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ABSTRACT

Drones connected via the web are increasingly being used for crowd
anomaly detection (CAD). Existing solutions, however, face many
challenges, such as low accuracy and high latency due to drones’
dynamic shooting distances and angles as well as limited computing
and networking capabilities. In this paper, we propose Air-CAD,
an edge-assisted multi-drone network that uses air-ground coop-
eration to achieve fast and accurate CAD. Air-CAD consists of
two stages: person detection and multi-feature analysis. To im-
prove CAD accuracy, Air-CAD dynamically adjusts the inference
of person detection model based on drones’ shooting distances and
assigns appropriate feature analysis tasks to drones shooting at
variable angles. To achieve fast CAD, edge devices connected to
drones are deployed to offload assigned feature analysis tasks from
drones. Air-CAD schedules the connection between each drone and
edge to accelerate processing based on drone’s assigned task and
the computing/network resources of the edge device. To validate
the performance of Air-CAD, we generate a new simulated human
stampede dataset captured from various drone-view recordings. We
deploy and evaluate Air-CAD in both simulation and real-world
testbed. Experimental results show that Air-CAD achieves 95.33%
AUROC and real-time inference latency within 0.47 seconds.
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1 INTRODUCTION

As urban populations continue to grow, the risk of crowd disasters
in cities like stampedes is increasing. Combined with Web of Things
(WoT) technologies, crowd disasters can be prevented by using
networked surveillance cameras to detect crowd disaster anomalies,
such as the high density and the abnormal flow speed of the crowd
[7]. However, these fixed cameras always have limited field-of-
views (FoVs) and poor mobility for monitoring real-time changing
crowds [4]. Networked drones, which offer wider FoVs and mobility,
can detect anomalies and report them more promptly via the web
than fixed cameras [10, 25, 35].

Recently, feature-based crowd anomaly detection (CAD) has
gained popularity, comprising two stages: person detection and
feature analysis [34]. While these techniques are highly accurate
in surveillance camera views, they are less accurate in drone views,
due to a variety of factors caused by high-flying drone views, e.g.,
the small scale, distortion, and blur of images [17].

In response to the inaccuracy challenges posed by drone views,
some solutions have been proposed. In the person detection stage,
Zhu et al. propose a drone-view object detector that uses deeper
Transformer Prediction Heads (TPH) to improve the accuracy [37].
In the feature analysis stage, Reiss et al. design a multi-feature
analysis method, which fuses the results from different types of
features to achieve accurate CAD [28].

Figure 1: Air-CAD uses multiple drones and edge devices to
detect crowd disaster anomalies in urban scenarios.

However, existing improvements do not perform well when de-
ployed on real-world drones due to the flight conditions of drones,
including the far shooting distances and the large shooting angles
(collectively referred to as shooting parameters), as well as the lim-
ited computing/network resources [10]. Under different shooting
parameters, the deeper detector may not always be superior, and
the performance of feature analysis also varies severely. Limited
hardware resources of drones also restrict the real-time execution
of the deeper detector and sequential multi-feature analysis. These
challenges are analyzed in detail in our motivational studies (§2).
In addition, our goal is to detect anomalies that lead to dangerous
crowd disasters, which are not included in current datasets.

In this paper, we present Air-CAD, an edge-assisted multi-drone
network, which provides an air-ground cooperative WoT system
for monitoring and reporting risks of crowd disasters. For instance,
as shown in Figure 1, each drone captures images of the crowd
and performs person detection at a shooting instant. Images from
a drone are offloaded to a designated edge device, which performs
an assigned type of feature analysis task to detect anomalies.

To achieve the above high-level design goals of Air-CAD, the
following challenges need to be addressed: i) How to achieve fast
and accurate person detection on drones with various shooting
parameters? ii) How to assign suitable feature analysis tasks and
edge devices for heterogeneous drones? iii) How to evaluate the per-
formance of detecting crowd disaster anomaly without the datasets
containing crowd disasters?

To tackle the aforementioned challenges, we design a two-stage
pipeline for Air-CAD to achieve fast and accurate CAD on drones.
In the person detection stage, we introduce a zoom detector that can
detect people on multiple drones with various shooting distances.
By perceiving the shooting distances, the zoom detector adjusts
the depth of the model inference and focuses on the key channels
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Figure 2: Performance of general CAD.

of the feature map. In the feature analysis stage, we propose a
feature scheduler that improves multi-feature analysis accuracy in
multi-drone views and reduces the system’s processing latency.
The feature scheduler trained by our model-assisted reinforcement
learning could assign an optimal feature analysis task for the drone
and select a suitable edge device to execute this task based on the
shooting parameters and the computing/network resources.

To evaluate Air-CAD, we generate a new dataset for detecting
crowd disaster anomalies, which records human stampedes from
varjous multi-drone views. We deploy and evaluate Air-CAD in both
simulation and real-world WoT drones. The evaluation results show
that Air-CAD achieves 95.33% Area Under the Receiver Operating
Characteristic curve (AUROC) and achieves real-time inference
latency within 0.47 seconds, 14.25% higher and 1.72 times faster
than the optimal baseline.

In summary, our key contributions are as follows:

e An edge-assisted multi-drone network for accurate and real-
time CAD under flight conditions of real drones.

o A zoom detector to achieve fast and accurate person detec-
tion on real drones, which could adjust the depth of model
inference and focus the key channel of the feature map based
on drones’ shooting distances.

o A feature scheduler for multi-feature analysis anomaly de-
tection, which can allocate the most suitable tasks and edge
devices for the drones based on drones’ shooting parameters
and edges’ computing/network resources.

e An image dataset captured from multi-drone views, which
can be used to evaluate crowd disaster anomaly detection
across various drone views.

2 MOTIVATIONAL STUDIES

In this section, we analyze the impacts of a drone’s flight conditions
on the performance of general CAD and its two stages.

2.1 Implementation and Data

Implementation. We use two types of devices to simulate different
computing capabilities: i) An NVIDIA Jetson Xavier NX as drone’s
onboard device. ii) A PC as the edge device, powered by an Intel
Xeno E5-2687W v4 and an NVIDIA RTX 2080Ti. The CAD pipeline
consists of two stages: i) TPH-Yolov5 [37] for person detection,
which contains 4 blocks from shallow to deep that can output results.
ii) AI-VAD [28] for feature analysis, which is a multi-feature analysis
algorithm taking into account semantics, velocity, and pose.
Data. We create a new large-scale dataset of crowd disasters, which
captures aerial images from multi-drone views with different shoot-
ing distances and angles, detailed in §5.

(a) Impact of shooting parame- (b) Impact of different depth (c) Impact of shooting angles
ters on detection accuracy.

blocks’ output on accuracy. on different feature analysis.

Figure 3: Performance of two stages in general CAD.

2.2 Impact on Performance of General CAD

AUROC. Figure 2a shows the AUROC of the general CAD for
detecting crowd disaster anomalies. The AUROC of the general
CAD is acceptable at close shooting distances (e.g., 5 meters) but de-
creases as the shooting distance increases. Meanwhile, the AUROC
varies under three different shooting angles at 0°, 45°, and 90°.
Latency. Figure 2b shows the computation latency of the general
CAD on the drone and edge device. As compared to the edge device,
the latency of each stage of the pipeline increases severely on the
drone device. Furthermore, there are significant differences in the
computation latency of different feature analysis tasks.

Insight #1. General CAD can be used to detect the crowd disaster
anomalies, but the performance is restricted by real drone’s flight
conditions, including shooting parameters and hardware resources.

2.3 Impact on Person Detection Performance

Detection Accuracy. Figure 3a shows the impact of shooting pa-
rameters on the person detection accuracy. As the shooting distance
increases, the accuracy decreases significantly. In contrast, shooting
angles have little impact on detection accuracy.

Furthermore, we output the detection results from blocks with
different depths in the detector to analyze the variations in the
accuracy, shown in Figure 3b. At a close shooting distance (e.g., 5
meters), a deeper block (e.g., block 3) would be necessary to achieve
high accuracy, while at a far shooting distance (e.g., 25 meters), a
shallower block (e.g., block 1) would suffice.

Insight #2. The person detection accuracy on drones can significantly
benefit from shooting distances, provided that the depth of model
inference could be correctly determined based on shooting distances.

2.4 Impact on Feature Analysis Performance

AUROC. Figure 3 shows the impact of shooting angles on the AU-
ROC of feature analysis tasks. Due to the fact that different feature
analysis tasks perform differently under the same shooting angle,
one simple relationship cannot be drawn between each feature and
its shooting parameters.

Insight #3. It is also crucial to choose the optimal feature analysis
task for drones with different shooting angles in order to enhance the
performance of CAD based on multi-feature analysis.

2.5 Summary and Motivation

The results above indicate that flight conditions significantly affect
the performance of general CAD, which can be used to inspire the
stages in the pipeline for better performance. Taking these factors
into consideration, we design Air-CAD in the following ways: i)
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Figure 4: Operational flow of Air-CAD in a nutshell.

using networked multiple drones to obtain images with various
shooting parameters, while assisting them with edge devices that
provide more powerful hardware resources. i) perceiving the flight
conditions of drones to achieve fast and accurate CAD.

3 AIR-CAD OVERVIEW

Goal. For better CAD performance, we intend to design a multi-
drone network that is able to perceive flight conditions.
Deployment Scenario. Figure 1 shows the deployment scenario
of Air-CAD. The maneuverability of drones allows us to deploy Air-
CAD to most surveillance scenarios, including obstructed urban
areas. This edge-assisted multi-drone network can detect crowd
disaster anomalies in real-time in the scene, which consists of:

(@ a group of Drones at different flight conditions that could cap-
ture images and run lightweight models. Drones also have wireless
communication capabilities that allow them to access the network
to offload computing tasks to edge devices.

(@ a group of Edge Devices connected with drones, which can
efficiently run models but computing power is not unlimited. In Air-
CAD, an edge device is selected as the Leader Edge (edge 2 in Figure
1), which collects information of drones and other edges (called
Cluster Edge) to schedule feature analysis and data offloading.
Overview. The operational flow of Air-CAD is illustrated in Figure
4, which consists of the following components:

(1) Zoom Detector on drone side (§4.1). Drones in Air-CAD use
the zoom detector to detect people in the crowd. The zoom detector
integrates a drone’s shooting distance with its frame and outputs
a person image set from this frame. This detector can adjust the
depth of model inference and focus on the key channels of feature
maps, thus achieving fast and accurate person detection.

(@ Feature Scheduler on leader edge (§4.2). The leader edge
uses the feature scheduler to schedule which edge device the drone
should connect to (edge schedule in Figure 4) and which feature
analysis task this edge should execute (task schedule in Figure 4).
The scheduler takes into account the drones’ shooting parameters
and the edge devices’ computing/network resources, and produces
the matching pairs of drone-edge and edge-task. This process is
powered by our model-assisted deep Q-Network, which includes a
decision agent and an environment estimation agent.

(® Feature Analyzer on edge side (§4.3). According to the
schedule from the leader edge, each drone sends the person image
set to a corresponding edge device, which uses a feature analyzer to
perform the assigned task. The analyzer inputs the person images
set from the current frame, extracts the assigned features, and
outputs the anomaly score of the current frame. Anomaly scores
from all edges will be sent to the leader edge to obtain a fusion
score, if it exceeds the threshold, it will be considered abnormal.

4 DETAILED DESIGN OF AIR-CAD
4.1 Zoom Detector

Goal. According to the motivational studies in §2, our goal is to
determine the depth of model inference based on the shooting
distances to achieve fast and accurate person detection.

Design. We develop a zoom detector for our goal. Compared to the
original detector [37], we add Z&F blocks in our zoom detector to
sense the shooting distances. Figure 5a illustrates the workflow of
the zoom detector as follows:

(D Infer. Using the input image/feature map, the infer block
creates a multi-channel feature map, which is then passed to the
Z&F block for deciding whether to further inference.

@ Zoom & Focus. The Z&F block takes the feature map gener-
ated by the previous infer block and the drone’s shooting distance
as input, to perform the "zoom" and "focus" operations. The "focus"
operation generates a focus weight to focus on the key channels of
the feature map. The "zoom" operation generates a zoom signal to
determine whether to continue inference. If this signal decides that
further inference is needed, the Z&F block saves the current feature
map and continues inferring, otherwise, it outputs the result.

(® Output. When the Z&F block makes a decision to output,

the detector merges the previously saved feature maps to output a
fused feature map. This feature map is processed by the prediction
head to generate the people’s bounding boxes, which can be used
to crop out the person images set.
Z&F Block. The zoom detector perceives the shooting distance to
enhance the accuracy and speed of detection through the proposed
Z&F block. Figure 5b shows the structure of the Z&F block, which
consists of the zoom and focus operations.
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Figure 5: Zoom detector for person detection.

In focus operation, we generate a focus weight a; € R'*C based
on feature map and shooting distance:

a; = Focus;(Concat(AvgPool(F;), N(L, 1))), (1)
dmax

where F; € RFXWXC jg the feature map outputted by infer block
i. H X W is the spatial dimensions of F; and C is the channels of
Fi. d and dpqx are the (maximum) shooting distances of the drone.
N is the Gaussian distribution. The focus function Focus;(-) is a
non-linear function whose parameters can be updated. In this paper,
the Focus;(-) is composed of three fully-connected layers and two
ReLU layers, which is inspired by squeeze-and-excitation block [18].

By using the focus weight ;, the focused feature map F; o s

generated which is focused on key channels:
F/° = Sigmod(a;) x F;. @)

In zoom operation, the «; is used to generate a zoom signal to
determine whether further inference is needed. The logarithm of
the zoom signal is produced by the zoom function Zoom;(-):

Pi = Zoom;(a;), (3)

where f; € R1? represents the probability of continuing the infer-
ence after the infer block i. Same as the Focus;(-), the Zoom;(-) is
also a non-linear function. In this paper, we use one fully-connected
layer as the Zoom; (-) to reduce inference latency. We generate the
one-hot zoom signal Z; by the Gumbel Softmax function [36]:

ZK = GumbelSoftmax(B¥|5;). (4)
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Based on the Z;, we can decide whether to further infer the

detector. If the Z; is true, the detector saves Flf oS and transmits it
to the infer block i + 1 for further inferring. Otherwise, the detector

fuses all saved F; S to output the fused feature map, which is
used to generate detection results.

Inference Loss. Our design goal is to obtain high accuracy with
limited onboard computational resources. However, the detector
trained using traditional loss functions tends to provide a sub-
optimal solution (i.e., infer to the deepest infer block). We hope to
minimize the number of inferred blocks while maintaining accuracy.
Thus, we propose a multi-objective loss function to guide training:

B — Bmin (5)

Bmax — Bmin’
where L ¢ is the traditional detection loss and L g is the inference
loss. B is the number of blocks inferred in one detection. Bp,gx
and By, are the maximum and minimum number of model blocks
that can be used to generate results. The A is used to balance the
detection accuracy and inference cost. With this loss function, we
can achieve high accuracy while minimizing the inference depth of
detectors, which results in efficient person detection.

L=Lp+ALg=Lp+A

4.2 Feature Scheduler

Goal. According to the motivational studies in §2, our goal is to
decide: i) Which edge device should the drone offload data to? ii)
Which feature analysis task should the edge device perform for
processing the person image set of the connected drone?

Design. We propose a feature scheduler to achieve our goal. The
feature scheduler can detect the shooting parameters of drones
and the amount of computing/network resources of edge devices,
and select the task and offloaded edge device in real-time. The
scheduler is deployed on the leader edge, which consists of two
components: a decision agent for scheduling and an environment
agent for environment state estimation. In order to avoid frequent
information exchange, the scheduler assigns a scheduling period
(e.g., 10 seconds) to a series of tasks, expressed as Qq4. During a
Qg, the information of drones and edge devices is estimated by
the environment agent. Figure 6 illustrates the workflow of the
scheduler within a Qg:

(D Synchronization. At the start of the Qg, the leader edge
obtains all state information from the previous period, including
the shooting parameters of drones and the computing/network
resource of the cluster edges. Based on the obtained information,
the environment agent updates itself to output accurate estimations
of the environment. Then, the scheduler alternates steps (2) and (3)
to make decisions for all tasks in the Q.

@ Schedule Making. For a task Task;, the decision agent inputs
state information s; and decides on the action a; (i.e. the edge device
for offloading and the feature task it performs).

(® State Estimation. After (2), the environment agent inputs s;
and a; to provide an estimated state s, ; for the next task Task;+1
and an estimated reward r}.

(@ Dissemination. After all tasks in Q, are scheduled, the leader
edge sends the schedule to all drones and cluster edges.
Model-assisted Deep Q-Network. To achieve the scheduler in
leader edge, we propose a model-assisted Deep Q-Network, which
aims to establish an optimal policy for edge device scheduling and
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Figure 6: Feature scheduler for multi-feature analysis.

feature analysis task assignment [30]. Based on the basis DQN,
model-assisted DQN learns two types of agents: i) a decision agent
to learn the mapping relationship between state and action (i.e.,
st — ar) to make a sequence of decisions with the highest long-term
gain, ii) an environment agent to learn the transition of environment
state (i.e., (sz, a;) — (sg+1, 1)) to simulate the environment.
Decision Agent Learning. The goal of the decision agent is to
learn the mapping from s; to a;. We consider N dronesD = {Dy, ...,
D;,...,DN}, M edge devices E = {Ey,...,Ej,...,Ep}, and L types
of feature analysis tasks T = {Ty, ..., Ty, ..., Tp }. In the ¢ decision,
the decision agent observes the current state given by s; = {sf, sf}.
The state of drones sf is denoted as s?' = {Distancei,Anglei}, i=
{1,...,N}, where Distancef and Angleg represent the shoot dis-
tance and angle of drone D;. The state of edge devices s is de-
noted as sy = {Queue{, CPUtJ, GPUtJ, Bandwidth{ Li=A{1,...,M},
where Queuei is the current unfinished task queue, CPUtJ and
GPUtJ are the CPU and GPU computing powers (unit: TOPS), Band
width; is the bandwidth of E; (unit: Kbps). According to the cur-
rent state s, the decision agent performs the action a; = {ai}, i=
{1,...,N} for all drone. The action for drone D; is denoted as
ai = {Ej, Ty}, where E; is the edge connected to D;, and Tj, is the
feature analysis task performed on E; for the images of D;. After
taking action a;, the decision agent receives feedback reward r;
from the environment. We expect that the scheduled Ty for D; could
bring high accuracy, and the E; could real-time execute the task.
Therefore, the reward r; is designed as:

ri = Acc(outputy, labely) — Timey, (6)

where output; is the output result of Task;, label; is the ground
truth. Acc(-) is the accuracy score of Task;, which is 1 if output,
and label; are the same, otherwise is 0. Time; refers to the end-
to-end latency of Task;, consisting of computation, transmission,
and queuing latency. The decision agent learns by maximizing the
gain G, which is a function of the expected cumulative discount

rewards:
[ee)
G =E Z)’krmk]) ()
k=0
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where y is the discount factor. Basis DQN uses an evaluation Q-
network (parameterized by 0), a target Q-network (parameterized
by 6’), and a trace pool to approximate the action value function.
On this basis, model-assisted DQN uses the environment agent to
assist in learning, which is trained by the following loss function:

L(0) =E[re +yr = Q (sr,a1;0)], @)

where y; is the target value of training. In model-assisted DQN, the
target value y; is defined as:

ymax Q (s,.,.l, aps1; 0') , if early training,

C ©)
Z vk (r;+k [ s, a)} ,  if late training,
k=1

Y = E

where r’ represents the reward estimated by the environment agent.
In the late training phase, the environment agent can output reliable
estimations. Thus, y; could be estimated by the n steps iterative
output of the environment agent and the decision agent.

Environment Agent Learning. The goal of the environment
agent is to learn the mapping from (s, a;) to (s¢+1,7¢). The envi-
ronment agent uses two Q-networks the same as the decision agent
to respectively output the estimation of the next state s;_; and the
reward r;, which are trained by the MSE loss function. In the pro-
cess of interaction between the decision agent and the environment,
we obtain and store the real feedback data of the environment for
training the environment agent. For offline training, we use all data
stored in the trace pool for learning. During the online decision,
only the Q-network that outputs s} _, is fine-tuned by data from the

t+1
previous period to prevent noise from contaminating the model.

4.3 Feature Analyzer

Design. We use a multi-feature anomaly detection algorithm as
the feature analyzer [28], the workflow of which is as follows:

(D Feature Extract. After receiving the images set from the
drone, the edge device extracts the assigned feature of the images
according to the scheduled result. Referring to the design in [28],
we extract three types of features: i) Velocity: the movement speed
of a person between adjacent frames, calculated based on optical
flow [19]. ii) Pose: the key points of the human skeleton, generated
by a posture detector [15]. iii) Semantic: the semantic information
of the person images, obtained by the language-image encoder [27].

@ Density Estimate and Calibrate. We estimate the density
of extracted features to evaluate the degree of the anomaly, where
a low estimated density indicates the anomaly. Each feature will be
fitted with a separate estimator by k-NN to calculate the density
and generate anomaly scores for the test samples. Moreover, we
use min-max normalization to calibrate the anomaly scores to the
same range to perform multi-feature fusion.

(® Result Fuse and Output. After generating anomaly scores
in all edge devices, the scores are sent to the leader edge. Since the
scores are calibrated, the fusion score can be generated by addition.
The fusion score is used to compare with the threshold, if it exceeds
the threshold, the current frame is considered abnormal.
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Table 1: Existing crowd anomaly detection datasets.

H Dataset [Anomaly[Crowded[Disaster Mulit-view“
USCD Ped1 [22] | indirect X X X
USCD Ped2 [22] | indirect X X X

CUHK Avenue [20]| indirect X X X
ShanghaiTech [21]| indirect X X X
UMN [24] indirect v X X
Crowd-11 [12] indirect v X X
MED [26] both v X X
UBnormal [2] both X X X
ArmyStampede both v v v

- (s

(b) Abnormal example.

(a) Normal example.

Figure 7: Example of the ArmyStampede dataset.

5 ARMYSTAMPEDE DATASET
5.1 The Definition of Crowd Disaster Anomaly

Goal. The causes of crowd disasters have been studied widely in
sociology but are not in the realm of computer science. Thus, we
try to define the anomaly that leads to crowd disasters from the
view of sociology, which helps us to analyze the difference between
the existing datasets and the dataset that we need.
Definition. Taking the New Year’s stampede incident on Shang-
hai’s Bund as an example, the evolution of crowd disaster can be
summarized into three stages in sociology [11]: i) High density of
the crowd. ii) Inconsistent flow direction. iii) Tumbling.
According to this evolution, we classify crowd disaster anomalies
into two types: i) Direct anomaly that directly causes crowd disas-
ters, like tumbling and collisions. ii) Indirect anomaly that increases
the risk of crowd disaster but does not directly cause the disasters,
such as high crowd densities and intersecting pedestrian flows.

5.2 Proposed Dataset

Expected Dataset & Existing Limitation. According to the above
definition, we expect the dataset for detecting crowd disasters to
have the following characteristics: i) Large-scale crowds. ii) Two
types of anomaly. iii) Causing crowd disasters. iv) Multi-drone views
shooting. However, to the best of our knowledge, there is no dataset
available for our expectations. Table 1 presents statistics about the
most commonly utilized datasets in CAD, which are limited by
the following factors: i) Anomaly is limited to indirect type which
won’t cause crowd disasters, like people crossing the road. ii) The
size of the crowd in the scene is small, usually less than 10 people.
iii) Most datasets are only based on a single fixed-camera view.
Goal & Problem. Due to the existing limitations, our goal is to
collect a dataset of crowd disasters to evaluate the performance
of Air-CAD. The collection of actual crowd disaster data, how-
ever, poses major challenges and needs to ensure ethical standards.
Therefore, an alternative way is to create a simulated dataset.
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Design. We generated a dataset for detecting crowd disasters, called
ArmyStampede. To achieve our goals, we design the dataset by the
following steps: i) Individual agent modeling. Our crowd simulation
generates collective crowd behaviors by modeling individual agents
on three levels: personality [16], emotions [13], and behavior. ii)
Disaster event design. A collision detection logic is designed for
the agents to simulate the process of crowd stampede disasters.
iii) Crowd simulation and recording. We use the most advanced 3D
crowd simulator [1] to conduct simulations, which allows us to
freely model scenes, place agents, and record from drone views.
Dataset Summary. Our ArmyStampede dataset contains 72000
Full HD frames. Table 1 compares ArmyStampede against others,
the main characteristics of which include: i) Large-scale crowd: we
simulate different numbers of crowds, from 20 to 100. ii) Crowd dis-
aster anomaly: our dataset has two types of anomaly that can cause
crowd disasters. The indirect anomaly includes high crowd density,
conflict in crowd flow, and panic in the crowd. The direct anomaly
includes collisions between individuals, tripping, and stampeding.
iii) Multi-view recording: we shoot the crowd from different angles
and distances to simulate the drone views with different shooting
parameters. Specifically, the shooting distances are from 5 to 25
meters, and the shooting angles are from 0 to 90 degrees.

6 EVALUATION

6.1 Hardware Implementation and Dataset

Hardware. For the drones, we use an NVIDIA Jetson Xavier NX
as the onboard computing device. For the edge devices, we use a
PC that has an Intel Xeno E5-2687W v4 CPU and an NVIDIA RTX
2080Ti GPU with 12 GB of memory.

Implementation. We deploy Air-CAD on three drones and three
edge devices to demonstrate Air-CAD’s operation. We implement
the zoom detector on drones and the scheduler on the leader edge
using PyTorch 1.10. We deploy feature analyzers on edge devices
according to [28]. Data transfer between devices via 2.4GHz WLAN
at up to 18 Mbps upload/download rate.

Data. We use our new dataset to evaluate the performance of
algorithms under various shooting parameters, which includes
crowd-disaster images recorded from different drone views.

6.2 Overall Performance

We first evaluate the overall performance of Air-CAD. At a shooting
instant (0.15 seconds), each drone captures a frame of the crowd
and then performs the CAD pipeline. We define end-to-end CAD
as a task consisting of person detection and feature analysis.
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Figure 9: Impact of shooting parameters.

Baseline Methods. We select four mainstream CAD algorithms
implemented in the standard anomaly detection library [3] for
comparison, including the following algorithms: i) PaDiM (PD) [8].
ii) STFPM (SF) [32]. iii) DFKDE (DK). iv) AI-VAD (AV) [28].
Accuracy. Figure 8a shows the overall accuracy comparison be-
tween Air-CAD and the baselines. Air-CAD has the highest AUROC
of 95.33% and F1 Score of 92.11%. Due to the designed person de-
tector and feature scheduler for multiple drones, Air-CAD shows a
significant 14.25% improvement in AUROC over AI-VAD (the best
baseline), which also utilizes the same feature analysis methods.
Task Latency. Figure 8b shows that Air-CAD achieves the lowest
latency of only 0.47 seconds, which is 1.72 times faster than the
optimal baseline (AI-VAD). This is attributed to Air-CAD’s fast
person detection and parallel execution across multiple devices.
Shooting Parameters Impact. Figure 9 depicts the performance
comparison between Air-CAD and the baselines under different
shooting parameters. As shown in Figure 9a, Air-CAD maintains
92.69% AUROC at 25 meters distance, while the AUROC of baselines
decay in varying degrees. As shown in Figure 9b, Air-CAD delivers
consistently high AUROC of more than 90% at all angles.

6.3 Air-CAD’s Framework Performance

We deploy the Air-CAD pipeline on baseline frameworks to analyze
the impact of the frameworks on accuracy and latency.

Baseline Framework. We compare several baseline frameworks
for drone vision analysis, mainly as follows:

@ Single Drone Onboard Analysis Single Feature (D-S).
This framework uses a single drone, analyzing only one specific
feature. D-P, D-V, and D-Se represent the analysis of the pose,
velocity, or semantics, respectively.

) Single Drone Offloading Analysis Single Feature (O-S).
Compared to D-S, this framework offloads the complete image to
the edge for person detection and single-feature analysis.

(® Single Drone Onboard Analysis Multiple Feature (D-M).
Compared to D-S, this framework uses a single drone for onboard
computation, analyzing all three types of features.

(@ Single Drone Offloading Analysis Multiple Feature (O-
M). Compared to D-M, this framework offloads the complete image
to the edge for person detection and the analysis of all three features.

() Air-CAD Complete Offloading (A-O). Compared to the
complete Air-CAD, A-O offloads the complete image to edge devices
instead of performing person detection on drones.

Task Latency. Figure 10a shows the comparison of task latency
among different frameworks. The task latency of the complete Air-
CAD is much smaller than other frameworks, up to 0.47s. Air-CAD
is 1.95 times faster than D-S and 4.81 times faster than D-M. Due to

Figure 10: Framework performance evaluation.

the limited onboard computing resources of drones, D-S and D-M
experience high computation latency of 0.92s and 2.26s. Air-CAD
is 3.21 times faster than O-S, 3.59 times faster than O-M, and 3.21
times faster than A-O. This is due to their huge transmission latency
caused by transmitting Full HD images, which reaches 1.14s.

We further analyze the cost of each sub-task (i.e., person detec-
tion, three types of feature analysis, and transmission) in Air-CAD’s
pipeline. As shown in Figure 10b, different feature analysis tasks
have varying computation latency, which can be effectively dis-
tributed among suitable edge devices by Air-CAD’s scheduler.
AUROC. Figure 10c shows the AUROC comparison of different
frameworks. The complete Air-CAD achieves the highest AUROC
of 95.33%. The AUROC of analyzing a single feature is low because
it is difficult to characterize two types of crowd disaster anomalies
by using only one type of feature. Analyzing multiple features
on a single drone view can enhance accuracy but is limited. Air-
CAD could analyze the multi-features from multi-drone views with
various shooting parameters to achieve satisfactory performance.

6.4 Air-CAD’s Module Performance

Air-CAD’s detection performance. We compare the zoom de-
tector with the mainstream detectors: Yolov5-s, Yolov5-1, and TPH-
Yolov5. Figure 11a shows that the zoom detector has the highest
accuracy compared to baseline detectors. Figure 11b shows that
the zoom detector has better detection cost-effectiveness than the
baseline detectors, which can complete the detection within 43 mil-
liseconds and the accuracy is 86.16% at 25 meters shooting distance.
Air-CAD’s schedule performance. We compare the batch la-
tency and devices’ queue length of Air-CAD with and without the
scheduler when processing different numbers of tasks. As shown
in Figure 12a, the batch latency of Air-CAD with the scheduler is at
least about 22.6% lower than that of Air-CAD without the scheduler,
which has high queue latency. As shown in Figure 12b, without the
scheduler, the feature analysis with high computation latency will
be continuously assigned to the same device, resulting in a grow-
ing task queue length. The scheduler can manage the workload by
assigning feature analysis tasks to suitable edge devices.

7 REAL-WORLD FLIGHT

7.1 Implementation and Real-flight Experiment

Drone & Edge Device. We use three Q250 quadcopters for drones
in the experiment. Each drone is equipped with a PIXHAWK 4 Mini
flight control, an M8N GPS, a 4K action camera, and an NVIDIA
Jetson Xavier NX. We use three edge devices that are implemented
the same as the implementation in §6.
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Figure 11: Detection performance evaluation.

Table 2: Real-flight evaluation results.

H Experiment ‘ AUROC ‘ F1 score ‘ Average latency H

Total 94.86% 87.88% 0.65s
Dis 10m 99.39% 98.39% 0.71s
Dis 20m 95.22% 83.45% 0.66s
Dis 30m 89.52% 81.80% 0.59s

(b)

vt mve R

2000
Frame number

2500

Figure 14: Real-world flight visualization on anomaly
score, where: (a) normal frame at 10m shooting distance
and 0° shooting angle; (b) abnormal frame at 20m shooting
distance and 45° shooting angle.

Real-flight Experiment. We deploy and evaluate Air-CAD on
drones and edge devices in real-world experiments. The experi-
ments simulate a crowd anomaly with ten volunteers in an outdoor
scene. Each experiment contains a normal test and an abnormal test.
The normal test involves people moving smoothly, whereas the
abnormal test involves people tumbling and the crowd scattering.
We totally run three experiments by varying the shooting distances
(10m, 20m, 30m) of the drones. In each experiment, three drones
that capture Full HD resolution images are located at three shooting
angles (0°, 45°, 90°).

7.2 Real-flight Evaluation Results

Table 2 shows that Air-CAD achieves high accuracy in real-world
evaluation. As shooting distances increase, Air-CAD can still main-
tain high accuracy. Figure 14 shows the visualization of the output
anomaly scores with the corresponding frames at that moment.
Air-CAD can detect the occurrence of the anomaly in the crowd. In
normal frames, as shown in Figure 13a, the anomaly scores remain
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Figure 12: Scheduling performance evaluation.

at a low level. When the crowd starts to flee, as shown in Figure
13b, the anomaly score starts to rise sharply.

8 RELATED WORK

Drone-view Person Detection. Recently, detection techniques
have been applied to drones to detect people, which face a variety
of challenges because of drones flying at high altitudes. Chen et al.
propose an RRNet that combines an anchor-free detector with a
re-identification module to achieve high accuracy in drone-view de-
tection [6]. Zhu et al. propose TPH-Yolov5 that augments YOLOv5
with a TPH head to detect objects of different scales and integrates
the CBAM to find attention areas [37]. Deng et al. achieve an end-
to-end drone view detection by a global-local detection network, a
simple yet efficient self-adaptive region selecting algorithm, and a
super-resolution network [9]. In addition, insufficient computing re-
sources hinder the real-time execution of complex DNNs on drones,
which can be alleviated by dynamic DNNs. Surat et al. propose a
framework that could exit the DNN early [31]. Wang et al. design a
modified residual network that uses a gate to skip convolutional
blocks based on the activations of the previous layer [33].

Crowd Anomaly Detection (CAD) on Drones. Recently, images
from drones have been used to detect crowd anomalies. Jordan et
al. use a CNN and an RNN to detect crowd anomaly, which are
trained with drone-view images [17]. Rezaee et al. propose a real-
time monitoring strategy based on deep transfer learning and drone
internet for detecting abnormal behavior in crowds [29]. Danilo et al.
propose a single-class support vector machine (OC-SVM) anomaly
detector based on customized Haralick texture features for low-
altitude aerial video surveillance [5]. CAD on real drones has not
yet been extensively tested due to restricted flight conditions.

9 CONCLUSION

In this paper, we propose Air-CAD, an edge-assisted multi-drone
network for crowd anomaly detection under real flight conditions.
To achieve fast and accurate person detection, we design a zoom
detector for Air-CAD to dynamically adjust the depth of model
inference and focus on key channels of the feature map based on
the shooting distances. A feature scheduler in Air-CAD determines
which tasks and edge devices are best suited for drones accord-
ing to their shooting parameters and the computing/networking
resources of their edge devices. Moreover, we generate a crowd
disaster dataset, which is the first dataset for CAD recorded from
multiple drone views. Our simulation and real-world experiments
show that Air-CAD can achieve fast and accurate CAD on real
drones, providing security for the smart city in the web era.
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A DETAILED DESIGN OF PROPOSED DATASET

Table 3: Correlation between Emotions, PAD Values, and
Behaviors of the individual agent.

“ Emotions [ PAD Values [

Behaviors H

Happy P>0 Standing, Jogging, Talking
Sad P<0, A<0 Walking alone

Angry P<0, A>0, D>0 Chasing, Pushing

Fearful P<0, A>0, D<0 | Fleeing, Dodging, Crawling

Individual agent modeling. We mainly model individual agents
in the crowd through three levels:

i) Personality modeling. We assign unique personalities to each
individual agent, making them have different behavioral norms.
We use the PEN model [14] to represent personality by dividing it
into three categories: Psychoticism, Extraversion, and Neuroticism.
The three categories of personality correspond to three kinds of be-
havioral norms, provided in [16]. We randomly initialize individual
agents’ personalities, so that to achieve a vivid crowd simulation.

ii) Emotion modeling. During the process of crowd simulation,
each agent has emotions that can influence the behaviors. The
emotions are quantified by the PAD values [23], which uses three
orthogonal components to represent emotions: Pleasure, Arousal,
and Dominance. Table 3 shows the specific relationship between
emotions and PAD values. Emotions can be influenced by the behav-
iors of other agents [13], manifested as the change in PAD values.
Specifically, if another agent within the range of the current agent’s
perception is engaged in a specific behavior, the PAD value of the
current agent will linearly shift towards the direction of the PAD
value corresponding to the behavior.

(a) Talking with happy emotion.

(b) Dodging with fearful emotion.

Figure 15: Examples of behaviors under different emotions.

iii) Behavior modeling. As the emotion changes, the agent’s be-
havior changes as well. We design different behavior sets for differ-
ent emotions, shown in Table 3. Behaviors based on emotions are
diverse and logical, enabling a realistic simulation of the crowd.

B ABLATION EXPERIMENT OF FLIGHT
CONDITIONS AWARENESS

We analyze the impact of perceiving flight conditions on perfor-
mance through ablation experiments, including shooting distances,
shooting angles, and edge device status. Specifically, we set the
input of flight conditions to zero to simulate situations in which
the Air-CAD is not aware of flight conditions.

Distance. Figure 16a illustrates how the detector performs without
distance perception. A large shooting distance does not greatly af-
fect the performance, while a small shooting distance significantly
reduces it. We found that when distance is not perceived, the de-
tector tends to stop early (i.e., infer fewer blocks) to achieve low
inference loss, leads to low accuracy at small shooting distances.
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Figure 16: Impact of w/o flight conditions input.

Angle & Edge Status. Figure 16b shows the change of the sched-
uler’s reward when the shooting angle or edge status is not per-
ceived. The rewards given for not perceiving the angle and the
device status are 1.168 times and 3.825 times smaller than the re-
ward when they are perceived. Despite not perceiving the shooting
angle, the scheduler can still assign the appropriate edge devices to
different feature analysis tasks, but could not assign the appropriate
feature analysis task to the drones. When not perceiving the device
status, the scheduler could not assign appropriate edge devices for
feature tasks, resulting in a heavy workload on the system.

C PARAMETERS OF ZOOM DETECTOR.
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Figure 17: Parameters of Zoom Detector.

Figure 17 shows the computational parameters of different blocks
in the zoom detector. B0 is the backbone that has the most parame-
ters to ensure the extraction of valid information from the image.
B1 to B4 are blocks that can output results from shallow to deep.
Deep blocks have a high number of parameters to extract high-level
information, which is unnecessary at far shooting distances. The
zoom detector can select the appropriate block for output based
on the shooting distance, to achieve high performance with less
computational parameters.

D DEPLOYMENT RECOMMENDATIONS FOR
REAL-WORLD FLIGHT

Air-CAD demonstrates its feasibility in real-flight evaluation. In
light of the results, we provide readers with recommendations for
better deployment of Air-CAD. To monitor crowds in outdoor sce-
narios, Air-CAD requires 3 drones to achieve 90% AUROC. Drones
should capture images from different shooting angles to enhance
the performance of feature analysis, from 0° to 90°. The shooting
distances of the drones can vary, ranging from 10m to 30m. The
flight speed of the drone should be kept below 1m/s to reduce image
blur. WLAN is recommended for communication, which has greater
bandwidth for multi-device connection compared with LTE.



	Abstract
	1 Introduction
	2 Motivational Studies
	2.1 Implementation and Data
	2.2 Impact on Performance of General CAD
	2.3 Impact on Person Detection Performance
	2.4 Impact on Feature Analysis Performance
	2.5 Summary and Motivation

	3 Air-CAD Overview
	4 Detailed Design of Air-CAD
	4.1 Zoom Detector
	4.2 Feature Scheduler
	4.3 Feature Analyzer

	5 ArmyStampede Dataset
	5.1 The Definition of Crowd Disaster Anomaly
	5.2 Proposed Dataset

	6 EVALUATION
	6.1 Hardware Implementation and Dataset
	6.2 Overall Performance
	6.3 Air-CAD's Framework Performance
	6.4 Air-CAD's Module Performance

	7 Real-world Flight
	7.1 Implementation and Real-flight Experiment
	7.2 Real-flight Evaluation Results

	8 Related Work
	9 Conclusion
	References
	A Detailed Design of Proposed Dataset
	B Ablation Experiment of Flight Conditions Awareness
	C Parameters of Zoom Detector.
	D Deployment Recommendations for Real-world Flight

