showcase and encourage the use of such
model for representation analysis, we only show results
for one conditional generative models. For each method,
we computed FID and IS with the same evaluation setup
in Pytorch.

Method Res. ↓FID ↑IS

ADM (Dhariwal & Nichol, 2021) 256 26.8 34.5 ± 1.8
IC-GAN (Casanova et al., 2021)) 256 20.8 51.3 ± 2.2
IC-GAN (Casanova et al., 2021) (KDE*) 256 21.6 38.6 ± 1.1
RCDM (ours) 256 19.0 51.9 ± 2.6

(b) For each encoder, we compute the rank and mean
reciprocal rank (MRR) of the image used as condi-
tioning within the closest set of neighbor in the rep-
resentation space of the samples generated from the
valid set (50K samples). A rank of one means that all
of the generated samples for a given model have their
representations matching the representation used as
conditioning.

Model ↓Mean rank ↑MRR

Dino (Caron et al., 2021) 1.00 0.99
Swav (Caron et al., 2020) 1.01 0.99
SimCLR (Chen et al., 2020) 1.16 0.97
Barlow T. (Zbontar et al., 2021)) 1.00 0.99
Supervised 5.65 0.69

Figure 2: a) Table of results on ImageNet. We compute the FID (Heusel et al., 2017) and IS (Salimans
et al., 2016) on 10 000 samples generated by each models with 10 000 images from the validation
set of ImageNet as reference. KDE* means that we used our unconditional representation sampling
scheme based on KDE (Kernel Density Estimation) for conditioning IC-GAN instead of the method
based on K-means introduces by Casanova et al. (2021). b) Table of ranks and mean reciprocal ranks
for different encoders. This table show that RCDM is faithful to the conditioning by generating
images which have their representations close to the original one.

4 EXPERIMENTS USING RCDM TO MAP BACK REPRESENTATIONS TO IMAGES

Our first experiments aim at evaluating the abilities of our model to generate realistic-looking images
whose representations are close to the conditioning. To do so, we trained our Representation-
Conditionned Diffusion Model (RCDM), conditioned on the 2048 dimensional representation given
by a Resnet50 (He et al., 2016) trained with Dino (Caron et al., 2021) on ImageNet (Russakovsky
et al., 2015). Then we compute the representations of a set of images from ImageNet validation data
to condition the sampling from the trained RCDM. Fig. 1a shows it is able to sample images that are
very close visually from the one that is used to get the conditioning. We also evaluated the generation
abilities of our model on out of distribution data. Fig. 1b shows that our model is able to sample new

3A similar technique was used by Casanova et al. (2021) for IC-GAN, discussed in the next section.
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Figure 3: On the first and second row, RCDM samples conditioned on the usual backbone representa-
tion (size 2048) and projector representation (size 256) with Dino. Same on the third and forth row
with SimCLR representations (2048 and 128). For comparison, we also added samples from RCDM
trained on representation given by a supervised trained model. We clearly observe that the projector
only keeps global information and not its context, as opposed to the backbone. This indicates that
invariances in SSL models are mostly achieved in the projector representation, not the backbone.
Additional comparisons provided in Fig. 25,26,12.

views of an OOD image. We also quantitatively validate that the generated images’ representations
are close to the original image representation in Tab. 2b, Fig. 18, Fig. 19 and Fig. 20.

This implies that there is much information kept inside the SSL representation so that the conditional
generative model is able to reconstruct many characteristics of the original image. We also perform
interpolations between two SSL representations in Fig. 1c. This shows that our model is able to
produce interpretable images even for SSL representations that correspond to an unlikely mix of
factors. Both the interpolation and OOD generation clearly show that the RCDM model is not merely
outputting training set images that it could have memorized. This is also confirmed by Fig. 17 in the
appendix that shows nearest neighbors of generated points.

The conditional diffusion model might also serve as a building block to hierarchically build an
unconditional generative model. Any technique suitable for modeling and sampling the distribution of
(lower dimensional) representations could be used. As this is not our primary goal in the present study,
we experimented only with simple kernel density estimation (see appendix for details). This allow us
to quantify the quality of our generative process in an unconditional manner to fairly compare against
state-of-the-art generative models such as ADM. We provide some generative model metrics in Tab.
2a along some samples in Fig. 12 to show that our method is competitive with the current literature.

5 VISUAL ANALYSIS OF REPRESENTATIONS LEARNED WITH
SELF-SUPERVISED MODEL

Having generated samples that are close in the representation space to a conditioning image can
gives us an insight on what’s hidden in the representations learned with self-supervised models. As
demonstrated in the previous section, the samples that are generated with RCDM are really close
visually to the image used as conditioning. This give an important proof of how much is kept inside
a SSL representation. However, it’s also important to consider how much this amount of ”hidden”
information varied depending on the SSL representation that is used. Therefore, we train several
RCDM on SSL representations given by VicReg (Bardes et al., 2021), Dino (Caron et al., 2021),
Barlow Twins (Zbontar et al., 2021) and SimCLR (Chen et al., 2020). In many applications that used
self-supervised models, the representation that is used is the one that corresponds to the backbone of
the ResNet50. Usually, the representation given by the projector of the SSL-model (on which the SSL
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Figure 4: We use our conditional generative model to get insight on the invariance (or covariance) of
representations with respect to several data augmentations. On an original image (top left) we apply
specific transformations (visible in the first column). For each transformed image, we compute the
SSL representation with Dino, SimCLR and a supervised network and condition the corresponding
RCDM with that representation to sample 3 images. We see that despite their invariant training
criteria, the 2048 dimensional SSL representations appear to retain information on object scale,
grayscale vs color, and color palette of the background, much like the supervised representation.
They do appear insensitive to vertical shifts. We also see that supervised representation constrain
the appearance much less. Refer to Fig. 27 in Appendix for a comparison with using the lower
dimensional projector head embedding as the representation.

criterion is applied) is discarded because the results on many downstream tasks like classification
is not as good as the backbone. However, since our work is to visualize and better understand the
differences between SSL representations, we also trained RCDM on the representation given by the
projector of Dino, Barlow Twins and SimCLR. In Fig. 3 and Fig. 25 we condition all the RCDM
with the image labelled as conditioning and sample 9 images for each model. We observe that Dino
representation does not allow much variance meaning that even information about the pose of the
animal is kept inside the representation. In contrast, the SimCLR representation seems to be more
invariant to the pose of the kangaroo. We also observe class-crossing, the kangaroo becomes a rabbit.
VicReg seems to be more robust in the sense that the animal doesn’t cross the class boundary despite
changes in the background.

5.1 WHAT ARE REPRESENTATIONS REALLY INVARIANT TO?

In Fig. 4, we apply specific transformations (augmentations) to a test image and we check whether
the samples generated by the diffusion model change accordingly. We also compare with the behavior
of a supervised model. We note that despite their invariant training criteria, the 2048 dimensional
SSL representations do retain information on object scale, grayscale status, and color palette of the
background, much like the supervised representation. They do appear invariant to vertical shifts. In
the Appendix, Fig. 27 applies the same transformations, but additionally compares using the 2048
representation with using the lower dimensional projector head embedding as the representation.
There, we observe that the projector representation seems to encode object scale, but contrary to
the 2048 representation, it appears to have gotten rid of grayscale-status and background color
information. Currently, researchers need to use custom datasets (in which the factors of variation of a
specific image are annotated) to verify how well the representations learned are invariant to those
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Figure 5: Visualization of adversarial attacks with RCDM. We use Fast Gradient Sign to attack
a given image (top-left corner) with various values for the attack coefficient epsilon. On the first
row, we only show the adversarial images obtained from a supervised encoder: refer to Fig. 30 in
the Appendix to see the (similar looking) adversarial examples for each model. On the following
rows, we show the reconstruction of the attacked images with RCDM for various models. For a
supervised representation, RCDM reconstructs an animal that belong to another class, a lion in this
case. However, we observe that if we use SimCLR or Swav as encoder (third and forth row), the
images generated by RCDM are still dogs even with higher values for epsilon.

factors. We hope that RCDM will help researchers in self-supervised learning to alleviate this concern
since our method is ”plug and play” and can be use on any dataset with any type of representation.

5.2 VISUALIZATION OF ADVERSARIAL EXAMPLES

Since our model is able to project any representation to the manifold of real images, we follow the
same experiment protocol as Rombach et al. (2020) to visualize how adversarial examples are seen by
RCDM. We apply Fast Gradient Sign attacks (FGSM) (Goodfellow et al., 2015) over a given image
and compute the representation associated to the attacked image. When using RCDM conditioned on
the representation of the adversarial examples, we can visualize if the generated images still belong
to the class of the attacked image or not. In Fig. 5 and 30, the adversarial attacks change the dog in
the samples to a lion in the supervised setting whereas SSL methods doesn’t seem to be impacted by
the adversarial perturbations i.e the samples are still dogs until the adversarial attack became visible
to the human eye.

5.3 MANIPULATION OF REPRESENTATIONS

Experimental manipulation of representations can be needed to analyze how much specific dimensions
of the representation can be associated to specific factors of variation of the data. In a self-supervised
setting in which we don’t have access to labelled data, it can be difficult to gain insight on how
the information about the data is encoded in the representation. We showcase a very simple and
heuristic setup to remove the most common information in the representations within a set of the
nearest neighbors of a specific example. We experimentally saw that the nearest neighbors of a
given representation share often similar factors of variation. Having this information in mind, we
investigate how many dimensions are shared in between this set of neighbors. Then, we remove the
most common non-zero dimensions by setting them to zero and use RCDM to decode this truncated
representation. In Fig. 6, such simple setup induces the removing of all information about the
background and the dog to only keep the information about clothing (Only one dog had clothes in the
set of neighbors used to find the most common dimensions). Since the information about the dog and
the background are removed, RCDM produces images of different clothes. On the third and forth row,
instead of setting the most common dimensions to zeros, we set them to the value of other images
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Figure 6: Visualization of direct manipulations over the backbone representation space. In this
experiment, we find the most common non zero dimension across the neighborhood of the image
used as conditioning (top-left dog). On the second row, we set these dimensions to zero and use
RCDM to decode the truncated representation. We observe that RCDM produces examples with a
variety of clothes meaning that all information about the background and the dog is removed. In the
third and forth row, instead of setting the most common dimensions to zero, we set them to the value
of the corresponding dimension in the representation associated to the image on the left. As we can
see, the corresponding dog get various clothes which were not present in the original image.

at the exact same dimensions. By using these new representations, RCDM is able to generate the
corresponding dog with clothes. This setup works better with SSL methods since supervised models
learned to put away most of the information that is not needed to predict class labels. We have a
similar experiment with background removal in Figure 31.

6 CONCLUSION

Most of the Self-Supervised Learning literature uses downstream tasks that require labeled data
to measure how good the learned representation is and to quantify its invariance to specific data-
augmentations. However one cannot in this way see the entirety of what is retained in a representation,
beyond testing for specific invariances known beforehand, or predicting specific labeled factors, for
a limited (and costly to acquire) set of labels. Yet, through conditional generation, all the stable
information can be revealed and discerned from visual inspection of the samples. We showcased how
to use a simple conditional generative model (RCDM) to visualize representations, enabling the visual
analysis of what information is contained in a self-supervised representation, without the need of any
labelled data. After verifying that our conditional generative model produces high-quality samples
(attested qualitatively and by FID scores) and representation-faithful samples, we turned to exploring
representations obtained under different frameworks. Our findings clearly separate supervised from
SSL models along a variety of aspects: their respective invariances – or lack thereof – to specific
image transformations, the discovery of exploitable structure in the representation’s dimensions, and
their differing sensitivity to adversarial noise.

7 REPRODUCIBILITY STATEMENT

The data and images in this paper were only used for the sole purpose of exchanging reproducible
research results with the academic community.

Our results should be easily reproducible as:
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• RCDM, is based on the same code as Dhariwal & Nichol (2021) (https://github.
com/openai/guided-diffusion) and uses the same hyper-parameters (See Ap-
pendix I of Dhariwal & Nichol (2021) for details about the hyper-parameters).

• To obtain our conditional RCDM, one just needs to replace the GroupNormalization layers
in that architecture by a conditional batch normalization layer of Brock et al. (2019) (using
the code from https://github.com/ajbrock/BigGAN-PyTorch).

• The self-supervised pretrained models we used to extract the conditioning representations
were obtained from the model-zoo of VISSL (Goyal et al., 2021) (code from https:
//github.com/facebookresearch/vissl).

• The unconditonal sampling process is straightforward, as explained in Appendix C.

• We are working on cleaning and preparing to release any remaining code glue to easily
reproduce the results in this paper.
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A MATCHING A REPRESENTATION BY FOLLOWING INPUT GRADIENTS

We want to visualize what kinds of input images would be mapped to the same representation h as
that of an input image x by a given network function f . This section proposes to sample inputs that
fall into that equivalence class by solving an explicit optimization problem, while the next section
leverages a conditional diffusion model.

A.1 PEEKING INTO THE REPRESENTATION-MATCHING INPUT SET

We call the set of inputs that a trained network function f maps to a given representation h the
representation-matching input set, defined formally as

S(h) ≜ {x′ ∈ X : d(h, f(x′)) = 0}, (1)

where d could be any desired distance4. We would like to see what kinds of ”images” S(h) contains
(besides the x that we may have used to obtain representation h to begin with). We tackle this
problem through a simple gradient-based optimization. We start from a random input x(0) ∈ X,
sampled from a basic distribution (s.a. uniform). We then performing T gradient steps in input-space
towards minimizing objective d(f(x),h), i.e. to ”match the representation”, yielding final sample
x(T ). Note that the minimizer is usually not unique, so that we can obtain quite different x(T )

depending on the random x(0) we started from.

A.2 DO SAMPLES FROM S(f(x)) LOOK LIKE x?

We performed the above-described procedure to sample examples from S(f(x)), using for f the
same ResNet50 backbone (He et al., 2016) trained with the DINO SSL criterion (Caron et al.,
2021) on ImageNet (Russakovsky et al., 2015). We took x from the validation set of ImageNet. In
addition to standard DINO training, we also trained a second SSL network (termed DINO+n) that
uses independent additive noise as extra augmentation5 which led to 71% top-1 Imagenet accuracy.
Examples of obtained images are provided in Figure 7. Appendix A.3 has more details and more
results for these experiments. We see that even though gradient-based input optimization manages
to produce samples that match a target embedding representation, this technique fails to produce
realistic images. Mapping to the same SSL representation as a natural image is not sufficient for
being a similar realistic-looking image.

The gradient directions are not enough. The updates producing the sequence x(1),x(2), . . . ,x(T )

all follow a trajectory that only involves the Jacobian matrix of deep network f at each step. This is
due to the chain rule of calculus and reads as

x(t+1) = x(t) + Jf (x
(t))Tu(x(t))︸ ︷︷ ︸

linear combination of Jacobian matrix rows

, (2)

where u(x(t)), the linear combination coefficients, is given by ∇d(f(x),.)(f(x
(t))). As a result, it

is clear that x(t+1) is constrained to be within the affine space spanned by Jf (x
(t))Tu(x(t)) and

shifted by x(t). Given that f is a mapping from RD to RK with in general K < D, the dimension of
that affine space is at most K.

We see that the representation and mapping function f obtained through SSL training are by them-
selves not sufficient to recover corresponding natural-image-like inputs.

A.3 MORE ON S(f(x)) SAMPLING

In this section, we propose in Fig. 9 additional gradient based matching that employ the projector
head of DINO. We also provide in Tab. 1,2, 3 the distances that those gradient based matched input

4In practice, we may be content with finding elements of a relaxed representation-constrained set Sϵ(h) ≜
{x′ ∈ X : d(h, f(x′)) ≤ ϵ} allowing for a small tolerance ϵ

5The motivation was to learn a smoother map f for gradient-based representation matching to be easier.
Although the optimization proved no more difficult in the non-noised case, DINO+n yields qualitatively markedly
different samples, where one can more easily distinguish natural-image like edges. The reason is unclear; one
hypothesis is that to reliably discriminate noised instances the representation must focus more on edges.
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target Dino, Adam, L2 Dino, LBFGS, cos Dino+n, Adam, L2 Dino+n, LBFGS, cos

Figure 7: Gradient based samples from S(h). Leftmost image x is used to obtain target SSL
representation h (2048 dimensions) with either a standard DINO-ResNet50 (Dino) or one trained
with additive noise as extra augmentation (Dino+n). A random initialized input is moved so that its
representation will match h, by minimizing either L2 or cosine distance using Adam or L-BFGS
respectively (indicated in column headers). We display the samples x(T ) obtained after T = 10, 000
iterations obtained from the respective optimizers and distances, in all cases starting from a random
Gaussian image as x(0). These x(T ) have the same SSL representation as x or very close (relative
distance 0.4%, 0.1%, 3.6%, 3.3% respectively, see details in appendix Tab. 1,2,3), but do not resemble
natural images. Samples obtained from Dino+n look slightly more natural: we distinguish faint edges
similarly shaped to the original. Similar experiments but applied on the lower-dimensional projection
head embeding are reported in Figure 9 in appendix.

Figure 8: Depiction of four rows of the Jacobian
matrix Jf (x) for the input x given in Figure 7,
with f being a Resnet50 trained with standard
DINO (left) and additive noise (DINO+n) (right).
The Jacobian matrix in the noisy case shows more
structures looking somewhat more natural-image
like. Recalling (2), this observation justifies the
more natural images observed in Figure 7. Addi-
tional rows provided in the appendix in Figure 10)

distance ℓ2 ℓ1 cosine relative ℓ2 (%) relative ℓ1 (%) relative cosine (%)
Adam plateau 0.8 30.0 0.0 0.1 5.5 0.1
Adam cosine 0.4 11.0 0.0 0.1 2.1 0.1
GD plateau 2.8 48.0 0.1 0.4 8.8 5.7
GD cosine 2.2 17.0 0.1 0.3 3.1 7.8

L-BFGS plateau 0.1 23.0 0.0 0.0 4.3 0.0
L-BFGS cosine 0.1 26.0 0.0 0.0 4.9 0.0

Table 1: We depict here the final value of the input optimization step (x(T )). We experiment with
different distances (each column) and we provide the actual value of the distance along with a relative
distance which is obtained by 100−100×|d(f(x), f(x(0)))−d(f(x), f(x(T )))|/d(f(x), f(x(0))).
That is, the relative distance gives a proportion of how close to the target is the obtained representation
as a ratio with respect to the distance using the initial (random) image, value between 0 and 100. In
this table, we are looking at the DINO model. We provide the noise models in the below tables.

can read in term of representation from a target one. In the next section we also provide additional
theoretical arguments supporting the challenge of following gradient directions to obtain realistic
samples from S.

A.4 DEEP NETWORKS AND CPAS

In this section we propose to further characterize what S(h) looks like by using a specific form for
the DN input output mapping.
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Figure 9: Reprise of Fig. 8 but now when considering the mapping to be the resnet50 backbone and
the projection head of DINO. Top row is when using DINO+noise and the bottom row is when using
standard DINO. As was the case when using the resnet50 backbone only, we do not obtain realistic
inputs from S(x) when following gradient directions.

distance ℓ2 ℓ1 cosine relative ℓ2 (%) relative ℓ1 (%) relative cosine (%)
Adam plateau 3.1 54.0 0.0 0.9 13.5 0.9
Adam cosine 3.6 41.0 0.0 1.0 10.2 0.8
GD plateau 12.2 107.0 1.3 3.5 26.6 91.8
GD cosine 14.0 90.0 1.3 4.1 22.5 95.1

L-BFGS plateau 2.2 50.3 0.0 0.6 12.4 0.7
L-BFGS cosine 3.3 560.0 0.0 0.9 61.6 0.5

Table 2: Reprise of Tab. 1 but with DINO noise

distance ℓ2 ℓ1 cosine relative ℓ2 (%) relative ℓ1 (%) relative cosine (%)
Adam plateau 1.8 52.4 0.0 0.3 15.6 0.3
Adam cosine 2.8 39.3 0.0 0.5 11.7 0.5
GD plateau 27.2 131.0 0.7 4.5 39.3 85.4
GD cosine 50.1 170.0 0.7 8.4 50.9 89.9

L-BFGS plateau 3.6 53.7 0.0 0.6 16.0 0.5
L-BFGS cosine 3.4 52.3 0.0 0.6 15.6 0.5

Table 3: Reprise of Tab. 1 but with DINO noise ++

Without loss of generality we consider a mapping f that is continuous piecewise affine (CPA), as is
the case for most DNs(Balestriero & Baraniuk, 2018). The DN input-output is then given by

f(x) =
∑
ω∈Ω

(Aωx+ bω) 1{x∈ω}, (3)

with Ω a partition of the DN input space. In the case of f being smooth, a simple approximation
argument will allow to fall back to the above setting (Daubechies et al., 2021). Using this formulation,
we can now characterize more precisely the form of S(f(x)) as follows

S(f(x)) = ∪x′∈X (x)

(
ω(x′) ∩

{
x′ + u,u ∈ ker

(
Aω(x′)

)}︸ ︷︷ ︸
linear subspace ker(Aω(x′)) shifted by x′

)
, (4)

where ω(x′) is the region from Ω in which x′ lives in, and X (x) is a finite set of inputs that depend
on x such that each point lives in a separate region from the others as in ∀u,v ∈ S(f(x))2, ω(u) =
ω(v) ⇐⇒ u = v.
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With noise during training

Without noise (baseline) during training

Figure 10: Depiction of 36 rows of the Jacobian matrix of a trained DINO model that either employed
Gaussian noise on the images during training (top) or did not (bottom). Clearly the use of noise
during training produce Jacobian matrices with more natural patterns.
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Figure 11: (a) Illustration of considered image generation methods. A real input x yields representa-
tion h. All methods start from a random noise image x(0). Gradient-based representation matching
(light blue arrows) will move it towards S(h) i.e. until its representation matches h, but won’t land
on the data-manifold M. Unconditional reverse diffusion (ADM model, green arrows) will move it
towards the data manifold. Our representation-conditioned diffusion model (RCDM, red arrows)
will move it towards M ∩ S(h), yielding a different natural-looking image with the same given
representation. (b) Representation-Conditionned Diffusion Model (RCDM). From a diffusion process
that progressively corrupts an image, the model learns the reverse process by predicting the noise that
it should remove at each step. We also add as conditioning a vector h, which is the representation
given by a SSL or supervised model for a given image c. Thus, the network is trained explicitly to
denoise towards a specific example given the corresponding conditioning. The diffusion model used
is the same as the one presented by Dhariwal & Nichol (2021) with the exception of the conditioning
on the representations.

The optimization problem needs to be constrained. The first challenge of our method comes from
the fact that the set S(f(x)) consists of a union of affine subspace that are highly localized in the
input space (recall (4)). In fact, the regions ω ∈ Ω are often extremely localized in the input space,
especially as the architecture involves many layers (Montúfar et al., 2014; Balestriero et al., 2019).
In addition to that optimization difficulty, we have that the equivalence class does not constrain the
inputs to lie within the data manifold. In fact, each affine subspace that form S(f(x)) is very high
dimension as we emphasize below.

Proposition 1. Given a model f : X 7→ H, the set S(f(x)) is a union of Card(X (x)) affine
subspaces, each with dimension at least D −K.

In other words, regardless of the chosen distance d, as soon as the dimensions of the affine subspaces
forming S(f(x)) are greater than the dimension of the data manifold M (a sufficient condition
being D − S > dim(M)) we obtain that S(f(x)) contains samples that do not belong to M. That
is, performing gradient descent from randomly initialized samples x(0) will almost surely produce
samples x(T ) ̸∈ M. This is particularly true for a case such as Imagenet in which D = 150528 and
S = 2048.

B CONDITIONAL AND SUPER-RESOLUTION SAMPLING WITH RCDM

As presented in the main text, we introduce RCDM to generate samples that preserved well the
semantics of the images used for the conditioning. As showed in Figure 11a, RCDM is constraint
to map back the representation to the manifold of real images which answers the concerns raised
in Appendix A. The training of the model is very simple and presented in Figure 11b. We show in
Figure 12 additional samples of RCDM when conditioning on the SSL representation of ImageNet
validation set images (which were never used for training). We observe that the information hidden
in the SSL representation is so rich that RCDM is almost able to reconstruct entirely the image used
for conditioning. To further evaluate the abilities of this model, we present in Figure 13 a similar
experiment except that we use out of distribution images as conditioning. We used cell images from
microscope and a photo of a status (Both from Wikimedia Commons), sketch and cartoons from
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PACS (Li et al., 2017), image segmentation from Cityscape (Cordts et al., 2016) and an image of the
Earth by NASA. Even in the OOD scenario, RCDM is able to generate images that are very close to
the one used as conditioning because of the richness of ssl representations.

We also use the super-resolution model presented by Dhariwal & Nichol (2021) to generate images
of higher resolutions. In Figure 14, we use the small images on the top of the bigger images as
conditioning for a RCDM trained on images of size 128x128. Then, we feed the 128x128 samples
into the super-resolution model of Dhariwal & Nichol (2021) to get images of size 512x512. Since
the model of Dhariwal & Nichol (2021) is conditional and need labels, we used a random label when
upsampling from RCDM. Despite using the ”wrong” label, the high resolution samples are still very
close to the conditioning. This show that RCDM can be used jointly with a super-resolution model to
sample high fidelity images in the close neighborhood of the conditioning.

To verify how well our model can produces realistic samples from different combinations of repre-
sentations, we take two images from which we compute their representations and perform a linear
interpolation between those. This give us new vectors of representation that can be used as condition-
ing for RCDM. We can see on Figure 15 and Figure 16 that RCDM is able to generate samples that
contains the semantic characteristics of both images.

Finally, in Figure 17, we search the nearest neighbors of a series of samples in the ImageNet training
set. As demonstrated by Figure 17, RCDM samples images that are new and far enough from images
belonging to the training set of ImageNet.

C A HIERARCHICAL DIFFUSION MODEL FOR UNCONDITIONAL GENERATION

We provided a novel and conditional generative model based on a given latent representation e.g.
from a SSL embedding, and a diffusion model. This provided tremendous insights into interpreting
what is encoded in those representations. We can go one step further and augment this conditional
model with an unconditional one that can generate those representations. This will provide us with
the ability to generate new samples without the need to condition on a given input. As a by-product,
it will allow us to quantify the quality of our generative process in an unconditional manner to fairly
compare against state-of-the-art generative models.

We shall recall that our goal is to employ the conditional generative model to provide understanding
into learned (SSL) representations. The unconditional model is only developed to compare our
generative model and ensure that its quality is reliable for any further down analysis. As such, we
propose to learn the representation distribution in a very simple manner via the usual Kernel Density
Estimation (KDE). That is, the distribution is modeled as

p(h) =
1

N

N∑
n=1

N (h; f(xn); Iσ)

with σ set to 0.01. By using the above distribution, we are able to sample representations h to then
sample images x conditionally to that h using our diffusion model. We provide some samples in
Figure 21 to show that even with our very simple conditioning, our method is still able to generate
realistic images.

D ON THE CLOSENESS OF THE SAMPLES IN THE REPRESENTATION SPACE

Even if we show that RCDM is able to generate images that seems visually close to the image used
for the conditioning, it’s still unclear how close those images are in the representation space. We can
compute euclidean distances but to know how close the generated samples are to the conditioning, we
need to have references that can be used to compare this distance with. As references, we compute
the euclidean distance between a conditioning image and random images in the validation set of
ImageNet, random images belonging to the same class as the conditioning, the closest images in
the training set, the conditioning image on which we applied single data augmentations and the
conditoning image on which we applied the data augmentation performed by Swav and Dino (Caron
et al., 2020; 2021). The results can be seen in Figure 22 for a RCDM trained with Dino representations
and in Figure 23 for a RCDM trained with SimCLR representations. On both Figure, we observe that
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Figure 12: Generated samples from RCDM on 256x256 images trained with representations pro-
duced by Dino. We put on the first column the images that are used to compute the representation
conditioning. On the following column, we can see the samples generated by RCDM. It is worth to
denote our generated samples are qualitatively close to the original image.
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Figure 13: Generated samples from RCDM model on 256x256 images trained with representations
produced by Dino on Out of Distribution data. We put on the first column the images that are used to
compute the representation. On the following column, we can see the samples generated by RCDM.
It is worth to denote our generated sample are close to the original image. The images used for the
conditioning are from Wikimedia Commons, Cityscapes (Cordts et al., 2016), PACS (Li et al., 2017)
and the image of earth from NASA.

23



Under review as a conference paper at ICLR 2022

Figure 14: High resolution samples from our conditional diffusion generative model using the super
resolution model of Dhariwal & Nichol (2021). We use the small images on the top of each bigger
image as conditioning for a diffusion model trained with Dino representation on 128x128 images.
Then, we feed the samples generated to the super resolution model of Dhariwal & Nichol (2021)
which produces images of size 512x512. Since the super resolution model is conditional, we sample
a random label. We note that the high resolution samples are still very close to the conditioning.
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(a) Linear interpolation between the image of the golden retriever in conditioning 1 with various other images
belonging to the same class as conditioning 2.

(b) Linear interpolation between the image of the pug in conditioning 1 with various other images belonging to
the espresso class as conditioning 2.

Figure 15: Each vectors that result from the linear interpolation is feed to a RCDM trained with
Barlow Twins representation.

the generated images with RCDM are closer to the conditioning than the closest neighbors in the
entire training set of ImageNet. We also computed the mean and reciprocal mean rank in the main
paper (Table 2b) which show that for most SSL models the closest examples in the representation
space of the generated images is the image used as conditioning. We also added Figure 18 to show
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Figure 16: Diversity of the samples generated by RCDM on interpolated representations. Each row
corresponds to different random noise for the same conditioning. On the first and last column are the
real images used for the interpolation. All of the images in-between those rows are samples from
RCDM.
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which rank is associated to samples generated by RCDM. For SimCLR, the rank is mostly always 1
whereas we got more diversity for the supervised case. This difficulty of RCDM to generated samples
which have their representation that map back to the one used for the conditioning can be explain
by the nature of a supervised training. In such scenario, the encoder is trained to map a big set of
images (often a specific class) to a specific type of representation whereas SSL models are explicitly
train to push each examples farther away from each others. Thus, it seems more likely that a little
perturbation on the supervised representation induces a change of nearest neighbor. This hypothesis
is supported by Figure 30 which show that small adversarial attack are enough to induces a change of
class in the representation which is not the case for SSL encoders.

E ANALYSIS OF REPRESENTATIONS LEARNED WITH SELF-SUPERVISED
MODEL

Having generated samples that are close in the representation space to a conditioning image can
give us an insight on what’s hidden in the representations learned with self-supervised models. As
demonstrated in the previous section, the samples that are generated with RCDM are really close
visually to the image used as conditioning. This give an important proof of how much is kept inside
a SSL representation. However, it’s also important to consider how much this amount of ”hidden”
information varied depending on the SSL representation that is used. Therefore, we train several
RCDM on SSL representations given by VicReg (Bardes et al., 2021), Dino (Caron et al., 2021),
Barlow Twins (Zbontar et al., 2021) and SimCLR (Chen et al., 2020). In many applications that used
self-supervised models, the representation that is used is the one corresponding to the backbone of
the ResNet50. Usually, the representation given by the projector of the SSL-model (on which the SSL
criterion is applied) is discarded because the results on many downstream tasks like classification
is not as good as the backbone. However, since our work is to visualize and better understand the
differences between SSL representations, we also trained RCDM on the representation given by the
projector of Dino, Barlow Twins and SimCLR. In Figure 25 and 26 we condition all the RCDM
with the image labelled as conditioning and sample 9 images for each model. We observe that Dino
representation does not allow much variance meaning that even information about the pose of the
animal is kept inside the representation. In contrast, the SimCLR representation seems to be more
invariant to the pose of the kangaroo, maybe too much because on many images the kangaroo become
a rabbit. VicReg seems to be more robust in the sense that the animal doesn’t cross the class boundary
despite changes in the background. If we look at the projector of the SSL models, the generated
samples have a higher variance except for Barlow Twins. This can be explained by the fact that the
dimension of the representation given by the projector has a size of 8192 which is much bigger than
the one used by other methods.

To further compare and analyse the different SSL models, we visualize how much SSL representations
can be invariant with respect to a transformation that is applied on the conditioning image. In Figure
27, we apply several Data Augmentation: Vertical shift, Zoom out, Zoom In, Grayscale and a Collor
Jitter on a given conditioning image. Then we compute the SSL representations of the transformed
image with different SSL models and use our corresponding RCDM to see how much the samples
have changed with respect to the samples generated on the vanilla conditioning image. We observe
that the representation (the 2048 backbone one) of all SSL methods are not invariant to scale and
change of colors. Whereas the representation of the projector doesn’t seem to take into account any
small transformation in the original conditioning outside the scale for Dino. For SimCLR, there is still
some information about the background that is kept in the representation however the samples are not
as close visually with respect to the 2048 representation. Barlow Twins is interesting because there
isn’t much differences between the backbone representation (2048) one and the representation of the
projector (Size 8192). With the exception that this last representation seems to be more invariant to
color shift than the backbone one.

E.1 VISUALIZATION OF ADVERSRIAL EXAMPLES

We use RCDM to visualize adversarial examples for different models. For each model, we trained a
linear classifier on top of their representations to predict class labels for the ImageNet dataset. Then,
we use FGSM attacks over the trained model using a NLL loss to generate adversarial examples. In
Figure 30 we show the adversarial examples that are created for each model, the samples generated
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by RCDM with respect to the representation of the adversarial perturbed example and the class label
predicted by the linear classifier over the adversarial examples. The supervised model is very sensitive
to the attack whereas SSL models seems more robust.

E.2 MANIPULATION OF SSL REPRESENTATIONS

It is also possible to manipulate SSL representations to generate new images. We try to apply addition
and subtractions over SSL representations (similarly to what has been done in NLP). From two
different images, we compute the difference between the two corresponding representations and add
the difference vector to a third image. Figure 33 shows that it is possible to apply such transformations
meaningfully in the SSL space. We also used another setup where we choose specific dimensions in
the representation based on how many times these dimensions are non zero in the representation space
of a set of neighbors. Then we set this dimension to zero which surprisingly induces the removing of
the background in the generated images. We also replace them by the same corresponding dimension
of another images which induces a change of background toward the one of the new image. Results
are shown in Figure 31.
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(a) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino (backbone)
representation (2048).

(b) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino projector
representation (256).

Figure 17: We find the nearest neighbors in the representation space of samples generated by RCDM.
The images in the red squared are the ones used for conditioning.
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Figure 18: After generating samples with respect to a specific conditioning, we compute back the
representation of the generated samples and find which are the closest neighbors in the validation
set. Then, we compute the rank of the original image that was used as conditioning within the set
of neighbors. When the rank is one, it implies that the nearest neighbors of the generated samples
is the conditioning itself, meaning that the generated samples have their representation that is very
close in the representation space to the one used as conditioning. We can see that for SimCLR,
the generated samples are much closer in the representation space to their conditioning than the
supervised representation. This is easily explain by the fact that supervised model learn to map
images from a same class toward a similar representation whereas SSL models try to push further
away different examples.
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Figure 19: Visual analysis of the variance of the generated samples for a specific image when using a
supervised encoder. The first image (in red) in the one used as conditioning.
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Figure 20: Visual analysis of the variance of the generated samples for a specific image when using a
SimCLR encoder. The first image (in red) in the one used as conditioning.
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Figure 21: Unconditional generation following the protocol of section C. Our simple generative
model of representations consists in applying a small Gaussian noise over representation computed
from random training images of ImageNet. We use these noisy vector as conditioning for our 256x256
RCDM trained with Dino representations. We note that the generated images looks realistic despite
some generative artefact like a two-headed dog and an elephant-horse.
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Figure 22: Squared Euclidean distances in the Dino representation space. We show the squared
euclidean distance between the conditioning image on the leftmost column on first row and different
images to get an insight about how close the samples generated by the diffusion model stay close to
the representation used as conditioning. The distances with the conditioning is printed below each
images. On the first row, we show random images from the ImageNet validation data. On the second
row, we take random validation examples belonging to the same class as the conditioning. On the
third row, we find the closest training neighbors of the conditioning in the representation space. On
forth row, D.A. means Data Augmentation which consist in horizontal flip, CenterCrop, ColorJitter,
GrayScale and solarization. On fifth row (D.A. 2), we use the random data Augmentation used in
the paper of (Caron et al., 2020; 2021). On the last row, we show the generated samples from our
conditional diffusion model that use Dino representation. The samples produces by our model are
much closer to the conditioning than other images.
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Figure 23: Squared Euclidean distances in the SimCLR projector head representation space.We
show the squared euclidean distance between the conditioning image on the leftmost column on first
row and different images to get an insight about how close the samples generated by the diffusion
model stay close to the representation used as conditioning. The distances with the conditioning is
printed below each images. On the first row, we show random images from the ImageNet validation
data. On the second row, we take random validation example belonging to the same class as
the conditioning. On third row, we find the closest training neigbords of the conditioning in the
representation space. On forth row, D.A. means Data Augmentation which consist in horizontal flip,
CenterCrop, ColorJitter, GrayScale and solarization. On fifth row (D.A. 2), we use the random data
Augmentation used in the paper of (Caron et al., 2020; 2021). On the last row, we show the generated
samples from our conditional diffusion model that use SimCLR projector head representation.
The samples produces by our model are much closer to the conditioning than other images.
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Figure 24: Comparison of the euclidean distance between IC-GAN and RCDM. We use the same
self-supervised representation as conditioning (Swav encoder) for RCDM and IC-GAN. We compute
the euclidean distance between the representation of the generated images versus the representation
used as conditioning. We observe that samples of RCDM are much closer in the representation space
(and also visually) to the conditioning. Samples of IC-GAN show a higher variability, thus farther
away in the representation space.
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Figure 25: Generated samples from RCDM trained with representation from various self-supervised
models. The image used for conditioning is a baby kangaroo on the top row, left-most column. Then,
we generate 9 samples for each model with different random seed. We observe that the representation
given by dino isn’t very invariant while the one given by SimCLR or VicReg show much better
invariance. We also show the samples of RCDM trained on the representation given by the projector
(The embedding on which is usually applied the SSL criterion). There is a much higher variability in
the generated samples. Maybe too much to be used for a classification task since we can observe
class crossing.
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Figure 26: Generated samples from RCDM trained with representation from various self-supervised
models. We generate 9 samples for each model with different random seeds. We observe that the
representation given by dino isn’t very invariant while the one given by SimCLR or VicReg show
much better invariance. We also show the samples of RCDM trained on the representation given by
the projector (The embedding on which is usually applied the SSL criterion). There is a much higher
variability in the generated samples. Maybe too much to be used for a classification task since we can
observe class crossing.
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Figure 27: We compare how much the samples generated by RCDM change depending on different
transformations of a given image and the model and layer used to produces the representation. Top
half uses 2048 representation. Bottom half uses the lower dimensional projector head embedding. We
observe that using the projector head representation leads to a much larger variance in the generated
samples whereas using the traditional backbone (2048) representation leads to samples that are very
close to the original image. We also observe that the projector representation seems to encode object
scale, but contrary to the 2048 representation, it seems to have gotten rid of grayscale-status and
background color information.
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Figure 28: Same setup as Figure 27 except with other images as conditioning.
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Figure 29: Generated samples from RCDM using the mean representation for a specific class (golden
retriever) in ImageNet for various SSL models.
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Figure 30: Visualization of adversarial examples We use RCDM to visualize adversarial examples
for different models. For each model, we trained a linear classifier on top of their representations to
predict class labels for the ImageNet dataset. Then, we use FGSM attack over the trained model using
a NLL loss to generate adversarial examples towards the class lion. For each model, we visualize
adversarial examples for different values of ϵ which is the coefficient used in front of the gradient
sign. In the supervised scenario, even for small values of epsilon which doesn’t seem to change the
original image, the decoded image as well as the predicted label by the linear classifier becomes a
lion. However it’s not the case in the self-supervised setting where the dog still get the same class or
get another breed of dog as label until the adversarial attack becomes more visible to the human eye
(For ϵ value superior to 0.5).
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Figure 31: Background suppression and addition Visualization of direct manipulations over the
representation space. On the first row, we used the full representation of the dog’s image on the
top-left as conditioning for RCDM. Then, we find the most common non zero dimension across
the neighborhood of the image used as conditioning. On the second row, we set these dimensions
to zero and use RCDM to decode the truncated representation. We observe that RCDM produces
examples of the dog with a high variety of unnatural background meaning that all information about
the background is removed. In the third and forth row, instead of setting the most common non
zero dimension to zero, we set them to the value of corresponding dimension of the representation
associated to the image on the left. As we can see, the original dog get a new background and a new
pose.

Figure 32: Same setup as Figure 31 except that instead of using the most common non zero-
dimensions as mask, we used the least common non-zero dimensions as mask. On the second row,
we observe that some information about the original dog is removed such that in each column, we get
a slightly different breed of dog while the background stay fixed. On the third and forth row, we saw
that the information about the background (grass) is propagated through the samples (which was not
the case in Figure 31).
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Figure 33: Algebraic manipulation of representations from real images (left-hand side of =) allows
RCDM to generate new images with novel combination of factors. Here we use this technique with
ImageNet images, to attempt background substitutions.
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(a) Earth from an untrained representation (Random initialized Resnet 50).

(b) Earth from a supervised representation (Pretrained resnet50 on ImageNet)

(c) Earth from a SSL representation (Dino Resnet50 backbone).

Figure 34: Different samples of RCDM conditioned on a satellite image of the earth (source: NASA).
We show the samples we obtained in a) when using a random initialized network to get representations,
b) when using a pretrained resnet50, c) when using a self supervised model (Dino).
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