Under review as a conference paper at ICLR 2026

AGENT-ENVIRONMENT ALIGNMENT VIA AUTOMATED
INTERFACE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents have shown impressive reasoning capabilities
in interactive decision-making tasks. These agents interact with environment
through intermediate interfaces, such as predefined action spaces and interaction
rules, which mediate the perception and action. However, mismatches often
happen between the internal expectations of the agent regarding the influence of its
issued actions and the actual state transitions in the environment, a phenomenon
referred to as agent-environment misalignment. While prior work has invested
substantially in improving agent strategies and environment design, the critical
role of the interface still remains underexplored. In this work, we empirically
demonstrate that agent-environment misalignment poses a significant bottleneck to
agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned
Interface Generation framework that alleviates the misalignment by enriching the
interface. Specifically, the ALIGN-generated interface enhances both the static
information of the environment and the step-wise observations returned to the
agent. Implemented as a lightweight wrapper, this interface achieves the alignment
without modifying either the agent logic or the environment code. Experiments
across multiple domains including embodied tasks, web navigation and tool-use,
achieve consistent performance improvements, with up to a 45.67% success rate
improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface
can generalize across different agent architectures and LLM backbones without
interface regeneration.

Agent-Environment Interaction ‘ Our Method: Interface Alignment
éTHOUGHT: The book may be on the shelf. First | need to ALIGN-generated Interface 00 Interface Function
examine the shelves. - - ® Information Al
— —~ gn
ACTION: examine shelf 1 =S @ » =3 { 22 Interaction Align

OBSERVATION: Nothing happens.

Interaction between Agent and Interface-wrapped Env
{=}, ACTION: examine shelf 1

Agent’s Inner Monologue Environment Logic
/=, THOUGHT: The environ- @The agent has not gone to OBSERVATION: Before "examine recepta-
ment returned “Nothing shelf 1. Action ‘examine — cle’, you should first ‘go to" there.
happens.” This means the shelf 1" is invalid. Nothing ‘ éTHOUGHT: | need to first 'go to shelf 1° and then
book not on shelf 1. happens in environment. execute ‘examine shelf 1°.
\Agent—Environment Misalignmentj ‘¥Alignment—/(

Figure 1: Illustration of agent-environment misalignment and our proposed solution. On the left,
the agent and the environment have a misalignment in their interpretation of the same observation,
where the agent’s understanding of the observation differs from the environment’s underlying logic.
On the right, our method, ALIGN, automatically generates interfaces that provide the agent with
clearer interaction context, aligning the agent’s understanding with the environment’s logic.

1 INTRODUCTION

Large Language Model (LLM) agents have demonstrated promising performance in interactive tasks
such as embodied tasks (Driess et al., 2023 [Lin et al.} 2023} |Wang et al.|[20244a)), web navigation (Chae
et al., 2025 |He et al.,|20244a; Q1 et al., [2024), and tool-use tasks (Wang et al., | 2024bj |Paranjape et al.,

Under review as a conference paper at ICLR 2026

2023; [Schick et al.,2023). In these tasks, agents typically interact with the environment through
manually designed interfaces such as predefined action spaces and interaction rules. While substantial
efforts have been devoted to improving agents and environments, comparatively little attention
has been paid to the interface between them, leading to a problem we term agent-environment
misalignment, which significantly impacts the agent performance.

The agent-environment misalignment refers to the discrepancy between the interpretation of the agent
to the observation following an action and the underlying logic of the environment. As illustrated
in Figure (left), in ALFWorld (Shridhar et al., [2021), issuing examine receptacle fails unless the
agent first executes go to receptacle. Consequently, the environment responds with the observation
“Nothing happens.”. At this point, the agent interprets the observation to mean that there is nothing
on shelf 1, which is inconsistent with the underlying reason for the environment providing it. To
assess the impact of this misalignment, we conduct preliminary experiments, which reveal that simply
revising the observation for an invalid examine receptacle action to “You need to first go to receptacle
before you can examine it” increases the success rate of a vanilla Qwen2.5-7B-Instruct (Team,
2024) agent on ALFWorld from 13.4% to 31.3‘7 Such phenomenon suggests that the agent-
environment misalignment significantly hinders task success, and can be alleviated by improving
interface design. From the perspective of the agent, poorly designed interfaces impose unnecessary
cognitive overhead. Furthermore, from an evaluation perspective, inadequate interfaces can obscure
an accurate assessment of the true reasoning capabilities of agents. Therefore, we argue that the
problem of agent-environment misalignment warrants greater attention.

However, addressing the agent-environment misalignment is challenging. On one hand, current
benchmarks primarily focus on advance agent intelligence by constructing increasingly complex
and challenging environments (Jimenez et al., |2024; |Wang et al., | 2025b; |Wei et al., 2025} | Xie et al.}
2024; |Zhou et al.| 2024a), often overlooking the importance of improving interface design. This
oversight extends across multiple domains of interactive tasks, such as, ALFWorld, OSWorld (Xie
et al., [2024), and M3ToolEval (Wang et al.| |2024b)). They all exhibit similar deficiencies: failing
to provide agent-parseable observations for environmental constraints violation in embodied tasks,
positional inaccuracies in operating system tasks or parameter format errors in multi-turn tool-use
tasks, respectively. On the other hand, although some recent work (Agashe et al., [2024; [Yang et al.|
2024aj [Zheng et al., [2024) has begun to consider interface design, these efforts often rely on manual,
environment-specific tailoring, which introduces two critical issues: (1) they are highly labor-intensive
and (2) whether human-designed interfaces are optimal for agents remains an open question.

Furthermore, in addition to studies that explicitly optimize interface design, it is common in agent-
focused research for researchers to manually re-engineer environment interfaces to align with their
specific methods. For instance, for the same environment ALFWorld, Zhou et al|(2024b) manually
maintains the environment’s state information in JSON format; Ma et al.| (2024) introduces a new
action check_valid_actions to enable agents to retrieve all valid actions; and |Chen et al.| (2024a)
re-implements the environment by wrapping it into a new class InteractEnv. However, such ad-hoc
customization pose a significant challenge to the field: it compromises the direct comparability
across different approaches. Moreover, these modifications are often tailored to the specific methods
proposed, making it difficult for the research community to determine whether performance variations
stem from novel agent architectures or from the non-standardized, customized interfaces. Therefore,
we believe that manually re-engineering environment interfaces is not an optimal approach to
alleviating the agent-environment misalignment problem.

Distinct from the aforementioned works, we propose to automatically generate interfaces for
bridging the agent-environment misalignment. In this work, we introduce ALIGN (Auto-Aligned
Interface Generation), a framework that automatically generate aligned interfaces for environments.
The generated interface consists of two modules: INFERRULES and WRAPSTEP. The former
automatically discovers and provides the agent with static information about environmental rules or
internal constraints, facilitating static alignment, while the latter enhances the interaction by offering
more detailed observations for agent-issuing actions, enabling dynamic alignment, as shown in
Figure|l|(right). Owing to the powerful reasoning and coding capabilities of current advanced LLMs,
we utilize these models to analyze existing agent-environment misalignments and automatically
generate the interface. Moreover, we employ LLMs to conduct experimental verification to mitigate
hallucination issues (Bang et al., 2023} Xu et al., |2024). Specifically, our LLM-based system

"Experimental details are provided in Appendix

Under review as a conference paper at ICLR 2026

autonomously validate both proposed misalignments and generated interface through direct interaction
with the environment, ensuring that identified issues genuinely exist and are properly addressed by
the interface. The generated interface acts as a lightweight wrapper, providing richer context and
explicit constraint hints, enabling different LLM agents to align with the environment directly.

To evaluate the effectiveness of ALIGN, we conduct experiments on four representative benchmarks
across three domains: embodied tasks, web navigation, and tool-use tasks. Our results demonstrate
consistent performance improvements across all four benchmarks when using the ALIGN-generated
interface, with notably gains of 45.67% in average success rate on ALFWorld. Moreover, the
performance of GPT-4.1-based agents on ALFWorld are improved from 73.88% to 93.28% with
ALIGN, highlighting the efficiency of our approach in mitigating the agent-environment misalignment
to unleash the agent’s true capabilities.

Our key contributions can be summarized as follows:

* We identify and characterize the agent-environment misalignment problem, empirically show-
ing its prevalence across diverse domains and its role as a key bottleneck to agent performance.

* We introduce ALIGN, the first framework that automatically generates aligned interfaces to
alleviate agent-environment misalignment, without modifying agent logic or environment code.

* We demonstrate the effectiveness and generalizability of ALIGN across three domains, with up
to a 45.67% success rate improvement on ALFWorld.

2 RELATED WORK

Agent-environment interface The agent-environment interface defines how agents interact with the
environment. In reinforcement learning, researchers construct unified interaction interfaces (Bonnet;
et al.l 2024; Brockman et al.| [2016; [Kolve et al., |2017; [Towers et al., [2024) to standardize the
application and evaluation of different algorithms. With the increasing capability of LLMs to perform
human-like actions (Guo et al., 2024} |Liu et al.| 2024; Ma et al.| [2024)), interface design has been
proven to largely influence the performance of LLM-based agents (Xie et al., 2024; Rawles et al.,
2024). SWE-agent (Yang et al., [2024a) proposes agent-computer interfaces for coding agents and
recent efforts aim to improve generalization (Agashe et al., 2024} Qin et al.| 2025 Niu et al.|[2024) and
enhance interfaces with auxiliary tools (Bula et al., [2025; |Gou et al.| 2024; |Lei et al., 2025} |Lu et al.,
2024; Yang et al., 2023a)). Nevertheless, current agent-environment interfaces are mostly manually
crafted and tailored for specific environments or agent frameworks, limiting their generalization and
scalability. Therefore, we propose automated interface generation to empower agents with effective,
generalizable and automatic interface alignment.

Methods aligning agents with environments LLM agents have exhibited strong potential for
real-world interaction and task completion Yao et al.|(2023); [Shinn et al.[(2023); [Liu et al.| (2024)).
Current research in this area can be broadly categorized into training-based methods and training-
free methods. Training-based methods consists of fine-tuning LLMs with expert-level interaction
trajectories [Zeng et al.[(2024); |Chen et al.[(2023} 2025); [Fu et al.| (2025)); |Chen et al.| (2024b) and
enhancing environment-aligned planning and acting via reinforcement learning Bai et al.| (2025);
Yang et al.| (2024b); |Q1 et al.| (2024); [Feng et al.|(2024); Zhou et al.| (2024c)); Wang et al.|(2025a).
Though effective, these methods suffer from high computational costs and limited generalization
towards unseen environments. Another approach constructs training-free multi-agent frameworks
for task decomposition and experience accumulation (Chen et al.l 2024a; |[He et al., [2024b; Sun
et al.| 2024;[Yang et al.| [2023b}; |Zhou et al.,[2024b). However, static agent pipelines lack flexibility
and experience injected through prompting often fails to capture environment dynamics and is not
effectively utilized by LLMs, resulting in insufficient alignment between agents and environments.

3 METHOD

3.1 PROBLEM FORMULATION

In the context of interactive decision-making tasks, we define the environment £ as a tuple
(S, A, T, F,T), where S denotes the set of all possible states of the environment; A denotes the action
space, the set of actions the agent can invoke; 7" : S x A — & represents the state transition function,
which defines how the environment state evolves in response to agent actions; F' : S x A — O

Under review as a conference paper at ICLR 2026

is the observation function, providing textual feedback that reflects the consequences of the action
in the current state, where O is all possible observations; Z encodes the environment foundational
information description, a fixed, declarative representation of the environment’s basic introduction,
object attributes, or domain rules, which is exposed to the agent at initialization.

An agent 7 operates as a policy that, at each timestep ¢, receives (Z, task, o;—1), where task is the
task description and 0;—1 = F'(s;—1, a¢—1) is the observation from the previous step, and produces
an action a; € A. In general, o is the initial observation. The task culminates in an interaction
trajectory 7 = [(S0, a0, 00), - - -, (St, at,0t)], and the environment provides feedback on the task
completion that indicates how well the agent has achieved its goal by the end of the interaction.

In practice, misalignment may arise between the internal expectations of agents and the actual

state transitions of environments. Upon receiving an observation o;, the agent may predict the

) ted - .
next environment state s\ internally and subsequently produce the next action a4 1. However,

because o; may fail to adequately convey the internal state changes of environments and their causes,

such as implicit or under-specified constraints, the predicted state si’jffmd can differ from the actual

next state si%5" = T'(s;, a;). This mismatch, termed as agent-environment misalignment, can
disrupt the intended progress of the agent toward the goal, even if the next action a;; is logically

coherent under the agent’s interpretation of Z and prior observations.
3.2 ALIGN OVERVIEW

To alleviate the agent-environment misalignment, we introduce ALIGN, a framework that automati-
cally generate aligned interface between the agent and the environment. Concretely, we redefine the
interface by wrapping two key environment signals: (1) the static environment description Z, which
we transform into augmented information 7 that explicitly communicates relevant interaction rules
and constraints to the agent before task execution; and (2) the step-wise observation o; = F(s¢, ay),
which we restructure as an augmented observation o, that captures both the original observation
and additional signals about the success, failure conditions, or inferred preconditions of the action.

These eprlched signals (Z, 0;) are generated without modlfymg B S

the environment code, and are instead constructed by an inter- ~

¢ ; ; / >~
ace wrapper layered on top of the environment, as illustrated

in Figure[2] This wrapper contains two key modules:

Agent Initialization

Info I
INFERRULES(+): Static information of domain-specific execu- & Info I & TxperRuLES
tion rules based on the task description and the initial observa- | Agent-Environment Interaction

Env

tion 0g. Formally, it implements the mapping (task, 0g) — Z, @MEDQWRAPSTEPM(,L@EW
where 7 includes the constraints automatically extracted, such Obs & Obs o

as precondition dependencies or action ordering requirements.)
))) Figure 2: Overview of the ALIGN-
WRAPSTEP(:): A dynamic observation processor that inter- generated interface.

cepts each agent-issued action and augments the raw observa-
tion if needed. It implements the mapping (F, s;, a;) — 0, where o, encapsulates both F'(s, a;)
and additional diagnostic or corrective information.

Together, these modules form an intermediate interface wrapper layer that intercepts and transforms
environment information before it reaches the agent. This design allows the base agent 7 to remain
unchanged, while still benefiting from contextual clarity and enriched observation that help avoid
misaligned actions. From the perspective of the agent, interaction now occurs with an augmented
environment, which we denote as £ = (S, A, T, F,Z UT) , where the observation function F is
defined as F(s;,a;) := WRAPSTEP(F, s;, a;). This formulation does not alter the internal structure
or transition dynamics of the original environment £. Instead, it constructs an externally wrapped
interaction interface that provides the agent with a richer and more interpretable view of its operating
context. The interface is denoted as ® := {INFERRULES, WRAPSTEP} for convenience.

As shown in Figure |3 the ALIGN integrates two cooperative modules, Analyzer and Optimizer,
to generate aligned interfaces. The framework operates through iterative optimization, with each
iteration comprising three stages: in Stage 1, the Analyzer identifies agent-environment misalignments
by analyzing past interaction trajectories; in Stage 2, the Optimizer generates, validates and refines
a new interface based on the detected misalignments; and in Stage 3, the agent interacts with the

Under review as a conference paper at ICLR 2026

Stage 1: Misalignment Analysis Stage 2: Interface Generation Stage 3: Execution with Interface
é Analyzer Optimizer Execution
X ; ® Misalignment . &) o] @ i
Step 1: (Trajectory Step 1: (Misalignment, Y Interface, = Q Task Failed —

3 »

@Task Success
7 Interface,

Refine

interface, ()

Verified

Step 2: é:, lenterface‘_1® Nerros Step 2: 3
1

Misalignment Example Experiment Verification Example Interface Example
Analysis Result 1 Optimizer: <thought>...</thought> # Information Align
Agent Action Type: examine <action>init_simulator(task_id="4-293")</action> def InferRules():
Agent Action Case: examine drawer 1 Experiment: ... return ""1. Before examining or interacting
Agent High-Level Reasoning Intent: The Agent is Optimizer: <thought>Now | will simulate an invalid with any receptacle, you must first go to that
attempting to locate the box and desklamp by examining "examine" action where ...</thought> receptacle."™
potential receptacles. <action>exec_agent_action("examine drawer 1")</action>
Environment Rule: The Environment may require the Experiment: ... Observation: Nothing happens. ... # Interaction Align
Agent to first "go to" a receptacle before performing def WrapStep():
actions like "examine” on it. Optimizer: <thought>The "examine drawer 1" action was
Sufficient Observation: The environment should executed, but the environment did not provide sufficient if target not in current_location:
provide observation such as "You need to go to drawer 1 feedback ...</thought> obs = f"You need to go to {target} before
before examining it" when the Agent attempts to examine <if_need_refine>True</if_need_refine> examining it. You must first navigate to a
a receptacle without first moving to it. <refine_strategy>...</refine_strategy> receptacle before you can examine it."

Figure 3: ALIGN framework. In each iteration, ALIGN progresses though three stages. Stage 1:
the Analyzer identifies potential agent-environment misalignments and validates them through
experiments; Stage 2: the Optimizer generates a new interface based on the previous interface and
identified misalignments, followed by verification and refinement; Stage 3: the agent interacts with
the updated interface-wrapped environment, with trajectories of failed tasks fed back to the Analyzer
for analysis in the next iteration. At the bottom of the figure, examples for misalignment, verification
of interface integrity by Optimizer, and the ALIGN-generated interface are provided.

environment wrapped with the newly generated interface, and the failed task trajectories are fed back
to Analyzer for analysis in the next iteration.

3.3 ALIGN FRAMEWORK

To automate the generation of interfaces that bridge the agent-environment misalignments, ALIGN
need to solve two key challenges: (1) how to analyze and identify existing agent-environment
misalignments, and (2) how to generate an interface that addresses these misalignments. The overall
algorithm process of ALIGN is outlined in Algorithm[I]in Appendix B}

Misalignment Analysis We represent each agent-environment misalignment using structured text,
as shown in the bottom left of Figure[3] The “Agent High-Level Reasoning Intent” and “Environment
Rule” respectively depict the agent’s expectations of the action and the environment’s observation
rules, together representing a misalignment. The “Sufficient Observation” represents the observa-
tion the environment should provide to resolve the misalignment. To analyze and identify these
misalignments, we designed the Analyzer module based on LLMs. In each iteration, the Analyzer
takes the failed interaction trajectory 7(*~1) in the previous iteration, the set of currently identified
misalignments M, and the interface ®(~1) from the previous round as input, and generates a new
set of misalignments M (*). Detailed prompts for this process are provided in Appendix

Interface Generation Once the new set of misalignments M) is identified, we employ the
Optimizer module to generate a new interface. We represent the two modules of the interface,
INFERRULES and WRAPSTEP, as Python functions, as shown in the bottom right of Figure 3] to
leverage the powerful code generation capabilities of LLMs. In each iteration, the Optimizer takes
the newly identified misalignments M (") and the previous interface ®(*~1) as input, and generates a
new interface ®(*). The detailed prompts for this process are provided in Appendix

Experimental Verification Given the hallucination (Bang et al., 2023} |Xu et al.| [2024) issues
of LLMs, we incorporate an experimental verification procedure. Specifically, after the Analyzer
generates M (%), it will interact with the environment wrapped by the previous interface ®~1) to
validate whether the identified misalignments do indeed exist and can be resolved by the proposed
“Sufficient Observation”. And after the Optimizer generates the new interface ®(*), it will interact with
the environment wrapped by this new interface to ensure that the generated interface can resolve the
identified misalignments. If the Optimizer finds that the proposed interface is insufficient to address
the discovered misalignments, it will provide a refinement strategy and regenerate the interface. This

Under review as a conference paper at ICLR 2026

iterative process continues until the interface passes the validation, ensuring that the misalignments
identified are appropriately addressed. An example of this process is provided in the bottom center of
Figure[3] To facilitate this interaction with the interface-wrapped environment, we designed a set of
encapsulated tools for both the Analyzer and Optimizer to use, as described in Appendix [E.3]

After each iteration, the agent interacts with the environment wrapped by the new generated interface
®() | and trajectories of the failed tasks are returned to Analyzer for further analysis. The algorithm
continues iteratively until one of the following holds: (1) the pre-defined maximum number of
iterations is reached; (2) no failed trajectories are produced; (3) no new misalignments are identified.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocol To validate the effectiveness of ALIGN, we assess the performance of various
agents in the original, unmodified environments. Subsequently, ALIGN is utilized to generate
interfaces for these environments with the respective agents. Afterward, the agents are re-evaluated
in the same environments, wrapped with the ALIGN-generated interfaces. This design enables us to
observe and measure the changes in agent performance before and after the interface alignment.

Benchmarks We conduct experiments on four representative benchmarks across three domains:
embodied tasks, web navigation and tool-use. Among them, (1) ALFWorld (Shridhar et al.| 2021)
focuses on embodied Al agents performing household tasks through textual interactions in simu-
lated environments; (2) ScienceWorld (Wang et al.|, 2022} evaluates the abilities to conduct scientific
experiments and apply scientific reasoning of agents in an interactive text-based environment; (3) Web-
Shop (Yao et al., [2022) simulates e-commerce scenarios where agents navigate product catalogs
and complete purchasing tasks; and (4) M3ToolEval (Wang et al., 2024b) is specifically designed to
evaluate agent performance in multi-turn tool-use tasks.

Agent Methods To verify the capability of ALIGN to enhance performance across diverse agent
architectures, we evaluate five representative methods: (1) Vanilla Agent: Base implementation
without specialized prompting strategies; (2) ReAct (Yao et al., [2023): Leveraging the reasoning
capabilities of LLMs through interleaved reasoning and action steps; (3) Self-Consistency (Wang
et al.,2023): Utilizing probabilistic outputs from LLMs to generate multiple solution paths and select
the most consistent one; (4) Self-Refine (Madaan et al.,[2023): Employing an iterative self-critic and
refine mechanism where agents critique and refine their previous solutions; and (5) Planning Agent:
Inspired by RAP [Hao et al.| (2023)), this approach leverages the planning capabilities of LLMs to
decompose complex tasks into manageable sub-tasks.

Implementation Details Unless otherwise noted, we use Qwen2.5-7B-Instruct (Team, |[2024) as the
base model of agents. The Optimizer for interface generation uses Gemini 2.5 Pro (Googlel 2025)),
while other steps the Analyzer and Optimizer use GPT-4.1 (OpenAlL |2025). Implementation details
of benchmark task splits and hyper-parameters can be found in Appendix [E]

4.2 MAIN RESULTS

Table [T] summarizes the task success rates or scores of five representative agent methods in the
environment without (w/o0) or with (w/) ALIGN-generated interface. The interfaces generated and
the misalignments analyzed can be found in Appendix[F]and the token consumption analysis can be
found in Appendix [D] Our empirical investigation yields three principal findings:

(1) ALIGN consistently enhances performance across different domains. All evaluated agent
methods demonstrate significant performance improvements when utilizing ALIGN-generated inter-
faces. Specifically, the five agent methods exhibit mean improvements of 45.67% in task-success rate
for ALFWorld, 10.07 points for ScienceWorld, 6.59 points for WebShop, and 6.39% in task-success
rate for M3ToolEval. These consistent improvements substantiate the effectiveness of ALIGN.

(2) Agent-environment misalignment is a pervasive phenomenon impeding the agent perfor-
mance. The observed performance enhancements provide empirical evidence that numerous errors
in baseline configurations originate from implicit constraints or under-specified observation, rather
than from intrinsic reasoning deficiencies. This finding suggests that when these environmental

Under review as a conference paper at ICLR 2026

Table 1: Effect of ALIGN-generated interfaces on four benchmarks. For every agent we report its
score without the interface (w/o ALIGN) and with the interface (w/ ALIGN); the value in parentheses
is the absolute improvement. Metrics are task-success rate (%) for ALFWorld and M3ToolEval, and
scores for ScienceWorld and WebShop.

Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanill w/o ALIGN 13.43 14.94 54.10 11.11
anitia W/ ALIGN 60.45 w47.00) 27.69 +1275) 61.23 4713 20.83 (:0.72)

ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 63.43 (+44.03) 28.97 (+8.94) 4293 (+573) 18.06 (+834)

Self-Consistenc w/o ALIGN 11.94 14.07 56.23 11.11
o Y W/ALIGN 69.40 45746 25.41 1134 61.10 +4.87) 16.67 (+5.56)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 40.30 (+36.57) 22.99 (+8.12) 52.30 (+7.50) 6.94 (+1.39)

Planning w/o ALIGN 9.70 17.13 46.95 11.11

w/ ALIGN 52.99 (+43.29) 26.34 (+9.21) 54.67 +1.72) 18.06 (+6.95)

constraints are explicitly surfaced, agents can execute their intended tasks with substantially improved
reliability. Consequently, we posit that agent-environment misalignment is pervasive in interactive
decision-making tasks, and addressing this problem is crucial for advancing agent performance.

(3) Alignment between agent and environment can facilitate identification of additional
performance-influencing factors. While the Self-Consistency agent achieves a 69.40% success
rate in ALFWorld with ALIGN, the performance of Self-Refine agent remains comparatively sub-
optimal (40.30%), indicating potential deficiencies in the critic and self-refinement capabilities of
the Qwen2.5-7B-Instruct model. These limitations are similarly manifested in the M3ToolEval
results. Furthermore, the relatively modest performance improvements in ScienceWorld suggest
that Qwen2.5-7B-Instruct may exhibit insufficient scientific causal reasoning capabilities. These
observations indicate that properly aligning agent and environment enables more precise isolation
and analysis of other factors influencing agent performance beyond alignment considerations.

4.3 INTERFACE QUALITY ANALYSIS

Table 2: Impact of the ALIGN-generated interface on consecutive invalid actions. The metric
reports the fraction (%) of consecutive invalid actions. Lower values indicate more desirable behavior.
A denotes the relative reduction with respect to the w/o ALIGN setting.

ALFWorld ScienceWorld

Method w/o ALIGN w/ALIGN A w/o ALIGN w/ALIGN A

Vanilla 7791 26.59 66% 49.12 24.47 50%
ReAct 82.23 38.63 53% 46.61 29.99 36%
Self-Consistency 77.71 15.08 81% 51.10 31.51 38%
Self-Refine 90.38 45.84 49% 58.02 29.48 49%
Planning 74.09 19.14 74% 68.67 20.94 70%
Average 80.46 28.51 65% 54.70 27.28 49%

Influence on Agent Decision To quantitatively assess the influence of ALIGN-generated interfaces on
agent decision beyond end-task performance metric, we introduce a metric that measures the frequency
of consecutive invalid actions by calculating the proportion of the actions that occur within sequences
of two or more consecutive invalid steps. Lower values of this metric indicate: (1) enhanced agent
awareness of implicit preconditions, and (2) improved recovery capability following isolated errors.
Table 2] presents the results for five agent methods implemented on ALFWorld and ScienceWorld.
The empirical results demonstrate a substantial reduction in consecutive invalid actions frequency
across all agent methods when utilizing ALIGN-generated interfaces. Specifically, we observe a mean
reduction of 65% in ALFWorld and 49% in ScienceWorld. These findings provide robust evidence
that ALIGN effectively enriches the information conveyed by the observation, preventing agents from
entering repetitive error cycles, which aligns with the findings documented in Section .2}

Comparison with Agentic Systems and Human-designed Interfaces To further assess the effective-
ness of our automatically generated interfaces, we compare ALIGN against (1) agentic frameworks

Under review as a conference paper at ICLR 2026

equipped with carefully designed reasoning, planning and memory modules and (2) human-designed
interfaces. The experimental setup and results are presented in Appendix [C.2] As shown in Ta-
ble|/} even without bespoke reasoning, planning, or memory modules, a vanilla agent that directly
outputs the next action yields a 6.71 percentage points higher success rate than the best agentic
system when paired with ALIGN-generated interfaces, indicating agent-environment misalignment
substantially constrains the performance of LLM-based agents in interactive tasks. Moreover, using
interfaces automatically generated by ALIGN yields a 13.44 percentage points higher success rate
than human-designed interfaces, further validating the effectiveness of our method (Table E])

4.4 GENERALIZATION AND GENERALITY STUDY

Table 3: Generalization of ALIGN-generated inter- Table 4: Generality of ALIGN. Task suc-
faces across agents and models. Mean performance cess rates (SR) without and with ALIGN-
improvements from applying ALIGN-generated inter- generated interfaces in ALFWorld across
faces in the four environments across different settings. two settings. (a) Using GPT-4.1 series
(a) Cross-agent transfer: interfaces generated with a models as the base model of agents; (b)
Vanilla agent improve other agent methods. (b) Cross- Using GiGPO-Qwen2.5-7B-Instruct eval-
model transfer: interfaces generated with Qwen2.5-7B- uated under different agent architectures.
Instruct can generalize to other LLMs.

(a) GPT-4.1 series

(a) Interface source: Vanilla agent Base Model Interface SR (%)
Target method ALF. Sci. Web. M°®T. GPTd Lmini W0 ALIGN 28.36
-4.1-mini
ReAct +39.56 +12.29 +7.87 +5.56 W/ ALIGN 64.93 +3657)
Self-Consistency +51.49 +15.30 +3.00 +8.33 GPT-4.1 w/o ALIGN 73.88
Self-Refine +34.33 +14.11 +6.17 +4.17 ’ w/ ALIGN 93.28 (+19.40)
Planning +41.05 +9.66 +3.26 +11.11 (b) GiGPO-Qwen?2.5-7B-Instruct
(b) Interface source: Qwen2.5-7B-Instruct agent Agent Method Interface SR (%)
Target LLM ALF. Sci. Web. M°®T. Vanill w/o ALIGN 35.04
anilla .
Qwen2.5-14B-Instruct +17.46 +4.61 +4.66 +6.11 w/ALIGN 55.97 +2093)
Llama3.1-8B-Instruct +5.97 +10.27 +0.33 +0.83 w/o ALIGN 89.55

Training Config

Llama3.3-70B-Instruct +5.82 +3.99 +5.68 +1.67 w/ ALIGN 92.54 (+2.99)

Generalization Study To evaluate the generalization capabilities of ALIGN, we performed the
following two experiments, with the results presented in Table [3]and detailed results in Appendix [C.3]

(1) ALIGN can generalize to different agent architectures. Panel (a) of Table |3| applies interfaces
generated with the Vanilla agent to the other four agents. Across all four environments every
target agent shows consistent growth, demonstrating that ALIGN captures genuine and previously
unexposed environment constraints. This also reinforces the earlier conclusion that agent-environment
misalignment is a pervasive source of error independent of the agent’s reasoning style.

(2) ALIGN can generalize to larger and heterogeneous LLMs. Panel (b) of Table 3] examines whether
an interface generated with Qwen2.5-7B-Instruct can extend to larger or architecturally different
model backbones. The results demonstrate that ALIGN-generated interfaces lead to performance
improvements across base models of varying sizes and architectural families, which indicates that our
method possesses strong generalization capabilities. We also observe that this generalization is not
uniformly robust across all model families and datasets. For instance, Llama3.1-8B-Instruct (Metal
20254) shows only a marginal gain of +0.33 on the WebShop benchmark. This limited improvement
may be attributed to the inherent reasoning capabilities of the model itself.

Taken together, these results show that ALIGN-generated interfaces can generalize (1) across agent
policies and (2) across model scales and families, validating the practicality of ALIGN.

Generality Study In this work, our empirical observations indicate that the root cause of agent-
environment misalignment lies in the robustness of the interface itself, making it a universal issue that
affects agents irrespective of the underlying model capability. To further validate this claim and assess
the generality of ALIGN, we conduct experiments on both closed-source LLMs and domain-specific
models trained within the environment. For the former, we use the GPT-4.1 series; for the latter, we
use GiGPO-Qwen2.5-7B-Instruct-ALFWorld (Feng et al., [2025), a state-of-the-art model specifically

Under review as a conference paper at ICLR 2026

post-trained on ALFWorld via reinforcement learning. Detailed experimental setup and full results
are provided in Appendix[C.4] As the results reported in Panel (a) of Table @] shown, applying the
ALIGN-generated interface substantially improves the performance of the GPT-4.1-based agent
from 73.88% to 93.28%. Meanwhile, as the results reported in Panel (b) of Table E] shown, the
ALIGN-generated interface also enhances the performance of the domain-specific model under both
our Vanilla Agent setting and its original training configuration, from 35.04% to 55.97% and 89.55%
to 92.54%, respectively. These findings demonstrate that the fundamental and pervasive nature of
agent-environment misalignment stems from deficiencies in the environment’s interface rather than
solely from the reasoning limitations of any given model, and further corroborate the generality of
our method across both frontier and domain-specialized models.

4.5 ABLATION STUDY

Ablation on Interface Components Starting Table 5: Ablation on Interface components. Val-
from the full ALIGN interface, we conduct two ues represent the change in success rate (%) on
ablations: (1) w/o INFERRULES and (2) w/o ALFWorld and the change in score on Science-
WRAPSTEP. Table [5] reports the change rela- World. Negative values mean performance drops
tive to the full interface on ALFWorld and Sci- from the Full interface.

enceWorld, with the full results presented in Ap-

pendix [C.3] Both ablations reduce performance: w/o INFERRULES w/o WRAPSTEP
w/o INFERRULES averages -6.72 percentage Method ALF. Sci. ALF. Sci.
points on ALFWorld and -2.05 on ScienceWorld, Vanilla 896 335 3358 472
while removing WRAPSTEP yields a larger de- poa 520 208 -1791 -6.44
cline of -31.79 percentage points and -7.84, re- Self-Consistency -1.49 230 -37.27 -10.59
spectively. These decreases confirm that each Self-Refine 746 -1.72 3433 -7.59
interface component contributes meaningfully. Planning -1045 -078 -26.87 -9.86
Moreover, the much larger drop w/o WRAP- pfean 672 205 3179 -7.84

STEP shows the critical role of fine-grained and
enriched observation during interaction. This also suggests that rich, LLM-friendly observation
should be prioritized by future environment designers when constructing environments.

Ablation on Experimental Verification To assess whether Table 6: Task success rate (%) on
the experimental verification procedure in Section @] 18 in- ALFWorld across iterations without
dispensable, we ablated it and re-ran ALIGN with the Vanilla experimental verification procedure.
agent on ALFWorld. As a surrogate, we employed a multi-
sampling strategy in each iteration: the Analyzer sampled six
candidate misalignments and selected the one it judged most 0.2 1343 2239 0.00 0.00
accurate; the Optimizer then sampled six candidate interfaces 05 1343 2388 149 075
and likewise chose its top candidate. Within this multi-sampling process, we controlled stochasticity
via decoding temperature; specifically, we evaluated T € {0.2,0.5} under the prompts listed in
Appendix The resulting task success rates over three iterations are summarized in Table [6]
Without the ability to execute experiments, task success rate deteriorates sharply, a result of the
limited single-shot reliability of LLMs in both diagnosing misalignments and synthesizing correct
interfaces, which underscores the necessity of the experimental verification procedure design.

Temp. Iter0 Iterl Iter2 Iter3

5 CONCLUSION

In this work, we introduce ALIGN, a novel framework that automatically generates aligned interfaces
to alleviate the agent-environment misalignment, a pervasive and underexplored source of failure
in interactive decision-making tasks. By diagnosing implicit constraints through the Analyzer and
synthesizing aligned interface via the Optimizer, ALIGN improves agent performance significantly on
four representative benchmarks across three domains: embodied tasks, web navigation, and tool-use.
Our results demonstrate that ALIGN not only boosts performance across multiple agent methods but
also generalizes effectively to unseen models and strategies, offering a robust, plug-and-play solution
that decouples agent designs from manual environment-specific alignment. These findings suggest
that automatic interface generation is a promising direction for building more reliable, reusable,
and interpretable LLM-based agents. Future research should explore richer forms of interface
representation, expand evaluations to more domains, and develop finer-grained metrics to quantify
interface quality and its impact on agent behavior.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We present the framework and algorithm design of our method in Section [3|and Appendix [B] and
the implementation details of the experiments in Appendix [C] and Appendix [E| Meanwhile, the
code necessary to reproduce the proposed methods and the main experiments has been provided as
supplemental material. The supplemental material also includes the corresponding experimental logs.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S: an
open agentic framework that uses computers like a human. CoRR, abs/2410.08164, 2024. doi: 10.
48550/ARXIV.2410.08164. URL https://doi.org/10.48550/arXiv.2410.08164.

Hao Bai, Yifei Zhou, Erran Li Li, Sergey Levine, and Aviral Kumar. Digi-Q: Transforming VLMs to
device-control agents via value-based offline RL, 2025.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. In
Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and Adila Alfa
Krisnadhi (eds.), Proceedings of the 13th International Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics, ICNLP 2023 -Volume 1: Long Papers, Nusa Dua, Bali, November I - 4, 2023, pp. 675-
718. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.1JCNLP-MAIN.45.
URLhttps://doi.org/10.18653/v1/2023.1jcnlp—main. 45k

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries P. Smit, Nathan Grinsztajn, Rapha&l Boige, Cemlyn N. Waters,
Mohamed A. Mimouni, Ulrich A. Mbou Sob, Ruan de Kock, Siddarth Singh, Daniel Furelos-
Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable
reinforcement learning environments in JAX. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=C4CxQmpowc.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Timothy Bula, Saurabh Pujar, Luca Buratti, Mihaela Bornea, and Avirup Sil. SeaView: Software
engineering agent visual interface for enhanced workflow. arXiv preprint arXiv:2504.08696, 2025.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL |https://openreview.net/forum?id=
moWiYJuSGF.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
FireAct: Toward language agent fine-tuning. CoRR, abs/2310.05915, 2023. doi: 10.48550/ARXIV.
2310.05915. URL https://doi.org/10.48550/arXiv.2310.05915,

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Au-
toManual: Constructing instruction manuals by LLM agents via interactive environ-
mental learning. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
0142921fad7e£9192bd87229cdafa9d4-Abstract-Conference.htmll

10

https://doi.org/10.48550/arXiv.2410.08164
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://openreview.net/forum?id=C4CxQmp9wc
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=moWiYJuSGF
https://openreview.net/forum?id=moWiYJuSGF
https://doi.org/10.48550/arXiv.2310.05915
http://papers.nips.cc/paper_files/paper/2024/hash/0142921fad7ef9192bd87229cdafa9d4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/0142921fad7ef9192bd87229cdafa9d4-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pp. 9354-9366. Association for Computational Linguistics, 2024b. doi:
10.18653/V1/2024 FINDINGS-ACL.557. URL |https://doi.org/10.18653/v1/2024,
findings—-acl.557.

Zhixun Chen, Ming Li, Yuxuan Huang, Yali Du, Meng Fang, and Tianyi Zhou. ATLaS: Agent tuning
via learning critical steps. CoRR, abs/2503.02197, 2025. doi: 10.48550/ARX1V.2503.02197. URL
https://doi.org/10.48550/arXiv.2503.02197.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-E: An embodied
multimodal language model. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 8469—-8488. PMLR, 2023. URL https://proceedings.
mlr.press/v202/driess23a.html.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for
LLM agent training. CoRR, abs/2505.10978, 2025. doi: 10.48550/ARXIV.2505.10978. URL
https://doi.org/10.48550/arXiv.2505.10978.

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang Li.
AGILE: A novel reinforcement learning framework of LLM agents. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
097c514162ea7126d40671d23el2f51b-Abstract-Conference.html.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. AgentRefine: Enhancing agent generalization
through refinement tuning. CoRR, abs/2501.01702, 2025. doi: 10.48550/ARXIV.2501.01702.
URLhttps://doi.org/10.48550/arXiv.2501.01702/

Yinggiang Ge, Wenyue Hua, Kai Mei, Jianchao Ji, Juntao Tan, Shuyuan Xu, Zelong Li,
and Yongfeng Zhang. Openagi: When LLM meets domain experts. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/1190733f217404edc8a7f4el5a57f301-Abstract-Datasets_and_
Benchmarks.htmll

Google. Gemini 2.5 Pro preview model card, 2025. URL https://storage.googleapis|
com/model-cards/documents/gemini-2.5-pro-—preview.pdf!

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
CoRR, abs/2410.05243, 2024. doi: 10.48550/ARXIV.2410.05243. URL https://doi.org/
10.48550/arXiv.2410.05243.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IICAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 8048—8057. ijcai.org, 2024.
URL https://www.ijcai.org/proceedings/2024/890.

11

https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.48550/arXiv.2503.02197
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
https://doi.org/10.48550/arXiv.2505.10978
http://papers.nips.cc/paper_files/paper/2024/hash/097c514162ea7126d40671d23e12f51b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/097c514162ea7126d40671d23e12f51b-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2501.01702
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://doi.org/10.48550/arXiv.2410.05243
https://doi.org/10.48550/arXiv.2410.05243
https://www.ijcai.org/proceedings/2024/890

Under review as a conference paper at ICLR 2026

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 8154-8173.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. EMNLP-MAIN.507.
URL https://doi.org/10.18653/v1/2023.emnlp-main.507.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 6864-6890. Association for Computational Linguistics, 2024a.
doi: 10.18653/V1/2024.ACL-LONG.371. URL https://doi.org/10.18653/v1/2024,
acl-long.371.

Kaiyu He, Mian Zhang, Shuo Yan, Peilin Wu, and Zhiyu Zoey Chen. IDEA: Enhancing the rule
learning ability of large language model agent through induction, deduction, and abduction, 2024b.
URL https://arxiv.org/abs/2408.10455.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM6 6.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-
THOR: an interactive 3d environment for visual AI. CoRR, abs/1712.05474,2017. URL |http:
//arxiv.org/abs/1712.05474.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to
promote vision-language coordination in large multi-modal models. In Owen Rambow, Leo
Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
(eds.), Proceedings of the 31st International Conference on Computational Linguistics, COLING
2025, Abu Dhabi, UAE, January 19-24, 2025, pp. 2886-2903. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.coling-main.195/.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bha-
gavatula, Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. SwiftSage: A genera-
tive agent with fast and slow thinking for complex interactive tasks. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
4b0eeab9deeabl2c9e2c469187643dc2-Abstract-Conference.html,

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
AgentBench: Evaluating llms as agents. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=zAdUB0aCTQ.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. OmniParser for pure vision

based GUI agent. CoRR, abs/2408.00203, 2024. doi: 10.48550/ARXIV.2408.00203. URL
https://doi.org/10.48550/arXiv.2408.00203!

12

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://arxiv.org/abs/2408.10455
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://arxiv.org/abs/1712.05474
http://arxiv.org/abs/1712.05474
https://aclanthology.org/2025.coling-main.195/
http://papers.nips.cc/paper_files/paper/2023/hash/4b0eea69deea512c9e2c469187643dc2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b0eea69deea512c9e2c469187643dc2-Abstract-Conference.html
https://openreview.net/forum?id=zAdUB0aCTQ
https://doi.org/10.48550/arXiv.2408.00203

Under review as a conference paper at ICLR 2026

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong
Lan, Lingpeng Kong, and Junxian He. AgentBoard: An analytical evaluation board
of multi-turn LLM agents. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_
Benchmarks_Track.htmll

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-Refine: Iterative refinement with self-feedback. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fblb55a505a9%9e9f6c0ff3-Abstract-Conference.htmll

Meta. Model cards and prompt formats Llama 3.1, 2025a. URL https://www.llama.com/
docs/model-cards—and-prompt—formats/llama3_1/.

Meta. Model cards and prompt formats Llama 3.3, 2025b. URL https://www.llama.com/
docs/model-cards—and-prompt-formats/llama3_3/|

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. ScreenAgent: A vision language model-driven computer control agent. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju,
South Korea, August 3-9, 2024, pp. 6433-6441. ijcai.org, 2024. URL https://www.ijcail
org/proceedings/2024/711.

OpenAl. Introducing GPT-4.1 in the api, 2025. URL https://openai.com/index/
gpt—-4-1/l

Bhargavi Paranjape, Scott M. Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tilio Ribeiro. ART: automatic multi-step reasoning and tool-use for large language
models. CoRR, abs/2303.09014, 2023. doi: 10.48550/ARXIV.2303.09014. URL https:
//doi.org/10.48550/arXiv.2303.09014.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer,
Jeff Han, Jurgen Steimle, and Nathalie Henry Riche (eds.), Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA,
29 October 2023- 1 November 2023, pp. 2:1-2:22. ACM, 2023. doi: 10.1145/3586183.3606763.
URL https://doi.org/10.1145/3586183.3606763.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. WebRL.:
Training LLM web agents via self-evolving online curriculum reinforcement learning. CoRR,
abs/2411.02337, 2024. doi: 10.48550/ARXIV.2411.02337. URL https://doi.org/10.
48550/arXiv.2411.02337.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu
Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: pioneering automated GUI
interaction with native agents. CoRR, abs/2501.12326, 2025. doi: 10.48550/ARXIV.2501.12326.
URL https://doi.org/10.48550/arXiv.2501.12326l

13

http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.ijcai.org/proceedings/2024/711
https://www.ijcai.org/proceedings/2024/711
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/arXiv.2411.02337
https://doi.org/10.48550/arXiv.2411.02337
https://doi.org/10.48550/arXiv.2501.12326

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert
Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. AndroidWorld: A dynamic
benchmarking environment for autonomous agents. CoRR, abs/2405.14573, 2024. doi: 10.48550/
ARXIV.2405.14573. URL https://doi.org/10.48550/arXiv.2405.14573\

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425ed4bf790a039352dal0f658a906-Abstract-Conference.html.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
LLM agent search in modular design space. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=mPdmDYIQ7f.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html,

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Co6té, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. ALFWorld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTnl

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao,
and Zhiyong Wu. OS-Genesis: Automating GUI agent trajectory construction via reverse task
synthesis. CoRR, abs/2412.19723, 2024. doi: 10.48550/ARX1V.2412.19723. URL https:
//doi.org/10.48550/arXiv.2412.19723.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlml
github.io/blog/gqwen2.5/.

Mark Towers, Ariel Kwiatkowski, Jordan K. Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard
interface for reinforcement learning environments. CoRR, abs/2407.17032, 2024. doi: 10.48550/
ARXIV.2407.17032. URL https://doi.org/10.48550/arXiv.2407.17032.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Trans. Mach. Learn. Res., 2024, 2024a. URL https://openreview.net/forum?id=
ehfRiFOR3a.

Ruoyao Wang, Peter A. Jansen, Marc-Alexandre C6té, and Prithviraj Ammanabrolu. ScienceWorld:
Is your agent smarter than a 5th grader? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 11279-11298.
Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022. EMNLP-MAIN.775.
URLhttps://doi.org/10.18653/v1/2022.emnlp-main.775.

14

https://doi.org/10.48550/arXiv.2405.14573
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://openreview.net/forum?id=mPdmDYIQ7f
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.48550/arXiv.2412.19723
https://doi.org/10.48550/arXiv.2412.19723
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2407.17032
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://doi.org/10.18653/v1/2022.emnlp-main.775

Under review as a conference paper at ICLR 2026

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better LLM agents. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=jJ9BoXAfFa.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-Consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PLINIMMrw.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho, Jiajun
Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. RAGEN: Understanding self-evolution
in llm agents via multi-turn reinforcement learning, 2025a. URL https://arxiv.org/abs/
2504.20073.

Ziyue Wang, Yurui Dong, Fuwen Luo, Minyuan Ruan, Zhili Cheng, Chi Chen, Peng Li, and Yang
Liu. How do multimodal large language models handle complex multimodal reasoning? placing
them in an extensible escape game, 2025b. URL https://arxiv.org/abs/2503.10042.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. BrowseComp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504,
12516.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min Dou, Botian Shi, Liang
He, and Yu Qiao. Dilu: A knowledge-driven approach to autonomous driving with large language
models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
1d=0gTMUPuLuCl

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/5d413e48£84dc61244b6be550f1cd8f5-Abstract-Datasets_
and_Benchmarks_Track.html,

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. Hallucination is inevitable: An innate limitation
of large language models. CoRR, abs/2401.11817, 2024. doi: 10.48550/ARXIV.2401.11817. URL
https://doi.org/10.48550/arXiv.2401.11817.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-Mark
prompting unleashes extraordinary visual grounding in GPT-4V. CoRR, abs/2310.11441, 2023a.
doi: 10.48550/ARXIV.2310.11441. URL https://doi.org/10.48550/arXiv.2310)
1144171.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. SWE-agent: Agent-computer interfaces enable automated
software engineering. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
5a7c947568c1bl1328ccc5230172ele7c—Abstract-Conference.htmll

15

https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2503.10042
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://openreview.net/forum?id=OqTMUPuLuC
https://openreview.net/forum?id=OqTMUPuLuC
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2310.11441
https://doi.org/10.48550/arXiv.2310.11441
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Zeyuan Yang, Peng Li, and Yang Liu. Failures pave the way: Enhancing large language models
through tuning-free rule accumulation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pp. 1751-1777. Association for Computational
Linguistics, 2023b. doi: 10.18653/V1/2023.EMNLP-MAIN.109. URL https://doi.org/
10.18653/v1/2023.emnlp-main.109.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. ReAct meets ActRe: When
language agents enjoy training data autonomy. CoRR, abs/2403.14589, 2024b. doi: 10.48550/
ARXIV.2403.14589. URL https://doi.org/10.48550/arXiv.2403.14589.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards scal-
able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82adl13ec01£9fed44c01cb91814fd7/b8c-Abstract-Conference.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. ReAct: Synergizing reasoning and acting in language models. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL |https://openreview.net/forum?id=WE_v1uYUL-X|

Junchi Yu, Ran He, and Zhitao Ying. Thought propagation: an analogical approach to complex
reasoning with large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=SBoRhRCzM3.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTuning:
Enabling generalized agent abilities for LLMs. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 3053-3077. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.181. URL https://doi.org/
10.18653/v1/2024.findings-acl.181.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4V(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=piecKJ2D1B.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a.
URLhttps://openreview.net/forum?id=oKn9c6ytLxl

Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, and Chengqi Zhang.
WALL-E: world alignment by rule learning improves world model-based LLM agents. CoRR,
abs/2410.07484, 2024b. doi: 10.48550/ARX1IV.2410.07484. URL https://doi.org/10,
48550/arXiv.2410.07484!.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. ArCHer: Training
language model agents via hierarchical multi-turn RL. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024c. URL
https://openreview.net/forum?id=b6rAQ0kAHTI.

16

https://doi.org/10.18653/v1/2023.emnlp-main.109
https://doi.org/10.18653/v1/2023.emnlp-main.109
https://doi.org/10.48550/arXiv.2403.14589
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=SBoRhRCzM3
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.findings-acl.181
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=oKn9c6ytLx
https://doi.org/10.48550/arXiv.2410.07484
https://doi.org/10.48550/arXiv.2410.07484
https://openreview.net/forum?id=b6rA0kAHT1

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

Throughout the completion of this work, the LLM was employed solely for the purpose of refining
sentences and improving grammatical accuracy during the manuscript writing process.

B FORMALIZATION OF THE ALIGN ALGORITHM

The formalization of the ALIGN algorithm is outlined in Algorithm T}

Algorithm 1 ALIGN: Auto-Aligned Interface Generation
Require: Environment £, Agent 7, Task training set Tiain, Maximum iterations K
1: Initialize misalignment set M < (), interface ®® < {INFERRULES'®), WRAPSTEP(?}, where
INFERRULES®) and WRAPSTEP?) are identity functions

2: fori=1,2,..., K do

3: £C~Y « Environment £ wrapped with interface pli-

4: ngffl) < Failed trajectories from agent r interacting with £~ on Tquin

5 it 7' = () then

6 break > No more failures in the training set
7 end if

// Stage 1: Misalignment Analysis
8: MO Analyzer(T&fl),M, Pli—1))
9: if M"Y =0 then
10: break > No new misalignments identified
11: end if
122 M+ Mum®
// Stage 2: Interface Generation
13: ®@ « Optimizer(M®, ®~1))
14: end for
15: return final interface ®*)

C SUPPLEMENTARY EXPERIMENTAL SETUP AND DETAILED RESULTS

C.1 PRELIMINARY EXPERIMENTS

To preliminarily assess the significance of agent-environment misalignment, we conducted exploratory
experiments on the ALFWorld. We employed the vanilla Qwen2.5-7B-Instruct agent with a temper-
ature setting of 0.0. The deployment protocol, prompt template, followed the same configuration
described in Appendix [E|and Appendix [E.4]

During the experiments, we introduced a minor modification to the environment: if the agent
issued the action examine receptacle and the environment returned the default observation “Nothing
happens.”, we replaced it with “You need to first go to receptacle before you can examine it.” This
simple adjustment increased the agent’s task success rate from 13.4% to 31.3%.

C.2 INTERFACE QUALITY ANALYSIS EXPERIMENTS

To further assess the quality of the ALIGN-generated interface, we first compare our method
with human-designed agentic system. Our experiments are conducted on ALFWorld using the
AgentSquare (Shang et al., 2025) framework. To maximize the advantages of the agentic system,
we adopt gpt-4.1-2025-04-14 as the base model, select OPENAGI (Ge et al., 2023)) for the planning
module, Self-Refine (Madaan et al.,2023) for the reasoning module, and evaluate memory using Gen-
erative (Park et al.,[2023), DiLu (Wen et al.| [2024), TP (Yu et al.,[2024), and VOYAGER (Wang et al.,
2024al). For our approach, we employ a gpt-4.1-2025-04-14-based vanilla agent, where the interface
is generated with the gpt-4.1-2025-04-14-mini-based vanilla agent by ALIGN (the experimental
setup is same as Appendix[C.4). The results are reported in Table

17

Under review as a conference paper at ICLR 2026

Table 7: Experimental results of the comparison between agents with ALIGN-generated interface
and agents with human-designed reasoning, planning and memory module.

Agent Memory pick pick clean pick heat pick cool look ?t/ pick two obj Success
Framework Interface Module and place and place and place and place ei):lalin; 1}111te and place Rate (%)
AgentSquare / Generative 95.83 87.10 69.57 95.24 83.33 88.24 86.57
AgentSquare / DiLu 91.67 87.10 52.17 95.24 83.33 70.59 80.60
AgentSquare / TP 87.50 51.61 4.35 61.90 27.78 47.06 47.76
AgentSquare / VOYAGER 95.83 83.87 52.17 90.48 83.33 64.71 79.10
Vanilla Agent w/o ALIGN / 100.00 93.55 13.04 71.43 61.11 100.00 73.88
Vanilla Agent w/ALIGN / 100.00 100.00 78.26 100.00 77.78 100.00 93.28

Furthermore, we compare the ALIGN-generated interface
against the human-designed interface. We adopt the fol-
lowing configurations for comparison with our method:
(1) Few-shot: Settings identical to those in the ReAct (Yao
et al 2023); (2) Valid Actions: Supplying the agent
with all valid actions at every response turn, analogous
to the check_valid_actions configuration in Agent-
Board (Ma et al., [2024); (3) Human-Designed Interface:
Interfaces manually crafted by Ph.D. students after inspect-
ing ALFWorld experiments, examining trajectories, and run-
ning experiments themselves. The design logic includes: ex-
ecuting “go to” prior to each action; automatically checking
object labels; converting “put” to “move” when appropriate;

Table 8: Experimental results of
the comparison between agents with
ALIGN-generated interface and agents
with human-designed interfaces.

Experimental Setting Success Rate (%)
w/o Interface 13.43
Few-shot 44.78
Valid Actions 44.03
Human Designed Interface 47.01
ALIGN-generated Interface 60.45

returning the action space upon invalid actions; issuing reminders when “clean with” is applied to
non-sinkbasin objects; and other hand-engineered rules. We use Qwen2.5-7B-Instruct as the base

model. Experimental results are reported in Table|[8]

C.3 GENERALIZATION STUDY EXPERIMENTS

Detailed results of the generalization study are provided for the cross-method experiments in Table 9]

and for the cross-model experiments in Tables[T0} [T} and[T2}

Table 9: Generalization of ALIGN-generated interfaces generated with Vanilla agents to other
agent methods. For each agent we report its score without the interface (w/o ALIGN) and with the
interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Method: Vanilla Embodied Web Tool-use
Method Interface ALFWorld ScienceWorld ~ WebShop M?>ToolEval
ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 58.96 (+39.56) 32.32 (+12.29) 45.07 (+7.87) 15.28 (+5.56)

Self-Consistenc w/o ALIGN 11.94 14.07 56.23 11.11
Y w/ ALIGN 63.43 (+51.49) 29.37 (+15.30) 59.23 (+3.000 19.44 (+8.33)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 38.06 (+34.33) 28.98 (+14.11) 50.97 (+6.17) 9.72 (+4.17)

. w/o ALIGN 9.70 17.13 46.95 11.11
Planning

w/ ALIGN 50.75 (+41.05) 26.79 (+9.66) 50.21 (+3.26) 22.22 (+11.11)

C.4 GENERALITY STUDY EXPERIMENTS

For the validation on closed-source LLMs, we selected the GPT-4.1 family. Specifically, we experi-
mented with gpt-4.1-mini-2025-04-14 and gpt-4.1-2025-04-14. First, we used gpt-4.1-mini-2025-
04-14 as the base model to instantiate a Vanilla Agent and synthesize interface with ALIGN. We

18

Under review as a conference paper at ICLR 2026

Table 10: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Qwen2.5-14B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Qwen2.5-14B-Instruct Embodied Web Tool-use
Method Interface ALFWorld ScienceWorld ‘WebShop M3ToolEval
Vanilla w/o ALIGN 48.51 22.58 53.67 13.89
w/ ALIGN 52.24 (+3.73) 37.58 (+15.00) 58.40 (+4.73) 18.06 (+4.17)

ReAct w/o ALIGN 54.48 31.24 39.73 15.28
w/ ALIGN 70.15 (+15.67) 29.79 (-1.45) 42,17 (+2.44) 26.39 (+11.11)

Self-Consistenc w/o ALIGN 43.28 25.60 52.63 13.89
Y w/ ALIGN 72.39 (+29.11) 26.68 (+1.08) 51.07 -1.56) 27.78 (+13.89)

Self-Refine w/o ALIGN 5.22 18.97 41.00 15.28
w/ ALIGN 14.18 (+8.96) 20.72 (+1.75) 39.93 (-1.07) 16.67 (+1.39)

Plannin w/o ALIGN 49.25 21.46 31.72 25.00
g w/ ALIGN 79.10 (+29.85) 28.13 (+6.67) 50.47 (+18.75) 25.00 (0.00)

Table 11: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.1-8B-Instruct. For each agent we report its score without the interface (w/o ALIGN) and
with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.1-8B-Instruct Embodied Web Tool-use
Method Interface ALFWorld ScienceWorld ‘WebShop M>ToolEval
Vanilla w/o ALIGN 5.22 23.59 35.17 5.56

w/ ALIGN 14.18 (+8.96) 36.40 (+12.81) 24.00 (-11.17) 1.39 (-4.17)
ReAct w/o ALIGN 1.49 22.42 27.12 12.50

e w/ ALIGN 15.67 (+14.18) 28.74 (+6.32) 27.10 (-0.02) 22.22 (+9.72)

Self-Consistenc w/o ALIGN 5.22 25.21 29.80 4.17
Y w/ ALIGN 11.94 (+6.72) 34.83 (+9.62) 15.83 (-13.97) 2.78 (-1.39)

Self-Refine w/o ALIGN 0.00 22.34 27.70 1.39
w/ ALIGN 0.75 (+0.75) 31.33 (+8.99) 37.43 (+9.73) 1.39 (0.00)

Plannin w/o ALIGN 6.72 13.33 23.67 4.17
2 w/ ALIGN 5.97 (-0.75) 26.95 (+13.62) 40.77 (+17.10) 4.17 (0.00)

Table 12: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.3-70B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.3-70B-Instruct Embodied Web Tool-use
Method Interface ALFWorld ScienceWorld WebShop M>ToolEval
Vanilla w/o ALIGN 52.99 55.77 51.67 37.50
w/ ALIGN 43.28 (-9.71) 57.74 (+1.97) 62.07 (+10.40) 33.33 (-4.17)

ReAct w/o ALIGN 45.52 56.50 58.22 34.72
w/ ALIGN 47.01 (+1.49) 58.28 (+1.78) 53.83 (-4.39) 43.06 (+8.34)

Self-Consistenc w/o ALIGN 54.48 56.66 50.37 36.11
Y w/ALIGN 65.67 (+11.19) 5924 1258 55.63 (1526) 34.72 (-139)

Self-Refine w/o ALIGN 38.06 56.97 38.40 1.39
w/ ALIGN 46.27 (+8.21) 60.17 (+3.20) 47.85 (+9.45) 0.00 (-1.39)

Plannin w/o ALIGN 58.96 48.75 54.90 33.33
g w/ ALIGN 76.87 (+1791) 59.17 (+1042) 62.60 +7.70) 40.28 (+6.95)

19

Under review as a conference paper at ICLR 2026

Table 13: Experimental results for GPT-4.1 series agents with ALIGN on ALFWorld.

. . . . lookat/ . .
pick pick clean pick heat pick cool . pick two obj Success
Base Model Interface and place and place and place and place ei}x(nallil;g 1]111te and place Rate (%)
4 -mini w/o ALIGN 58.33 22.58 8.70 9.52 2222 52.94 28.36
gpt-- w/ ALIGN 95.83 87.10 26.09 80.95 27.78 52.94 64.93
41 w/o ALIGN 100.00 93.55 13.04 71.43 61.11 100.00 73.88
ept-=t- w/ ALIGN 100.00 100.00 78.26 100.00 71.78 100.00 93.28

then applied the same interface to an agent powered by gpt-4.1-2025-04-14. All other experimental
settings were identical to those in the main experiments. The results are presented in Table

For domain-specific models trained within the environment, we used GiGPO-Qwen2.5-7B-Instruct-
ALFWorld, a state-of-the-art model post-trained on ALFWorld via reinforcement learning (Feng
et al., [2025). We reused the interface produced in our main experiment (generated with the base
Qwen?2.5-7B-Instruct model under the Vanilla Agent method). At evaluation time, we considered
two configurations: (1) our Vanilla Agent setting, and (2) a configuration that matches the logic and
prompt setting used during training in the original paper.

C.5 ABLATION STUDY EXPERIMENTS
The full result of interface ablation experiment can be found in Table
Table 14: Ablation study on the components of ALIGN. Values represent task success rates (%) or

scores. For ablated conditions (w/o INFERRULES, w/o WRAPSTEP), performance changes from the
‘Full’ are shown in parentheses.

Method Interface Embodied Web Tool
ALFWorld ScienceWorld Webshop M>ToolEval
Full 60.45 27.69 61.23 20.83
Vanilla w/o INFERRULES 51.49 (-8.96) 24.34 (-3.35) 51.03 (-10.20) 18.06 (-2.77)
w/o WRAPSTEP 26.87 (-33.58) 22.97 (-4.72) 61.23 (-0.00) 11.11 (-9.72)
Full 63.43 28.97 42.93 18.06
ReAct w/o INFERRULES 58.21 (-5.22) 26.89 (-2.08) 35.97 (-6.96) 9.72 (-8.34)
w/o WRAPSTEP 45.52 (-17.91) 22.53 (-6.44) 47.60 (+4.67) 19.44 (+1.38)
Full 69.40 25.41 61.10 16.67
Self-Consistency ~ w/o INFERRULES ~ 67.91 (-1.49) 23.11 (-2.30) 55.67 (-5.43) 13.89 (-2.78)
w/o WRAPSTEP 23.13 (-17.91) 14.82 (-10.59) 60.67 (-0.43) 15.28 (-1.39)
Full 40.30 22.99 52.30 6.94
Self-Refine w/o INFERRULES 32.84 (-7.46) 21.27 (-1.72) 46.33 (-5.97) 6.94 (-0.00)
w/o WRAPSTEP 5.97 (-34.33) 15.40 (-7.59) 47.80 (-4.50) 6.94 (-0.00)
Full 52.99 26.34 54.67 18.06
Planning w/o INFERRULES 42.54 (-10.45) 25.56 (-0.78) 48.18 (-6.49) 16.67 (-1.39)

w/0 WRAPSTEP 26.12 (-26.87) 16.48 (-9.86) 52.87 (-1.80) 16.67 (-1.39)

D TOKEN CONSUMPTION ANALYSIS

The average token consumption per iteration in the main experiment described in Section [.1] is
shown in Table T3]

Due to the “Experimental Verification” setup, the Analyzer and Optimizer need to interact with the
environment multiple times, and all previous interaction histories are included as new prompt inputs to
the LLM in each round of interaction. Additionally, when the Optimizer identifies that the generated
interface is imperfect, it needs to refine the previously generated interface and conduct experimental
verification again, leading to increased token consumption. However, as LLM capabilities continue
to improve and hallucination issues decrease, this cost will gradually reduce. Furthermore, it is worth
noting that:

20

Under review as a conference paper at ICLR 2026

Table 15: The average token consumption per iteration in the main experiment described in Sec-

tion [E

ALFWorld ScienceWorld WebShop M>ToolEval

Input Token (M) 0.2770 0.4333 0.1783 0.1094
Analyzer Output Token (M) 0.0040 0.0036 0.0048 0.0016
Total Token (M) 0.2809 0.4370 0.1831 0.1109
Input Token (M) 0.2619 0.2288 0.0669 0.1100
Optimizer Output Token (M) 0.0087 0.0172 0.0040 0.0118
Total Token (M) 0.2706 0.2460 0.0709 0.1217
Total Total Token (M) 0.5515 0.6830 0.2540 0.2326

* The INFERRULES wrapper and WRAPSTEP wrapper are implemented as python logic code,
which does not involve calls to models or agents, therefore not incurring additional token
consumption. On the contrary, as demonstrated in our experiments in Section using
ALIGN-generated interfaces can help agents reduce repetitive meaningless actions, thereby
reducing the number of LLM calls and decreasing token consumption compared to not
using ALIGN-generated interfaces.

* Except when the Optimizer generates interface codes requiring the cutting edge LLMs (such as
Gemini 2.5 Pro), weaker and more cost-effective LLMs (such as GPT-4.1-mini) can be used at
other times, which will significantly reduce the operational costs of ALIGN.

* ALIGN-generated interfaces can generalize to different agent architectures and base LLMs.
This means that for each environment, using the ALIGN method to generate an interface only
once can bring performance improvements to different agents, regardless of agent version
updates. This also means that the cost of interface generation is a one-time expense, rather
than requiring the generation of new interfaces for each task execution. Therefore, from an
amortization perspective, the method’s cost becomes increasingly economical as the environment
is utilized more frequently, with the one-time interface design cost being distributed across
multiple uses and becoming proportionally smaller with increased usage.

E IMPLEMENTATION DETAILS

E.1 BENCHMARKS TASK SPLITS

The task splits of benchmarks we use are as follows:

(1) ALFWorld (Shridhar et al.,[2021): We adhere to the original dataset partitioning presented in the
paper, wherein the tasks from the “eval_out_of_distribution” category are used as the test set, and the
“train” category is designated as the training set. In each iteration, we randomly select three tasks
from the training set of each task type to serve as the training data for the agent’s interaction.

(2) ScienceWorld (Wang et al.| 2022)):We follow the original partitioning of the train and test sets as
described in the paper. For efficiency reasons, during testing, we select at most the first five tasks
from the 30 available task types for evaluation. In each iteration, we randomly select one task from
the training set of each task type to be used as the training data for the agent’s interaction.

(3) WebShop (Yao et al.,|2022): In alignment with the setup of [Yao et al.| (2023)), we use tasks with
IDs ranging from 0 to 49 (50 tasks in total) as the test set, and tasks with IDs from 50 to 199 (150
tasks in total) as the training set. In each iteration, we randomly select 20 tasks from the training set
to serve as the training data for the agent’s interaction.

(4) M3ToolEval (Wang et al., [2024b): Since M?3ToolEval does not provide a distinct training set
division, we select two tasks from each task type in the original dataset as the training set, with the
remaining tasks used as the test set. In each iteration, the entire training set is utilized for the agent’s
interaction.

21

Under review as a conference paper at ICLR 2026

E.2 HYPERPARAMETER AND EXPERIMENT SETTING

For all the agents, we deploy them uniformly using vllm (Kwon et al.,[2023)) across 8 Nvidia A100
80GB GPUs, with the inference temperature set to 0.0. The models utilized contain Qwen2.5-7B-
4,

Instrucﬂ 2024), Qwen2.5- 14B-InstructE| (Team|, 2024), Llama3. 1-8B-Instrucﬂ

and Llama3.3—7OB—InstruclE| (Metal 2025b).

In ALIGN, we use Gemini 2.5 Pro (gemini-2.5-pro-exp-03-25)(Googlel [2025) for Optimizer to
generate new interface, with the temperature set to 0.2. For other scenarios requiring the use of an
LLM, we employ GPT-4.1 (gpt-4.1-2025-04-14)(OpenAl, 2025). We set K = 8 during experiments.

E.3 TOOLS FOR EXPERIMENTAL VERIFICATION

In order to implement the experimental verification process mentioned in Section [3.3] we have
encapsulated the following tools for Analyzer and Optimizer to interact with the interface-wrapped
environment:

(1) init_simulator (task_id, interface): Initializes an experimental task, specifying
the task ID and the interface code.

(2) reset_simulator (): Resets the experimental task.
(3) run_task () : Runs the current task until completion, returning the interaction trajectory.

(4) exec_agent_action (agent_action): Executes a specific action and returns the en-
hanced observation after the interface processing.

(5) get_agent_action (): Based on the current trajectory, returns the next action to be issued
by the agent.

(6) change_obs (obs) : Modifies the observation of the previous action execution.

E.4 PROMPT TEMPLATES

We present the prompt template of the Analyzer and Optimizer. For the prompt templates of other
benchmarks, please refer to the supplemental materials.

Analyzer Prompt Template of Misalignment Analysis

User message:

In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

“https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
*https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
>https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

22

Under review as a conference paper at ICLR 2026

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:

- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to analyze the logs from a recent task to determine whether such a mis-
alignment occurred, preventing a fair assessment of the Agent’s capabilities. And this
misalignment has not been fixed by current ‘WrapStep* function. Your analysis will guide us
in addressing this issue moving forward.

Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}

113

In this template, the function ‘InferRules® is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ Interface }}

113

Environment Logs

“Uext
{{logs }}

113

Here, each ‘Observation® is the feedback returned to the Agent after it executes an
action.

Gold Action and Observation Sequence

“itxt
{{ gold_action_obs_sequence }}

13

Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }}

Your Task

Determine whether, during this task, there was a misalignment between the Envi-
ronment’s World Model and the Agent’s World Model that hindered a fair assessment of the
Agent’s capabilities. Choose exactly one of the following outputs:

If there is NO misalignment (i.e., the Agent’s failures stem from its own errors or

23

Under review as a conference paper at ICLR 2026

limitations, not a mismatch with the Environment’s World Model), output:
<analysis_result> No Misalignment </analysis_result>

If there IS a misalignment (i.e., the Environment’s World Model conflicts with the
Agent’s World Model), output:

<analysis_result> Found Misalignment </analysis_result>
<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current “WrapStep* function.
</environment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:

“itxt

Analysis Result 1

Analysis Task ID: xxx

Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle”, etc.

Agent Action Case: xxx # The specific action the Agent attempted to perform.

Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.

Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.

Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide *xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."

Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function"”

Analysis Result 2

113

Note: You should not generate duplicate misalignment analysis results as the ones
already provided in the ‘Environment Logics and Misalignment Analyzed in the Previous
Steps‘ section.

Analyzer Prompt Template of Experimental Verification

User message:

Now you should conduct simulation experiments in the simulator to verify that the
environment rules you hypothesized and Misalignment you identified truly exists. You must
perform sufficient experiments to confirm or refute your suspicion.

Here are the operations you can use:

1. init_simulator(task_id: str)

- Initializes a new simulator for the specified ‘task_id*.

- ‘task_id‘ must be in the format ’int-int’ where the first int € [0, 5].
- The different task types are mapped as follows:

0: *pick_and_place’,

1: ’pick_clean_and_place’,

2: ’pick_heat_and_place’,

3: ’pick_cool_and_place’,

4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

24

Under review as a conference paper at ICLR 2026

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the ‘WrapStep* function.

4. change_last_action_observation(obs: str)

- Updates the last observation returned by the simulator to the specified ‘obs".

- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()

- Retrieves the next action that the real Agent would perform under the current simulation
conditions.

- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()* call, along with
the latest observations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>

<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current ‘WrapStep* function. </environ-
ment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:

“xt

Analysis Result 1

Analysis Task ID: xxx

Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle”, etc.

Agent Action Case: xxx # The specific action the Agent attempted to perform.

Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.

Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.

Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide 'xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."

Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function”

Analysis Result 2

113

If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:

<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>

<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

25

Under review as a conference paper at ICLR 2026

Note:

You should verify the correctness of the following, step by step, through your experiments:
1. environment_rules: Use ‘execute_agent_action® to confirm that the environment rules you
hypothesized are indeed correct, and current ‘WrapStep* function is not sufficient.

2. agent_intent_description: ~ Obtain the Agent’s intended behavior (e.g., via
‘get_next_agent_action‘) and simulate it by using ‘WrapStep® to confirm whether it
aligns with your description.

3. identified_misalignment: Through chaning the environment feedback, you can verify
whether the misalignment you identified is indeed correct and the environment feedback you
hypothesized is indeed sufficient. You can use ‘WrapStep® to simulate the agent’s action,
then use ‘change_last_action_observation‘ to change the environment feedback, and finally
use ‘get_next_agent_action® to check whether the agent can correctly identify the next action.

Analyzer Prompt Template of Reranking Misalignments Analysis (Ablation Study)

User message:

In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:

- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have analyzed the logs from a recent task and identified
some potential misalignments. Your task is to review these misalignments and choose the
most appropriate one.

Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}

113

In this template, the function ‘InferRules® is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python

26

Under review as a conference paper at ICLR 2026

{{ Interface }}

113

Environment Logs

13 ‘tXt

{{logs }}

1113

Here, each ‘Observation® is the feedback returned to the Agent after it executes an
action.

Gold Action and Observation Sequence

“‘txt
{{ gold_action_obs_sequence }}

1113

Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }} Note: These logics may not be accurate. They are the
environment rules that were previously hypothesized and may contain errors.

Your Task

Choose the most appropriate misalignment analyzed by human experts from the list
below:

{{ new_environment_logics }}
You should respond in format as follows:

1113

<review> Your review of each expert output one by one </review>
<expert_id> id of the selected expert output, only the number </expert_id>

1113

Optimizer Prompt Template of Interface Generation

User message:

In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an

27

Under review as a conference paper at ICLR 2026

action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:

- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to refine the environment’s behavior based on the misalignment identi-
fied by the AnalysisAgent, ensuring the Agent’s true intentions are executed and its reasoning
capabilities are fairly assessed.

Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}

113

In this template, the function ‘InferRules® is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}

1113

Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

Your Task

Based on the misalignments identified by the AnalysisAgent, you need to refine
and enhance the ‘InferRules® function and ‘WrapStep‘ function to align the Environment’s
World Model with the Agent’s actions and provide clearer feedback. Your output should
present the new versions of these functions, ensuring the Agent’s high-level reasoning intent
is preserved.

Please ensure you follow these requirements:

1. **Function Signature**

The function signature must be:

“‘python

def InferRules(init_obs, task)

- init_obs: str, the initial observation from the environment, containing all receptacles.
- task: str, the task description.

def WrapStep(env, init_obs, task, agent_action: str, logger)

28

Under review as a conference paper at ICLR 2026

2. **Return Values**
The ‘InferRules* function’s return value must be a string that describes the environment rules.

The “WrapStep* function’s return value must be three items:
“‘python
obs: str, reward: bool, done: bool

1113

3. **‘env.step‘ Usage**

The only permitted usage pattern for ‘env.step® is:

“‘python

obs, reward, done, info = env.step([agent_action])

obs, reward, done = obs[0], info[’won’][0], done[0]

No alternative usage forms are allowed. Each call to env.step causes an irreversible change to
the environment state; actions must therefore be chosen carefully.

4. **Package Imports**
You may import other packages if necessary, but you must include all imports in your code.

5. **Multiple Calls and Conditional Returns**
You are free to call ‘env.step® multiple times or return different ‘obs‘ depending on
‘agent_action‘ or the outcomes of these calls.

6. **You can use logger.debug**
You can use ‘logger.debug‘ to log any information you find useful. The logging will be
captured and returned to you in the future for further analysis.

7. Do not modify any aspects not explicitly identified by the AnalysisAgent in the
“New Environment Logics and Misalignment Analyzed by AnalysisAgent” section.

8. You must use the following approach when addressing the identified misalign-
ment:

- For each action defined in environment, provide clear, informative, and sufficient feedback
from the environment whenever an invalid action is attempted, guiding the Agent toward
understanding and adhering to the environment’s rules.

9. **Qutput Format**

You must provide the output strictly in the following format:
<thought>YOUR_THOUGHT_PROCESS_HERE</thought>
<code>YOUR_CODE_HERE</code>

Please ensure your final answer follows these guidelines so that we can accurately
bridge the misalignment and allow the environment to execute the Agent’s true intentions.

\. J

Optimizer Prompt Template of Experimental Verification

User message:

Now you should conduct simulation experiments in the simulator to verify if the ‘InferRules*
and ‘WrapStep* function you provided is correct for the new environment logics and
misalignment analyzed by the AnalysisAgent.

You must perform sufficient experiments to confirm or refute your suspicion. Here
are the operations you can use:

29

Under review as a conference paper at ICLR 2026

1. init_simulator(task_id: str)

- Initializes a new simulator for the specified ‘task_id*.

- ‘task_id‘ must be in the format ’int-int’ where the first int € [0, 5].
- The different task types are mapped as follows:

0: ’pick_and_place’,

1: ’pick_clean_and_place’,

2: ’pick_heat_and_place’,

3: ’pick_cool_and_place’,

4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the “WrapStep‘ function you generated.

4. change_last_action_observation(obs: str)

- Updates the last observation returned by the simulator to the specified ‘obs°.

- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()

- Retrieves the next action that the real Agent would perform under the current simulation
conditions.

- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()* call, along with
the latest observations.

6. run_task(task_id: str)

- Runs the entire task in the simulator and returns the running log.

- After running the whole task, you need to call ‘init_simulator® or ‘reset_simulator® to
reinitialize the simulator for further operations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>

<if_need_refine> True/False </if_need_refine>

<refine_strategy> Your strategy for refining the WrapStep function, if if_need_refine is True
</refine_strategy>

If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:

<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>

<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

30

Under review as a conference paper at ICLR 2026

Optimizer Prompt Template of Reranking Interface Generation (Ablation Stuty)

User message:

In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:

- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have generated a set of code patches to address the mis-
alignment between the Environment’s World Model and the Agent’s World Model. Your task
is to evaluate these patches and select the best one.

Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}

113

In this template, the function ‘InferRules® is used to define the environment rules.
The function “WrapStep* handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}

1113

Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

Your Task

31

Under review as a conference paper at ICLR 2026

Choose the best code from the following options to address the misalignment be-
tween the Environment’s World Model and the Agent’s World Model:

{{ code_patches }}
You should respond in format as follows:

1113

<review> Your review of each code one by one </review>
<code_id> id of the selected result, only the number </code_id>

1113

\.

J

We present the prompt template of the Vanilla agent in ALFWorld to illustrate the usage of the
INFERRULES. For the prompt templates of other agent methods and benchmarks, please refer to the

supplemental materials.

Vanilla Agent Prompt Template in ALFWorld

System message:
You are an Al assistant solving tasks in a household environment. Your goal is to break down
complex tasks into simple steps and plan your actions accordingly.

Action Space

In this environment, you have a set of high-level actions at your disposal, each cor-
responding to a typical household activity. These actions are:

- look: look around your current location

- inventory: check your current inventory

- go to (receptacle): move to a receptacle

- open (receptacle): open a receptacle

- close (receptacle): close a receptacle

- take (object) from (receptacle): take an object from a receptacle

- move (object) to (receptacle): place an object in or on a receptacle
- examine (something): examine a receptacle or an object

- use (object): use an object

- heat (object) with (receptacle): heat an object using a receptacle

- clean (object) with (receptacle): clean an object using a receptacle
- cool (object) with (receptacle): cool an object using a receptacle

- slice (object) with (object): slice an object using a sharp object

Although each action may internally consist of multiple embodied steps (e.g., walk-
ing to the sink, turning a knob, etc.), from your perspective you need only provide one
high-level action at a time.

Instructions

Single Action per Turn

At each step, you must respond with exactly one action (i.e., the next “thought”). Use the
format:

ACTION [object/receptacle specifier]

ACTION [object/receptacle specifier]

For example:

take apple from table

or

go to kitchen.

32

Under review as a conference paper at ICLR 2026

Environment Feedback
After you provide your single action, the environment will automatically execute it and return
the resulting observation. You then decide on your next action based on the updated state.

Reasoning (Chain of Thought)

You may use hidden reasoning to figure out the best next step. However, only output the
single action that represents your decision. Do not reveal your entire chain of thought.
Continue Until Task Completion

You will iterate this process—receiving the environment’s feedback, deciding on the next
action, and outputting a single action—until the task is finished.

Environment Rule

{InferRules(init_obs, task)}

User message:
Task

{initial_obs}

Begin by examining the environment or taking any initial steps you find relevant.
Remember, provide only one action each time.

E.5 INITIALIZED INTERFACE

Initialized interface we used in ALFWorld:

def InferRules (init_obs, task):
nmnon
Contains the rules for environment and task execute logic for
different task types.

nun

return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
mmww
Process the agent action and return the next observation, reward,
and done status.
mmww
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
return obs, reward, done

Initialized interface we used in ScienceWorld:

def InferRules (init_obs, task):
mmww
Contains the rules for environment and task execute logic for
different task types.

nun

return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
nmnn
Process the agent action and return the next observation, done
status and score(returned by the environment) .
mmww
obs, _, done, info = env.step(agent_action)
return obs, done, info["score"]

33

Under review as a conference paper at ICLR 2026

Initialized interface we used in WebShop:

def InferRules(init_obs, task):

nun

Contains the rules for environment and task execute logic.
mmww

return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
mmw
Process the agent action and return the next observation, reward,
and done status.
nmnon
obs, reward, done = env.step(agent_action)
return obs, reward, done

Initialized interface we used in M3ToolEval:

def InferRules (task_name, task_type_idx):
mmww
Contains the rules for environment and task execute logic for
different task types.

nun

return "There is no rule for this environment."

def WrapStep (env, task_name, instruction, agent_action: str, logger):
nmnmnn
Process the agent action and return the next observation, reward,
and done status.
mmww
obs, reward, done = env.step(agent_action)
return obs, reward, done

F CASE STUDY

F.1 MISALIGNMENTS ANALYZED BY ANALYZER

We present the misalignments analyzed by Analyzer with Vanilla agent. For the misalignments
analyzed by Analyzer with other agent methods, please refer to the supplemental materials.

ALFWORLD
Agent Action Type: heat object with receptacle
Agent Action Case: heat mug 1 with stoveburner 1

Agent High-Level Reasoning Intent: The Agent intended to heat the mug using the stoveburner
to fulfill the “put a hot mug in cabinet” task requirement.

Environment Rule: The Environment requires heating the mug specifically by
the microwave, and the Agent must be at and open the
microwave before heating. Heating with the stoveburner or
heating without opening the microwave results in no effect.

Sufficient Environment Feedback: The environment feedback “Nothing happens.” after heat-
ing with stoveburner or heating without opening the mi-
crowave is insufficient to clarify the correct heating method
and prerequisites.

34

Under review as a conference paper at ICLR 2026

SCIENCEWORLD

Agent Action Type:

Agent Action Case:

Environment Rule:

Sufficient Environment Feedback:

Agent High-Level Reasoning Intent:

pick up OBJ from CONTAINER / take OBJ from CON-
TAINER

pick up orange seed from seed jar, take orange seed from
seed jar, take seed from seed jar, pick up seed from seed jar
Agent intends to retrieve a seed from the “seed jar” con-
tainer using common interaction verbs and syntax (“pick
up X from Y”, “take X from Y”).

The environment does not support the “take OBJ from
CONTAINER” syntax. Furthermore, for the “seed jar”, the
“pick up OBJ from CONTAINER* syntax is also invalid.
The required procedure to access the seeds involves picking
up the entire container first (“pick up seed jar”’) and then
likely using a “move” command later. Direct retrieval
from the container using “pick up” or “take with from” is
disallowed.

The current generic feedback provided by “pro-
cess_agent_action” for “No known action” is insufficient.
Sufficient feedback should diagnose the invalid syntax or
procedure, e.g., “The action ‘take X from Y’ is not valid.
To get items from the ‘seed jar’, try picking up the ‘seed
jar’ first using ‘pick up seed jar’.” Simulation confirmed
this guides the agent correctly.

WEBSHOP

Agent Action Type:
Agent Action Case:

Environment Rule:

Sufficient Environment Feedback:

Agent High-Level Reasoning Intent:

click

click[1 ounce (pack of 21)] (or similar option clicks like
flavor, color, etc.)

The Agent intended to select a specific product configura-
tion (e.g., size) required by the task before proceeding to
purchase or further inspection.

When an Agent clicks on a product option (e.g., size, color,
flavor), the internal state of the environment updates to re-
flect this selection. This selection affects the final product
configuration (and potentially price, availability, descrip-
tion shown) when subsequent actions like “Buy Now” or
viewing details are taken. The visual representation of the
page should ideally reflect this selected state.

The environment currently returns only a confirmation mes-
sage (e.g., “You have clicked [Option Name].”). This is
insufficient as it doesn’t show the agent the result of its
action in the context of the full page. Sufficient feedback
would involve returning the complete observation of the
item page *after* the option click, reflecting the updated
state (e.g., showing the selected size/flavor visually marked,
potentially an updated price, updated product title/descrip-
tion if applicable, and all other page elements like “[Buy
Now]”). This allows the agent to verify the selection and
its consequences (like price changes) before taking the next
step.

35

Under review as a conference paper at ICLR 2026

M3TOOLEVAL

Agent Action Type: web_browsing

Agent Action Case: click_url(‘“/about”)

Agent High-Level Reasoning Intent: = The Agent is attempting to use the click_url tool to navigate
to the “/about” page by following the clickable link, as per
the tool description and the rendered webpage content.

Environment Rule: The Environment’s World Model expects tool invocations
to match the tool name exactly, with arguments provided
after the tool name and separated by a comma (i.e., “Ac-
tion: click_url, /about End Action” instead of “Action:
click_url(‘/about’) End Action”). However, the Agent,
following the tool signature format shown in the tool de-
scriptions (e.g., click_url(url: str)), invokes the tool as
click_url(*“/about”), which is a common programming con-
vention.

Sufficient Environment Feedback: The feedback “Cound not find tool with name
click_url(‘/about’)” is insufficient for the Agent to un-
derstand the correct invocation format. The environment
should provide feedback such as: “Tool arguments should
be provided after the tool name, separated by a comma, e.g.,
‘Action: click_url, /about End Action’ instead of ‘Action:
click_url(‘/about’) End Action’.”

F.2

INTERFACES GENERATED BY ALIGN

We present the ALIGN-generated interface with Vanilla agent in ALFWorld to illustrate the interface
case. For the ALIGN-generated interface with other agent methods and other environments, please
refer to the supplemental materials.

ALIGN-generated interface with Vanilla agent in ALFWorld:

def InferRules (init_obs, task):

nun

Provides the rules for environment and task execute logic for
different task types.

Args:

init_obs: Initial observation string containing information
about the environment

task: The specific task description

Returns:
A string describing the environment rules
mmww
return nnn
1. Navigation and Location Rules:

— You must go to a receptacle before you can examine it, open it,

close it, or interact with objects in/on it.

- You can only interact with objects and receptacles that are at
your current location.

- If you try to interact with a receptacle or object that is not
at your current location, you will be informed that you need to go
to that location first.

- After successfully going to a location, you are at that
location until you go somewhere else.

2. Object Interaction Rules:

- To take an object, it must be present at your current location
and visible (not inside a closed receptacle).

- Once you take an object, it goes into your inventory and is no
longer at its original location.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

def

- To move an object to a receptacle, you must have the object in
your inventory and be at the target receptacle.

- To use, heat, clean, cool, or slice objects, you must have the
required objects in your inventory or be at their location.

— You cannot take an object that is already in your inventory.

3. Container Rules:

- Some receptacles can be opened and closed (like refrigerators,
microwaves, cabinets, etc.).

- You must open a closed container before you can take objects
from it or put objects into it.

— Objects inside closed containers are not visible or accessible
until the container is opened.

4. Action Sequence Requirements:
- Some tasks require a specific sequence of actions - for example
, to heat food, you need to:
a) Go to the microwave
b) Open the microwave
c) Place the food inside
d) Close the microwave
e) Use the microwave
— The environment will guide you if you’re missing a prerequisite
step for an action.

5. Feedback Interpretation:

- If an action cannot be performed, the environment will explain
why and what prerequisites are needed.

— The environment will inform you if you try to take an object
that’s already in your inventory.

— The environment will inform you if you try to move an object
that’s not in your inventory.

- Pay attention to the feedback to understand the current state
of the environment and what actions are possible next.

— When you successfully go to a location, the environment will

describe what’s there.
mmww

WrapStep (env, init_obs, task, agent_action: str, logger):

mmww

Process the agent action and return the next observation, reward,
and done status.

Args:

env: The environment object

init_obs: Initial observation string containing information
about the environment

task: The specific task description

agent_action: The action string from the agent

logger: Logger object for debugging information

Returns:
obs: Observation string after the action
reward: Boolean indicating if a reward was received
done: Boolean indicating if the task is complete
mmw
Track the agent’s current location using an attribute on the env
object
if not hasattr(env, ’_current_location’):
env._current_location = None

Track container states (open/closed) using an attribute on the env
object
if not hasattr(env, ’_container_states’):

env._container_states = {}

37

Under review as a conference paper at ICLR 2026

action_item = {
"matched’ : False,
"action’: None,
"object’: None,
"receptacle’ : None,
"object2’: None

if agent_action.lower () == ’'look’ or agent_action.lower() == "'
inventory’ :

action_item[’matched’] = True

action_item[’action’] = agent_action.lower ()
elif agent_action.lower () .startswith(’go to ’):

receptacle = agent_action[6:].strip()

action_item[’matched’] = True

action_item[’action’] = "go to’

action_item[’ receptacle’] = receptacle
elif agent_action.lower().startswith(’open ’) or agent_action.lower
() .startswith(’close ") :

action = ’'open’ if agent_action.lower () .startswith(’open ") else
"close’

receptacle = agent_action[len(action)+l:].strip()

action_item[’matched’] = True

action_item[’action’] = action

action_item[’ receptacle’] = receptacle

elif "take ’ in agent_action.lower () and ’ from ’ in agent_action.
lower () :
parts = agent_action.split(’ from ')
if len(parts) == :
obj = parts[0][5:].strip()

receptacle = parts[l].strip()
action_item[’'matched’] = True
action_item[’action’] = ’"take from’
action_item[’object’] = obj
action_item[’ receptacle’] = receptacle

elif "move ’ in agent_action.lower () and ' to ’ in agent_action.
lower () :
parts = agent_action.split (’ to ')
if len(parts) == :
obj = parts[0][5:].strip()
receptacle = parts[l].strip()
action_item[’matched’] = True
action_item[’action’] = 'move to’
action_item[’object’] = obj
action_item[’ receptacle’] = receptacle

elif agent_action.lower () .startswith (’examine ’):
something = agent_action[8:].strip()
action_item[’matched’] = True
action_item[’action’] = ’"examine’

38

Under review as a conference paper at ICLR 2026

if something.lower () in init_obs.lower() :

action_item[’ receptacle’] = something
else:

action_item[’object’] = something

elif agent_action.lower().startswith('use ’):

obj = agent_action[4:].strip()
action_item[’matched’] = True
action_item[’action’] = ’use’
action_item[’object’] obj

elif any(agent_action.lower ().startswith(action) for action in [’

heat 7, ’clean ’, 'cool ’]) and ’ with ’ in agent_action.lower() :
for action in ["heat ', ’'clean ', ’'cool ’]:
if agent_action.lower () .startswith(action):
parts = agent_action.split(’ with 7)
if len(parts) == :
obj = parts[0][len(action):].strip()
receptacle = parts[l].strip()
action_item[’matched’] = True
action_item[’action’] = action.strip()
action_item[’object’] = obj
action_item[’ receptacle’] = receptacle
break
elif agent_action.lower () .startswith(’slice) and ' with 7 in
agent_action.lower () :
parts = agent_action.split (’ with)

if len(parts) == :
obj = parts[0][6:].strip()
obj2 = parts[l].strip()

action_item[’matched’] = True
action_item([’action’] = ’'slice’
action_item[’object’] = obj
action_item[’object2’] = obj2

if not action_item[’matched’]:
return f"I don’t understand the action ’{agent_action}’. Please
use one of the allowed actions from the action space.", False, False

logger.debug (f"Parsed action: {action_item}")

test_obs, _, _, _ = env.step([’look’])

test_obs = test_obs[0]
logger.debug (f"Current observation after ’look’: {test_obs}")

inventory_obs, _, _, _ = env.step([’inventory’])

inventory_obs = inventory_obs[0]
logger.debug (f"Current inventory observation: {inventory_obs}")

def is_in_inventory (object_name) :

object_name_lower = object_name.lower ()

logger.debug (f"Checking if ’{object_name_lower}’ is in inventory
")

inventory_items = []

39

Under review as a conference paper at ICLR 2026

Check for common inventory patterns
if "carrying:" in inventory_obs.lower () :
carrying_section = inventory_obs.lower () .split ("carrying:")

[1].strip()
inventory_items = [item.strip() for item in carrying_section
.split (7, 7)1
elif "inventory:" in inventory_obs.lower () :
inventory_section = inventory_obs.lower () .split ("inventory:"
) [1].strip()
= [item.strip() for item in

inventory_items =

inventory_section.split (’,’)]
elif "you are carrying:" in inventory_obs.lower () :

carrying_section = inventory_obs.lower () .split ("you are

carrying:") [1].strip()
inventory_items = [item.strip()

.split (’,7)]

for item in carrying_section

ine ine inventor i tems
inventory_lines = inventory_obs.lower ().split (’\n’)

for line in inventory_lines:

line = line.strip()
if line and not line.startswith(("you are", "carrying:", "

check 1

Also

inventory:")):
inventory_items.append(line)

logger.debug (f"Extracted inventory items: {inventory_items}")

(without numbers)

inventory
"’ .join([c for ¢ in object_name_lower if not c.

base_name =
isdigit ()]) .strip()

for item in inventory_item

Check for exact match
if object_name_lower == item or f"{object_name_lower} (in

your inventory)" == item:
logger.debug (f"Found exact match ’{item}’ in inventory")

return True

Check for base name match (without numbers)
if base_name != object_name_lower and (base_name == item or
f"{base_name} (in your inventory)" == item):
logger.debug (f"Found base name match ’{item}’ in
inventory")
return True
Check if item contains the object me
if object_name_lower in item:
containing

logger.debug (f"Found partial match ’{item}’
"{object_name_lower}’ in inventory")
return True
name

ase

item contains the

!= object_name_lower and base_name in item:

Check if

if base_name
logger.debug (f"Found partial match ’{item}’ containing
base name ’ {base_name}’ in inventory")
return True
Direct check for nmon pattern the fu ento ext
patterns = [

f"carrying: {object_name_lower}",
f"{object_name_lower} (in your inventory)",
f"you are carrying: {object_name_lower}",
f"inventory: {object_name_lower}"

40

Under review as a conference paper at ICLR 2026

if base_name != object_name_lower:
patterns.extend ([
f"carrying: {base_name}",
f"{base_name} (in your inventory)",
f"you are carrying: {base_name}",
f"inventory: {base_name}"

1)

for pattern in patterns:
if pattern in inventory_obs.lower () :
logger.debug (f"Found pattern ’ {pattern}’ in inventory
text")
return True

logger.debug (f"’ {object_name_lower}’ not found in inventory")
return False

Helper function to check if we’re at a location

def is_at_location (location_name) :
location_name_lower = location_name.lower ()

If we’ve already tracked this location, use the tracked value
if env._current_location and location_name_lower in env.
_current_location.lower () :
logger.debug (f"Using tracked location: ' {env.
_current_location}’")
return True

ation is mentioned in current

ervation after "

You are in'
if "you are in" in test_obs.lower () and location_name_lower in
test_obs.lower () :
logger.debug (f"Location ’{location_name_lower}’ mentioned in
observation after ’You are in’")
return True
Check if the location
(common format)
first_line = test_obs.split(’\n’) [0].lower ()
if location_name_lower in first_line:
logger.debug (f"Location ’{location_name_lower}’ found in
first line of observation")
return True

is in the first line of the

Check 1if the observation mentions items at/on the location
location_patterns = [

f"on the {location_name_lower}",

f"in the {location_name_lower}",

f"at the {location_name_lower}"

for pattern in location_patterns:
if pattern in test_obs.lower():
logger.debug (f"Found pattern ’ {pattern}’ in observation"

return True

logger.debug (f"Not at location ’{location_name_lower}’")
return False

Handle go to action
if action_item[’action’] == 'go to’:
receptacle = action_item[’ receptacle’]

41

Under review as a conference paper at ICLR 2026

receptacle_lower = receptacle.lower ()
Check if we’re already at this location
if is_at_location(receptacle_lower) :
env._current_location = receptacle
return f"You are already at the {receptacle}. You can
interact with it directly.", False, False

Execute the go to action
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]

Update the current location if the action was successful
if obs and "nothing happens" not in obs.lower():
env._current_location = receptacle

rvation doesn’t clearly indicate arrival,
enhance it

if not any(phrase in obs.lower () for phrase in [f"you arrive

at", f"you are at", f"you see {receptacle_lower}"]):
obs = f"You arrive at the {receptacle}. {obs}"
else:

Provide more informative feedback

obs = f"Cannot go to {receptacle}. It might not be a valid
location or not accessible from here."

return obs, reward, done

f Handle examine se ake from, move to actions that

require being at ati
if action_item[’action’] in [’examine’, ’open’, ’'close’, ’'take from’
, "move to’]:

receptacle = action_item[’ receptacle’].lower () if action_item[’
receptacle’] else ""

logger.debug (f"Action: {action_item[’action’]} with receptacle:
{receptacle}")

Skip location check for examining objects in inventory
if action_item[’action’] == ’'examine’ and action_item[’object’]
and is_in_inventory(action_item[’object’]):
Execute the examine action directly

obs, reward, done, info = env.step([agent_action])
obs, reward, done = o0bs[0], info[’won’][0], done[0]
return obs, reward, done

Check if we need to be at a re ptacle and if we’re there
if receptacle and not is_at_location (receptacle):
action_name = action_item[’action’]
if action_name == ’'examine’:

return f"You must go to the {action_item[’receptacle’]}
first before examining it.", False, False
elif action_name == ’'take from’:
return f"You need to go to the {action_item[’receptacle
"1} first before taking objects from it.", False, False
elif action_name == ’'move to’:
return f"You need to go to the {action_item[’receptacle
"]} first before placing objects on/in it.", False, False
else: # open or close
return f"You need to go to the {action_item[’receptacle
"1} first before you can {action_name} it.", False, False

Handle open and close actions to track container states
if action_item[’action’] in [’open’, ’'close’]:
receptacle = action_item[’ receptacle’]

42

Under review as a conference paper at ICLR 2026

Execute the action
obs, reward, done, info = env.step([agent_action])

obs, reward, done = obs[0], info[’won’][0], done[0]
Check for "Nothing happens" and provide more informative
feedback
if obs.strip() == "Nothing happens.":
if action_item[’action’] == ’'open’:

return f"Unable to open {receptacle}. It might already
be open or not be openable.", reward, done
else: # close
return f"Unable to close {receptacle}. It might already
be closed or not be closable.", reward, done

Update container state tracking
if "successfully" in obs.lower () or "already" in obs.lower () :
env._container_states[receptacle.lower()] = ’"open’ if
action_item[’action’] == 'open’ else ’'closed’

return obs, reward, done

Check if taking an ol ct that’s alre in inventory
if action_item[’action’] == ’'take from’:

object_name = action_item[’object’]
if is_in_inventory (object_name) :
return f"You already have the {object_name} in your
inventory. No need to take it again.", False, False

Check if moving an object that’s not in inventory
if action_item[’action’] == 'move to’:
object_name = action_item[’object’]
if not is_in_inventory (object_name) :
return f"You don’t have the {object_name} in your inventory.

You need to take it first.", False, False

Execute the action in the environment

logger.debug (f"Executing action in environment: {agent_action}")
obs, reward, done, info = env.step([agent_action])

obs, reward, done = obs[0], info[’won’][0], done[0]

logger.debug (f"Environment response: {obs}")

Handle special case for "Nothing happens" response
if obs.strip() == "Nothing happens." and action_i
take from’:
object_name = action_item[’object’]
receptacle_name = action_item[’ receptacle’]

if it might be because the object is alr

if ié_in_inventory(object_name):
return f"You already have the {object_name} in your
inventory. No need to take it again.", reward, done

Check 1 it might be cause the container is closed

receptacle_state = env._container_states.get (receptacle_name.
lower ())

if receptacle_state == ’'closed’:

return f"You need to open the {receptacle_name} first before
taking objects from it.", reward, done

Othe e, the ject might not be there
return f"There is no {object_name} at the {receptacle_name} to
take. It might be elsewhere or already taken.", reward, done

Handle ecial case for "Nothing happens" response for move action

43

Under review as a conference paper at ICLR 2026

2322

if obs.strip() == "Nothing happens." and action_item[’action’] == '
2323 move to’:
2324 object_name = action_item[’object’]
2325 receptacle_name = action_item[’ receptacle’]
2326
2397 # Double-check if the object is in inventory
if is_in_inventory (object_name) :
2328 # If object is in inventory but move fails, check if
2329 receptacle is closed
2330 receptacle_state = env._container_states.get (receptacle_name
2331 .lower())
2332 if receptacle_state == ’closed’:
return f"You need to open the {receptacle_name} first
2333 before placing objects in it.", reward, done
2334 else:
2335 return f"Unable to move {object_name} to {
2336 receptacle_name}. Make sure the receptacle is open if it’s a
2337 container.", reward, done
else:
2338 # If object is not in inventory, provide clear feedback
2339 return f"You don’t have the {object_name} in your inventory.
2340 You need to take it first before moving it.", reward, done
2341
2342 # Handle other "Nothing happens" cases with more informative
feedback
2343 if obs.strip() == "Nothing happens.":
2344 if action_item[’action’] == ’open’:
2345 return f"Unable to open {action_item[’receptacle’]}. It
2346 might already be open or not be openable.", reward, done
2347 elif action_item[’action’] == ’'close’:
return f"Unable to close {action_item[’receptacle’]}. It
2348 might already be closed or not be closable.", reward, done
2349 elif action_item[’action’] == ’examine’ :
2350 if action_item[’object’]:
2351 return f"Unable to examine {action_item[’object’]}. Make
2352 sure you have it in your inventory or it’s visible at your location
.", reward, done
2353 else:
2354 return f"Unable to examine {action_item[’receptacle’]}.
2355 Make sure you’re at the right location and it’s visible.", reward,
2 done
2223 elif action_item[’action’] == ’use’:
return f"Unable to use {action_item[’object’]}. Make sure
2358 you have it in your inventory or it’s at your current location and
2359 usable.", reward, done
2360 elif action_item[’action’] in ['heat’, ’'clean’, ’"cool’, ’"slice’
2361 1:
2222 return f"Unable to {action_item[’action’]} {action_item[’
object’]}. Make sure you have all required objects and are at the
2363 right location.", reward, done
2364 elif action_item[’action’] == "go to’:
2365 # This case should be handled earlier, but as a fallback
2366 return f"Cannot go to {action_item[’receptacle’]}. It might
2367 not be a valid location in this environment.", reward, done
else:
2368 # Generic clarification for other actions
2369 return f"Action ’{agent_action}’ resulted in no effect.
2370 Check if you have all prerequisites or if the action is valid in
2371 this context.", reward, done
2372 . . . B .
For successful move actions, verify the object was actually in
2373 inventory
2374 if "successfully" in obs.lower () and "place" in obs.lower () and
2375 action_item[’action’] == 'move to’:
object_name = action_item[’object’]

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

If the environment says the move was successful,

trust that and not override
return obs, reward, done

return obs,

reward, done

we should

45

	Introduction
	Related work
	Method
	Problem formulation
	ALIGN overview
	ALIGN framework

	Experiment
	Experimental settings
	Main results
	Interface quality analysis
	Generalization and generality study
	Ablation study

	Conclusion
	LLM usage statement
	Formalization of the ALIGN algorithm
	Supplementary experimental setup and detailed results
	Preliminary experiments
	Interface quality analysis experiments
	Generalization study experiments
	Generality study experiments
	Ablation study experiments

	Token consumption analysis
	Implementation details
	Benchmarks task splits
	Hyperparameter and experiment setting
	Tools for experimental verification
	Prompt templates
	Initialized interface

	Case study
	Misalignments analyzed by Analyzer
	Interfaces generated by ALIGN

