
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENT-ENVIRONMENT ALIGNMENT VIA AUTOMATED
INTERFACE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents have shown impressive reasoning capabilities
in interactive decision-making tasks. These agents interact with environment
through intermediate interfaces, such as predefined action spaces and interaction
rules, which mediate the perception and action. However, mismatches often
happen between the internal expectations of the agent regarding the influence of its
issued actions and the actual state transitions in the environment, a phenomenon
referred to as agent-environment misalignment. While prior work has invested
substantially in improving agent strategies and environment design, the critical
role of the interface still remains underexplored. In this work, we empirically
demonstrate that agent-environment misalignment poses a significant bottleneck to
agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned
Interface Generation framework that alleviates the misalignment by enriching the
interface. Specifically, the ALIGN-generated interface enhances both the static
information of the environment and the step-wise observations returned to the
agent. Implemented as a lightweight wrapper, this interface achieves the alignment
without modifying either the agent logic or the environment code. Experiments
across multiple domains including embodied tasks, web navigation and tool-use,
achieve consistent performance improvements, with up to a 45.67% success rate
improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface
can generalize across different agent architectures and LLM backbones without
interface regeneration.

OBSERVATION: Nothing happens.

THOUGHT: The book may be on the shelf. First I need to

examine the shelves.

ACTION: examine shelf 1

Agent-Environment Interaction

Agent-Environment Misalignment

THOUGHT: The environ-

ment returned “Nothing

happens.” This means

the book not on shelf 1.

Agent’s Inner Monologue

The agent has not gone to

shelf 1. Action `examine

shelf 1` is invalid. Nothing

happens in environment.

Environment Logic

Our Method: Interface Alignment

Alignment during Agent-Environment Interaction:

ACTION: examine shelf 1

OBS: Before `examine receptacle`,

you should first `go to` there.

THOUGHT: I need to first `go to shelf 1` and then

execute `examine shelf 1`.

Alignment

WrapStep

Alignment during Agent Initialization:

Noth ing

happens.

InferRulesIn this environ-

ment, you...

Basic Info (I): Augmented Info (I):

I+“Navigation Rules: You

must go to receptacle...”

Figure 1: Illustration of agent-environment misalignment and our proposed solution. Left: The
agent and the environment have a misalignment in their interpretation of the same observation,
where the agent’s understanding of the observation differs from the environment’s underlying logic.
Right: ALIGN bridges this gap via an automatically generated interface comprising two modules,
INFERRULES and WRAPSTEP: (1) During initialization, INFERRULES augments the basic infor-
mation with explicit environment constraints. (2) During interaction, WRAPSTEP translates the raw
observation into an informative observation that better conveys the environment state transitions.

1 INTRODUCTION

Large Language Model (LLM) agents have demonstrated promising performance in interactive
tasks such as embodied tasks (Driess et al., 2023; Lin et al., 2023; Wang et al., 2024a), web

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

navigation tasks (Chae et al., 2025; He et al., 2024a; Qi et al., 2024), and tool-use tasks (Wang
et al., 2024b; Paranjape et al., 2023; Schick et al., 2023). In these tasks, agents typically interact
with the environment through manually designed interfaces such as predefined action spaces and
interaction rules. While substantial efforts have been devoted to improving agents and environments,
comparatively little attention has been paid to the interface between them, leading to a problem we
term agent-environment misalignment, which significantly impacts the agent performance.

The agent-environment misalignment refers to the discrepancy between the interpretation of the agent
to the observation following an action and the underlying logic of the environment. As illustrated
in Figure 1 (left), in ALFWorld (Shridhar et al., 2021), issuing examine receptacle fails unless the
agent first executes “go to receptacle”. Consequently, the environment responds with the
observation “Nothing happens.”. At this point, the agent interprets the observation to mean that
there is nothing on shelf 1, which is inconsistent with the underlying reason for the environment
providing it. To assess the impact of this misalignment, we conduct preliminary experiments, which
reveal that simply revising the observation for an invalid “examine receptacle” action to “You
need to first go to receptacle before you can examine it” increases the success rate of a vanilla
Qwen2.5-7B-Instruct (Team, 2024) agent on ALFWorld from 13.4% to 31.3%1. Such phenomenon
suggests that the agent-environment misalignment significantly hinders task success, and can be
alleviated by improving interface design. From the perspective of the agent, poorly designed interfaces
impose unnecessary cognitive overhead. Furthermore, from an evaluation perspective, inadequate
interfaces can obscure an accurate assessment of the true reasoning capabilities of agents. Therefore,
we argue that the problem of agent-environment misalignment warrants greater attention.

However, addressing the agent-environment misalignment is challenging. On one hand, current
benchmarks primarily focus on advance agent intelligence by constructing increasingly complex
and challenging environments (Jimenez et al., 2024; Wang et al., 2025b; Wei et al., 2025; Xie et al.,
2024; Zhou et al., 2024a), often overlooking the importance of improving interface design. This
oversight extends across multiple domains of interactive tasks, such as, ALFWorld, OSWorld (Xie
et al., 2024), and M3ToolEval (Wang et al., 2024b). They all exhibit similar deficiencies: failing
to provide agent-parseable observations for environmental constraints violation in embodied tasks,
positional inaccuracies in operating system tasks or parameter format errors in multi-turn tool-use
tasks, respectively. On the other hand, although some recent work (Agashe et al., 2024; Yang et al.,
2024a; Zheng et al., 2024) has begun to consider interface design, these efforts often rely on manual,
environment-specific tailoring, which introduces two critical issues: (1) they are highly labor-intensive
and (2) whether human-designed interfaces are optimal for agents remains an open question.

Furthermore, in addition to studies that explicitly optimize interface design, it is common in agent-
focused research for researchers to manually re-engineer environment interfaces to align with their
specific methods. For instance, for the same environment ALFWorld, Zhou et al. (2024b) manually
maintains the environment’s state information in JSON format; Ma et al. (2024) introduces a new
action check_valid_actions to enable agents to retrieve all valid actions; and Chen et al. (2024a)
re-implements the environment by wrapping it into a new class InteractEnv. However, such ad-hoc
customization pose a significant challenge to the field: it compromises the direct comparability
across different approaches. Moreover, these modifications are often tailored to the specific methods
proposed, making it difficult for the research community to determine whether performance variations
stem from novel agent architectures or from the non-standardized, customized interfaces. Therefore,
we believe that manually re-engineering environment interfaces is not an optimal approach to
alleviating the agent-environment misalignment problem.

Distinct from the aforementioned works, we propose to automatically generate interfaces for
bridging the agent-environment misalignment. In this work, we introduce ALIGN (Auto-Aligned
Interface Generation), a framework that automatically generate aligned interfaces for environments.
The generated interface consists of two modules: INFERRULES and WRAPSTEP. The former
automatically discovers and provides the agent with static information about environmental rules or
internal constraints, facilitating static alignment, while the latter enhances the interaction by offering
more detailed observations for agent-issuing actions, enabling dynamic alignment, as shown in
Figure 1 (right). Owing to the powerful reasoning and coding capabilities of current advanced LLMs,
we utilize these models to analyze existing agent-environment misalignments and automatically
generate the interface. Moreover, we employ LLMs to conduct experimental verification to mitigate

1Experimental details are provided in Appendix C.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

hallucination issues (Bang et al., 2023; Xu et al., 2024). Specifically, our LLM-based system
autonomously validate both proposed misalignments and generated interface through direct interaction
with the environment, ensuring that identified issues genuinely exist and are properly addressed by
the interface. The generated interface acts as a lightweight wrapper, providing richer context and
explicit constraint hints, enabling different LLM agents to align with the environment directly.

To evaluate the effectiveness of ALIGN, we conduct experiments on four representative benchmarks
across three domains: embodied tasks, web navigation, and tool-use tasks. Our results demonstrate
consistent performance improvements across all four benchmarks when using the ALIGN-generated
interface, with notably gains of 45.67% in average success rate on ALFWorld. Moreover, the
performance of GPT-4.1-based agents on ALFWorld are improved from 73.88% to 93.28% with
ALIGN, highlighting the efficiency of our approach in mitigating the agent-environment misalignment
to unleash the agent’s true capabilities.

Our key contributions can be summarized as follows:
• We identify and characterize the agent-environment misalignment problem, empirically show-

ing its prevalence across diverse domains and its role as a key bottleneck to agent performance.
• We introduce ALIGN, the first framework that automatically generates aligned interfaces to

alleviate agent-environment misalignment, without modifying agent logic or environment code.
• We demonstrate the effectiveness and generalizability of ALIGN across three domains, with up

to a 45.67% success rate improvement on ALFWorld.

2 RELATED WORK

Agent-environment interface The agent-environment interface defines how agents interact with the
environment. In reinforcement learning, researchers construct unified interaction interfaces (Bonnet
et al., 2024; Brockman et al., 2016; Kolve et al., 2017; Towers et al., 2024) to standardize the
application and evaluation of different algorithms. With the increasing capability of LLMs to perform
human-like actions (Guo et al., 2024; Liu et al., 2024; Ma et al., 2024), interface design has been
proven to largely influence the performance of LLM-based agents (Xie et al., 2024; Rawles et al.,
2024). SWE-agent (Yang et al., 2024a) proposes agent-computer interfaces for coding agents and
recent efforts aim to improve generalization (Agashe et al., 2024; Qin et al., 2025; Niu et al., 2024) and
enhance interfaces with auxiliary tools (Bula et al., 2025; Gou et al., 2024; Lei et al., 2025; Lu et al.,
2024; Yang et al., 2023a). Nevertheless, current agent-environment interfaces are mostly manually
crafted and tailored for specific environments or agent frameworks, limiting their generalization and
scalability. Therefore, we propose automated interface generation to empower agents with effective,
generalizable and automatic interface alignment.

Methods aligning agents with environments LLM agents have exhibited strong potential for
real-world interaction and task completion Yao et al. (2023); Shinn et al. (2023); Liu et al. (2024).
Current research in this area can be broadly categorized into training-based methods and training-
free methods. Training-based methods consists of fine-tuning LLMs with expert-level interaction
trajectories Zeng et al. (2024); Chen et al. (2023; 2025); Fu et al. (2025); Chen et al. (2024b) and
enhancing environment-aligned planning and acting via reinforcement learning Bai et al. (2025);
Yang et al. (2024b); Qi et al. (2024); Feng et al. (2024); Zhou et al. (2024c); Wang et al. (2025a).
Though effective, these methods suffer from high computational costs and limited generalization
towards unseen environments. Another approach constructs training-free multi-agent frameworks
for task decomposition and experience accumulation (Chen et al., 2024a; He et al., 2024b; Sun
et al., 2024; Yang et al., 2023b; Zhou et al., 2024b). However, static agent pipelines lack flexibility
and experience injected through prompting often fails to capture environment dynamics and is not
effectively utilized by LLMs, resulting in insufficient alignment between agents and environments.

3 METHOD

3.1 PROBLEM FORMULATION

Environment and Agent. In interactive decision-making tasks, we define the environment E as a
tuple (S,A, T, F, I), where S denotes the set of all possible states of the environment; A denotes
the set of actions the agent can invoke; T : S ×A → S defines how the environment state evolves in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

response to agent actions; F : S ×A → O provides textual feedback that reflects the consequences
of the action in the current state, where O is all possible observations; I encodes the environment
foundational information description, a fixed, declarative representation of the environment’s basic
introduction, which is exposed to the agent at initialization.

An agent π interacts with environment E by receiving task description and observations, then
producing actions at ∈ A. The interaction generates trajectory τ = [(s0, a0, o0), . . . , (sT , aT , oT)],
culminating in task completion feedback.

Formal Definition of Interface. Existing works typically assume the agent interacts directly with
E . However, we argue that this interaction is mediated by an Interface, denoted as Φ, which acts
as a translation layer between the agent’s cognitive space and the environment’s execution space.
Formally, we define the interface as a tuple of mapping functions: Φ = ⟨finfo, fact, fobs⟩where each
component serves a distinct role:

• Information Augmenter finfo : I → Ĩ exposes implicit environment logic (e.g., constraints,
admissible action sequences) into an explicit descriptive context Ĩ provided at agent initialization.

• Action Transducer fact : Aagent → Aenv ∪ {⊥} maps the agent’s output to an executable
environment command. If the output cannot be parsed, it returns an invalid symbol ⊥.

• Observation Transducer fobs : S × Aenv ×Oraw → Oagent transforms the raw feedback Oraw
(from F) into an informative observation Oagent that better conveys the actual state transitions
and their causes.

At each timestep t, the agent receives õt ∈ Oagent (processed by fobs) and generates at ∈ Aagent,
which is then executed as aenv

t = fact(at) ∈ Aenv.

Agent-Environment Misalignment. We analyze the misalignment problem through the lens of the
interface Φ. Ideally, Φ should be lossless, maximizing the mutual information between the agent’s
belief state and the ground-truth environment state. However, manually designed interfaces often
exhibit Semantic Gaps, leading to misalignment through two primary mechanisms:

• State Aliasing via Lossy Observations (fobs): A poorly designed fobs may map distinct error
states (e.g., “action invalid due to wrong location” vs. “action invalid due to missing object”) to
the same generic observation (e.g., “Nothing happens.”). This creates state aliasing, preventing
the agent from diagnosing failures and correcting its policy.

• Under-specified Constraints (finfo): When critical transitions T rely on preconditions (e.g.,
“open” requires “go to” first) that are not explicitly encoded in Ĩ by finfo, the agent operates
under a hallucinated world model where such constraints appear absent.

Therefore, we define Agent-Environment Misalignment as the discrepancy between the agent’s
expected state transition sexpected

t+1 (derived from its internal world model based on Ĩ and prior ob-
servations [õ0, õ1, . . . , ˜ot+1]) and the actual transition sactual

t+1 = T (st, a
env
t), caused by insufficient

expressiveness of the interface Φ.

Scope of This Work. While a complete interface theoretically includes all three components, we
observe that misalignment in existing benchmarks primarily stems from information loss in finfo
and fobs, rather than from action space incompatibility. Therefore, ALIGN focuses on automatically
optimizing these two components, treating fact as a fixed identity mapping throughout this work:
fact(a) = a. This design choice allows us to address the core misalignment issues without modifying
the agent’s action generation logic or the environment’s execution layer.

3.2 ALIGN OVERVIEW

To alleviate agent-environment misalignment, we introduce ALIGN (Auto-Aligned Interface
Generation), a framework that automatically generates an optimized interface Φ∗ to bridge the
semantic gaps identified in Section 3.1. Specifically, ALIGN focuses on learning improved finfo and
fobs functions that minimize information loss during agent-environment interaction.

Interface Instantiation. As illustrated in Figure 2, ALIGN instantiates the theoretical interface
components through two learnable modules implemented as a lightweight Python wrapper, without
modifying the environment code or agent logic.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Interface

Agent Initialization

Agent-Environment Interaction

EnvInferRulesInfo I Info I

WrapStep
Action a

Env
Obs o

Action a

Obs o

Figure 2: Overview of the ALIGN-
generated interface. The interface
wraps the original environment E
to create an augmented environ-
ment Ẽ . INFERRULES enriches
static information (I → Ĩ) at
agent initialization, while WRAP-
STEP augments step-wise observa-
tions (F → F̃) during interaction.

INFERRULES (implements finfo): Transforms raw environ-
ment information I into augmented information Ĩ that ex-
plicitly exposes interaction rules and constraints. Formally:
INFERRULES : (task, o0, I) → Ĩ, where Ĩ includes the con-
straints automatically extracted, such as precondition depen-
dencies or action ordering requirements.

WRAPSTEP (implements fobs): Intercepts the raw observa-
tion function F and augments its output to resolve state alias-
ing. Given the current state st and agent action at, formally:
WRAPSTEP : (F, st, at) → õt, where õt encapsulates both
F (st, at) and additional diagnostic or corrective information.

Together, these modules form an intermediate interface wrapper
layer that intercepts and transforms environment information
before it reaches the agent. This design allows the base agent
π to remain unchanged, while still benefiting from contextual
clarity and enriched observation that help avoid misaligned
actions. From the perspective of the agent, interaction now
occurs with an augmented environment, denoted as Ẽ = (S,A, T, F̃ , I ∪ Ĩ) , where F̃ is defined
as F̃ (st, at) := WRAPSTEP(F, st, at). This formulation does not alter the internal structure or
transition dynamics of the original environment E . Instead, it constructs an externally wrapped
interface that provides the agent with a richer and more interpretable view of its operating context.
The interface is denoted as Φ := {INFERRULES, WRAPSTEP} in the remainder of this paper.

As shown in Figure 3, the ALIGN integrates two cooperative modules, Analyzer and Optimizer,
to generate aligned interfaces. The framework operates through iterative optimization, with each
iteration comprising three stages: in Stage 1, the Analyzer identifies agent-environment misalignments
by analyzing past interaction trajectories; in Stage 2, the Optimizer generates, validates and refines
a new interface based on the detected misalignments; and in Stage 3, the agent interacts with the
environment wrapped with the newly generated interface, and the failed task trajectories are fed back
to Analyzer for analysis in the next iteration.

3.3 ALIGN FRAMEWORK

To automate the generation of interfaces that bridge the agent-environment misalignments, ALIGN
need to solve two key challenges: (1) how to analyze and identify existing agent-environment
misalignments, and (2) how to generate an interface that addresses these misalignments. The overall
algorithm process of ALIGN is outlined in Algorithm 1 in Appendix B.

Misalignment Analysis We represent each agent-environment misalignment using structured text,
as shown in the bottom left of Figure 3. The “Agent High-Level Reasoning Intent” and “Environment
Rule” respectively depict the agent’s expectations of the action and the environment’s observation
rules, together representing a misalignment. The “Sufficient Observation” represents the observa-
tion the environment should provide to resolve the misalignment. To analyze and identify these
misalignments, we designed the Analyzer module based on LLMs. In each iteration, the Analyzer
takes the failed interaction trajectory τ (i−1) in the previous iteration, the set of currently identified
misalignments M, and the interface Φ(i−1) from the previous round as input, and generates a new
set of misalignments M(i). Detailed prompts for this process are provided in Appendix E.4.

Interface Generation Once the new set of misalignments M(i) is identified, we employ the
Optimizer module to generate a new interface. We represent the two modules of the interface,
INFERRULES and WRAPSTEP, as Python functions, as shown in the bottom right of Figure 3, to
leverage the powerful code generation capabilities of LLMs. In each iteration, the Optimizer takes
the newly identified misalignments M(i) and the previous interface Φ(i−1) as input, and generates a
new interface Φ(i). The detailed prompts for this process are provided in Appendix E.4.

Experimental Verification Given the hallucination (Bang et al., 2023; Xu et al., 2024) issues
of LLMs, we incorporate an experimental verification procedure. Specifically, after the Analyzer
generates M(i), it will interact with the environment wrapped by the previous interface Φ(i−1) to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Analyzer Optimizer

Stage 1: Misalignment Analysis

Interface
t-1

Trajectory

Stage 2: Interface Generation

Step 1:
Misalignment

Candidates
t

Step 2:

Execution

Verified

Misalignment
t

Step 1: Interface
t

Step 2: Interface
t

Refine

Stage 3: Execution with Interface

Interface
t

Task Failed

Task Success

Verified

Misalignment Example
Analysis Result 1

Agent Action Type: examine

Agent Action Case: examine drawer 1

Agent High-Level Reasoning Intent: The Agent is

attempting to locate the box and desklamp by examining

potential receptacles.

Environment Rule: The Environment may require the

Agent to first "go to" a receptacle before performing

actions like "examine" on it.

Sufficient Observation: The environment should

provide observation such as "You need to go to drawer 1

before examining it" when the Agent attempts to examine

a receptacle without first moving to it.

Experiment Verification Example
Optimizer: <thought>...</thought>

<action>init_simulator(task_id="4-293")</action>

Experiment: ...

Optimizer: <thought>Now I will simulate an invalid

"examine" action where ...</thought>

<action>exec_agent_action("examine drawer 1")</action>

Experiment: ... Observation: Nothing happens. ...

...

Optimizer: <thought>The "examine drawer 1" action was

executed, but the environment did not provide sufficient

feedback ...</thought>

<if_need_refine>True</if_need_refine>

<refine_strategy>...</refine_strategy>

Interface Example
Information Align

def InferRules():

 return """1. Before examining or interacting

with any receptacle, you must first go to that

receptacle."""

Interaction Align

def WrapStep():

 ...

 if target not in current_location:

 obs = f"You need to go to {target} before

examining it. You must first navigate to a

receptacle before you can examine it."

Figure 3: ALIGN framework. In each iteration, ALIGN progresses though three stages. Stage 1:
the Analyzer identifies potential agent-environment misalignments and validates them through
experiments; Stage 2: the Optimizer generates a new interface based on the previous interface and
identified misalignments, followed by verification and refinement; Stage 3: the agent interacts with
the updated interface-wrapped environment, with trajectories of failed tasks fed back to the Analyzer
for analysis in the next iteration. At the bottom of the figure, examples for misalignment, verification
of interface integrity by Optimizer, and the ALIGN-generated interface are provided.

validate whether the identified misalignments do indeed exist and can be resolved by the proposed
“Sufficient Observation”. And after the Optimizer generates the new interface Φ(i), it will interact with
the environment wrapped by this new interface to ensure that the generated interface can resolve the
identified misalignments. If the Optimizer finds that the proposed interface is insufficient to address
the discovered misalignments, it will provide a refinement strategy and regenerate the interface. This
iterative process continues until the interface passes the validation, ensuring that the misalignments
identified are appropriately addressed. An example of this process is provided in the bottom center of
Figure 3. To facilitate this interaction with the interface-wrapped environment, we designed a set of
encapsulated tools for both the Analyzer and Optimizer to use, as described in Appendix E.3.

After each iteration, the agent interacts with the environment wrapped by the new generated interface
Φ(i), and trajectories of the failed tasks are returned to Analyzer for further analysis. The algorithm
continues iteratively until one of the following holds: (1) the pre-defined maximum number of
iterations is reached; (2) no failed trajectories are produced; (3) no new misalignments are identified.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocol To validate the effectiveness of ALIGN, we assess the performance of various
agents in the original, unmodified environments. Subsequently, ALIGN is utilized to generate
interfaces for these environments with the respective agents. Afterward, the agents are re-evaluated
in the same environments, wrapped with the ALIGN-generated interfaces. During the interface
generation and refinement process, only tasks from the training set are used. The interface logic
is fixed and remains unchanged during testing. This design enables us to observe and measure the
changes in agent performance before and after the interface alignment.

Benchmarks We conduct experiments on four representative benchmarks across three domains:
embodied tasks, web navigation and tool-use. Among them, (1) ALFWorld (Shridhar et al., 2021)
focuses on embodied AI agents performing household tasks through textual interactions in simu-
lated environments; (2) ScienceWorld (Wang et al., 2022) evaluates the abilities to conduct scientific
experiments and apply scientific reasoning of agents in an interactive text-based environment; (3) Web-
Shop (Yao et al., 2022) simulates e-commerce scenarios where agents navigate product catalogs
and complete purchasing tasks; and (4) M3ToolEval (Wang et al., 2024b) is specifically designed to
evaluate agent performance in multi-turn tool-use tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Effect of ALIGN-generated interfaces on four benchmarks. For every agent we report its
score without the interface (w/o ALIGN) and with the interface (w/ ALIGN); the value in parentheses
is the absolute improvement. Metrics are task-success rate (%) for ALFWorld and M3ToolEval, and
scores for ScienceWorld and WebShop.

Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 13.43 14.94 54.10 11.11
w/ ALIGN 60.45 (+47.02) 27.69 (+12.75) 61.23 (+7.13) 20.83 (+9.72)

ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 63.43 (+44.03) 28.97 (+8.94) 42.93 (+5.73) 18.06 (+8.34)

Self-Consistency w/o ALIGN 11.94 14.07 56.23 11.11
w/ ALIGN 69.40 (+57.46) 25.41 (+11.34) 61.10 (+4.87) 16.67 (+5.56)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 40.30 (+36.57) 22.99 (+8.12) 52.30 (+7.50) 6.94 (+1.39)

Planning w/o ALIGN 9.70 17.13 46.95 11.11
w/ ALIGN 52.99 (+43.29) 26.34 (+9.21) 54.67 (+7.72) 18.06 (+6.95)

Agent Methods To verify the capability of ALIGN to enhance performance across diverse agent
architectures, we evaluate five representative methods: (1) Vanilla Agent: Base implementation
without specialized prompting strategies; (2) ReAct (Yao et al., 2023): Leveraging the reasoning
capabilities of LLMs through interleaved reasoning and action steps; (3) Self-Consistency (Wang
et al., 2023): Utilizing probabilistic outputs from LLMs to generate multiple solution paths and select
the most consistent one; (4) Self-Refine (Madaan et al., 2023): Employing an iterative self-critic and
refine mechanism where agents critique and refine their previous solutions; and (5) Planning Agent:
Inspired by RAP Hao et al. (2023), this approach leverages the planning capabilities of LLMs to
decompose complex tasks into manageable sub-tasks.

Implementation Details Unless otherwise noted, we use Qwen2.5-7B-Instruct (Team, 2024) as the
base model of agents. The Optimizer for interface generation uses Gemini 2.5 Pro (Google, 2025),
while other steps the Analyzer and Optimizer use GPT-4.1 (OpenAI, 2025). Implementation details
of benchmark task splits and hyper-parameters can be found in Appendix E.

4.2 MAIN RESULTS

Table 1 summarizes the task success rates or scores of five representative agent methods in the
environment without (w/o) or with (w/) ALIGN-generated interface. The interfaces generated and
the misalignments analyzed can be found in Appendix F and the token consumption analysis can be
found in Appendix D. Our empirical investigation yields three principal findings:

(1) ALIGN consistently enhances performance across different domains. All evaluated agent
methods demonstrate significant performance improvements when utilizing ALIGN-generated inter-
faces. Specifically, the five agent methods exhibit mean improvements of 45.67% in task-success rate
for ALFWorld, 10.07 points for ScienceWorld, 6.59 points for WebShop, and 6.39% in task-success
rate for M3ToolEval. These consistent improvements substantiate the effectiveness of ALIGN.

(2) Agent-environment misalignment is a pervasive phenomenon impeding the agent perfor-
mance. The observed performance enhancements provide empirical evidence that numerous errors
in baseline configurations originate from implicit constraints or under-specified observation, rather
than from intrinsic reasoning deficiencies. This finding suggests that when these environmental
constraints are explicitly surfaced, agents can execute their intended tasks with substantially improved
reliability. Consequently, we posit that agent-environment misalignment is pervasive in interactive
decision-making tasks, and addressing this problem is crucial for advancing agent performance.

(3) Alignment between agent and environment can facilitate identification of additional
performance-influencing factors. While the Self-Consistency agent achieves a 69.40% success
rate in ALFWorld with ALIGN, the performance of Self-Refine agent remains comparatively sub-
optimal (40.30%), indicating potential deficiencies in the critic and self-refinement capabilities of
the Qwen2.5-7B-Instruct model. These limitations are similarly manifested in the M3ToolEval
results. Furthermore, the relatively modest performance improvements in ScienceWorld suggest
that Qwen2.5-7B-Instruct may exhibit insufficient scientific causal reasoning capabilities. These

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

observations indicate that properly aligning agent and environment enables more precise isolation
and analysis of other factors influencing agent performance beyond alignment considerations.

4.3 INTERFACE QUALITY ANALYSIS

Table 2: Impact of the ALIGN-generated interface on consecutive invalid actions. The metric
reports the fraction (%) of consecutive invalid actions. Lower values indicate more desirable behavior.
∆ denotes the relative reduction with respect to the w/o ALIGN setting.

ALFWorld ScienceWorld

Method w/o ALIGN w/ ALIGN ∆ w/o ALIGN w/ ALIGN ∆

Vanilla 77.91 26.59 66% 49.12 24.47 50%
ReAct 82.23 38.63 53% 46.61 29.99 36%
Self-Consistency 77.71 15.08 81% 51.10 31.51 38%
Self-Refine 90.38 45.84 49% 58.02 29.48 49%
Planning 74.09 19.14 74% 68.67 20.94 70%

Average 80.46 28.51 65% 54.70 27.28 49%

Influence on Agent Decision To quantitatively assess the influence of ALIGN-generated interfaces on
agent decision beyond end-task performance metric, we introduce a metric that measures the frequency
of consecutive invalid actions by calculating the proportion of the actions that occur within sequences
of two or more consecutive invalid steps. Lower values of this metric indicate: (1) enhanced agent
awareness of implicit preconditions, and (2) improved recovery capability following isolated errors.
Table 2 presents the results for five agent methods implemented on ALFWorld and ScienceWorld.
The empirical results demonstrate a substantial reduction in consecutive invalid actions frequency
across all agent methods when utilizing ALIGN-generated interfaces. Specifically, we observe a mean
reduction of 65% in ALFWorld and 49% in ScienceWorld. These findings provide robust evidence
that ALIGN effectively enriches the information conveyed by the observation, preventing agents from
entering repetitive error cycles, which aligns with the findings documented in Section 4.2.

Comparison with Agentic Systems and Human-designed Interfaces To further assess the effective-
ness of our automatically generated interfaces, we compare ALIGN against (1) agentic frameworks
equipped with carefully designed reasoning, planning and memory modules and (2) human-designed
interfaces. The experimental setup and results are presented in Appendix C.2. As shown in Ta-
ble 7, even without bespoke reasoning, planning, or memory modules, a vanilla agent that directly
outputs the next action yields a 6.71 percentage points higher success rate than the best agentic
system when paired with ALIGN-generated interfaces, indicating agent-environment misalignment
substantially constrains the performance of LLM-based agents in interactive tasks. Moreover, using
interfaces automatically generated by ALIGN yields a 13.44 percentage points higher success rate
than human-designed interfaces, further validating the effectiveness of our method (Table 8).

4.4 GENERALIZATION AND GENERALITY STUDY

Generalization Study To evaluate the generalization capabilities of ALIGN, we performed the
following two experiments, with the results presented in Table 3 and detailed results in Appendix C.3.

(1) ALIGN can generalize to different agent architectures. Panel (a) of Table 3 applies interfaces
generated with the Vanilla agent to the other four agents. Across all four environments every
target agent shows consistent growth, demonstrating that ALIGN captures genuine and previously
unexposed environment constraints. This also reinforces the earlier conclusion that agent-environment
misalignment is a pervasive source of error independent of the agent’s reasoning style.

(2) ALIGN can generalize to larger and heterogeneous LLMs. Panel (b) of Table 3 examines whether
an interface generated with Qwen2.5-7B-Instruct can extend to larger or architecturally different
model backbones. The results demonstrate that ALIGN-generated interfaces lead to performance
improvements across base models of varying sizes and architectural families, which indicates that our
method possesses strong generalization capabilities. We also observe that this generalization is not
uniformly robust across all model families and datasets. For instance, Llama3.1-8B-Instruct (Meta,
2025a) shows only a marginal gain of +0.33 on the WebShop benchmark. This limited improvement
may be attributed to the inherent reasoning capabilities of the model itself.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Generalization of ALIGN-generated inter-
faces across agents and models. Mean performance
improvements from applying ALIGN-generated inter-
faces in the four environments across different settings.
(a) Cross-agent transfer: interfaces generated with a
Vanilla agent improve other agent methods. (b) Cross-
model transfer: interfaces generated with Qwen2.5-7B-
Instruct can generalize to other LLMs.

(a) Interface source: Vanilla agent

Target method ALF. Sci. Web. M3T.

ReAct +39.56 +12.29 +7.87 +5.56
Self-Consistency +51.49 +15.30 +3.00 +8.33
Self-Refine +34.33 +14.11 +6.17 +4.17
Planning +41.05 +9.66 +3.26 +11.11

(b) Interface source: Qwen2.5-7B-Instruct agent

Target LLM ALF. Sci. Web. M3T.

Qwen2.5-14B-Instruct +17.46 +4.61 +4.66 +6.11
Llama3.1-8B-Instruct +5.97 +10.27 +0.33 +0.83
Llama3.3-70B-Instruct +5.82 +3.99 +5.68 +1.67

Table 4: Generality of ALIGN. Task suc-
cess rates (SR) without and with ALIGN-
generated interfaces in ALFWorld across
two settings. (a) Using GPT-4.1 series
models as the base model of agents; (b)
Using GiGPO-Qwen2.5-7B-Instruct eval-
uated under different agent architectures.

(a) GPT-4.1 series

Base Model Interface SR (%)

GPT-4.1-mini w/o ALIGN 28.36
w/ ALIGN 64.93 (+36.57)

GPT-4.1 w/o ALIGN 73.88
w/ ALIGN 93.28 (+19.40)

(b) GiGPO-Qwen2.5-7B-Instruct

Agent Method Interface SR (%)

Vanilla w/o ALIGN 35.04
w/ ALIGN 55.97 (+20.93)

Training Config w/o ALIGN 89.55
w/ ALIGN 92.54 (+2.99)

Taken together, these results show that ALIGN-generated interfaces can generalize (1) across agent
policies and (2) across model scales and families, validating the practicality of ALIGN.

Generality Study In this work, our empirical observations indicate that the root cause of agent-
environment misalignment lies in the robustness of the interface itself, making it a universal issue that
affects agents irrespective of the underlying model capability. To further validate this claim and assess
the generality of ALIGN, we conduct experiments on both closed-source LLMs and domain-specific
models trained within the environment. For the former, we use the GPT-4.1 series; for the latter, we
use GiGPO-Qwen2.5-7B-Instruct-ALFWorld (Feng et al., 2025), a state-of-the-art model specifically
post-trained on ALFWorld via reinforcement learning. Detailed experimental setup and full results
are provided in Appendix C.4. As the results reported in Panel (a) of Table 4 shown, applying the
ALIGN-generated interface substantially improves the performance of the GPT-4.1-based agent
from 73.88% to 93.28%. Meanwhile, as the results reported in Panel (b) of Table 4 shown, the
ALIGN-generated interface also enhances the performance of the domain-specific model under both
our Vanilla Agent setting and its original training configuration, from 35.04% to 55.97% and 89.55%
to 92.54%, respectively. These findings demonstrate that the fundamental and pervasive nature of
agent-environment misalignment stems from deficiencies in the environment’s interface rather than
solely from the reasoning limitations of any given model, and further corroborate the generality of
our method across both frontier and domain-specialized models.

4.5 ABLATION STUDY

Table 5: Ablation on Interface components. Val-
ues represent the change in success rate (%) on ALF-
World and score on ScienceWorld. Negative values
mean performance drops from the Full interface.

w/o INFERRULES w/o WRAPSTEP

Method ALF. Sci. ALF. Sci.

Vanilla -8.96 -3.35 -33.58 -4.72
ReAct -5.22 -2.08 -17.91 -6.44
Self-Consistency -1.49 -2.30 -37.27 -10.59
Self-Refine -7.46 -1.72 -34.33 -7.59
Planning -10.45 -0.78 -26.87 -9.86

Mean -6.72 -2.05 -31.79 -7.84

Ablation on Interface Components Starting
from the full ALIGN interface, we conduct
two ablations: (1) w/o INFERRULES and (2)
w/o WRAPSTEP. Table 5 reports the change
relative to the full interface on ALFWorld and
ScienceWorld, with the full results presented
in Appendix C.5. Both ablations reduce per-
formance: w/o INFERRULES averages -6.72
percentage points on ALFWorld and -2.05
on ScienceWorld, while removing WRAP-
STEP yields a larger decline of -31.79 per-
centage points and -7.84, respectively. These
decreases confirm that each interface compo-
nent contributes meaningfully. Moreover, the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

much larger drop w/o WRAPSTEP shows the critical role of fine-grained and enriched observation
during interaction. This also suggests that rich, LLM-friendly observation should be prioritized by
future environment designers when constructing environments.

Table 6: Task success rate (%) on
ALFWorld across iterations without
experimental verification procedure.

Temp. Iter0 Iter1 Iter2 Iter3

0.2 13.43 22.39 0.00 0.00
0.5 13.43 23.88 1.49 0.75

Ablation on Experimental Verification To assess whether
the experimental verification procedure in Section 3.3 is in-
dispensable, we ablated it and re-ran ALIGN with the Vanilla
agent on ALFWorld. As a surrogate, we employed a multi-
sampling strategy in each iteration: the Analyzer sampled six
candidate misalignments and selected the one it judged most
accurate; the Optimizer then sampled six candidate interfaces
and likewise chose its top candidate. Within this multi-sampling process, we controlled stochasticity
via decoding temperature; specifically, we evaluated T ∈ {0.2, 0.5} under the prompts listed in
Appendix E.4. The resulting task success rates over three iterations are summarized in Table 6.
Without the ability to execute experiments, task success rate deteriorates sharply, a result of the
limited single-shot reliability of LLMs in both diagnosing misalignments and synthesizing correct
interfaces, which underscores the necessity of the experimental verification procedure design.

5 CONCLUSION

In this work, we introduce ALIGN, a novel framework that automatically generates aligned interfaces
to alleviate the agent-environment misalignment, a pervasive and underexplored source of failure
in interactive decision-making tasks. By diagnosing implicit constraints through the Analyzer and
synthesizing aligned interface via the Optimizer, ALIGN improves agent performance significantly on
four representative benchmarks across three domains: embodied tasks, web navigation, and tool-use.
Our results demonstrate that ALIGN not only boosts performance across multiple agent methods but
also generalizes effectively to unseen models and strategies, offering a robust, plug-and-play solution
that decouples agent designs from manual environment-specific alignment. These findings suggest
that automatic interface generation is a promising direction for building more reliable, reusable,
and interpretable LLM-based agents. Future research should explore richer forms of interface
representation, expand evaluations to more domains, and develop finer-grained metrics to quantify
interface quality and its impact on agent behavior.

LIMITATIONS AND FUTURE WORK

Despite the effectiveness of ALIGN in alleviating agent-environment misalignment, this work
represents an initial exploration into automated interface generation. Several important directions
remain open for further investigation:

Toward more diverse and complex environments. Our current evaluation focuses on environments
with discrete, text-based action spaces across three domains: embodied tasks, web navigation, and
tool-use. ALIGN’s applicability to more complex settings remains to be explored. Future work could
investigate more complex environments like extending ALIGN to multimodal domains such as GUI
agents, where interfaces must process visual observations alongside textual feedback.

Beyond information and observation augmentation. As formalized in Section 3.1, a complete
interface comprises three components: finfo, fobs, and fact. This work focuses on optimizing finfo
and fobs to alleviate the agent-environment misalignment. However, fact also plays a critical role
in interactive tasks. Constraining agents to predefined action spaces may force them to deviate
from their natural output distributions, potentially degrading performance. Automatically generating
and optimizing fact to bridge the gap between an agent’s preferred action representation and the
environment’s expected format remains an important direction.

Metrics for interface quality. This paper evaluates interface effectiveness primarily through task
success rates and consecutive invalid actions. More comprehensive metrics are needed to quantify
interface influence on agent behavior. Promising directions include: (1) developing finer-grained
behavioral diagnostics measuring specific aspects of agent understanding, such as exploratory actions
or strategy diversity; (2) employing LLM-as-a-Judge (Zheng et al., 2023) paradigms to evaluate
whether interfaces successfully convey environment constraints.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We present the framework and algorithm design of our method in Section 3 and Appendix B, and
the implementation details of the experiments in Appendix C and Appendix E. Meanwhile, the
code necessary to reproduce the proposed methods and the main experiments has been provided as
supplemental material. The supplemental material also includes the corresponding experimental logs.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S: an
open agentic framework that uses computers like a human. CoRR, abs/2410.08164, 2024. doi: 10.
48550/ARXIV.2410.08164. URL https://doi.org/10.48550/arXiv.2410.08164.

Hao Bai, Yifei Zhou, Erran Li Li, Sergey Levine, and Aviral Kumar. Digi-Q: Transforming VLMs to
device-control agents via value-based offline RL, 2025.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. In
Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and Adila Alfa
Krisnadhi (eds.), Proceedings of the 13th International Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics, IJCNLP 2023 -Volume 1: Long Papers, Nusa Dua, Bali, November 1 - 4, 2023, pp. 675–
718. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.IJCNLP-MAIN.45.
URL https://doi.org/10.18653/v1/2023.ijcnlp-main.45.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries P. Smit, Nathan Grinsztajn, Raphaël Boige, Cemlyn N. Waters,
Mohamed A. Mimouni, Ulrich A. Mbou Sob, Ruan de Kock, Siddarth Singh, Daniel Furelos-
Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable
reinforcement learning environments in JAX. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=C4CxQmp9wc.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Timothy Bula, Saurabh Pujar, Luca Buratti, Mihaela Bornea, and Avirup Sil. SeaView: Software
engineering agent visual interface for enhanced workflow. arXiv preprint arXiv:2504.08696, 2025.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
moWiYJuSGF.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
FireAct: Toward language agent fine-tuning. CoRR, abs/2310.05915, 2023. doi: 10.48550/ARXIV.
2310.05915. URL https://doi.org/10.48550/arXiv.2310.05915.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Au-
toManual: Constructing instruction manuals by LLM agents via interactive environ-
mental learning. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
0142921fad7ef9192bd87229cdafa9d4-Abstract-Conference.html.

11

https://doi.org/10.48550/arXiv.2410.08164
https://doi.org/10.18653/v1/2023.ijcnlp-main.45
https://openreview.net/forum?id=C4CxQmp9wc
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=moWiYJuSGF
https://openreview.net/forum?id=moWiYJuSGF
https://doi.org/10.48550/arXiv.2310.05915
http://papers.nips.cc/paper_files/paper/2024/hash/0142921fad7ef9192bd87229cdafa9d4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/0142921fad7ef9192bd87229cdafa9d4-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pp. 9354–9366. Association for Computational Linguistics, 2024b. doi:
10.18653/V1/2024.FINDINGS-ACL.557. URL https://doi.org/10.18653/v1/2024.
findings-acl.557.

Zhixun Chen, Ming Li, Yuxuan Huang, Yali Du, Meng Fang, and Tianyi Zhou. ATLaS: Agent tuning
via learning critical steps. CoRR, abs/2503.02197, 2025. doi: 10.48550/ARXIV.2503.02197. URL
https://doi.org/10.48550/arXiv.2503.02197.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-E: An embodied
multimodal language model. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 8469–8488. PMLR, 2023. URL https://proceedings.
mlr.press/v202/driess23a.html.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for
LLM agent training. CoRR, abs/2505.10978, 2025. doi: 10.48550/ARXIV.2505.10978. URL
https://doi.org/10.48550/arXiv.2505.10978.

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang Li.
AGILE: A novel reinforcement learning framework of LLM agents. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
097c514162ea7126d40671d23e12f51b-Abstract-Conference.html.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. AgentRefine: Enhancing agent generalization
through refinement tuning. CoRR, abs/2501.01702, 2025. doi: 10.48550/ARXIV.2501.01702.
URL https://doi.org/10.48550/arXiv.2501.01702.

Yingqiang Ge, Wenyue Hua, Kai Mei, Jianchao Ji, Juntao Tan, Shuyuan Xu, Zelong Li,
and Yongfeng Zhang. Openagi: When LLM meets domain experts. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_
Benchmarks.html.

Google. Gemini 2.5 Pro preview model card, 2025. URL https://storage.googleapis.
com/model-cards/documents/gemini-2.5-pro-preview.pdf.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
CoRR, abs/2410.05243, 2024. doi: 10.48550/ARXIV.2410.05243. URL https://doi.org/
10.48550/arXiv.2410.05243.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 8048–8057. ijcai.org, 2024.
URL https://www.ijcai.org/proceedings/2024/890.

12

https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.48550/arXiv.2503.02197
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
https://doi.org/10.48550/arXiv.2505.10978
http://papers.nips.cc/paper_files/paper/2024/hash/097c514162ea7126d40671d23e12f51b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/097c514162ea7126d40671d23e12f51b-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2501.01702
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/1190733f217404edc8a7f4e15a57f301-Abstract-Datasets_and_Benchmarks.html
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://doi.org/10.48550/arXiv.2410.05243
https://doi.org/10.48550/arXiv.2410.05243
https://www.ijcai.org/proceedings/2024/890

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 8154–8173.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507.
URL https://doi.org/10.18653/v1/2023.emnlp-main.507.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 6864–6890. Association for Computational Linguistics, 2024a.
doi: 10.18653/V1/2024.ACL-LONG.371. URL https://doi.org/10.18653/v1/2024.
acl-long.371.

Kaiyu He, Mian Zhang, Shuo Yan, Peilin Wu, and Zhiyu Zoey Chen. IDEA: Enhancing the rule
learning ability of large language model agent through induction, deduction, and abduction, 2024b.
URL https://arxiv.org/abs/2408.10455.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-
THOR: an interactive 3d environment for visual AI. CoRR, abs/1712.05474, 2017. URL http:
//arxiv.org/abs/1712.05474.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to
promote vision-language coordination in large multi-modal models. In Owen Rambow, Leo
Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
(eds.), Proceedings of the 31st International Conference on Computational Linguistics, COLING
2025, Abu Dhabi, UAE, January 19-24, 2025, pp. 2886–2903. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.coling-main.195/.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bha-
gavatula, Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. SwiftSage: A genera-
tive agent with fast and slow thinking for complex interactive tasks. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
4b0eea69deea512c9e2c469187643dc2-Abstract-Conference.html.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
AgentBench: Evaluating llms as agents. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=zAdUB0aCTQ.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. OmniParser for pure vision
based GUI agent. CoRR, abs/2408.00203, 2024. doi: 10.48550/ARXIV.2408.00203. URL
https://doi.org/10.48550/arXiv.2408.00203.

13

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://arxiv.org/abs/2408.10455
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://arxiv.org/abs/1712.05474
http://arxiv.org/abs/1712.05474
https://aclanthology.org/2025.coling-main.195/
http://papers.nips.cc/paper_files/paper/2023/hash/4b0eea69deea512c9e2c469187643dc2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b0eea69deea512c9e2c469187643dc2-Abstract-Conference.html
https://openreview.net/forum?id=zAdUB0aCTQ
https://doi.org/10.48550/arXiv.2408.00203

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong
Lan, Lingpeng Kong, and Junxian He. AgentBoard: An analytical evaluation board
of multi-turn LLM agents. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_
Benchmarks_Track.html.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-Refine: Iterative refinement with self-feedback. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Meta. Model cards and prompt formats Llama 3.1, 2025a. URL https://www.llama.com/
docs/model-cards-and-prompt-formats/llama3_1/.

Meta. Model cards and prompt formats Llama 3.3, 2025b. URL https://www.llama.com/
docs/model-cards-and-prompt-formats/llama3_3/.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. ScreenAgent: A vision language model-driven computer control agent. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju,
South Korea, August 3-9, 2024, pp. 6433–6441. ijcai.org, 2024. URL https://www.ijcai.
org/proceedings/2024/711.

OpenAI. Introducing GPT-4.1 in the api, 2025. URL https://openai.com/index/
gpt-4-1/.

Bhargavi Paranjape, Scott M. Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Túlio Ribeiro. ART: automatic multi-step reasoning and tool-use for large language
models. CoRR, abs/2303.09014, 2023. doi: 10.48550/ARXIV.2303.09014. URL https:
//doi.org/10.48550/arXiv.2303.09014.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer,
Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA,
29 October 2023- 1 November 2023, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.3606763.
URL https://doi.org/10.1145/3586183.3606763.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. WebRL:
Training LLM web agents via self-evolving online curriculum reinforcement learning. CoRR,
abs/2411.02337, 2024. doi: 10.48550/ARXIV.2411.02337. URL https://doi.org/10.
48550/arXiv.2411.02337.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu
Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: pioneering automated GUI
interaction with native agents. CoRR, abs/2501.12326, 2025. doi: 10.48550/ARXIV.2501.12326.
URL https://doi.org/10.48550/arXiv.2501.12326.

14

http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/877b40688e330a0e2a3fc24084208dfa-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.ijcai.org/proceedings/2024/711
https://www.ijcai.org/proceedings/2024/711
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/arXiv.2411.02337
https://doi.org/10.48550/arXiv.2411.02337
https://doi.org/10.48550/arXiv.2501.12326

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert
Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. AndroidWorld: A dynamic
benchmarking environment for autonomous agents. CoRR, abs/2405.14573, 2024. doi: 10.48550/
ARXIV.2405.14573. URL https://doi.org/10.48550/arXiv.2405.14573.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
LLM agent search in modular design space. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=mPdmDYIQ7f.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. ALFWorld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTn.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao,
and Zhiyong Wu. OS-Genesis: Automating GUI agent trajectory construction via reverse task
synthesis. CoRR, abs/2412.19723, 2024. doi: 10.48550/ARXIV.2412.19723. URL https:
//doi.org/10.48550/arXiv.2412.19723.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Mark Towers, Ariel Kwiatkowski, Jordan K. Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard
interface for reinforcement learning environments. CoRR, abs/2407.17032, 2024. doi: 10.48550/
ARXIV.2407.17032. URL https://doi.org/10.48550/arXiv.2407.17032.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Trans. Mach. Learn. Res., 2024, 2024a. URL https://openreview.net/forum?id=
ehfRiF0R3a.

Ruoyao Wang, Peter A. Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld:
Is your agent smarter than a 5th grader? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 11279–11298.
Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.775.
URL https://doi.org/10.18653/v1/2022.emnlp-main.775.

15

https://doi.org/10.48550/arXiv.2405.14573
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://openreview.net/forum?id=mPdmDYIQ7f
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.48550/arXiv.2412.19723
https://doi.org/10.48550/arXiv.2412.19723
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2407.17032
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://doi.org/10.18653/v1/2022.emnlp-main.775

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better LLM agents. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=jJ9BoXAfFa.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-Consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho, Jiajun
Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. RAGEN: Understanding self-evolution
in llm agents via multi-turn reinforcement learning, 2025a. URL https://arxiv.org/abs/
2504.20073.

Ziyue Wang, Yurui Dong, Fuwen Luo, Minyuan Ruan, Zhili Cheng, Chi Chen, Peng Li, and Yang
Liu. How do multimodal large language models handle complex multimodal reasoning? placing
them in an extensible escape game, 2025b. URL https://arxiv.org/abs/2503.10042.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. BrowseComp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.
12516.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min Dou, Botian Shi, Liang
He, and Yu Qiao. Dilu: A knowledge-driven approach to autonomous driving with large language
models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=OqTMUPuLuC.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_
and_Benchmarks_Track.html.

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. Hallucination is inevitable: An innate limitation
of large language models. CoRR, abs/2401.11817, 2024. doi: 10.48550/ARXIV.2401.11817. URL
https://doi.org/10.48550/arXiv.2401.11817.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-Mark
prompting unleashes extraordinary visual grounding in GPT-4V. CoRR, abs/2310.11441, 2023a.
doi: 10.48550/ARXIV.2310.11441. URL https://doi.org/10.48550/arXiv.2310.
11441.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. SWE-agent: Agent-computer interfaces enable automated
software engineering. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html.

16

https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2503.10042
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://openreview.net/forum?id=OqTMUPuLuC
https://openreview.net/forum?id=OqTMUPuLuC
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.48550/arXiv.2401.11817
https://doi.org/10.48550/arXiv.2310.11441
https://doi.org/10.48550/arXiv.2310.11441
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zeyuan Yang, Peng Li, and Yang Liu. Failures pave the way: Enhancing large language models
through tuning-free rule accumulation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pp. 1751–1777. Association for Computational
Linguistics, 2023b. doi: 10.18653/V1/2023.EMNLP-MAIN.109. URL https://doi.org/
10.18653/v1/2023.emnlp-main.109.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. ReAct meets ActRe: When
language agents enjoy training data autonomy. CoRR, abs/2403.14589, 2024b. doi: 10.48550/
ARXIV.2403.14589. URL https://doi.org/10.48550/arXiv.2403.14589.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards scal-
able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. ReAct: Synergizing reasoning and acting in language models. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Junchi Yu, Ran He, and Zhitao Ying. Thought propagation: an analogical approach to complex
reasoning with large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=SBoRhRCzM3.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTuning:
Enabling generalized agent abilities for LLMs. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 3053–3077. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.181. URL https://doi.org/
10.18653/v1/2024.findings-acl.181.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4V(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=piecKJ2DlB.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging LLM-as-a-Judge with MT-Bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_
Benchmarks.html.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a.
URL https://openreview.net/forum?id=oKn9c6ytLx.

Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, and Chengqi Zhang.
WALL-E: world alignment by rule learning improves world model-based LLM agents. CoRR,
abs/2410.07484, 2024b. doi: 10.48550/ARXIV.2410.07484. URL https://doi.org/10.
48550/arXiv.2410.07484.

17

https://doi.org/10.18653/v1/2023.emnlp-main.109
https://doi.org/10.18653/v1/2023.emnlp-main.109
https://doi.org/10.48550/arXiv.2403.14589
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=SBoRhRCzM3
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.findings-acl.181
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=oKn9c6ytLx
https://doi.org/10.48550/arXiv.2410.07484
https://doi.org/10.48550/arXiv.2410.07484

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. ArCHer: Training
language model agents via hierarchical multi-turn RL. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024c. URL
https://openreview.net/forum?id=b6rA0kAHT1.

A LLM USAGE STATEMENT

Throughout the completion of this work, the LLM was employed solely for the purpose of refining
sentences and improving grammatical accuracy during the manuscript writing process.

B FORMALIZATION OF THE ALIGN ALGORITHM

The formalization of the ALIGN algorithm is outlined in Algorithm 1.

Algorithm 1 ALIGN: Auto-Aligned Interface Generation

Require: Environment E , Agent π, Task training set Ttrain, Maximum iterations K
1: Initialize misalignment set M ← ∅, interface Φ(0) ← {INFERRULES(0), WRAPSTEP(0)}, where

INFERRULES(0) and WRAPSTEP(0) are identity functions
2: for i = 1, 2, . . . ,K do
3: Ẽ(i−1) ← Environment E wrapped with interface Φ(i−1)

4: τ
(i−1)
fail ← Failed trajectories from agent π interacting with Ẽ(i−1) on Ttrain

5: if τ (i−1)
fail = ∅ then

6: break ▷ No more failures in the training set
7: end if

// Stage 1: Misalignment Analysis
8: M(i) ← Analyzer(τ (i−1)

fail ,M,Φ(i−1))

9: ifM(i) = ∅ then
10: break ▷ No new misalignments identified
11: end if
12: M←M∪M(i)

// Stage 2: Interface Generation
13: Φ(i) ← Optimizer(M(i),Φ(i−1))
14: end for
15: return final interface Φ(i)

C SUPPLEMENTARY EXPERIMENTAL SETUP AND DETAILED RESULTS

C.1 PRELIMINARY EXPERIMENTS

To preliminarily assess the significance of agent-environment misalignment, we conducted exploratory
experiments on the ALFWorld. We employed the vanilla Qwen2.5-7B-Instruct agent with a temper-
ature setting of 0.0. The deployment protocol, prompt template, followed the same configuration
described in Appendix E and Appendix E.4.

During the experiments, we introduced a minor modification to the environment: if the agent
issued the action examine receptacle and the environment returned the default observation “Nothing
happens.”, we replaced it with “You need to first go to receptacle before you can examine it.” This
simple adjustment increased the agent’s task success rate from 13.4% to 31.3%.

C.2 INTERFACE QUALITY ANALYSIS EXPERIMENTS

To further assess the quality of the ALIGN-generated interface, we first compare our method
with human-designed agentic system. Our experiments are conducted on ALFWorld using the
AgentSquare (Shang et al., 2025) framework. To maximize the advantages of the agentic system,
we adopt gpt-4.1-2025-04-14 as the base model, select OPENAGI (Ge et al., 2023) for the planning

18

https://openreview.net/forum?id=b6rA0kAHT1

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Experimental results of the comparison between agents with ALIGN-generated interface
and agents with human-designed reasoning, planning and memory module.

Agent
Framework Interface Memory

Module
pick

and place
pick clean
and place

pick heat
and place

pick cool
and place

look at /
examine
in light

pick two obj
and place

Success
Rate (%)

AgentSquare / Generative 95.83 87.10 69.57 95.24 83.33 88.24 86.57

AgentSquare / DiLu 91.67 87.10 52.17 95.24 83.33 70.59 80.60

AgentSquare / TP 87.50 51.61 4.35 61.90 27.78 47.06 47.76

AgentSquare / VOYAGER 95.83 83.87 52.17 90.48 83.33 64.71 79.10

Vanilla Agent w/o ALIGN / 100.00 93.55 13.04 71.43 61.11 100.00 73.88

Vanilla Agent w/ ALIGN / 100.00 100.00 78.26 100.00 77.78 100.00 93.28

module, Self-Refine (Madaan et al., 2023) for the reasoning module, and evaluate memory using Gen-
erative (Park et al., 2023), DiLu (Wen et al., 2024), TP (Yu et al., 2024), and VOYAGER (Wang et al.,
2024a). For our approach, we employ a gpt-4.1-2025-04-14-based vanilla agent, where the interface
is generated with the gpt-4.1-2025-04-14-mini-based vanilla agent by ALIGN (the experimental
setup is same as Appendix C.4). The results are reported in Table 7.

Table 8: Experimental results of
the comparison between agents with
ALIGN-generated interface and agents
with human-designed interfaces.

Experimental Setting Success Rate (%)

w/o Interface 13.43

Few-shot 44.78

Valid Actions 44.03

Human Designed Interface 47.01

ALIGN-generated Interface 60.45

Furthermore, we compare the ALIGN-generated interface
against the human-designed interface. We adopt the fol-
lowing configurations for comparison with our method:
(1) Few-shot: Settings identical to those in the ReAct (Yao
et al., 2023); (2) Valid Actions: Supplying the agent
with all valid actions at every response turn, analogous
to the check_valid_actions configuration in Agent-
Board (Ma et al., 2024); (3) Human-Designed Interface:
Interfaces manually crafted by Ph.D. students after inspect-
ing ALFWorld experiments, examining trajectories, and run-
ning experiments themselves. The design logic includes: ex-
ecuting “go to” prior to each action; automatically checking
object labels; converting “put” to “move” when appropriate;
returning the action space upon invalid actions; issuing reminders when “clean with” is applied to
non-sinkbasin objects; and other hand-engineered rules. We use Qwen2.5-7B-Instruct as the base
model. Experimental results are reported in Table 8.

C.3 GENERALIZATION STUDY EXPERIMENTS

Detailed results of the generalization study are provided for the cross-method experiments in Table 9
and for the cross-model experiments in Tables 10, 11, and 12.

Table 9: Generalization of ALIGN-generated interfaces generated with Vanilla agents to other
agent methods. For each agent we report its score without the interface (w/o ALIGN) and with the
interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Method: Vanilla Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

ReAct w/o ALIGN 19.40 20.03 37.20 9.72
w/ ALIGN 58.96 (+39.56) 32.32 (+12.29) 45.07 (+7.87) 15.28 (+5.56)

Self-Consistency w/o ALIGN 11.94 14.07 56.23 11.11
w/ ALIGN 63.43 (+51.49) 29.37 (+15.30) 59.23 (+3.00) 19.44 (+8.33)

Self-Refine w/o ALIGN 3.73 14.87 44.80 5.55
w/ ALIGN 38.06 (+34.33) 28.98 (+14.11) 50.97 (+6.17) 9.72 (+4.17)

Planning w/o ALIGN 9.70 17.13 46.95 11.11
w/ ALIGN 50.75 (+41.05) 26.79 (+9.66) 50.21 (+3.26) 22.22 (+11.11)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Qwen2.5-14B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Qwen2.5-14B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 48.51 22.58 53.67 13.89
w/ ALIGN 52.24 (+3.73) 37.58 (+15.00) 58.40 (+4.73) 18.06 (+4.17)

ReAct w/o ALIGN 54.48 31.24 39.73 15.28
w/ ALIGN 70.15 (+15.67) 29.79 (-1.45) 42.17 (+2.44) 26.39 (+11.11)

Self-Consistency w/o ALIGN 43.28 25.60 52.63 13.89
w/ ALIGN 72.39 (+29.11) 26.68 (+1.08) 51.07 (-1.56) 27.78 (+13.89)

Self-Refine w/o ALIGN 5.22 18.97 41.00 15.28
w/ ALIGN 14.18 (+8.96) 20.72 (+1.75) 39.93 (-1.07) 16.67 (+1.39)

Planning w/o ALIGN 49.25 21.46 31.72 25.00
w/ ALIGN 79.10 (+29.85) 28.13 (+6.67) 50.47 (+18.75) 25.00 (0.00)

Table 11: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.1-8B-Instruct. For each agent we report its score without the interface (w/o ALIGN) and
with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.1-8B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 5.22 23.59 35.17 5.56
w/ ALIGN 14.18 (+8.96) 36.40 (+12.81) 24.00 (-11.17) 1.39 (-4.17)

ReAct w/o ALIGN 1.49 22.42 27.12 12.50
w/ ALIGN 15.67 (+14.18) 28.74 (+6.32) 27.10 (-0.02) 22.22 (+9.72)

Self-Consistency w/o ALIGN 5.22 25.21 29.80 4.17
w/ ALIGN 11.94 (+6.72) 34.83 (+9.62) 15.83 (-13.97) 2.78 (-1.39)

Self-Refine w/o ALIGN 0.00 22.34 27.70 1.39
w/ ALIGN 0.75 (+0.75) 31.33 (+8.99) 37.43 (+9.73) 1.39 (0.00)

Planning w/o ALIGN 6.72 13.33 23.67 4.17
w/ ALIGN 5.97 (-0.75) 26.95 (+13.62) 40.77 (+17.10) 4.17 (0.00)

Table 12: Generalization of ALIGN-generated interfaces generated with Qwen2.5-7B-Instruct
to Llama3.3-70B-Instruct. For each agent we report its score without the interface (w/o ALIGN)
and with the interface (w/ ALIGN); the value in parentheses is the absolute improvement.

Base Model: Llama3.3-70B-Instruct Embodied Web Tool-use

Method Interface ALFWorld ScienceWorld WebShop M3ToolEval

Vanilla w/o ALIGN 52.99 55.77 51.67 37.50
w/ ALIGN 43.28 (-9.71) 57.74 (+1.97) 62.07 (+10.40) 33.33 (-4.17)

ReAct w/o ALIGN 45.52 56.50 58.22 34.72
w/ ALIGN 47.01 (+1.49) 58.28 (+1.78) 53.83 (-4.39) 43.06 (+8.34)

Self-Consistency w/o ALIGN 54.48 56.66 50.37 36.11
w/ ALIGN 65.67 (+11.19) 59.24 (+2.58) 55.63 (+5.26) 34.72 (-1.39)

Self-Refine w/o ALIGN 38.06 56.97 38.40 1.39
w/ ALIGN 46.27 (+8.21) 60.17 (+3.20) 47.85 (+9.45) 0.00 (-1.39)

Planning w/o ALIGN 58.96 48.75 54.90 33.33
w/ ALIGN 76.87 (+17.91) 59.17 (+10.42) 62.60 (+7.70) 40.28 (+6.95)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 GENERALITY STUDY EXPERIMENTS

Table 13: Experimental results for GPT-4.1 series agents with ALIGN on ALFWorld.

Base Model Interface pick
and place

pick clean
and place

pick heat
and place

pick cool
and place

look at /
examine
in light

pick two obj
and place

Success
Rate (%)

gpt-4.1-mini w/o ALIGN 58.33 22.58 8.70 9.52 22.22 52.94 28.36
w/ ALIGN 95.83 87.10 26.09 80.95 27.78 52.94 64.93

gpt-4.1 w/o ALIGN 100.00 93.55 13.04 71.43 61.11 100.00 73.88
w/ ALIGN 100.00 100.00 78.26 100.00 77.78 100.00 93.28

For the validation on closed-source LLMs, we selected the GPT-4.1 family. Specifically, we experi-
mented with gpt-4.1-mini-2025-04-14 and gpt-4.1-2025-04-14. First, we used gpt-4.1-mini-2025-
04-14 as the base model to instantiate a Vanilla Agent and synthesize interface with ALIGN. We
then applied the same interface to an agent powered by gpt-4.1-2025-04-14. All other experimental
settings were identical to those in the main experiments. The results are presented in Table 13.

For domain-specific models trained within the environment, we used GiGPO-Qwen2.5-7B-Instruct-
ALFWorld, a state-of-the-art model post-trained on ALFWorld via reinforcement learning (Feng
et al., 2025). We reused the interface produced in our main experiment (generated with the base
Qwen2.5-7B-Instruct model under the Vanilla Agent method). At evaluation time, we considered
two configurations: (1) our Vanilla Agent setting, and (2) a configuration that matches the logic and
prompt setting used during training in the original paper.

C.5 ABLATION STUDY EXPERIMENTS

The full result of interface ablation experiment can be found in Table 14.

Table 14: Ablation study on the components of ALIGN. Values represent task success rates (%) or
scores. For ablated conditions (w/o INFERRULES, w/o WRAPSTEP), performance changes from the
‘Full’ are shown in parentheses.

Method Interface Embodied Web Tool

ALFWorld ScienceWorld Webshop M3ToolEval

Vanilla
Full 60.45 27.69 61.23 20.83
w/o INFERRULES 51.49 (-8.96) 24.34 (-3.35) 51.03 (-10.20) 18.06 (-2.77)
w/o WRAPSTEP 26.87 (-33.58) 22.97 (-4.72) 61.23 (-0.00) 11.11 (-9.72)

ReAct
Full 63.43 28.97 42.93 18.06
w/o INFERRULES 58.21 (-5.22) 26.89 (-2.08) 35.97 (-6.96) 9.72 (-8.34)
w/o WRAPSTEP 45.52 (-17.91) 22.53 (-6.44) 47.60 (+4.67) 19.44 (+1.38)

Self-Consistency
Full 69.40 25.41 61.10 16.67
w/o INFERRULES 67.91 (-1.49) 23.11 (-2.30) 55.67 (-5.43) 13.89 (-2.78)
w/o WRAPSTEP 23.13 (-17.91) 14.82 (-10.59) 60.67 (-0.43) 15.28 (-1.39)

Self-Refine
Full 40.30 22.99 52.30 6.94
w/o INFERRULES 32.84 (-7.46) 21.27 (-1.72) 46.33 (-5.97) 6.94 (-0.00)
w/o WRAPSTEP 5.97 (-34.33) 15.40 (-7.59) 47.80 (-4.50) 6.94 (-0.00)

Planning
Full 52.99 26.34 54.67 18.06
w/o INFERRULES 42.54 (-10.45) 25.56 (-0.78) 48.18 (-6.49) 16.67 (-1.39)
w/o WRAPSTEP 26.12 (-26.87) 16.48 (-9.86) 52.87 (-1.80) 16.67 (-1.39)

D TOKEN CONSUMPTION ANALYSIS

The average token consumption per iteration in the main experiment described in Section 4.1 is
shown in Table 15.

Due to the “Experimental Verification” setup, the Analyzer and Optimizer need to interact with the
environment multiple times, and all previous interaction histories are included as new prompt inputs to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: The average token consumption per iteration in the main experiment described in Sec-
tion 4.1.

ALFWorld ScienceWorld WebShop M3ToolEval

Analyzer
Input Token (M) 0.2770 0.4333 0.1783 0.1094
Output Token (M) 0.0040 0.0036 0.0048 0.0016
Total Token (M) 0.2809 0.4370 0.1831 0.1109

Optimizer
Input Token (M) 0.2619 0.2288 0.0669 0.1100
Output Token (M) 0.0087 0.0172 0.0040 0.0118
Total Token (M) 0.2706 0.2460 0.0709 0.1217

Total Total Token (M) 0.5515 0.6830 0.2540 0.2326

the LLM in each round of interaction. Additionally, when the Optimizer identifies that the generated
interface is imperfect, it needs to refine the previously generated interface and conduct experimental
verification again, leading to increased token consumption. However, as LLM capabilities continue
to improve and hallucination issues decrease, this cost will gradually reduce. Furthermore, it is worth
noting that:

• The INFERRULES wrapper and WRAPSTEP wrapper are implemented as python logic code,
which does not involve calls to models or agents, therefore not incurring additional token
consumption. On the contrary, as demonstrated in our experiments in Section 4.3, using
ALIGN-generated interfaces can help agents reduce repetitive meaningless actions, thereby
reducing the number of LLM calls and decreasing token consumption compared to not
using ALIGN-generated interfaces.

• Except when the Optimizer generates interface codes requiring the cutting edge LLMs (such as
Gemini 2.5 Pro), weaker and more cost-effective LLMs (such as GPT-4.1-mini) can be used at
other times, which will significantly reduce the operational costs of ALIGN.

• ALIGN-generated interfaces can generalize to different agent architectures and base LLMs.
This means that for each environment, using the ALIGN method to generate an interface only
once can bring performance improvements to different agents, regardless of agent version
updates. This also means that the cost of interface generation is a one-time expense, rather
than requiring the generation of new interfaces for each task execution. Therefore, from an
amortization perspective, the method’s cost becomes increasingly economical as the environment
is utilized more frequently, with the one-time interface design cost being distributed across
multiple uses and becoming proportionally smaller with increased usage.

E IMPLEMENTATION DETAILS

E.1 BENCHMARKS TASK SPLITS

The task splits of benchmarks we use are as follows:

(1) ALFWorld (Shridhar et al., 2021): We adhere to the original dataset partitioning presented in the
paper, wherein the tasks from the “eval_out_of_distribution” category are used as the test set, and the
“train” category is designated as the training set. In each iteration, we randomly select three tasks
from the training set of each task type to serve as the training data for the agent’s interaction.

(2) ScienceWorld (Wang et al., 2022):We follow the original partitioning of the train and test sets as
described in the paper. For efficiency reasons, during testing, we select at most the first five tasks
from the 30 available task types for evaluation. In each iteration, we randomly select one task from
the training set of each task type to be used as the training data for the agent’s interaction.

(3) WebShop (Yao et al., 2022): In alignment with the setup of Yao et al. (2023), we use tasks with
IDs ranging from 0 to 49 (50 tasks in total) as the test set, and tasks with IDs from 50 to 199 (150
tasks in total) as the training set. In each iteration, we randomly select 20 tasks from the training set
to serve as the training data for the agent’s interaction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(4) M3ToolEval (Wang et al., 2024b): Since M3ToolEval does not provide a distinct training set
division, we select two tasks from each task type in the original dataset as the training set, with the
remaining tasks used as the test set. In each iteration, the entire training set is utilized for the agent’s
interaction.

E.2 HYPERPARAMETER AND EXPERIMENT SETTING

For all the agents, we deploy them uniformly using vllm (Kwon et al., 2023) across 8 Nvidia A100
80GB GPUs, with the inference temperature set to 0.0. The models utilized contain Qwen2.5-7B-
Instruct2 (Team, 2024), Qwen2.5-14B-Instruct3 (Team, 2024), Llama3.1-8B-Instruct4 (Meta, 2025a)
and Llama3.3-70B-Instruct5 (Meta, 2025b).

In ALIGN, we use Gemini 2.5 Pro (gemini-2.5-pro-exp-03-25)(Google, 2025) for Optimizer to
generate new interface, with the temperature set to 0.2. For other scenarios requiring the use of an
LLM, we employ GPT-4.1 (gpt-4.1-2025-04-14)(OpenAI, 2025). We set K = 8 during experiments.

E.3 TOOLS FOR EXPERIMENTAL VERIFICATION

In order to implement the experimental verification process mentioned in Section 3.3, we have
encapsulated the following tools for Analyzer and Optimizer to interact with the interface-wrapped
environment:

(1) init_simulator(task_id, interface): Initializes an experimental task, specifying
the task ID and the interface code.

(2) reset_simulator(): Resets the experimental task.

(3) run_task(): Runs the current task until completion, returning the interaction trajectory.

(4) exec_agent_action(agent_action): Executes a specific action and returns the en-
hanced observation after the interface processing.

(5) get_agent_action(): Based on the current trajectory, returns the next action to be issued
by the agent.

(6) change_obs(obs): Modifies the observation of the previous action execution.

E.4 PROMPT TEMPLATES

We present the prompt template of the Analyzer and Optimizer for ALFWorld. For the prompt
templates of other benchmarks, please refer to the supplemental materials. For the WebShop and
M3ToolEval environments, no “Gold Action and Observation Sequence” is provided.

Analyzer Prompt Template of Misalignment Analysis

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions

2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to analyze the logs from a recent task to determine whether such a mis-
alignment occurred, preventing a fair assessment of the Agent’s capabilities. And this
misalignment has not been fixed by current ‘WrapStep‘ function. Your analysis will guide us
in addressing this issue moving forward.

———————————————————————–
Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ Interface }}
“‘

———————————————————————–
Environment Logs

“‘txt
{{ logs }}
“‘

Here, each ‘Observation‘ is the feedback returned to the Agent after it executes an
action.

———————————————————————–
Gold Action and Observation Sequence

“‘txt
{{ gold_action_obs_sequence }}
“‘

———————————————————————–
Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }}

———————————————————————–
Your Task

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Determine whether, during this task, there was a misalignment between the Envi-
ronment’s World Model and the Agent’s World Model that hindered a fair assessment of the
Agent’s capabilities. Choose exactly one of the following outputs:

If there is NO misalignment (i.e., the Agent’s failures stem from its own errors or
limitations, not a mismatch with the Environment’s World Model), output:
<analysis_result> No Misalignment </analysis_result>

If there IS a misalignment (i.e., the Environment’s World Model conflicts with the
Agent’s World Model), output:
<analysis_result> Found Misalignment </analysis_result>
<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current ‘WrapStep‘ function.
</environment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:
“‘txt
Analysis Result 1
Analysis Task ID: xxx
Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle", etc.
Agent Action Case: xxx # The specific action the Agent attempted to perform.
Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.
Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.
Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide ’xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."
Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function"

Analysis Result 2
...
“‘

Note: You should not generate duplicate misalignment analysis results as the ones
already provided in the ‘Environment Logics and Misalignment Analyzed in the Previous
Steps‘ section.

Analyzer Prompt Template of Experimental Verification

User message:
Now you should conduct simulation experiments in the simulator to verify that the
environment rules you hypothesized and Misalignment you identified truly exists. You must
perform sufficient experiments to confirm or refute your suspicion.

Here are the operations you can use:

1. init_simulator(task_id: str)
- Initializes a new simulator for the specified ‘task_id‘.
- ‘task_id‘ must be in the format ’int-int’ where the first int ∈ [0, 5].
- The different task types are mapped as follows:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0: ’pick_and_place’,
1: ’pick_clean_and_place’,
2: ’pick_heat_and_place’,
3: ’pick_cool_and_place’,
4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the ‘WrapStep‘ function.

4. change_last_action_observation(obs: str)
- Updates the last observation returned by the simulator to the specified ‘obs‘.
- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()
- Retrieves the next action that the real Agent would perform under the current simulation
conditions.
- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()‘ call, along with
the latest observations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>
<environment_logic_and_misalignments> the new environment rules and misalignments
identified by you, which have not been fixed by current ‘WrapStep‘ function. </environ-
ment_logic_and_misalignments>

The format of the environment logic and misalignment is as follows:
“‘txt
Analysis Result 1
Analysis Task ID: xxx
Agent Action Type: xxx # The type of action the Agent attempted to perform, such as
"examine", "move object to receptacle", etc.
Agent Action Case: xxx # The specific action the Agent attempted to perform.
Agent High-Level Reasoning Intent: xxx # The Agent’s high-level reasoning intent, which
may be a general description of the action it was trying to perform.
Environment World Model Rule: xxx # The rule from the Environment’s World Model that
don’t align the Agent’s World Model.
Sufficient Environment Feedback: xxx # to offer the Agent adequate information to bridge
gaps in understanding the environment’s world model. such as "The environment should
provide ’xxx’ feedback when the Agent attempts to operate on a receptacle without first
going to it."
Type: "Bug of current WrapStep function" or "Need to add new logic in the WrapStep
function"

Analysis Result 2
...
“‘

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:

<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>
<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

Note:
You should verify the correctness of the following, step by step, through your experiments:
1. environment_rules: Use ‘execute_agent_action‘ to confirm that the environment rules you
hypothesized are indeed correct, and current ‘WrapStep‘ function is not sufficient.
2. agent_intent_description: Obtain the Agent’s intended behavior (e.g., via
‘get_next_agent_action‘) and simulate it by using ‘WrapStep‘ to confirm whether it
aligns with your description.
3. identified_misalignment: Through chaning the environment feedback, you can verify
whether the misalignment you identified is indeed correct and the environment feedback you
hypothesized is indeed sufficient. You can use ‘WrapStep‘ to simulate the agent’s action,
then use ‘change_last_action_observation‘ to change the environment feedback, and finally
use ‘get_next_agent_action‘ to check whether the agent can correctly identify the next action.

Analyzer Prompt Template of Reranking Misalignments Analysis (Ablation Study)

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have analyzed the logs from a recent task and identified
some potential misalignments. Your task is to review these misalignments and choose the
most appropriate one.

———————————————————————–
Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ Interface }}
“‘

———————————————————————–
Environment Logs

“‘txt
{{ logs }}
“‘

Here, each ‘Observation‘ is the feedback returned to the Agent after it executes an
action.

———————————————————————–
Gold Action and Observation Sequence

“‘txt
{{ gold_action_obs_sequence }}
“‘

———————————————————————–
Environment Logics and Misalignment Analyzed in the Previous Steps

{{ environment_logics }} Note: These logics may not be accurate. They are the
environment rules that were previously hypothesized and may contain errors.

———————————————————————–
Your Task

Choose the most appropriate misalignment analyzed by human experts from the list
below:

{{ new_environment_logics }}

You should respond in format as follows:
“‘
<review> Your review of each expert output one by one </review>
<expert_id> id of the selected expert output, only the number </expert_id>
“‘

Optimizer Prompt Template of Interface Generation

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Your task is to refine the environment’s behavior based on the misalignment identi-
fied by the AnalysisAgent, ensuring the Agent’s true intentions are executed and its reasoning
capabilities are fairly assessed.

———————————————————————–
Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}
“‘

———————————————————————–
Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

———————————————————————–
New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

———————————————————————–
Your Task

Based on the misalignments identified by the AnalysisAgent, you need to refine
and enhance the ‘InferRules‘ function and ‘WrapStep‘ function to align the Environment’s
World Model with the Agent’s actions and provide clearer feedback. Your output should
present the new versions of these functions, ensuring the Agent’s high-level reasoning intent
is preserved.
Please ensure you follow these requirements:

1. **Function Signature**
The function signature must be:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

“‘python
def InferRules(init_obs, task)
- init_obs: str, the initial observation from the environment, containing all receptacles.
- task: str, the task description.

def WrapStep(env, init_obs, task, agent_action: str, logger)
“‘

2. **Return Values**
The ‘InferRules‘ function’s return value must be a string that describes the environment rules.

The ‘WrapStep‘ function’s return value must be three items:
“‘python
obs: str, reward: bool, done: bool
“‘

3. **‘env.step‘ Usage**
The only permitted usage pattern for ‘env.step‘ is:
“‘python
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
“‘
No alternative usage forms are allowed. Each call to env.step causes an irreversible change to
the environment state; actions must therefore be chosen carefully.

4. **Package Imports**
You may import other packages if necessary, but you must include all imports in your code.

5. **Multiple Calls and Conditional Returns**
You are free to call ‘env.step‘ multiple times or return different ‘obs‘ depending on
‘agent_action‘ or the outcomes of these calls.

6. **You can use logger.debug**
You can use ‘logger.debug‘ to log any information you find useful. The logging will be
captured and returned to you in the future for further analysis.

7. Do not modify any aspects not explicitly identified by the AnalysisAgent in the
“New Environment Logics and Misalignment Analyzed by AnalysisAgent” section.

8. You must use the following approach when addressing the identified misalign-
ment:
- For each action defined in environment, provide clear, informative, and sufficient feedback
from the environment whenever an invalid action is attempted, guiding the Agent toward
understanding and adhering to the environment’s rules.

9. **Output Format**
You must provide the output strictly in the following format:
<thought>YOUR_THOUGHT_PROCESS_HERE</thought>
<code>YOUR_CODE_HERE</code>

Please ensure your final answer follows these guidelines so that we can accurately
bridge the misalignment and allow the environment to execute the Agent’s true intentions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Optimizer Prompt Template of Experimental Verification

User message:
Now you should conduct simulation experiments in the simulator to verify if the ‘InferRules‘
and ‘WrapStep‘ function you provided is correct for the new environment logics and
misalignment analyzed by the AnalysisAgent.

You must perform sufficient experiments to confirm or refute your suspicion. Here
are the operations you can use:

1. init_simulator(task_id: str)
- Initializes a new simulator for the specified ‘task_id‘.
- ‘task_id‘ must be in the format ’int-int’ where the first int ∈ [0, 5].
- The different task types are mapped as follows:

0: ’pick_and_place’,
1: ’pick_clean_and_place’,
2: ’pick_heat_and_place’,
3: ’pick_cool_and_place’,
4: ’look_at_or_examine_in_light’,
5: ’pick_two_obj_and_place’

- All subsequent operations occur within this initialized simulator.

2. reset_simulator()
- Resets the current simulator to its initial state.

3. execute_agent_action(agent_action: str)
- Executes an agent action using the ‘WrapStep‘ function you generated.

4. change_last_action_observation(obs: str)
- Updates the last observation returned by the simulator to the specified ‘obs‘.
- This is useful for simulating the agent’s next action in a different environment feedback
context.

5. get_next_agent_action()
- Retrieves the next action that the real Agent would perform under the current simulation
conditions.
- Note: The Agent’s choice of the next action is based on the current environment state,
including the outcomes of any previous ‘step()‘ or ‘get_next_agent_action()‘ call, along with
the latest observations.

6. run_task(task_id: str)
- Runs the entire task in the simulator and returns the running log.
- After running the whole task, you need to call ‘init_simulator‘ or ‘reset_simulator‘ to
reinitialize the simulator for further operations.

If you believe you have reached a conclusion from your experiments, provide it in
this format:

<thought> Your reasoning here </thought>
<if_need_refine> True/False </if_need_refine>
<refine_strategy> Your strategy for refining the WrapStep function, if if_need_refine is True
</refine_strategy>

If you need to carry out more operations in the simulator, respond in the following
format, specifying exactly one operation per turn:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

<thought> Your reasoning here, you should consider all hypotheses if the simula-
tion result is not as expected </thought>
<action> The single operation you wish to perform (e.g., init_simulator(task_id="x-y"),
step(action="x"), execute_agent_action(agent_action="x"), etc.) </action>

Optimizer Prompt Template of Reranking Interface Generation (Ablation Stuty)

User message:
In modern benchmarks evaluating LLM Agent reasoning capabilities, human designers create
an Environment with a set of rules defining how tasks are accomplished. These rules, referred
to as the Environment’s World Model, specify the sequence of actions required to achieve
specific outcomes. For example, the Environment’s World Model might dictate that certain
actions (e.g., operating on a receptacle) can only be performed after prerequisite actions (e.g.,
moving to the receptacle).

Meanwhile, the Agent operates based on its own World Model, which it constructs
by interpreting the task and environment prompts. The Agent first determines its high-level
reasoning intent—its understanding of what needs to be done—and then selects actions
according to its internal World Model. However, because the Environment’s World Model
is manually crafted and may not be fully conveyed through prompts, the Agent’s World
Model might differ, leading to unexpected behavior. For instance, the Agent might choose an
action that aligns with its intent but violates the Environment’s rules, or it might misinterpret
feedback due to insufficient information from the Environment.

We define a misalignment between the Environment’s World Model and the Agent’s
World Model as a situation where:
- The Environment provides feedback that does not sufficiently clarify its World Model,
leaving the Agent unable to adjust its understanding of the rules.

Now other human experts have generated a set of code patches to address the mis-
alignment between the Environment’s World Model and the Agent’s World Model. Your task
is to evaluate these patches and select the best one.

———————————————————————–
Experimental Environment Evaluation Template

“‘python
{{ experimental_template }}
“‘

In this template, the function ‘InferRules‘ is used to define the environment rules.
The function ‘WrapStep‘ handles post-processing of the Agent’s actions (e.g., splitting them
into multiple steps, performing pre-checks, returning more detailed feedback, etc.). This
function should not interfere with the Agent’s own reasoning. There current implementation
is as follows:

“‘python
{{ WrapStep }}
“‘

———————————————————————–
Environment Logics and Misalignment Analyzed by AnalysisAgent Previously

{{ last_environment_logics }}

———————————————————————–

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

New Environment Logics and Misalignment Analyzed by AnalysisAgent

{{ new_environment_logics }}

———————————————————————–
Your Task

Choose the best code from the following options to address the misalignment be-
tween the Environment’s World Model and the Agent’s World Model:

{{ code_patches }}

You should respond in format as follows:
“‘
<review> Your review of each code one by one </review>
<code_id> id of the selected result, only the number </code_id>
“‘

We present the prompt template of the Vanilla agent in ALFWorld to illustrate the usage of the
INFERRULES. For the prompt templates of other agent methods and benchmarks, please refer to the
supplemental materials.

Vanilla Agent Prompt Template in ALFWorld

System message:
You are an AI assistant solving tasks in a household environment. Your goal is to break down
complex tasks into simple steps and plan your actions accordingly.

Action Space

In this environment, you have a set of high-level actions at your disposal, each cor-
responding to a typical household activity. These actions are:

- look: look around your current location
- inventory: check your current inventory
- go to (receptacle): move to a receptacle
- open (receptacle): open a receptacle
- close (receptacle): close a receptacle
- take (object) from (receptacle): take an object from a receptacle
- move (object) to (receptacle): place an object in or on a receptacle
- examine (something): examine a receptacle or an object
- use (object): use an object
- heat (object) with (receptacle): heat an object using a receptacle
- clean (object) with (receptacle): clean an object using a receptacle
- cool (object) with (receptacle): cool an object using a receptacle
- slice (object) with (object): slice an object using a sharp object

Although each action may internally consist of multiple embodied steps (e.g., walk-
ing to the sink, turning a knob, etc.), from your perspective you need only provide one
high-level action at a time.

Instructions

Single Action per Turn
At each step, you must respond with exactly one action (i.e., the next “thought”). Use the
format:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

ACTION [object/receptacle specifier]
ACTION [object/receptacle specifier]
For example:
take apple from table
or
go to kitchen.

Environment Feedback
After you provide your single action, the environment will automatically execute it and return
the resulting observation. You then decide on your next action based on the updated state.

Reasoning (Chain of Thought)
You may use hidden reasoning to figure out the best next step. However, only output the
single action that represents your decision. Do not reveal your entire chain of thought.

Continue Until Task Completion
You will iterate this process—receiving the environment’s feedback, deciding on the next
action, and outputting a single action—until the task is finished.

Environment Rule

{InferRules(init_obs, task)}

User message:
Task

{initial_obs}

Begin by examining the environment or taking any initial steps you find relevant.
Remember, provide only one action each time.

E.5 INITIALIZED INTERFACE

Initialized interface we used in ALFWorld:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
return obs, reward, done

Initialized interface we used in ScienceWorld:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, done
status and score(returned by the environment).
"""
obs, _, done, info = env.step(agent_action)
return obs, done, info["score"]

Initialized interface we used in WebShop:

def InferRules(init_obs, task):
"""
Contains the rules for environment and task execute logic.
"""
return "There is no rule for this environment."

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done = env.step(agent_action)
return obs, reward, done

Initialized interface we used in M3ToolEval:

def InferRules(task_name, task_type_idx):
"""
Contains the rules for environment and task execute logic for
different task types.
"""
return "There is no rule for this environment."

def WrapStep(env, task_name, instruction, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.
"""
obs, reward, done = env.step(agent_action)
return obs, reward, done

F CASE STUDY

F.1 MISALIGNMENTS ANALYZED BY ANALYZER

We present the misalignments analyzed by Analyzer with Vanilla agent. For the misalignments
analyzed by Analyzer with other agent methods, please refer to the supplemental materials.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

ALFWORLD

Agent Action Type: heat object with receptacle
Agent Action Case: heat mug 1 with stoveburner 1
Agent High-Level Reasoning Intent: The Agent intended to heat the mug using the stoveburner

to fulfill the “put a hot mug in cabinet” task requirement.
Environment Rule: The Environment requires heating the mug specifically by

the microwave, and the Agent must be at and open the
microwave before heating. Heating with the stoveburner or
heating without opening the microwave results in no effect.

Sufficient Environment Feedback: The environment feedback “Nothing happens.” after heat-
ing with stoveburner or heating without opening the mi-
crowave is insufficient to clarify the correct heating method
and prerequisites.

SCIENCEWORLD

Agent Action Type: pick up OBJ from CONTAINER / take OBJ from CON-
TAINER

Agent Action Case: pick up orange seed from seed jar, take orange seed from
seed jar, take seed from seed jar, pick up seed from seed jar

Agent High-Level Reasoning Intent: Agent intends to retrieve a seed from the “seed jar” con-
tainer using common interaction verbs and syntax (“pick
up X from Y”, “take X from Y”).

Environment Rule: The environment does not support the “take OBJ from
CONTAINER” syntax. Furthermore, for the “seed jar”, the
“pick up OBJ from CONTAINER“ syntax is also invalid.
The required procedure to access the seeds involves picking
up the entire container first (“pick up seed jar”) and then
likely using a “move” command later. Direct retrieval
from the container using “pick up” or “take with from” is
disallowed.

Sufficient Environment Feedback: The current generic feedback provided by “pro-
cess_agent_action” for “No known action” is insufficient.
Sufficient feedback should diagnose the invalid syntax or
procedure, e.g., “The action ‘take X from Y’ is not valid.
To get items from the ‘seed jar’, try picking up the ‘seed
jar’ first using ‘pick up seed jar’.” Simulation confirmed
this guides the agent correctly.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

WEBSHOP

Agent Action Type: click
Agent Action Case: click[1 ounce (pack of 21)] (or similar option clicks like

flavor, color, etc.)
Agent High-Level Reasoning Intent: The Agent intended to select a specific product configura-

tion (e.g., size) required by the task before proceeding to
purchase or further inspection.

Environment Rule: When an Agent clicks on a product option (e.g., size, color,
flavor), the internal state of the environment updates to re-
flect this selection. This selection affects the final product
configuration (and potentially price, availability, descrip-
tion shown) when subsequent actions like “Buy Now” or
viewing details are taken. The visual representation of the
page should ideally reflect this selected state.

Sufficient Environment Feedback: The environment currently returns only a confirmation mes-
sage (e.g., “You have clicked [Option Name].”). This is
insufficient as it doesn’t show the agent the result of its
action in the context of the full page. Sufficient feedback
would involve returning the complete observation of the
item page *after* the option click, reflecting the updated
state (e.g., showing the selected size/flavor visually marked,
potentially an updated price, updated product title/descrip-
tion if applicable, and all other page elements like “[Buy
Now]”). This allows the agent to verify the selection and
its consequences (like price changes) before taking the next
step.

M3TOOLEVAL

Agent Action Type: web_browsing
Agent Action Case: click_url(“/about”)
Agent High-Level Reasoning Intent: The Agent is attempting to use the click_url tool to navigate

to the “/about” page by following the clickable link, as per
the tool description and the rendered webpage content.

Environment Rule: The Environment’s World Model expects tool invocations
to match the tool name exactly, with arguments provided
after the tool name and separated by a comma (i.e., “Ac-
tion: click_url, /about End Action” instead of “Action:
click_url(‘/about’) End Action”). However, the Agent,
following the tool signature format shown in the tool de-
scriptions (e.g., click_url(url: str)), invokes the tool as
click_url(“/about”), which is a common programming con-
vention.

Sufficient Environment Feedback: The feedback “Cound not find tool with name
click_url(‘/about’)” is insufficient for the Agent to un-
derstand the correct invocation format. The environment
should provide feedback such as: “Tool arguments should
be provided after the tool name, separated by a comma, e.g.,
‘Action: click_url, /about End Action’ instead of ‘Action:
click_url(‘/about’) End Action’.”

F.2 INTERFACES GENERATED BY ALIGN

We present the ALIGN-generated interface with Vanilla agent in ALFWorld to illustrate the interface
case. For the ALIGN-generated interface with other agent methods and other environments, please
refer to the supplemental materials.

ALIGN-generated interface with Vanilla agent in ALFWorld:

def InferRules(init_obs, task):

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

"""
Provides the rules for environment and task execute logic for
different task types.

Args:
init_obs: Initial observation string containing information

about the environment
task: The specific task description

Returns:
A string describing the environment rules

"""
return """
1. Navigation and Location Rules:

- You must go to a receptacle before you can examine it, open it,
close it, or interact with objects in/on it.

- You can only interact with objects and receptacles that are at
your current location.

- If you try to interact with a receptacle or object that is not
at your current location, you will be informed that you need to go
to that location first.

- After successfully going to a location, you are at that
location until you go somewhere else.

2. Object Interaction Rules:
- To take an object, it must be present at your current location

and visible (not inside a closed receptacle).
- Once you take an object, it goes into your inventory and is no

longer at its original location.
- To move an object to a receptacle, you must have the object in

your inventory and be at the target receptacle.
- To use, heat, clean, cool, or slice objects, you must have the

required objects in your inventory or be at their location.
- You cannot take an object that is already in your inventory.

3. Container Rules:
- Some receptacles can be opened and closed (like refrigerators,

microwaves, cabinets, etc.).
- You must open a closed container before you can take objects

from it or put objects into it.
- Objects inside closed containers are not visible or accessible

until the container is opened.

4. Action Sequence Requirements:
- Some tasks require a specific sequence of actions - for example

, to heat food, you need to:
a) Go to the microwave
b) Open the microwave
c) Place the food inside
d) Close the microwave
e) Use the microwave

- The environment will guide you if you’re missing a prerequisite
step for an action.

5. Feedback Interpretation:
- If an action cannot be performed, the environment will explain

why and what prerequisites are needed.
- The environment will inform you if you try to take an object

that’s already in your inventory.
- The environment will inform you if you try to move an object

that’s not in your inventory.
- Pay attention to the feedback to understand the current state

of the environment and what actions are possible next.
- When you successfully go to a location, the environment will

describe what’s there.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

"""

def WrapStep(env, init_obs, task, agent_action: str, logger):
"""
Process the agent action and return the next observation, reward,
and done status.

Args:
env: The environment object
init_obs: Initial observation string containing information

about the environment
task: The specific task description
agent_action: The action string from the agent
logger: Logger object for debugging information

Returns:
obs: Observation string after the action
reward: Boolean indicating if a reward was received
done: Boolean indicating if the task is complete

"""
Track the agent’s current location using an attribute on the env
object
if not hasattr(env, ’_current_location’):

env._current_location = None

Track container states (open/closed) using an attribute on the env
object
if not hasattr(env, ’_container_states’):

env._container_states = {}

action_item = {
’matched’: False,
’action’: None,
’object’: None,
’receptacle’: None,
’object2’: None

}

Parse the agent action
Simple actions without parameters
if agent_action.lower() == ’look’ or agent_action.lower() == ’
inventory’:

action_item[’matched’] = True
action_item[’action’] = agent_action.lower()

Pattern: go to (receptacle)
elif agent_action.lower().startswith(’go to ’):

receptacle = agent_action[6:].strip()
action_item[’matched’] = True
action_item[’action’] = ’go to’
action_item[’receptacle’] = receptacle

Pattern: open/close (receptacle)
elif agent_action.lower().startswith(’open ’) or agent_action.lower
().startswith(’close ’):

action = ’open’ if agent_action.lower().startswith(’open ’) else
’close’

receptacle = agent_action[len(action)+1:].strip()
action_item[’matched’] = True
action_item[’action’] = action
action_item[’receptacle’] = receptacle

Pattern: take (object) from (receptacle)
elif ’take ’ in agent_action.lower() and ’ from ’ in agent_action.
lower():

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

parts = agent_action.split(’ from ’)
if len(parts) == 2:

obj = parts[0][5:].strip() # Remove ’take ’ prefix
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’take from’
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

Pattern: move (object) to (receptacle)
elif ’move ’ in agent_action.lower() and ’ to ’ in agent_action.
lower():

parts = agent_action.split(’ to ’)
if len(parts) == 2:

obj = parts[0][5:].strip() # Remove ’move ’ prefix
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’move to’
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

Pattern: examine (something)
elif agent_action.lower().startswith(’examine ’):

something = agent_action[8:].strip()
action_item[’matched’] = True
action_item[’action’] = ’examine’

Determine if it’s a receptacle or object by checking if it
appears in the initial observation

if something.lower() in init_obs.lower():
action_item[’receptacle’] = something

else:
action_item[’object’] = something

Pattern: use (object)
elif agent_action.lower().startswith(’use ’):

obj = agent_action[4:].strip()
action_item[’matched’] = True
action_item[’action’] = ’use’
action_item[’object’] = obj

Pattern: heat/clean/cool (object) with (receptacle)
elif any(agent_action.lower().startswith(action) for action in [’
heat ’, ’clean ’, ’cool ’]) and ’ with ’ in agent_action.lower():

for action in [’heat ’, ’clean ’, ’cool ’]:
if agent_action.lower().startswith(action):

parts = agent_action.split(’ with ’)
if len(parts) == 2:

obj = parts[0][len(action):].strip()
receptacle = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = action.strip()
action_item[’object’] = obj
action_item[’receptacle’] = receptacle

break

Pattern: slice (object) with (object)
elif agent_action.lower().startswith(’slice ’) and ’ with ’ in
agent_action.lower():

parts = agent_action.split(’ with ’)
if len(parts) == 2:

obj = parts[0][6:].strip() # Remove ’slice ’ prefix
obj2 = parts[1].strip()
action_item[’matched’] = True
action_item[’action’] = ’slice’

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

action_item[’object’] = obj
action_item[’object2’] = obj2 # Using object2 for the tool

used for slicing

If action wasn’t matched, provide feedback
if not action_item[’matched’]:

return f"I don’t understand the action ’{agent_action}’. Please
use one of the allowed actions from the action space.", False, False

logger.debug(f"Parsed action: {action_item}")

Get the current observation to check location
test_obs, _, _, _ = env.step([’look’])
test_obs = test_obs[0]
logger.debug(f"Current observation after ’look’: {test_obs}")

Get inventory to check what objects the agent has
inventory_obs, _, _, _ = env.step([’inventory’])
inventory_obs = inventory_obs[0]
logger.debug(f"Current inventory observation: {inventory_obs}")

Improved function to check if an object is in inventory
def is_in_inventory(object_name):

object_name_lower = object_name.lower()
logger.debug(f"Checking if ’{object_name_lower}’ is in inventory

")

Extract inventory items from the observation
inventory_items = []

Check for common inventory patterns
if "carrying:" in inventory_obs.lower():

carrying_section = inventory_obs.lower().split("carrying:")
[1].strip()

inventory_items = [item.strip() for item in carrying_section
.split(’,’)]

elif "inventory:" in inventory_obs.lower():
inventory_section = inventory_obs.lower().split("inventory:"

)[1].strip()
inventory_items = [item.strip() for item in

inventory_section.split(’,’)]
elif "you are carrying:" in inventory_obs.lower():

carrying_section = inventory_obs.lower().split("you are
carrying:")[1].strip()

inventory_items = [item.strip() for item in carrying_section
.split(’,’)]

Also check line by line for inventory items
inventory_lines = inventory_obs.lower().split(’\n’)
for line in inventory_lines:

line = line.strip()
if line and not line.startswith(("you are", "carrying:", "

inventory:")):
inventory_items.append(line)

logger.debug(f"Extracted inventory items: {inventory_items}")

Check if object_name or its base name (without numbers) is in
inventory

base_name = ’’.join([c for c in object_name_lower if not c.
isdigit()]).strip()

for item in inventory_items:
Check for exact match

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

if object_name_lower == item or f"{object_name_lower} (in
your inventory)" == item:

logger.debug(f"Found exact match ’{item}’ in inventory")
return True

Check for base name match (without numbers)
if base_name != object_name_lower and (base_name == item or

f"{base_name} (in your inventory)" == item):
logger.debug(f"Found base name match ’{item}’ in

inventory")
return True

Check if item contains the object name
if object_name_lower in item:

logger.debug(f"Found partial match ’{item}’ containing
’{object_name_lower}’ in inventory")

return True

Check if item contains the base name
if base_name != object_name_lower and base_name in item:

logger.debug(f"Found partial match ’{item}’ containing
base name ’{base_name}’ in inventory")

return True

Direct check for common patterns in the full inventory text
patterns = [

f"carrying: {object_name_lower}",
f"{object_name_lower} (in your inventory)",
f"you are carrying: {object_name_lower}",
f"inventory: {object_name_lower}"

]

if base_name != object_name_lower:
patterns.extend([

f"carrying: {base_name}",
f"{base_name} (in your inventory)",
f"you are carrying: {base_name}",
f"inventory: {base_name}"

])

for pattern in patterns:
if pattern in inventory_obs.lower():

logger.debug(f"Found pattern ’{pattern}’ in inventory
text")

return True

logger.debug(f"’{object_name_lower}’ not found in inventory")
return False

Helper function to check if we’re at a location
def is_at_location(location_name):

location_name_lower = location_name.lower()

If we’ve already tracked this location, use the tracked value
if env._current_location and location_name_lower in env.

_current_location.lower():
logger.debug(f"Using tracked location: ’{env.

_current_location}’")
return True

Check if location is mentioned in current observation after "
You are in"

if "you are in" in test_obs.lower() and location_name_lower in
test_obs.lower():

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

logger.debug(f"Location ’{location_name_lower}’ mentioned in
observation after ’You are in’")

return True

Check if the location is in the first line of the observation
(common format)

first_line = test_obs.split(’\n’)[0].lower()
if location_name_lower in first_line:

logger.debug(f"Location ’{location_name_lower}’ found in
first line of observation")

return True

Check if the observation mentions items at/on the location
location_patterns = [

f"on the {location_name_lower}",
f"in the {location_name_lower}",
f"at the {location_name_lower}"

]

for pattern in location_patterns:
if pattern in test_obs.lower():

logger.debug(f"Found pattern ’{pattern}’ in observation"
)

return True

logger.debug(f"Not at location ’{location_name_lower}’")
return False

Handle go to action
if action_item[’action’] == ’go to’:

receptacle = action_item[’receptacle’]
receptacle_lower = receptacle.lower()

Check if we’re already at this location
if is_at_location(receptacle_lower):

env._current_location = receptacle
return f"You are already at the {receptacle}. You can

interact with it directly.", False, False

Execute the go to action
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]

Update the current location if the action was successful
if obs and "nothing happens" not in obs.lower():

env._current_location = receptacle

If the observation doesn’t clearly indicate arrival,
enhance it

if not any(phrase in obs.lower() for phrase in [f"you arrive
at", f"you are at", f"you see {receptacle_lower}"]):

obs = f"You arrive at the {receptacle}. {obs}"
else:

Provide more informative feedback
obs = f"Cannot go to {receptacle}. It might not be a valid

location or not accessible from here."

return obs, reward, done

Handle examine, open, close, take from, move to actions that
require being at location
if action_item[’action’] in [’examine’, ’open’, ’close’, ’take from’
, ’move to’]:

receptacle = action_item[’receptacle’].lower() if action_item[’
receptacle’] else ""

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

logger.debug(f"Action: {action_item[’action’]} with receptacle:
{receptacle}")

Skip location check for examining objects in inventory
if action_item[’action’] == ’examine’ and action_item[’object’]

and is_in_inventory(action_item[’object’]):
Execute the examine action directly
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
return obs, reward, done

Check if we need to be at a receptacle and if we’re there
if receptacle and not is_at_location(receptacle):

action_name = action_item[’action’]
if action_name == ’examine’:

return f"You must go to the {action_item[’receptacle’]}
first before examining it.", False, False

elif action_name == ’take from’:
return f"You need to go to the {action_item[’receptacle

’]} first before taking objects from it.", False, False
elif action_name == ’move to’:

return f"You need to go to the {action_item[’receptacle
’]} first before placing objects on/in it.", False, False

else: # open or close
return f"You need to go to the {action_item[’receptacle

’]} first before you can {action_name} it.", False, False

Handle open and close actions to track container states
if action_item[’action’] in [’open’, ’close’]:

receptacle = action_item[’receptacle’]

Execute the action
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]

Check for "Nothing happens" and provide more informative
feedback

if obs.strip() == "Nothing happens.":
if action_item[’action’] == ’open’:

return f"Unable to open {receptacle}. It might already
be open or not be openable.", reward, done

else: # close
return f"Unable to close {receptacle}. It might already

be closed or not be closable.", reward, done

Update container state tracking
if "successfully" in obs.lower() or "already" in obs.lower():

env._container_states[receptacle.lower()] = ’open’ if
action_item[’action’] == ’open’ else ’closed’

return obs, reward, done

Check if taking an object that’s already in inventory
if action_item[’action’] == ’take from’:

object_name = action_item[’object’]
if is_in_inventory(object_name):

return f"You already have the {object_name} in your
inventory. No need to take it again.", False, False

Check if moving an object that’s not in inventory
if action_item[’action’] == ’move to’:

object_name = action_item[’object’]
if not is_in_inventory(object_name):

return f"You don’t have the {object_name} in your inventory.
You need to take it first.", False, False

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Execute the action in the environment
logger.debug(f"Executing action in environment: {agent_action}")
obs, reward, done, info = env.step([agent_action])
obs, reward, done = obs[0], info[’won’][0], done[0]
logger.debug(f"Environment response: {obs}")

Handle special case for "Nothing happens" response
if obs.strip() == "Nothing happens." and action_item[’action’] == ’
take from’:

object_name = action_item[’object’]
receptacle_name = action_item[’receptacle’]

Check if it might be because the object is already in
inventory

if is_in_inventory(object_name):
return f"You already have the {object_name} in your

inventory. No need to take it again.", reward, done

Check if it might be because the container is closed
receptacle_state = env._container_states.get(receptacle_name.

lower())
if receptacle_state == ’closed’:

return f"You need to open the {receptacle_name} first before
taking objects from it.", reward, done

Otherwise, the object might not be there
return f"There is no {object_name} at the {receptacle_name} to

take. It might be elsewhere or already taken.", reward, done

Handle special case for "Nothing happens" response for move action
if obs.strip() == "Nothing happens." and action_item[’action’] == ’
move to’:

object_name = action_item[’object’]
receptacle_name = action_item[’receptacle’]

Double-check if the object is in inventory
if is_in_inventory(object_name):

If object is in inventory but move fails, check if
receptacle is closed

receptacle_state = env._container_states.get(receptacle_name
.lower())

if receptacle_state == ’closed’:
return f"You need to open the {receptacle_name} first

before placing objects in it.", reward, done
else:

return f"Unable to move {object_name} to {
receptacle_name}. Make sure the receptacle is open if it’s a
container.", reward, done

else:
If object is not in inventory, provide clear feedback
return f"You don’t have the {object_name} in your inventory.

You need to take it first before moving it.", reward, done

Handle other "Nothing happens" cases with more informative
feedback
if obs.strip() == "Nothing happens.":

if action_item[’action’] == ’open’:
return f"Unable to open {action_item[’receptacle’]}. It

might already be open or not be openable.", reward, done
elif action_item[’action’] == ’close’:

return f"Unable to close {action_item[’receptacle’]}. It
might already be closed or not be closable.", reward, done

elif action_item[’action’] == ’examine’:
if action_item[’object’]:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

return f"Unable to examine {action_item[’object’]}. Make
sure you have it in your inventory or it’s visible at your location

.", reward, done
else:

return f"Unable to examine {action_item[’receptacle’]}.
Make sure you’re at the right location and it’s visible.", reward,
done

elif action_item[’action’] == ’use’:
return f"Unable to use {action_item[’object’]}. Make sure

you have it in your inventory or it’s at your current location and
usable.", reward, done

elif action_item[’action’] in [’heat’, ’clean’, ’cool’, ’slice’
]:

return f"Unable to {action_item[’action’]} {action_item[’
object’]}. Make sure you have all required objects and are at the
right location.", reward, done

elif action_item[’action’] == ’go to’:
This case should be handled earlier, but as a fallback
return f"Cannot go to {action_item[’receptacle’]}. It might

not be a valid location in this environment.", reward, done
else:

Generic clarification for other actions
return f"Action ’{agent_action}’ resulted in no effect.

Check if you have all prerequisites or if the action is valid in
this context.", reward, done

For successful move actions, verify the object was actually in
inventory
if "successfully" in obs.lower() and "place" in obs.lower() and
action_item[’action’] == ’move to’:

object_name = action_item[’object’]
If the environment says the move was successful, we should

trust that and not override
return obs, reward, done

return obs, reward, done

46

	Introduction
	Related work
	Method
	Problem formulation
	ALIGN overview
	ALIGN framework

	Experiment
	Experimental settings
	Main results
	Interface quality analysis
	Generalization and generality study
	Ablation study

	Conclusion
	LLM usage statement
	Formalization of the ALIGN algorithm
	Supplementary experimental setup and detailed results
	Preliminary experiments
	Interface quality analysis experiments
	Generalization study experiments
	Generality study experiments
	Ablation study experiments

	Token consumption analysis
	Implementation details
	Benchmarks task splits
	Hyperparameter and experiment setting
	Tools for experimental verification
	Prompt templates
	Initialized interface

	Case study
	Misalignments analyzed by Analyzer
	Interfaces generated by ALIGN

