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ABSTRACT

Large language model (LLM) agents have shown impressive reasoning capabilities
in interactive decision-making tasks. These agents interact with environment
through intermediate interfaces, such as predefined action spaces and interaction
rules, which mediate the perception and action. However, mismatches often
happen between the internal expectations of the agent regarding the influence of its
issued actions and the actual state transitions in the environment, a phenomenon
referred to as agent-environment misalignment. While prior work has invested
substantially in improving agent strategies and environment design, the critical
role of the interface still remains underexplored. In this work, we empirically
demonstrate that agent-environment misalignment poses a significant bottleneck to
agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned
Interface Generation framework that alleviates the misalignment by enriching the
interface. Specifically, the ALIGN-generated interface enhances both the static
information of the environment and the step-wise observations returned to the
agent. Implemented as a lightweight wrapper, this interface achieves the alignment
without modifying either the agent logic or the environment code. Experiments
across multiple domains including embodied tasks, web navigation and tool-use,
achieve consistent performance improvements, with up to a 45.67% success rate
improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface
can generalize across different agent architectures and LLM backbones without
interface regeneration.

OBSERVATION: Nothing happens.

THOUGHT: The book may be on the shelf. First I need to 

examine the shelves.

ACTION: examine shelf 1

Agent-Environment Interaction

Agent-Environment Misalignment

THOUGHT: The environ-

ment returned “Nothing 

happens.” This means 

the book not on shelf 1.

Agent’s Inner Monologue

The agent has not gone to 

shelf 1. Action `examine 

shelf 1` is invalid. Nothing 

happens in environment.

Environment Logic

Our Method: Interface Alignment

Alignment during Agent-Environment Interaction:

ACTION: examine shelf 1

OBS: Before `examine receptacle`, 

you should first `go to` there.

THOUGHT: I need to first `go to shelf 1` and then 

execute `examine shelf 1`.

Alignment

WrapStep

Alignment during Agent Initialization:

Noth ing 

happens.

InferRulesIn this environ-

ment, you...

Basic Info (I): Augmented Info (I):

I+“Navigation Rules: You 

must go to receptacle...”

Figure 1: Illustration of agent-environment misalignment and our proposed solution. Left: The
agent and the environment have a misalignment in their interpretation of the same observation,
where the agent’s understanding of the observation differs from the environment’s underlying logic.
Right: ALIGN bridges this gap via an automatically generated interface comprising two modules,
INFERRULES and WRAPSTEP: (1) During initialization, INFERRULES augments the basic infor-
mation with explicit environment constraints. (2) During interaction, WRAPSTEP translates the raw
observation into an informative observation that better conveys the environment state transitions.

1 INTRODUCTION

Large Language Model (LLM) agents have demonstrated promising performance in interactive
tasks such as embodied tasks (Driess et al., 2023; Lin et al., 2023; Wang et al., 2024a), web
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navigation tasks (Chae et al., 2025; He et al., 2024a; Qi et al., 2024), and tool-use tasks (Wang
et al., 2024b; Paranjape et al., 2023; Schick et al., 2023). In these tasks, agents typically interact
with the environment through manually designed interfaces such as predefined action spaces and
interaction rules. While substantial efforts have been devoted to improving agents and environments,
comparatively little attention has been paid to the interface between them, leading to a problem we
term agent-environment misalignment, which significantly impacts the agent performance.

The agent-environment misalignment refers to the discrepancy between the interpretation of the agent
to the observation following an action and the underlying logic of the environment. As illustrated
in Figure 1 (left), in ALFWorld (Shridhar et al., 2021), issuing examine receptacle fails unless the
agent first executes “go to receptacle”. Consequently, the environment responds with the
observation “Nothing happens.”. At this point, the agent interprets the observation to mean that
there is nothing on shelf 1, which is inconsistent with the underlying reason for the environment
providing it. To assess the impact of this misalignment, we conduct preliminary experiments, which
reveal that simply revising the observation for an invalid “examine receptacle” action to “You
need to first go to receptacle before you can examine it” increases the success rate of a vanilla
Qwen2.5-7B-Instruct (Team, 2024) agent on ALFWorld from 13.4% to 31.3%1. Such phenomenon
suggests that the agent-environment misalignment significantly hinders task success, and can be
alleviated by improving interface design. From the perspective of the agent, poorly designed interfaces
impose unnecessary cognitive overhead. Furthermore, from an evaluation perspective, inadequate
interfaces can obscure an accurate assessment of the true reasoning capabilities of agents. Therefore,
we argue that the problem of agent-environment misalignment warrants greater attention.

However, addressing the agent-environment misalignment is challenging. On one hand, current
benchmarks primarily focus on advance agent intelligence by constructing increasingly complex
and challenging environments (Jimenez et al., 2024; Wang et al., 2025b; Wei et al., 2025; Xie et al.,
2024; Zhou et al., 2024a), often overlooking the importance of improving interface design. This
oversight extends across multiple domains of interactive tasks, such as, ALFWorld, OSWorld (Xie
et al., 2024), and M3ToolEval (Wang et al., 2024b). They all exhibit similar deficiencies: failing
to provide agent-parseable observations for environmental constraints violation in embodied tasks,
positional inaccuracies in operating system tasks or parameter format errors in multi-turn tool-use
tasks, respectively. On the other hand, although some recent work (Agashe et al., 2024; Yang et al.,
2024a; Zheng et al., 2024) has begun to consider interface design, these efforts often rely on manual,
environment-specific tailoring, which introduces two critical issues: (1) they are highly labor-intensive
and (2) whether human-designed interfaces are optimal for agents remains an open question.

Furthermore, in addition to studies that explicitly optimize interface design, it is common in agent-
focused research for researchers to manually re-engineer environment interfaces to align with their
specific methods. For instance, for the same environment ALFWorld, Zhou et al. (2024b) manually
maintains the environment’s state information in JSON format; Ma et al. (2024) introduces a new
action check_valid_actions to enable agents to retrieve all valid actions; and Chen et al. (2024a)
re-implements the environment by wrapping it into a new class InteractEnv. However, such ad-hoc
customization pose a significant challenge to the field: it compromises the direct comparability
across different approaches. Moreover, these modifications are often tailored to the specific methods
proposed, making it difficult for the research community to determine whether performance variations
stem from novel agent architectures or from the non-standardized, customized interfaces. Therefore,
we believe that manually re-engineering environment interfaces is not an optimal approach to
alleviating the agent-environment misalignment problem.

Distinct from the aforementioned works, we propose to automatically generate interfaces for
bridging the agent-environment misalignment. In this work, we introduce ALIGN (Auto-Aligned
Interface Generation), a framework that automatically generate aligned interfaces for environments.
The generated interface consists of two modules: INFERRULES and WRAPSTEP. The former
automatically discovers and provides the agent with static information about environmental rules or
internal constraints, facilitating static alignment, while the latter enhances the interaction by offering
more detailed observations for agent-issuing actions, enabling dynamic alignment, as shown in
Figure 1 (right). Owing to the powerful reasoning and coding capabilities of current advanced LLMs,
we utilize these models to analyze existing agent-environment misalignments and automatically
generate the interface. Moreover, we employ LLMs to conduct experimental verification to mitigate

1Experimental details are provided in Appendix C.1.
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hallucination issues (Bang et al., 2023; Xu et al., 2024). Specifically, our LLM-based system
autonomously validate both proposed misalignments and generated interface through direct interaction
with the environment, ensuring that identified issues genuinely exist and are properly addressed by
the interface. The generated interface acts as a lightweight wrapper, providing richer context and
explicit constraint hints, enabling different LLM agents to align with the environment directly.

To evaluate the effectiveness of ALIGN, we conduct experiments on four representative benchmarks
across three domains: embodied tasks, web navigation, and tool-use tasks. Our results demonstrate
consistent performance improvements across all four benchmarks when using the ALIGN-generated
interface, with notably gains of 45.67% in average success rate on ALFWorld. Moreover, the
performance of GPT-4.1-based agents on ALFWorld are improved from 73.88% to 93.28% with
ALIGN, highlighting the efficiency of our approach in mitigating the agent-environment misalignment
to unleash the agent’s true capabilities.

Our key contributions can be summarized as follows:
• We identify and characterize the agent-environment misalignment problem, empirically show-

ing its prevalence across diverse domains and its role as a key bottleneck to agent performance.
• We introduce ALIGN, the first framework that automatically generates aligned interfaces to

alleviate agent-environment misalignment, without modifying agent logic or environment code.
• We demonstrate the effectiveness and generalizability of ALIGN across three domains, with up

to a 45.67% success rate improvement on ALFWorld.

2 RELATED WORK

Agent-environment interface The agent-environment interface defines how agents interact with the
environment. In reinforcement learning, researchers construct unified interaction interfaces (Bonnet
et al., 2024; Brockman et al., 2016; Kolve et al., 2017; Towers et al., 2024) to standardize the
application and evaluation of different algorithms. With the increasing capability of LLMs to perform
human-like actions (Guo et al., 2024; Liu et al., 2024; Ma et al., 2024), interface design has been
proven to largely influence the performance of LLM-based agents (Xie et al., 2024; Rawles et al.,
2024). SWE-agent (Yang et al., 2024a) proposes agent-computer interfaces for coding agents and
recent efforts aim to improve generalization (Agashe et al., 2024; Qin et al., 2025; Niu et al., 2024) and
enhance interfaces with auxiliary tools (Bula et al., 2025; Gou et al., 2024; Lei et al., 2025; Lu et al.,
2024; Yang et al., 2023a). Nevertheless, current agent-environment interfaces are mostly manually
crafted and tailored for specific environments or agent frameworks, limiting their generalization and
scalability. Therefore, we propose automated interface generation to empower agents with effective,
generalizable and automatic interface alignment.

Methods aligning agents with environments LLM agents have exhibited strong potential for
real-world interaction and task completion Yao et al. (2023); Shinn et al. (2023); Liu et al. (2024).
Current research in this area can be broadly categorized into training-based methods and training-
free methods. Training-based methods consists of fine-tuning LLMs with expert-level interaction
trajectories Zeng et al. (2024); Chen et al. (2023; 2025); Fu et al. (2025); Chen et al. (2024b) and
enhancing environment-aligned planning and acting via reinforcement learning Bai et al. (2025);
Yang et al. (2024b); Qi et al. (2024); Feng et al. (2024); Zhou et al. (2024c); Wang et al. (2025a).
Though effective, these methods suffer from high computational costs and limited generalization
towards unseen environments. Another approach constructs training-free multi-agent frameworks
for task decomposition and experience accumulation (Chen et al., 2024a; He et al., 2024b; Sun
et al., 2024; Yang et al., 2023b; Zhou et al., 2024b). However, static agent pipelines lack flexibility
and experience injected through prompting often fails to capture environment dynamics and is not
effectively utilized by LLMs, resulting in insufficient alignment between agents and environments.

3 METHOD

3.1 PROBLEM FORMULATION

Environment and Agent. In interactive decision-making tasks, we define the environment E as a
tuple (S,A, T, F, I), where S denotes the set of all possible states of the environment; A denotes
the set of actions the agent can invoke; T : S ×A → S defines how the environment state evolves in
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response to agent actions; F : S ×A → O provides textual feedback that reflects the consequences
of the action in the current state, where O is all possible observations; I encodes the environment
foundational information description, a fixed, declarative representation of the environment’s basic
introduction, which is exposed to the agent at initialization.

An agent π interacts with environment E by receiving task description and observations, then
producing actions at ∈ A. The interaction generates trajectory τ = [(s0, a0, o0), . . . , (sT , aT , oT )],
culminating in task completion feedback.

Formal Definition of Interface. Existing works typically assume the agent interacts directly with
E . However, we argue that this interaction is mediated by an Interface, denoted as Φ, which acts
as a translation layer between the agent’s cognitive space and the environment’s execution space.
Formally, we define the interface as a tuple of mapping functions: Φ = ⟨finfo, fact, fobs⟩where each
component serves a distinct role:

• Information Augmenter finfo : I → Ĩ exposes implicit environment logic (e.g., constraints,
admissible action sequences) into an explicit descriptive context Ĩ provided at agent initialization.

• Action Transducer fact : Aagent → Aenv ∪ {⊥} maps the agent’s output to an executable
environment command. If the output cannot be parsed, it returns an invalid symbol ⊥.

• Observation Transducer fobs : S × Aenv ×Oraw → Oagent transforms the raw feedback Oraw
(from F ) into an informative observation Oagent that better conveys the actual state transitions
and their causes.

At each timestep t, the agent receives õt ∈ Oagent (processed by fobs) and generates at ∈ Aagent,
which is then executed as aenv

t = fact(at) ∈ Aenv.

Agent-Environment Misalignment. We analyze the misalignment problem through the lens of the
interface Φ. Ideally, Φ should be lossless, maximizing the mutual information between the agent’s
belief state and the ground-truth environment state. However, manually designed interfaces often
exhibit Semantic Gaps, leading to misalignment through two primary mechanisms:

• State Aliasing via Lossy Observations (fobs): A poorly designed fobs may map distinct error
states (e.g., “action invalid due to wrong location” vs. “action invalid due to missing object”) to
the same generic observation (e.g., “Nothing happens.”). This creates state aliasing, preventing
the agent from diagnosing failures and correcting its policy.

• Under-specified Constraints (finfo): When critical transitions T rely on preconditions (e.g.,
“open” requires “go to” first) that are not explicitly encoded in Ĩ by finfo, the agent operates
under a hallucinated world model where such constraints appear absent.

Therefore, we define Agent-Environment Misalignment as the discrepancy between the agent’s
expected state transition sexpected

t+1 (derived from its internal world model based on Ĩ and prior ob-
servations [õ0, õ1, . . . , ˜ot+1]) and the actual transition sactual

t+1 = T (st, a
env
t ), caused by insufficient

expressiveness of the interface Φ.

Scope of This Work. While a complete interface theoretically includes all three components, we
observe that misalignment in existing benchmarks primarily stems from information loss in finfo
and fobs, rather than from action space incompatibility. Therefore, ALIGN focuses on automatically
optimizing these two components, treating fact as a fixed identity mapping throughout this work:
fact(a) = a. This design choice allows us to address the core misalignment issues without modifying
the agent’s action generation logic or the environment’s execution layer.

3.2 ALIGN OVERVIEW

To alleviate agent-environment misalignment, we introduce ALIGN (Auto-Aligned Interface
Generation), a framework that automatically generates an optimized interface Φ∗ to bridge the
semantic gaps identified in Section 3.1. Specifically, ALIGN focuses on learning improved finfo and
fobs functions that minimize information loss during agent-environment interaction.

Interface Instantiation. As illustrated in Figure 2, ALIGN instantiates the theoretical interface
components through two learnable modules implemented as a lightweight Python wrapper, without
modifying the environment code or agent logic.

4
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Interface

Agent Initialization

Agent-Environment Interaction

EnvInferRulesInfo I Info I

WrapStep
Action a

Env
Obs o

Action a

Obs o

Figure 2: Overview of the ALIGN-
generated interface. The interface
wraps the original environment E
to create an augmented environ-
ment Ẽ . INFERRULES enriches
static information (I → Ĩ) at
agent initialization, while WRAP-
STEP augments step-wise observa-
tions (F → F̃ ) during interaction.

INFERRULES (implements finfo): Transforms raw environ-
ment information I into augmented information Ĩ that ex-
plicitly exposes interaction rules and constraints. Formally:
INFERRULES : (task, o0, I) → Ĩ, where Ĩ includes the con-
straints automatically extracted, such as precondition depen-
dencies or action ordering requirements.

WRAPSTEP (implements fobs): Intercepts the raw observa-
tion function F and augments its output to resolve state alias-
ing. Given the current state st and agent action at, formally:
WRAPSTEP : (F, st, at) → õt, where õt encapsulates both
F (st, at) and additional diagnostic or corrective information.

Together, these modules form an intermediate interface wrapper
layer that intercepts and transforms environment information
before it reaches the agent. This design allows the base agent
π to remain unchanged, while still benefiting from contextual
clarity and enriched observation that help avoid misaligned
actions. From the perspective of the agent, interaction now
occurs with an augmented environment, denoted as Ẽ = (S,A, T, F̃ , I ∪ Ĩ) , where F̃ is defined
as F̃ (st, at) := WRAPSTEP(F, st, at). This formulation does not alter the internal structure or
transition dynamics of the original environment E . Instead, it constructs an externally wrapped
interface that provides the agent with a richer and more interpretable view of its operating context.
The interface is denoted as Φ := {INFERRULES, WRAPSTEP} in the remainder of this paper.

As shown in Figure 3, the ALIGN integrates two cooperative modules, Analyzer and Optimizer,
to generate aligned interfaces. The framework operates through iterative optimization, with each
iteration comprising three stages: in Stage 1, the Analyzer identifies agent-environment misalignments
by analyzing past interaction trajectories; in Stage 2, the Optimizer generates, validates and refines
a new interface based on the detected misalignments; and in Stage 3, the agent interacts with the
environment wrapped with the newly generated interface, and the failed task trajectories are fed back
to Analyzer for analysis in the next iteration.

3.3 ALIGN FRAMEWORK

To automate the generation of interfaces that bridge the agent-environment misalignments, ALIGN
need to solve two key challenges: (1) how to analyze and identify existing agent-environment
misalignments, and (2) how to generate an interface that addresses these misalignments. The overall
algorithm process of ALIGN is outlined in Algorithm 1 in Appendix B.

Misalignment Analysis We represent each agent-environment misalignment using structured text,
as shown in the bottom left of Figure 3. The “Agent High-Level Reasoning Intent” and “Environment
Rule” respectively depict the agent’s expectations of the action and the environment’s observation
rules, together representing a misalignment. The “Sufficient Observation” represents the observa-
tion the environment should provide to resolve the misalignment. To analyze and identify these
misalignments, we designed the Analyzer module based on LLMs. In each iteration, the Analyzer
takes the failed interaction trajectory τ (i−1) in the previous iteration, the set of currently identified
misalignments M, and the interface Φ(i−1) from the previous round as input, and generates a new
set of misalignments M(i). Detailed prompts for this process are provided in Appendix E.4.

Interface Generation Once the new set of misalignments M(i) is identified, we employ the
Optimizer module to generate a new interface. We represent the two modules of the interface,
INFERRULES and WRAPSTEP, as Python functions, as shown in the bottom right of Figure 3, to
leverage the powerful code generation capabilities of LLMs. In each iteration, the Optimizer takes
the newly identified misalignments M(i) and the previous interface Φ(i−1) as input, and generates a
new interface Φ(i). The detailed prompts for this process are provided in Appendix E.4.

Experimental Verification Given the hallucination (Bang et al., 2023; Xu et al., 2024) issues
of LLMs, we incorporate an experimental verification procedure. Specifically, after the Analyzer
generates M(i), it will interact with the environment wrapped by the previous interface Φ(i−1) to

5
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Analyzer Optimizer

Stage 1: Misalignment Analysis

Interface
t-1

Trajectory

Stage 2: Interface Generation

Step 1:
Misalignment

Candidates
t

Step 2:

Execution

Verified

Misalignment
t

Step 1: Interface
t

Step 2: Interface
t

Refine

Stage 3: Execution with Interface

Interface
t

Task Failed

Task Success

Verified

Misalignment Example
### Analysis Result 1

Agent Action Type: examine

Agent Action Case: examine drawer 1

Agent High-Level Reasoning Intent: The Agent is 

attempting to locate the box and desklamp by examining 

potential receptacles.

Environment Rule: The Environment may require the 

Agent to first "go to" a receptacle before performing 

actions like "examine" on it.

Sufficient Observation: The environment should 

provide observation such as "You need to go to drawer 1 

before examining it" when the Agent attempts to examine 

a receptacle without first moving to it.

Experiment Verification Example
Optimizer: <thought>...</thought>

<action>init_simulator(task_id="4-293")</action>

Experiment: ...

Optimizer: <thought>Now I will simulate an invalid 

"examine" action where ...</thought>

<action>exec_agent_action("examine drawer 1")</action>

Experiment: ... Observation: Nothing happens. ...

...

Optimizer: <thought>The "examine drawer 1" action was 

executed, but the environment did not provide sufficient 

feedback ...</thought>

<if_need_refine>True</if_need_refine>

<refine_strategy>...</refine_strategy>

Interface Example
# Information Align

def InferRules():

      return """1. Before examining or interacting 

with any receptacle, you must first go to that 

receptacle."""

# Interaction Align

def WrapStep():

      ...

      if target not in current_location:

            obs =  f"You need to go to {target} before 

examining it. You must first navigate to a 

receptacle before you can examine it."

Figure 3: ALIGN framework. In each iteration, ALIGN progresses though three stages. Stage 1:
the Analyzer identifies potential agent-environment misalignments and validates them through
experiments; Stage 2: the Optimizer generates a new interface based on the previous interface and
identified misalignments, followed by verification and refinement; Stage 3: the agent interacts with
the updated interface-wrapped environment, with trajectories of failed tasks fed back to the Analyzer
for analysis in the next iteration. At the bottom of the figure, examples for misalignment, verification
of interface integrity by Optimizer, and the ALIGN-generated interface are provided.

validate whether the identified misalignments do indeed exist and can be resolved by the proposed
“Sufficient Observation”. And after the Optimizer generates the new interface Φ(i), it will interact with
the environment wrapped by this new interface to ensure that the generated interface can resolve the
identified misalignments. If the Optimizer finds that the proposed interface is insufficient to address
the discovered misalignments, it will provide a refinement strategy and regenerate the interface. This
iterative process continues until the interface passes the validation, ensuring that the misalignments
identified are appropriately addressed. An example of this process is provided in the bottom center of
Figure 3. To facilitate this interaction with the interface-wrapped environment, we designed a set of
encapsulated tools for both the Analyzer and Optimizer to use, as described in Appendix E.3.

After each iteration, the agent interacts with the environment wrapped by the new generated interface
Φ(i), and trajectories of the failed tasks are returned to Analyzer for further analysis. The algorithm
continues iteratively until one of the following holds: (1) the pre-defined maximum number of
iterations is reached; (2) no failed trajectories are produced; (3) no new misalignments are identified.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocol To validate the effectiveness of ALIGN, we assess the performance of various
agents in the original, unmodified environments. Subsequently, ALIGN is utilized to generate
interfaces for these environments with the respective agents. Afterward, the agents are re-evaluated
in the same environments, wrapped with the ALIGN-generated interfaces. During the interface
generation and refinement process, only tasks from the training set are used. The interface logic
is fixed and remains unchanged during testing. This design enables us to observe and measure the
changes in agent performance before and after the interface alignment.

Benchmarks We conduct experiments on four representative benchmarks across three domains:
embodied tasks, web navigation and tool-use. Among them, (1) ALFWorld (Shridhar et al., 2021)
focuses on embodied AI agents performing household tasks through textual interactions in simu-
lated environments; (2) ScienceWorld (Wang et al., 2022) evaluates the abilities to conduct scientific
experiments and apply scientific reasoning of agents in an interactive text-based environment; (3) Web-
Shop (Yao et al., 2022) simulates e-commerce scenarios where agents navigate product catalogs
and complete purchasing tasks; and (4) M3ToolEval (Wang et al., 2024b) is specifically designed to
evaluate agent performance in multi-turn tool-use tasks.
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Table 1: Effect of ALIGN-generated interfaces on four benchmarks. For every agent we report its
score without the interface (w/o ALIGN) and with the interface (w/ ALIGN); the value in parentheses
is the absolute improvement. Metrics are task-success rate (%) for ALFWorld and M3ToolEval, and
scores for ScienceWorld and WebShop.

Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 13.43 14.94 54.10 11.11
w/ ALIGN 60.45 (+47.02) 27.69 (+12.75) 61.23 (+7.13) 20.83 (+9.72)

ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 63.43 (+44.03) 28.97 (+8.94) 42.93 (+5.73) 18.06 (+8.34)

Self-Consistency w/o ALIGN 11.94 14.07 56.23 11.11
w/ ALIGN 69.40 (+57.46) 25.41 (+11.34) 61.10 (+4.87) 16.67 (+5.56)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 40.30 (+36.57) 22.99 (+8.12) 52.30 (+7.50) 6.94 (+1.39)

Planning w/o ALIGN 9.70 17.13 46.95 11.11
w/ ALIGN 52.99 (+43.29) 26.34 (+9.21) 54.67 (+7.72) 18.06 (+6.95)

Agent Methods To verify the capability of ALIGN to enhance performance across diverse agent
architectures, we evaluate five representative methods: (1) Vanilla Agent: Base implementation
without specialized prompting strategies; (2) ReAct (Yao et al., 2023): Leveraging the reasoning
capabilities of LLMs through interleaved reasoning and action steps; (3) Self-Consistency (Wang
et al., 2023): Utilizing probabilistic outputs from LLMs to generate multiple solution paths and select
the most consistent one; (4) Self-Refine (Madaan et al., 2023): Employing an iterative self-critic and
refine mechanism where agents critique and refine their previous solutions; and (5) Planning Agent:
Inspired by RAP Hao et al. (2023), this approach leverages the planning capabilities of LLMs to
decompose complex tasks into manageable sub-tasks.

Implementation Details Unless otherwise noted, we use Qwen2.5-7B-Instruct (Team, 2024) as the
base model of agents. The Optimizer for interface generation uses Gemini 2.5 Pro (Google, 2025),
while other steps the Analyzer and Optimizer use GPT-4.1 (OpenAI, 2025). Implementation details
of benchmark task splits and hyper-parameters can be found in Appendix E.

4.2 MAIN RESULTS

Table 1 summarizes the task success rates or scores of five representative agent methods in the
environment without (w/o) or with (w/) ALIGN-generated interface. The interfaces generated and
the misalignments analyzed can be found in Appendix F and the token consumption analysis can be
found in Appendix D. Our empirical investigation yields three principal findings:

(1) ALIGN consistently enhances performance across different domains. All evaluated agent
methods demonstrate significant performance improvements when utilizing ALIGN-generated inter-
faces. Specifically, the five agent methods exhibit mean improvements of 45.67% in task-success rate
for ALFWorld, 10.07 points for ScienceWorld, 6.59 points for WebShop, and 6.39% in task-success
rate for M3ToolEval. These consistent improvements substantiate the effectiveness of ALIGN.

(2) Agent-environment misalignment is a pervasive phenomenon impeding the agent perfor-
mance. The observed performance enhancements provide empirical evidence that numerous errors
in baseline configurations originate from implicit constraints or under-specified observation, rather
than from intrinsic reasoning deficiencies. This finding suggests that when these environmental
constraints are explicitly surfaced, agents can execute their intended tasks with substantially improved
reliability. Consequently, we posit that agent-environment misalignment is pervasive in interactive
decision-making tasks, and addressing this problem is crucial for advancing agent performance.

(3) Alignment between agent and environment can facilitate identification of additional
performance-influencing factors. While the Self-Consistency agent achieves a 69.40% success
rate in ALFWorld with ALIGN, the performance of Self-Refine agent remains comparatively sub-
optimal (40.30%), indicating potential deficiencies in the critic and self-refinement capabilities of
the Qwen2.5-7B-Instruct model. These limitations are similarly manifested in the M3ToolEval
results. Furthermore, the relatively modest performance improvements in ScienceWorld suggest
that Qwen2.5-7B-Instruct may exhibit insufficient scientific causal reasoning capabilities. These
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observations indicate that properly aligning agent and environment enables more precise isolation
and analysis of other factors influencing agent performance beyond alignment considerations.

4.3 INTERFACE QUALITY ANALYSIS

Table 2: Impact of the ALIGN-generated interface on consecutive invalid actions. The metric
reports the fraction (%) of consecutive invalid actions. Lower values indicate more desirable behavior.
∆ denotes the relative reduction with respect to the w/o ALIGN setting.

ALFWorld ScienceWorld

Method w/o ALIGN w/ ALIGN ∆ w/o ALIGN w/ ALIGN ∆

Vanilla 77.91 26.59 66% 49.12 24.47 50%
ReAct 82.23 38.63 53% 46.61 29.99 36%
Self-Consistency 77.71 15.08 81% 51.10 31.51 38%
Self-Refine 90.38 45.84 49% 58.02 29.48 49%
Planning 74.09 19.14 74% 68.67 20.94 70%

Average 80.46 28.51 65% 54.70 27.28 49%

Influence on Agent Decision To quantitatively assess the influence of ALIGN-generated interfaces on
agent decision beyond end-task performance metric, we introduce a metric that measures the frequency
of consecutive invalid actions by calculating the proportion of the actions that occur within sequences
of two or more consecutive invalid steps. Lower values of this metric indicate: (1) enhanced agent
awareness of implicit preconditions, and (2) improved recovery capability following isolated errors.
Table 2 presents the results for five agent methods implemented on ALFWorld and ScienceWorld.
The empirical results demonstrate a substantial reduction in consecutive invalid actions frequency
across all agent methods when utilizing ALIGN-generated interfaces. Specifically, we observe a mean
reduction of 65% in ALFWorld and 49% in ScienceWorld. These findings provide robust evidence
that ALIGN effectively enriches the information conveyed by the observation, preventing agents from
entering repetitive error cycles, which aligns with the findings documented in Section 4.2.

Comparison with Agentic Systems and Human-designed Interfaces To further assess the effective-
ness of our automatically generated interfaces, we compare ALIGN against (1) agentic frameworks
equipped with carefully designed reasoning, planning and memory modules and (2) human-designed
interfaces. The experimental setup and results are presented in Appendix C.2. As shown in Ta-
ble 7, even without bespoke reasoning, planning, or memory modules, a vanilla agent that directly
outputs the next action yields a 6.71 percentage points higher success rate than the best agentic
system when paired with ALIGN-generated interfaces, indicating agent-environment misalignment
substantially constrains the performance of LLM-based agents in interactive tasks. Moreover, using
interfaces automatically generated by ALIGN yields a 13.44 percentage points higher success rate
than human-designed interfaces, further validating the effectiveness of our method (Table 8).

4.4 GENERALIZATION AND GENERALITY STUDY

Generalization Study To evaluate the generalization capabilities of ALIGN, we performed the
following two experiments, with the results presented in Table 3 and detailed results in Appendix C.3.

(1) ALIGN can generalize to different agent architectures. Panel (a) of Table 3 applies interfaces
generated with the Vanilla agent to the other four agents. Across all four environments every
target agent shows consistent growth, demonstrating that ALIGN captures genuine and previously
unexposed environment constraints. This also reinforces the earlier conclusion that agent-environment
misalignment is a pervasive source of error independent of the agent’s reasoning style.

(2) ALIGN can generalize to larger and heterogeneous LLMs. Panel (b) of Table 3 examines whether
an interface generated with Qwen2.5-7B-Instruct can extend to larger or architecturally different
model backbones. The results demonstrate that ALIGN-generated interfaces lead to performance
improvements across base models of varying sizes and architectural families, which indicates that our
method possesses strong generalization capabilities. We also observe that this generalization is not
uniformly robust across all model families and datasets. For instance, Llama3.1-8B-Instruct (Meta,
2025a) shows only a marginal gain of +0.33 on the WebShop benchmark. This limited improvement
may be attributed to the inherent reasoning capabilities of the model itself.
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Table 3: Generalization of ALIGN-generated inter-
faces across agents and models. Mean performance
improvements from applying ALIGN-generated inter-
faces in the four environments across different settings.
(a) Cross-agent transfer: interfaces generated with a
Vanilla agent improve other agent methods. (b) Cross-
model transfer: interfaces generated with Qwen2.5-7B-
Instruct can generalize to other LLMs.

(a) Interface source: Vanilla agent

Target method ALF. Sci. Web. M3T.

ReAct +39.56 +12.29 +7.87 +5.56
Self-Consistency +51.49 +15.30 +3.00 +8.33
Self-Refine +34.33 +14.11 +6.17 +4.17
Planning +41.05 +9.66 +3.26 +11.11

(b) Interface source: Qwen2.5-7B-Instruct agent

Target LLM ALF. Sci. Web. M3T.

Qwen2.5-14B-Instruct +17.46 +4.61 +4.66 +6.11
Llama3.1-8B-Instruct +5.97 +10.27 +0.33 +0.83
Llama3.3-70B-Instruct +5.82 +3.99 +5.68 +1.67

Table 4: Generality of ALIGN. Task suc-
cess rates (SR) without and with ALIGN-
generated interfaces in ALFWorld across
two settings. (a) Using GPT-4.1 series
models as the base model of agents; (b)
Using GiGPO-Qwen2.5-7B-Instruct eval-
uated under different agent architectures.

(a) GPT-4.1 series

Base Model Interface SR (%)

GPT-4.1-mini w/o ALIGN 28.36
w/ ALIGN 64.93 (+36.57)

GPT-4.1 w/o ALIGN 73.88
w/ ALIGN 93.28 (+19.40)

(b) GiGPO-Qwen2.5-7B-Instruct

Agent Method Interface SR (%)

Vanilla w/o ALIGN 35.04
w/ ALIGN 55.97 (+20.93)

Training Config w/o ALIGN 89.55
w/ ALIGN 92.54 (+2.99)

Taken together, these results show that ALIGN-generated interfaces can generalize (1) across agent
policies and (2) across model scales and families, validating the practicality of ALIGN.

Generality Study In this work, our empirical observations indicate that the root cause of agent-
environment misalignment lies in the robustness of the interface itself, making it a universal issue that
affects agents irrespective of the underlying model capability. To further validate this claim and assess
the generality of ALIGN, we conduct experiments on both closed-source LLMs and domain-specific
models trained within the environment. For the former, we use the GPT-4.1 series; for the latter, we
use GiGPO-Qwen2.5-7B-Instruct-ALFWorld (Feng et al., 2025), a state-of-the-art model specifically
post-trained on ALFWorld via reinforcement learning. Detailed experimental setup and full results
are provided in Appendix C.4. As the results reported in Panel (a) of Table 4 shown, applying the
ALIGN-generated interface substantially improves the performance of the GPT-4.1-based agent
from 73.88% to 93.28%. Meanwhile, as the results reported in Panel (b) of Table 4 shown, the
ALIGN-generated interface also enhances the performance of the domain-specific model under both
our Vanilla Agent setting and its original training configuration, from 35.04% to 55.97% and 89.55%
to 92.54%, respectively. These findings demonstrate that the fundamental and pervasive nature of
agent-environment misalignment stems from deficiencies in the environment’s interface rather than
solely from the reasoning limitations of any given model, and further corroborate the generality of
our method across both frontier and domain-specialized models.

4.5 ABLATION STUDY

Table 5: Ablation on Interface components. Val-
ues represent the change in success rate (%) on ALF-
World and score on ScienceWorld. Negative values
mean performance drops from the Full interface.

w/o INFERRULES w/o WRAPSTEP

Method ALF. Sci. ALF. Sci.

Vanilla -8.96 -3.35 -33.58 -4.72
ReAct -5.22 -2.08 -17.91 -6.44
Self-Consistency -1.49 -2.30 -37.27 -10.59
Self-Refine -7.46 -1.72 -34.33 -7.59
Planning -10.45 -0.78 -26.87 -9.86

Mean -6.72 -2.05 -31.79 -7.84

Ablation on Interface Components Starting
from the full ALIGN interface, we conduct
two ablations: (1) w/o INFERRULES and (2)
w/o WRAPSTEP. Table 5 reports the change
relative to the full interface on ALFWorld and
ScienceWorld, with the full results presented
in Appendix C.5. Both ablations reduce per-
formance: w/o INFERRULES averages -6.72
percentage points on ALFWorld and -2.05
on ScienceWorld, while removing WRAP-
STEP yields a larger decline of -31.79 per-
centage points and -7.84, respectively. These
decreases confirm that each interface compo-
nent contributes meaningfully. Moreover, the
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much larger drop w/o WRAPSTEP shows the critical role of fine-grained and enriched observation
during interaction. This also suggests that rich, LLM-friendly observation should be prioritized by
future environment designers when constructing environments.

Table 6: Task success rate (%) on
ALFWorld across iterations without
experimental verification procedure.

Temp. Iter0 Iter1 Iter2 Iter3

0.2 13.43 22.39 0.00 0.00
0.5 13.43 23.88 1.49 0.75

Ablation on Experimental Verification To assess whether
the experimental verification procedure in Section 3.3 is in-
dispensable, we ablated it and re-ran ALIGN with the Vanilla
agent on ALFWorld. As a surrogate, we employed a multi-
sampling strategy in each iteration: the Analyzer sampled six
candidate misalignments and selected the one it judged most
accurate; the Optimizer then sampled six candidate interfaces
and likewise chose its top candidate. Within this multi-sampling process, we controlled stochasticity
via decoding temperature; specifically, we evaluated T ∈ {0.2, 0.5} under the prompts listed in
Appendix E.4. The resulting task success rates over three iterations are summarized in Table 6.
Without the ability to execute experiments, task success rate deteriorates sharply, a result of the
limited single-shot reliability of LLMs in both diagnosing misalignments and synthesizing correct
interfaces, which underscores the necessity of the experimental verification procedure design.

5 CONCLUSION

In this work, we introduce ALIGN, a novel framework that automatically generates aligned interfaces
to alleviate the agent-environment misalignment, a pervasive and underexplored source of failure
in interactive decision-making tasks. By diagnosing implicit constraints through the Analyzer and
synthesizing aligned interface via the Optimizer, ALIGN improves agent performance significantly on
four representative benchmarks across three domains: embodied tasks, web navigation, and tool-use.
Our results demonstrate that ALIGN not only boosts performance across multiple agent methods but
also generalizes effectively to unseen models and strategies, offering a robust, plug-and-play solution
that decouples agent designs from manual environment-specific alignment. These findings suggest
that automatic interface generation is a promising direction for building more reliable, reusable,
and interpretable LLM-based agents. Future research should explore richer forms of interface
representation, expand evaluations to more domains, and develop finer-grained metrics to quantify
interface quality and its impact on agent behavior.

LIMITATIONS AND FUTURE WORK

Despite the effectiveness of ALIGN in alleviating agent-environment misalignment, this work
represents an initial exploration into automated interface generation. Several important directions
remain open for further investigation:

Toward more diverse and complex environments. Our current evaluation focuses on environments
with discrete, text-based action spaces across three domains: embodied tasks, web navigation, and
tool-use. ALIGN’s applicability to more complex settings remains to be explored. Future work could
investigate more complex environments like extending ALIGN to multimodal domains such as GUI
agents, where interfaces must process visual observations alongside textual feedback.

Beyond information and observation augmentation. As formalized in Section 3.1, a complete
interface comprises three components: finfo, fobs, and fact. This work focuses on optimizing finfo
and fobs to alleviate the agent-environment misalignment. However, fact also plays a critical role
in interactive tasks. Constraining agents to predefined action spaces may force them to deviate
from their natural output distributions, potentially degrading performance. Automatically generating
and optimizing fact to bridge the gap between an agent’s preferred action representation and the
environment’s expected format remains an important direction.

Metrics for interface quality. This paper evaluates interface effectiveness primarily through task
success rates and consecutive invalid actions. More comprehensive metrics are needed to quantify
interface influence on agent behavior. Promising directions include: (1) developing finer-grained
behavioral diagnostics measuring specific aspects of agent understanding, such as exploratory actions
or strategy diversity; (2) employing LLM-as-a-Judge (Zheng et al., 2023) paradigms to evaluate
whether interfaces successfully convey environment constraints.
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REPRODUCIBILITY STATEMENT

We present the framework and algorithm design of our method in Section 3 and Appendix B, and
the implementation details of the experiments in Appendix C and Appendix E. Meanwhile, the
code necessary to reproduce the proposed methods and the main experiments has been provided as
supplemental material. The supplemental material also includes the corresponding experimental logs.
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A LLM USAGE STATEMENT

Throughout the completion of this work, the LLM was employed solely for the purpose of refining
sentences and improving grammatical accuracy during the manuscript writing process.

B FORMALIZATION OF THE ALIGN ALGORITHM

The formalization of the ALIGN algorithm is outlined in Algorithm 1.

Algorithm 1 ALIGN: Auto-Aligned Interface Generation

Require: Environment E , Agent π, Task training set Ttrain, Maximum iterations K
1: Initialize misalignment set M ← ∅, interface Φ(0) ← {INFERRULES(0), WRAPSTEP(0)}, where

INFERRULES(0) and WRAPSTEP(0) are identity functions
2: for i = 1, 2, . . . ,K do
3: Ẽ(i−1) ← Environment E wrapped with interface Φ(i−1)

4: τ
(i−1)
fail ← Failed trajectories from agent π interacting with Ẽ(i−1) on Ttrain

5: if τ (i−1)
fail = ∅ then

6: break ▷ No more failures in the training set
7: end if

// Stage 1: Misalignment Analysis
8: M(i) ← Analyzer(τ (i−1)

fail ,M,Φ(i−1))

9: ifM(i) = ∅ then
10: break ▷ No new misalignments identified
11: end if
12: M←M∪M(i)

// Stage 2: Interface Generation
13: Φ(i) ← Optimizer(M(i),Φ(i−1))
14: end for
15: return final interface Φ(i)

C SUPPLEMENTARY EXPERIMENTAL SETUP AND DETAILED RESULTS

C.1 PRELIMINARY EXPERIMENTS

To preliminarily assess the significance of agent-environment misalignment, we conducted exploratory
experiments on the ALFWorld. We employed the vanilla Qwen2.5-7B-Instruct agent with a temper-
ature setting of 0.0. The deployment protocol, prompt template, followed the same configuration
described in Appendix E and Appendix E.4.

During the experiments, we introduced a minor modification to the environment: if the agent
issued the action examine receptacle and the environment returned the default observation “Nothing
happens.”, we replaced it with “You need to first go to receptacle before you can examine it.” This
simple adjustment increased the agent’s task success rate from 13.4% to 31.3%.

C.2 INTERFACE QUALITY ANALYSIS EXPERIMENTS

To further assess the quality of the ALIGN-generated interface, we first compare our method
with human-designed agentic system. Our experiments are conducted on ALFWorld using the
AgentSquare (Shang et al., 2025) framework. To maximize the advantages of the agentic system,
we adopt gpt-4.1-2025-04-14 as the base model, select OPENAGI (Ge et al., 2023) for the planning
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Table 7: Experimental results of the comparison between agents with ALIGN-generated interface
and agents with human-designed reasoning, planning and memory module.

Agent
Framework Interface Memory

Module
pick

and place
pick clean
and place

pick heat
and place

pick cool
and place

look at /
examine
in light

pick two obj
and place

Success
Rate (%)

AgentSquare / Generative 95.83 87.10 69.57 95.24 83.33 88.24 86.57

AgentSquare / DiLu 91.67 87.10 52.17 95.24 83.33 70.59 80.60

AgentSquare / TP 87.50 51.61 4.35 61.90 27.78 47.06 47.76

AgentSquare / VOYAGER 95.83 83.87 52.17 90.48 83.33 64.71 79.10

Vanilla Agent w/o ALIGN / 100.00 93.55 13.04 71.43 61.11 100.00 73.88

Vanilla Agent w/ ALIGN / 100.00 100.00 78.26 100.00 77.78 100.00 93.28

module, Self-Refine (Madaan et al., 2023) for the reasoning module, and evaluate memory using Gen-
erative (Park et al., 2023), DiLu (Wen et al., 2024), TP (Yu et al., 2024), and VOYAGER (Wang et al.,
2024a). For our approach, we employ a gpt-4.1-2025-04-14-based vanilla agent, where the interface
is generated with the gpt-4.1-2025-04-14-mini-based vanilla agent by ALIGN (the experimental
setup is same as Appendix C.4). The results are reported in Table 7.

Table 8: Experimental results of
the comparison between agents with
ALIGN-generated interface and agents
with human-designed interfaces.

Experimental Setting Success Rate (%)

w/o Interface 13.43

Few-shot 44.78

Valid Actions 44.03

Human Designed Interface 47.01

ALIGN-generated Interface 60.45

Furthermore, we compare the ALIGN-generated interface
against the human-designed interface. We adopt the fol-
lowing configurations for comparison with our method:
(1) Few-shot: Settings identical to those in the ReAct (Yao
et al., 2023); (2) Valid Actions: Supplying the agent
with all valid actions at every response turn, analogous
to the check_valid_actions configuration in Agent-
Board (Ma et al., 2024); (3) Human-Designed Interface:
Interfaces manually crafted by Ph.D. students after inspect-
ing ALFWorld experiments, examining trajectories, and run-
ning experiments themselves. The design logic includes: ex-
ecuting “go to” prior to each action; automatically checking
object labels; converting “put” to “move” when appropriate;
returning the action space upon invalid actions; issuing reminders when “clean with” is applied to
non-sinkbasin objects; and other hand-engineered rules. We use Qwen2.5-7B-Instruct as the base
model. Experimental results are reported in Table 8.

C.3 GENERALIZATION STUDY EXPERIMENTS

Detailed results of the generalization study are provided for the cross-method experiments in Table 9
and for the cross-model experiments in Tables 10, 11, and 12.

Table 9: Generalization of ALIGN-generated interfaces generated with Vanilla agents to other
agent methods. For each agent we report its score without the interface (w/o ALIGN) and with the
interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Method: Vanilla Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 58.96 (+39.56) 32.32 (+12.29) 45.07 (+7.87) 15.28 (+5.56)

Self-Consistency w/o ALIGN 11.94 14.07 56.23 11.11
w/ ALIGN 63.43 (+51.49) 29.37 (+15.30) 59.23 (+3.00) 19.44 (+8.33)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 38.06 (+34.33) 28.98 (+14.11) 50.97 (+6.17) 9.72 (+4.17)

Planning w/o ALIGN 9.70 17.13 46.95 11.11
w/ ALIGN 50.75 (+41.05) 26.79 (+9.66) 50.21 (+3.26) 22.22 (+11.11)
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Table 10: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Qwen2.5-14B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Qwen2.5-14B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 48.51 22.58 53.67 13.89
w/ ALIGN 52.24 (+3.73) 37.58 (+15.00) 58.40 (+4.73) 18.06 (+4.17)

ReAct w/o ALIGN 54.48 31.24 39.73 15.28
w/ ALIGN 70.15 (+15.67) 29.79 (-1.45) 42.17 (+2.44) 26.39 (+11.11)

Self-Consistency w/o ALIGN 43.28 25.60 52.63 13.89
w/ ALIGN 72.39 (+29.11) 26.68 (+1.08) 51.07 (-1.56) 27.78 (+13.89)

Self-Refine w/o ALIGN 5.22 18.97 41.00 15.28
w/ ALIGN 14.18 (+8.96) 20.72 (+1.75) 39.93 (-1.07) 16.67 (+1.39)

Planning w/o ALIGN 49.25 21.46 31.72 25.00
w/ ALIGN 79.10 (+29.85) 28.13 (+6.67) 50.47 (+18.75) 25.00 (0.00)

Table 11: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.1-8B-Instruct. For each agent we report its score without the interface (w/o ALIGN) and
with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.1-8B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 5.22 23.59 35.17 5.56
w/ ALIGN 14.18 (+8.96) 36.40 (+12.81) 24.00 (-11.17) 1.39 (-4.17)

ReAct w/o ALIGN 1.49 22.42 27.12 12.50
w/ ALIGN 15.67 (+14.18) 28.74 (+6.32) 27.10 (-0.02) 22.22 (+9.72)

Self-Consistency w/o ALIGN 5.22 25.21 29.80 4.17
w/ ALIGN 11.94 (+6.72) 34.83 (+9.62) 15.83 (-13.97) 2.78 (-1.39)

Self-Refine w/o ALIGN 0.00 22.34 27.70 1.39
w/ ALIGN 0.75 (+0.75) 31.33 (+8.99) 37.43 (+9.73) 1.39 (0.00)

Planning w/o ALIGN 6.72 13.33 23.67 4.17
w/ ALIGN 5.97 (-0.75) 26.95 (+13.62) 40.77 (+17.10) 4.17 (0.00)

Table 12: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.3-70B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.3-70B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 52.99 55.77 51.67 37.50
w/ ALIGN 43.28 (-9.71) 57.74 (+1.97) 62.07 (+10.40) 33.33 (-4.17)

ReAct w/o ALIGN 45.52 56.50 58.22 34.72
w/ ALIGN 47.01 (+1.49) 58.28 (+1.78) 53.83 (-4.39) 43.06 (+8.34)

Self-Consistency w/o ALIGN 54.48 56.66 50.37 36.11
w/ ALIGN 65.67 (+11.19) 59.24 (+2.58) 55.63 (+5.26) 34.72 (-1.39)

Self-Refine w/o ALIGN 38.06 56.97 38.40 1.39
w/ ALIGN 46.27 (+8.21) 60.17 (+3.20) 47.85 (+9.45) 0.00 (-1.39)

Planning w/o ALIGN 58.96 48.75 54.90 33.33
w/ ALIGN 76.87 (+17.91) 59.17 (+10.42) 62.60 (+7.70) 40.28 (+6.95)
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C.4 GENERALITY STUDY EXPERIMENTS

Table 13: Experimental results for GPT-4.1 series agents with ALIGN on ALFWorld.

Base Model Interface pick
and place

pick clean
and place

pick heat
and place

pick cool
and place

look at /
examine
in light

pick two obj
and place

Success
Rate (%)

gpt-4.1-mini w/o ALIGN 58.33 22.58 8.70 9.52 22.22 52.94 28.36
w/ ALIGN 95.83 87.10 26.09 80.95 27.78 52.94 64.93

gpt-4.1 w/o ALIGN 100.00 93.55 13.04 71.43 61.11 100.00 73.88
w/ ALIGN 100.00 100.00 78.26 100.00 77.78 100.00 93.28

For the validation on closed-source LLMs, we selected the GPT-4.1 family. Specifically, we experi-
mented with gpt-4.1-mini-2025-04-14 and gpt-4.1-2025-04-14. First, we used gpt-4.1-mini-2025-
04-14 as the base model to instantiate a Vanilla Agent and synthesize interface with ALIGN. We
then applied the same interface to an agent powered by gpt-4.1-2025-04-14. All other experimental
settings were identical to those in the main experiments. The results are presented in Table 13.

For domain-specific models trained within the environment, we used GiGPO-Qwen2.5-7B-Instruct-
ALFWorld, a state-of-the-art model post-trained on ALFWorld via reinforcement learning (Feng
et al., 2025). We reused the interface produced in our main experiment (generated with the base
Qwen2.5-7B-Instruct model under the Vanilla Agent method). At evaluation time, we considered
two configurations: (1) our Vanilla Agent setting, and (2) a configuration that matches the logic and
prompt setting used during training in the original paper.

C.5 ABLATION STUDY EXPERIMENTS

The full result of interface ablation experiment can be found in Table 14.

Table 14: Ablation study on the components of ALIGN. Values represent task success rates (%) or
scores. For ablated conditions (w/o INFERRULES, w/o WRAPSTEP), performance changes from the
‘Full’ are shown in parentheses.

Method Interface Embodied Web Tool

ALFWorld ScienceWorld Webshop M3ToolEval

Vanilla
Full 60.45 27.69 61.23 20.83
w/o INFERRULES 51.49 (-8.96) 24.34 (-3.35) 51.03 (-10.20) 18.06 (-2.77)
w/o WRAPSTEP 26.87 (-33.58) 22.97 (-4.72) 61.23 (-0.00) 11.11 (-9.72)

ReAct
Full 63.43 28.97 42.93 18.06
w/o INFERRULES 58.21 (-5.22) 26.89 (-2.08) 35.97 (-6.96) 9.72 (-8.34)
w/o WRAPSTEP 45.52 (-17.91) 22.53 (-6.44) 47.60 (+4.67) 19.44 (+1.38)

Self-Consistency
Full 69.40 25.41 61.10 16.67
w/o INFERRULES 67.91 (-1.49) 23.11 (-2.30) 55.67 (-5.43) 13.89 (-2.78)
w/o WRAPSTEP 23.13 (-17.91) 14.82 (-10.59) 60.67 (-0.43) 15.28 (-1.39)

Self-Refine
Full 40.30 22.99 52.30 6.94
w/o INFERRULES 32.84 (-7.46) 21.27 (-1.72) 46.33 (-5.97) 6.94 (-0.00)
w/o WRAPSTEP 5.97 (-34.33) 15.40 (-7.59) 47.80 (-4.50) 6.94 (-0.00)

Planning
Full 52.99 26.34 54.67 18.06
w/o INFERRULES 42.54 (-10.45) 25.56 (-0.78) 48.18 (-6.49) 16.67 (-1.39)
w/o WRAPSTEP 26.12 (-26.87) 16.48 (-9.86) 52.87 (-1.80) 16.67 (-1.39)

D TOKEN CONSUMPTION ANALYSIS

The average token consumption per iteration in the main experiment described in Section 4.1 is
shown in Table 15.

Due to the “Experimental Verification” setup, the Analyzer and Optimizer need to interact with the
environment multiple times, and all previous interaction histories are included as new prompt inputs to
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Table 15: The average token consumption per iteration in the main experiment described in Sec-
tion 4.1.

ALFWorld ScienceWorld WebShop M3ToolEval

Analyzer
Input Token (M) 0.2770 0.4333 0.1783 0.1094
Output Token (M) 0.0040 0.0036 0.0048 0.0016
Total Token (M) 0.2809 0.4370 0.1831 0.1109

Optimizer
Input Token (M) 0.2619 0.2288 0.0669 0.1100
Output Token (M) 0.0087 0.0172 0.0040 0.0118
Total Token (M) 0.2706 0.2460 0.0709 0.1217

Total Total Token (M) 0.5515 0.6830 0.2540 0.2326

the LLM in each round of interaction. Additionally, when the Optimizer identifies that the generated
interface is imperfect, it needs to refine the previously generated interface and conduct experimental
verification again, leading to increased token consumption. However, as LLM capabilities continue
to improve and hallucination issues decrease, this cost will gradually reduce. Furthermore, it is worth
noting that:

• The INFERRULES wrapper and WRAPSTEP wrapper are implemented as python logic code,
which does not involve calls to models or agents, therefore not incurring additional token
consumption. On the contrary, as demonstrated in our experiments in Section 4.3, using
ALIGN-generated interfaces can help agents reduce repetitive meaningless actions, thereby
reducing the number of LLM calls and decreasing token consumption compared to not
using ALIGN-generated interfaces.

• Except when the Optimizer generates interface codes requiring the cutting edge LLMs (such as
Gemini 2.5 Pro), weaker and more cost-effective LLMs (such as GPT-4.1-mini) can be used at
other times, which will significantly reduce the operational costs of ALIGN.

• ALIGN-generated interfaces can generalize to different agent architectures and base LLMs.
This means that for each environment, using the ALIGN method to generate an interface only
once can bring performance improvements to different agents, regardless of agent version
updates. This also means that the cost of interface generation is a one-time expense, rather
than requiring the generation of new interfaces for each task execution. Therefore, from an
amortization perspective, the method’s cost becomes increasingly economical as the environment
is utilized more frequently, with the one-time interface design cost being distributed across
multiple uses and becoming proportionally smaller with increased usage.

E IMPLEMENTATION DETAILS

E.1 BENCHMARKS TASK SPLITS

The task splits of benchmarks we use are as follows:

(1) ALFWorld (Shridhar et al., 2021): We adhere to the original dataset partitioning presented in the
paper, wherein the tasks from the “eval_out_of_distribution” category are used as the test set, and the
“train” category is designated as the training set. In each iteration, we randomly select three tasks
from the training set of each task type to serve as the training data for the agent’s interaction.

(2) ScienceWorld (Wang et al., 2022):We follow the original partitioning of the train and test sets as
described in the paper. For efficiency reasons, during testing, we select at most the first five tasks
from the 30 available task types for evaluation. In each iteration, we randomly select one task from
the training set of each task type to be used as the training data for the agent’s interaction.

(3) WebShop (Yao et al., 2022): In alignment with the setup of Yao et al. (2023), we use tasks with
IDs ranging from 0 to 49 (50 tasks in total) as the test set, and tasks with IDs from 50 to 199 (150
tasks in total) as the training set. In each iteration, we randomly select 20 tasks from the training set
to serve as the training data for the agent’s interaction.
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(4) M3ToolEval (Wang et al., 2024b): Since M3ToolEval does not provide a distinct training set
division, we select two tasks from each task type in the original dataset as the training set, with the
remaining tasks used as the test set. In each iteration, the entire training set is utilized for the agent’s
interaction.

E.2 HYPERPARAMETER AND EXPERIMENT SETTING

For all the agents, we deploy them uniformly using vllm (Kwon et al., 2023) across 8 Nvidia A100
80GB GPUs, with the inference temperature set to 0.0. The models utilized contain Qwen2.5-7B-
Instruct2 (Team, 2024), Qwen2.5-14B-Instruct3 (Team, 2024), Llama3.1-8B-Instruct4 (Meta, 2025a)
and Llama3.3-70B-Instruct5 (Meta, 2025b).

In ALIGN, we use Gemini 2.5 Pro (gemini-2.5-pro-exp-03-25)(Google, 2025) for Optimizer to
generate new interface, with the temperature set to 0.2. For other scenarios requiring the use of an
LLM, we employ GPT-4.1 (gpt-4.1-2025-04-14)(OpenAI, 2025). We set K = 8 during experiments.

E.3 TOOLS FOR EXPERIMENTAL VERIFICATION

In order to implement the experimental verification process mentioned in Section 3.3, we have
encapsulated the following tools for Analyzer and Optimizer to interact with the interface-wrapped
environment:

(1) init_simulator(task_id, interface): Initializes an experimental task, specifying
the task ID and the interface code.

(2) reset_simulator(): Resets the experimental task.

(3) run_task(): Runs the current task until completion, returning the interaction trajectory.

(4) exec_agent_action(agent_action): Executes a specific action and returns the en-
hanced observation after the interface processing.

(5) get_agent_action(): Based on the current trajectory, returns the next action to be issued
by the agent.

(6) change_obs(obs): Modifies the observation of the previous action execution.

E.4 PROMPT TEMPLATES

We present the prompt template of the Analyzer and Optimizer for ALFWorld. For the prompt
templates of other benchmarks, please refer to the supplemental materials. For the WebShop and
M3ToolEval environments, no “Gold Action and Observation Sequence” is provided.

Analyzer Prompt Template of Misalignment Analysis

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions

2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
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according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to analyze the logs from a recent task to determine whether such a mis-
alignment occurred, preventing a fair assessment of the Agent’s capabilities. And this
misalignment has not been fixed by current ‘WrapStep‘ function. Your analysis will guide us
in addressing this issue moving forward.

———————————————————————–
### Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ Interface }}
“‘

———————————————————————–
### Environment Logs

“‘txt
{{ logs }}
“‘

Here, each ‘Observation‘ is the feedback returned to the Agent after it executes an
action.

———————————————————————–
### Gold Action and Observation Sequence

“‘txt
{{ gold_action_obs_sequence }}
“‘

———————————————————————–
### Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }}

———————————————————————–
### Your Task
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Determine whether, during this task, there was a misalignment between the Envi-
ronment’s World Model and the Agent’s World Model that hindered a fair assessment of the
Agent’s capabilities. Choose exactly one of the following outputs:

If there is NO misalignment (i.e., the Agent’s failures stem from its own errors or
limitations, not a mismatch with the Environment’s World Model), output:
<analysis_result> No Misalignment </analysis_result>

If there IS a misalignment (i.e., the Environment’s World Model conflicts with the
Agent’s World Model), output:
<analysis_result> Found Misalignment </analysis_result>
<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current ‘WrapStep‘ function.
</environment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:
“‘txt
### Analysis Result 1
Analysis Task ID: xxx
Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle", etc.
Agent Action Case: xxx # The specific action the Agent attempted to perform.
Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.
Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.
Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide ’xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."
Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function"

### Analysis Result 2
...
“‘

Note: You should not generate duplicate misalignment analysis results as the ones
already provided in the ‘Environment Logics and Misalignment Analyzed in the Previous
Steps‘ section.

Analyzer Prompt Template of Experimental Verification

User message:
Now you should conduct simulation experiments in the simulator to verify that the
environment rules you hypothesized and Misalignment you identified truly exists. You must
perform sufficient experiments to confirm or refute your suspicion.

Here are the operations you can use:

1. init_simulator(task_id: str)
- Initializes a new simulator for the specified ‘task_id‘.
- ‘task_id‘ must be in the format ’int-int’ where the first int ∈ [0, 5].
- The different task types are mapped as follows:
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0: ’pick_and_place’,
1: ’pick_clean_and_place’,
2: ’pick_heat_and_place’,
3: ’pick_cool_and_place’,
4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the ‘WrapStep‘ function.

4. change_last_action_observation(obs: str)
- Updates the last observation returned by the simulator to the specified ‘obs‘.
- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()
- Retrieves the next action that the real Agent would perform under the current simulation
conditions.
- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()‘ call, along with
the latest observations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>
<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current ‘WrapStep‘ function. </environ-
ment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:
“‘txt
### Analysis Result 1
Analysis Task ID: xxx
Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle", etc.
Agent Action Case: xxx # The specific action the Agent attempted to perform.
Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.
Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.
Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide ’xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."
Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function"

### Analysis Result 2
...
“‘
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If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:

<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>
<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

Note:
You should verify the correctness of the following, step by step, through your experiments:
1. environment_rules: Use ‘execute_agent_action‘ to confirm that the environment rules you
hypothesized are indeed correct, and current ‘WrapStep‘ function is not sufficient.
2. agent_intent_description: Obtain the Agent’s intended behavior (e.g., via
‘get_next_agent_action‘) and simulate it by using ‘WrapStep‘ to confirm whether it
aligns with your description.
3. identified_misalignment: Through chaning the environment feedback, you can verify
whether the misalignment you identified is indeed correct and the environment feedback you
hypothesized is indeed sufficient. You can use ‘WrapStep‘ to simulate the agent’s action,
then use ‘change_last_action_observation‘ to change the environment feedback, and finally
use ‘get_next_agent_action‘ to check whether the agent can correctly identify the next action.

Analyzer Prompt Template of Reranking Misalignments Analysis (Ablation Study)

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have analyzed the logs from a recent task and identified
some potential misalignments. Your task is to review these misalignments and choose the
most appropriate one.

———————————————————————–
### Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘
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In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ Interface }}
“‘

———————————————————————–
### Environment Logs

“‘txt
{{ logs }}
“‘

Here, each ‘Observation‘ is the feedback returned to the Agent after it executes an
action.

———————————————————————–
### Gold Action and Observation Sequence

“‘txt
{{ gold_action_obs_sequence }}
“‘

———————————————————————–
### Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }} Note: These logics may not be accurate. They are the
environment rules that were previously hypothesized and may contain errors.

———————————————————————–
### Your Task

Choose the most appropriate misalignment analyzed by human experts from the list
below:

{{ new_environment_logics }}

You should respond in format as follows:
“‘
<review> Your review of each expert output one by one </review>
<expert_id> id of the selected expert output, only the number </expert_id>
“‘

Optimizer Prompt Template of Interface Generation

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).
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Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to refine the environment’s behavior based on the misalignment identi-
fied by the AnalysisAgent, ensuring the Agent’s true intentions are executed and its reasoning
capabilities are fairly assessed.

———————————————————————–
### Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}
“‘

———————————————————————–
### Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

———————————————————————–
### New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

———————————————————————–
### Your Task

Based on the misalignments identified by the AnalysisAgent, you need to refine
and enhance the ‘InferRules‘ function and ‘WrapStep‘ function to align the Environment’s
World Model with the Agent’s actions and provide clearer feedback. Your output should
present the new versions of these functions, ensuring the Agent’s high-level reasoning intent
is preserved.
Please ensure you follow these requirements:

1. **Function Signature**
The function signature must be:
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“‘python
def InferRules(init_obs, task)
- init_obs: str, the initial observation from the environment, containing all receptacles.
- task: str, the task description.

def WrapStep(env, init_obs, task, agent_action: str, logger)
“‘

2. **Return Values**
The ‘InferRules‘ function’s return value must be a string that describes the environment rules.

The ‘WrapStep‘ function’s return value must be three items:
“‘python
obs: str, reward: bool, done: bool
“‘

3. **‘env.step‘ Usage**
The only permitted usage pattern for ‘env.step‘ is:
“‘python
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
“‘
No alternative usage forms are allowed. Each call to env.step causes an irreversible change to
the environment state; actions must therefore be chosen carefully.

4. **Package Imports**
You may import other packages if necessary, but you must include all imports in your code.

5. **Multiple Calls and Conditional Returns**
You are free to call ‘env.step‘ multiple times or return different ‘obs‘ depending on
‘agent_action‘ or the outcomes of these calls.

6. **You can use logger.debug**
You can use ‘logger.debug‘ to log any information you find useful. The logging will be
captured and returned to you in the future for further analysis.

7. Do not modify any aspects not explicitly identified by the AnalysisAgent in the
“New Environment Logics and Misalignment Analyzed by AnalysisAgent” section.

8. You must use the following approach when addressing the identified misalign-
ment:
- For each action defined in environment, provide clear, informative, and sufficient feedback
from the environment whenever an invalid action is attempted, guiding the Agent toward
understanding and adhering to the environment’s rules.

9. **Output Format**
You must provide the output strictly in the following format:
<thought>YOUR_THOUGHT_PROCESS_HERE</thought>
<code>YOUR_CODE_HERE</code>

Please ensure your final answer follows these guidelines so that we can accurately
bridge the misalignment and allow the environment to execute the Agent’s true intentions.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Optimizer Prompt Template of Experimental Verification

User message:
Now you should conduct simulation experiments in the simulator to verify if the ‘InferRules‘
and ‘WrapStep‘ function you provided is correct for the new environment logics and
misalignment analyzed by the AnalysisAgent.

You must perform sufficient experiments to confirm or refute your suspicion. Here
are the operations you can use:

1. init_simulator(task_id: str)
- Initializes a new simulator for the specified ‘task_id‘.
- ‘task_id‘ must be in the format ’int-int’ where the first int ∈ [0, 5].
- The different task types are mapped as follows:

0: ’pick_and_place’,
1: ’pick_clean_and_place’,
2: ’pick_heat_and_place’,
3: ’pick_cool_and_place’,
4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the ‘WrapStep‘ function you generated.

4. change_last_action_observation(obs: str)
- Updates the last observation returned by the simulator to the specified ‘obs‘.
- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()
- Retrieves the next action that the real Agent would perform under the current simulation
conditions.
- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()‘ call, along with
the latest observations.

6. run_task(task_id: str)
- Runs the entire task in the simulator and returns the running log.
- After running the whole task, you need to call ‘init_simulator‘ or ‘reset_simulator‘ to
reinitialize the simulator for further operations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>
<if_need_refine> True/False </if_need_refine>
<refine_strategy> Your strategy for refining the WrapStep function, if if_need_refine is True
</refine_strategy>

If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:
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<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>
<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

Optimizer Prompt Template of Reranking Interface Generation (Ablation Stuty)

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have generated a set of code patches to address the mis-
alignment between the Environment’s World Model and the Agent’s World Model. Your task
is to evaluate these patches and select the best one.

———————————————————————–
### Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}
“‘

———————————————————————–
### Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

———————————————————————–
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### New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

———————————————————————–
### Your Task

Choose the best code from the following options to address the misalignment be-
tween the Environment’s World Model and the Agent’s World Model:

{{ code_patches }}

You should respond in format as follows:
“‘
<review> Your review of each code one by one </review>
<code_id> id of the selected result, only the number </code_id>
“‘

We present the prompt template of the Vanilla agent in ALFWorld to illustrate the usage of the
INFERRULES. For the prompt templates of other agent methods and benchmarks, please refer to the
supplemental materials.

Vanilla Agent Prompt Template in ALFWorld

System message:
You are an AI assistant solving tasks in a household environment. Your goal is to break down
complex tasks into simple steps and plan your actions accordingly.

# Action Space

In this environment, you have a set of high-level actions at your disposal, each cor-
responding to a typical household activity. These actions are:

- look: look around your current location
- inventory: check your current inventory
- go to (receptacle): move to a receptacle
- open (receptacle): open a receptacle
- close (receptacle): close a receptacle
- take (object) from (receptacle): take an object from a receptacle
- move (object) to (receptacle): place an object in or on a receptacle
- examine (something): examine a receptacle or an object
- use (object): use an object
- heat (object) with (receptacle): heat an object using a receptacle
- clean (object) with (receptacle): clean an object using a receptacle
- cool (object) with (receptacle): cool an object using a receptacle
- slice (object) with (object): slice an object using a sharp object

Although each action may internally consist of multiple embodied steps (e.g., walk-
ing to the sink, turning a knob, etc.), from your perspective you need only provide one
high-level action at a time.

# Instructions

Single Action per Turn
At each step, you must respond with exactly one action (i.e., the next “thought”). Use the
format:
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ACTION [object/receptacle specifier]
ACTION [object/receptacle specifier]
For example:
take apple from table
or
go to kitchen.

Environment Feedback
After you provide your single action, the environment will automatically execute it and return
the resulting observation. You then decide on your next action based on the updated state.

Reasoning (Chain of Thought)
You may use hidden reasoning to figure out the best next step. However, only output the
single action that represents your decision. Do not reveal your entire chain of thought.

Continue Until Task Completion
You will iterate this process—receiving the environment’s feedback, deciding on the next
action, and outputting a single action—until the task is finished.

# Environment Rule

{InferRules(init_obs, task)}

User message:
# Task

{initial_obs}

Begin by examining the environment or taking any initial steps you find relevant.
Remember, provide only one action each time.

E.5 INITIALIZED INTERFACE

Initialized interface we used in ALFWorld:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
return obs, reward, done

Initialized interface we used in ScienceWorld:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."
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def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, done
status and score(returned by the environment).
"""
obs, _, done, info = env.step(agent_action)
return obs, done, info["score"]

Initialized interface we used in WebShop:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic.
"""
return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done = env.step(agent_action)
return obs, reward, done

Initialized interface we used in M3ToolEval:

def InferRules(task_name, task_type_idx):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."

def WrapStep(env, task_name, instruction, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done = env.step(agent_action)
return obs, reward, done

F CASE STUDY

F.1 MISALIGNMENTS ANALYZED BY ANALYZER

We present the misalignments analyzed by Analyzer with Vanilla agent. For the misalignments
analyzed by Analyzer with other agent methods, please refer to the supplemental materials.
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# ALFWORLD

Agent Action Type: heat object with receptacle
Agent Action Case: heat mug 1 with stoveburner 1
Agent High-Level Reasoning Intent: The Agent intended to heat the mug using the stoveburner

to fulfill the “put a hot mug in cabinet” task requirement.
Environment Rule: The Environment requires heating the mug specifically by

the microwave, and the Agent must be at and open the
microwave before heating. Heating with the stoveburner or
heating without opening the microwave results in no effect.

Sufficient Environment Feedback: The environment feedback “Nothing happens.” after heat-
ing with stoveburner or heating without opening the mi-
crowave is insufficient to clarify the correct heating method
and prerequisites.

# SCIENCEWORLD

Agent Action Type: pick up OBJ from CONTAINER / take OBJ from CON-
TAINER

Agent Action Case: pick up orange seed from seed jar, take orange seed from
seed jar, take seed from seed jar, pick up seed from seed jar

Agent High-Level Reasoning Intent: Agent intends to retrieve a seed from the “seed jar” con-
tainer using common interaction verbs and syntax (“pick
up X from Y”, “take X from Y”).

Environment Rule: The environment does not support the “take OBJ from
CONTAINER” syntax. Furthermore, for the “seed jar”, the
“pick up OBJ from CONTAINER“ syntax is also invalid.
The required procedure to access the seeds involves picking
up the entire container first (“pick up seed jar”) and then
likely using a “move” command later. Direct retrieval
from the container using “pick up” or “take with from” is
disallowed.

Sufficient Environment Feedback: The current generic feedback provided by “pro-
cess_agent_action” for “No known action” is insufficient.
Sufficient feedback should diagnose the invalid syntax or
procedure, e.g., “The action ‘take X from Y’ is not valid.
To get items from the ‘seed jar’, try picking up the ‘seed
jar’ first using ‘pick up seed jar’.” Simulation confirmed
this guides the agent correctly.
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# WEBSHOP

Agent Action Type: click
Agent Action Case: click[1 ounce (pack of 21)] (or similar option clicks like

flavor, color, etc.)
Agent High-Level Reasoning Intent: The Agent intended to select a specific product configura-

tion (e.g., size) required by the task before proceeding to
purchase or further inspection.

Environment Rule: When an Agent clicks on a product option (e.g., size, color,
flavor), the internal state of the environment updates to re-
flect this selection. This selection affects the final product
configuration (and potentially price, availability, descrip-
tion shown) when subsequent actions like “Buy Now” or
viewing details are taken. The visual representation of the
page should ideally reflect this selected state.

Sufficient Environment Feedback: The environment currently returns only a confirmation mes-
sage (e.g., “You have clicked [Option Name].”). This is
insufficient as it doesn’t show the agent the result of its
action in the context of the full page. Sufficient feedback
would involve returning the complete observation of the
item page *after* the option click, reflecting the updated
state (e.g., showing the selected size/flavor visually marked,
potentially an updated price, updated product title/descrip-
tion if applicable, and all other page elements like “[Buy
Now]”). This allows the agent to verify the selection and
its consequences (like price changes) before taking the next
step.

# M3TOOLEVAL

Agent Action Type: web_browsing
Agent Action Case: click_url(“/about”)
Agent High-Level Reasoning Intent: The Agent is attempting to use the click_url tool to navigate

to the “/about” page by following the clickable link, as per
the tool description and the rendered webpage content.

Environment Rule: The Environment’s World Model expects tool invocations
to match the tool name exactly, with arguments provided
after the tool name and separated by a comma (i.e., “Ac-
tion: click_url, /about End Action” instead of “Action:
click_url(‘/about’) End Action”). However, the Agent,
following the tool signature format shown in the tool de-
scriptions (e.g., click_url(url: str)), invokes the tool as
click_url(“/about”), which is a common programming con-
vention.

Sufficient Environment Feedback: The feedback “Cound not find tool with name
click_url(‘/about’)” is insufficient for the Agent to un-
derstand the correct invocation format. The environment
should provide feedback such as: “Tool arguments should
be provided after the tool name, separated by a comma, e.g.,
‘Action: click_url, /about End Action’ instead of ‘Action:
click_url(‘/about’) End Action’.”

F.2 INTERFACES GENERATED BY ALIGN

We present the ALIGN-generated interface with Vanilla agent in ALFWorld to illustrate the interface
case. For the ALIGN-generated interface with other agent methods and other environments, please
refer to the supplemental materials.

ALIGN-generated interface with Vanilla agent in ALFWorld:

def InferRules(init_obs, task):
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"""
Provides the rules for environment and task execute logic for
different task types.

Args:
init_obs: Initial observation string containing information

about the environment
task: The specific task description

Returns:
A string describing the environment rules

"""
return """
1. Navigation and Location Rules:

- You must go to a receptacle before you can examine it, open it,
close it, or interact with objects in/on it.

- You can only interact with objects and receptacles that are at
your current location.

- If you try to interact with a receptacle or object that is not
at your current location, you will be informed that you need to go
to that location first.

- After successfully going to a location, you are at that
location until you go somewhere else.

2. Object Interaction Rules:
- To take an object, it must be present at your current location

and visible (not inside a closed receptacle).
- Once you take an object, it goes into your inventory and is no

longer at its original location.
- To move an object to a receptacle, you must have the object in

your inventory and be at the target receptacle.
- To use, heat, clean, cool, or slice objects, you must have the

required objects in your inventory or be at their location.
- You cannot take an object that is already in your inventory.

3. Container Rules:
- Some receptacles can be opened and closed (like refrigerators,

microwaves, cabinets, etc.).
- You must open a closed container before you can take objects

from it or put objects into it.
- Objects inside closed containers are not visible or accessible

until the container is opened.

4. Action Sequence Requirements:
- Some tasks require a specific sequence of actions - for example

, to heat food, you need to:
a) Go to the microwave
b) Open the microwave
c) Place the food inside
d) Close the microwave
e) Use the microwave

- The environment will guide you if you’re missing a prerequisite
step for an action.

5. Feedback Interpretation:
- If an action cannot be performed, the environment will explain

why and what prerequisites are needed.
- The environment will inform you if you try to take an object

that’s already in your inventory.
- The environment will inform you if you try to move an object

that’s not in your inventory.
- Pay attention to the feedback to understand the current state

of the environment and what actions are possible next.
- When you successfully go to a location, the environment will

describe what’s there.
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"""

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.

Args:
env: The environment object
init_obs: Initial observation string containing information

about the environment
task: The specific task description
agent_action: The action string from the agent
logger: Logger object for debugging information

Returns:
obs: Observation string after the action
reward: Boolean indicating if a reward was received
done: Boolean indicating if the task is complete

"""
# Track the agent’s current location using an attribute on the env
object
if not hasattr(env, ’_current_location’):

env._current_location = None

# Track container states (open/closed) using an attribute on the env
object
if not hasattr(env, ’_container_states’):

env._container_states = {}

action_item = {
’matched’: False,
’action’: None,
’object’: None,
’receptacle’: None,
’object2’: None

}

# Parse the agent action
# Simple actions without parameters
if agent_action.lower() == ’look’ or agent_action.lower() == ’
inventory’:

action_item[’matched’] = True
action_item[’action’] = agent_action.lower()

# Pattern: go to (receptacle)
elif agent_action.lower().startswith(’go to ’):

receptacle = agent_action[6:].strip()
action_item[’matched’] = True
action_item[’action’] = ’go to’
action_item[’receptacle’] = receptacle

# Pattern: open/close (receptacle)
elif agent_action.lower().startswith(’open ’) or agent_action.lower
().startswith(’close ’):

action = ’open’ if agent_action.lower().startswith(’open ’) else
’close’

receptacle = agent_action[len(action)+1:].strip()
action_item[’matched’] = True
action_item[’action’] = action
action_item[’receptacle’] = receptacle

# Pattern: take (object) from (receptacle)
elif ’take ’ in agent_action.lower() and ’ from ’ in agent_action.
lower():
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parts = agent_action.split(’ from ’)
if len(parts) == 2:

obj = parts[0][5:].strip() # Remove ’take ’ prefix
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’take from’
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

# Pattern: move (object) to (receptacle)
elif ’move ’ in agent_action.lower() and ’ to ’ in agent_action.
lower():

parts = agent_action.split(’ to ’)
if len(parts) == 2:

obj = parts[0][5:].strip() # Remove ’move ’ prefix
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’move to’
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

# Pattern: examine (something)
elif agent_action.lower().startswith(’examine ’):

something = agent_action[8:].strip()
action_item[’matched’] = True
action_item[’action’] = ’examine’

# Determine if it’s a receptacle or object by checking if it
appears in the initial observation

if something.lower() in init_obs.lower():
action_item[’receptacle’] = something

else:
action_item[’object’] = something

# Pattern: use (object)
elif agent_action.lower().startswith(’use ’):

obj = agent_action[4:].strip()
action_item[’matched’] = True
action_item[’action’] = ’use’
action_item[’object’] = obj

# Pattern: heat/clean/cool (object) with (receptacle)
elif any(agent_action.lower().startswith(action) for action in [’
heat ’, ’clean ’, ’cool ’]) and ’ with ’ in agent_action.lower():

for action in [’heat ’, ’clean ’, ’cool ’]:
if agent_action.lower().startswith(action):

parts = agent_action.split(’ with ’)
if len(parts) == 2:

obj = parts[0][len(action):].strip()
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = action.strip()
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

break

# Pattern: slice (object) with (object)
elif agent_action.lower().startswith(’slice ’) and ’ with ’ in
agent_action.lower():

parts = agent_action.split(’ with ’)
if len(parts) == 2:

obj = parts[0][6:].strip() # Remove ’slice ’ prefix
obj2 = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’slice’
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action_item[’object’] = obj
action_item[’object2’] = obj2 # Using object2 for the tool

used for slicing

# If action wasn’t matched, provide feedback
if not action_item[’matched’]:

return f"I don’t understand the action ’{agent_action}’. Please
use one of the allowed actions from the action space.", False, False

logger.debug(f"Parsed action: {action_item}")

# Get the current observation to check location
test_obs, _, _, _ = env.step([’look’])
test_obs = test_obs[0]
logger.debug(f"Current observation after ’look’: {test_obs}")

# Get inventory to check what objects the agent has
inventory_obs, _, _, _ = env.step([’inventory’])
inventory_obs = inventory_obs[0]
logger.debug(f"Current inventory observation: {inventory_obs}")

# Improved function to check if an object is in inventory
def is_in_inventory(object_name):

object_name_lower = object_name.lower()
logger.debug(f"Checking if ’{object_name_lower}’ is in inventory

")

# Extract inventory items from the observation
inventory_items = []

# Check for common inventory patterns
if "carrying:" in inventory_obs.lower():

carrying_section = inventory_obs.lower().split("carrying:")
[1].strip()

inventory_items = [item.strip() for item in carrying_section
.split(’,’)]

elif "inventory:" in inventory_obs.lower():
inventory_section = inventory_obs.lower().split("inventory:"

)[1].strip()
inventory_items = [item.strip() for item in

inventory_section.split(’,’)]
elif "you are carrying:" in inventory_obs.lower():

carrying_section = inventory_obs.lower().split("you are
carrying:")[1].strip()

inventory_items = [item.strip() for item in carrying_section
.split(’,’)]

# Also check line by line for inventory items
inventory_lines = inventory_obs.lower().split(’\n’)
for line in inventory_lines:

line = line.strip()
if line and not line.startswith(("you are", "carrying:", "

inventory:")):
inventory_items.append(line)

logger.debug(f"Extracted inventory items: {inventory_items}")

# Check if object_name or its base name (without numbers) is in
inventory

base_name = ’’.join([c for c in object_name_lower if not c.
isdigit()]).strip()

for item in inventory_items:
# Check for exact match
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if object_name_lower == item or f"{object_name_lower} (in
your inventory)" == item:

logger.debug(f"Found exact match ’{item}’ in inventory")
return True

# Check for base name match (without numbers)
if base_name != object_name_lower and (base_name == item or

f"{base_name} (in your inventory)" == item):
logger.debug(f"Found base name match ’{item}’ in

inventory")
return True

# Check if item contains the object name
if object_name_lower in item:

logger.debug(f"Found partial match ’{item}’ containing
’{object_name_lower}’ in inventory")

return True

# Check if item contains the base name
if base_name != object_name_lower and base_name in item:

logger.debug(f"Found partial match ’{item}’ containing
base name ’{base_name}’ in inventory")

return True

# Direct check for common patterns in the full inventory text
patterns = [

f"carrying: {object_name_lower}",
f"{object_name_lower} (in your inventory)",
f"you are carrying: {object_name_lower}",
f"inventory: {object_name_lower}"

]

if base_name != object_name_lower:
patterns.extend([

f"carrying: {base_name}",
f"{base_name} (in your inventory)",
f"you are carrying: {base_name}",
f"inventory: {base_name}"

])

for pattern in patterns:
if pattern in inventory_obs.lower():

logger.debug(f"Found pattern ’{pattern}’ in inventory
text")

return True

logger.debug(f"’{object_name_lower}’ not found in inventory")
return False

# Helper function to check if we’re at a location
def is_at_location(location_name):

location_name_lower = location_name.lower()

# If we’ve already tracked this location, use the tracked value
if env._current_location and location_name_lower in env.

_current_location.lower():
logger.debug(f"Using tracked location: ’{env.

_current_location}’")
return True

# Check if location is mentioned in current observation after "
You are in"

if "you are in" in test_obs.lower() and location_name_lower in
test_obs.lower():
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logger.debug(f"Location ’{location_name_lower}’ mentioned in
observation after ’You are in’")

return True

# Check if the location is in the first line of the observation
(common format)

first_line = test_obs.split(’\n’)[0].lower()
if location_name_lower in first_line:

logger.debug(f"Location ’{location_name_lower}’ found in
first line of observation")

return True

# Check if the observation mentions items at/on the location
location_patterns = [

f"on the {location_name_lower}",
f"in the {location_name_lower}",
f"at the {location_name_lower}"

]

for pattern in location_patterns:
if pattern in test_obs.lower():

logger.debug(f"Found pattern ’{pattern}’ in observation"
)

return True

logger.debug(f"Not at location ’{location_name_lower}’")
return False

# Handle go to action
if action_item[’action’] == ’go to’:

receptacle = action_item[’receptacle’]
receptacle_lower = receptacle.lower()

# Check if we’re already at this location
if is_at_location(receptacle_lower):

env._current_location = receptacle
return f"You are already at the {receptacle}. You can

interact with it directly.", False, False

# Execute the go to action
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]

# Update the current location if the action was successful
if obs and "nothing happens" not in obs.lower():

env._current_location = receptacle

# If the observation doesn’t clearly indicate arrival,
enhance it

if not any(phrase in obs.lower() for phrase in [f"you arrive
at", f"you are at", f"you see {receptacle_lower}"]):

obs = f"You arrive at the {receptacle}. {obs}"
else:

# Provide more informative feedback
obs = f"Cannot go to {receptacle}. It might not be a valid

location or not accessible from here."

return obs, reward, done

# Handle examine, open, close, take from, move to actions that
require being at location
if action_item[’action’] in [’examine’, ’open’, ’close’, ’take from’
, ’move to’]:

receptacle = action_item[’receptacle’].lower() if action_item[’
receptacle’] else ""
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logger.debug(f"Action: {action_item[’action’]} with receptacle:
{receptacle}")

# Skip location check for examining objects in inventory
if action_item[’action’] == ’examine’ and action_item[’object’]

and is_in_inventory(action_item[’object’]):
# Execute the examine action directly
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
return obs, reward, done

# Check if we need to be at a receptacle and if we’re there
if receptacle and not is_at_location(receptacle):

action_name = action_item[’action’]
if action_name == ’examine’:

return f"You must go to the {action_item[’receptacle’]}
first before examining it.", False, False

elif action_name == ’take from’:
return f"You need to go to the {action_item[’receptacle

’]} first before taking objects from it.", False, False
elif action_name == ’move to’:

return f"You need to go to the {action_item[’receptacle
’]} first before placing objects on/in it.", False, False

else: # open or close
return f"You need to go to the {action_item[’receptacle

’]} first before you can {action_name} it.", False, False

# Handle open and close actions to track container states
if action_item[’action’] in [’open’, ’close’]:

receptacle = action_item[’receptacle’]

# Execute the action
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]

# Check for "Nothing happens" and provide more informative
feedback

if obs.strip() == "Nothing happens.":
if action_item[’action’] == ’open’:

return f"Unable to open {receptacle}. It might already
be open or not be openable.", reward, done

else: # close
return f"Unable to close {receptacle}. It might already

be closed or not be closable.", reward, done

# Update container state tracking
if "successfully" in obs.lower() or "already" in obs.lower():

env._container_states[receptacle.lower()] = ’open’ if
action_item[’action’] == ’open’ else ’closed’

return obs, reward, done

# Check if taking an object that’s already in inventory
if action_item[’action’] == ’take from’:

object_name = action_item[’object’]
if is_in_inventory(object_name):

return f"You already have the {object_name} in your
inventory. No need to take it again.", False, False

# Check if moving an object that’s not in inventory
if action_item[’action’] == ’move to’:

object_name = action_item[’object’]
if not is_in_inventory(object_name):

return f"You don’t have the {object_name} in your inventory.
You need to take it first.", False, False
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# Execute the action in the environment
logger.debug(f"Executing action in environment: {agent_action}")
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
logger.debug(f"Environment response: {obs}")

# Handle special case for "Nothing happens" response
if obs.strip() == "Nothing happens." and action_item[’action’] == ’
take from’:

object_name = action_item[’object’]
receptacle_name = action_item[’receptacle’]

# Check if it might be because the object is already in
inventory

if is_in_inventory(object_name):
return f"You already have the {object_name} in your

inventory. No need to take it again.", reward, done

# Check if it might be because the container is closed
receptacle_state = env._container_states.get(receptacle_name.

lower())
if receptacle_state == ’closed’:

return f"You need to open the {receptacle_name} first before
taking objects from it.", reward, done

# Otherwise, the object might not be there
return f"There is no {object_name} at the {receptacle_name} to

take. It might be elsewhere or already taken.", reward, done

# Handle special case for "Nothing happens" response for move action
if obs.strip() == "Nothing happens." and action_item[’action’] == ’
move to’:

object_name = action_item[’object’]
receptacle_name = action_item[’receptacle’]

# Double-check if the object is in inventory
if is_in_inventory(object_name):

# If object is in inventory but move fails, check if
receptacle is closed

receptacle_state = env._container_states.get(receptacle_name
.lower())

if receptacle_state == ’closed’:
return f"You need to open the {receptacle_name} first

before placing objects in it.", reward, done
else:

return f"Unable to move {object_name} to {
receptacle_name}. Make sure the receptacle is open if it’s a
container.", reward, done

else:
# If object is not in inventory, provide clear feedback
return f"You don’t have the {object_name} in your inventory.

You need to take it first before moving it.", reward, done

# Handle other "Nothing happens" cases with more informative
feedback
if obs.strip() == "Nothing happens.":

if action_item[’action’] == ’open’:
return f"Unable to open {action_item[’receptacle’]}. It

might already be open or not be openable.", reward, done
elif action_item[’action’] == ’close’:

return f"Unable to close {action_item[’receptacle’]}. It
might already be closed or not be closable.", reward, done

elif action_item[’action’] == ’examine’:
if action_item[’object’]:
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return f"Unable to examine {action_item[’object’]}. Make
sure you have it in your inventory or it’s visible at your location

.", reward, done
else:

return f"Unable to examine {action_item[’receptacle’]}.
Make sure you’re at the right location and it’s visible.", reward,
done

elif action_item[’action’] == ’use’:
return f"Unable to use {action_item[’object’]}. Make sure

you have it in your inventory or it’s at your current location and
usable.", reward, done

elif action_item[’action’] in [’heat’, ’clean’, ’cool’, ’slice’
]:

return f"Unable to {action_item[’action’]} {action_item[’
object’]}. Make sure you have all required objects and are at the
right location.", reward, done

elif action_item[’action’] == ’go to’:
# This case should be handled earlier, but as a fallback
return f"Cannot go to {action_item[’receptacle’]}. It might

not be a valid location in this environment.", reward, done
else:

# Generic clarification for other actions
return f"Action ’{agent_action}’ resulted in no effect.

Check if you have all prerequisites or if the action is valid in
this context.", reward, done

# For successful move actions, verify the object was actually in
inventory
if "successfully" in obs.lower() and "place" in obs.lower() and
action_item[’action’] == ’move to’:

object_name = action_item[’object’]
# If the environment says the move was successful, we should

trust that and not override
return obs, reward, done

return obs, reward, done
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