
Control in Stochastic Environment with Delays: A Model-based Reinforcement
Learning Approach

Primary Keywords: Applications, Learning

Abstract

In this paper we are introducing a new reinforcement learning
method for control problems in environments with delayed
feedback. Specifically, our method employs stochastic plan-
ning, versus previous methods that used deterministic plan-
ning. This allows us to embed risk preference in the policy5

optimization problem. We show that this formulation can re-
cover the optimal policy for problems with deterministic tran-
sitions. We contrast our policy with two prior methods from
literature. We apply the methodology to simple tasks to un-
derstand its features. Then, we compare the performance of10

the methods in controlling multiple Atari games.

Introduction
To introduce robots into our every-day life, researchers have
to transfer algorithms developed in simulated environments
to real environments. Existing research such as (Mahmood15

et al. 2018; Ramstedt and Pal 2019) has shown that apply-
ing general Reinforcement Learning (RL) methods to real-
time control systems, such as robotic arms and self-driving
cars is a challenging problem. One reason is that RL meth-
ods assume that the optimal action is directly applied to the20

observed state of the system. However, in real applications,
the action may in fact be applied to a different state of the
system. This could be due to delays in transmission, or the
randomness of the system transitions. For example, in Fig-
ure 1, a real-world system is evolving while the optimal ac-25

tion is calculated, transmitted, etc. All these translate into
time delays between the observed system state and the target
state, the system state on which the action is applied. (Der-
man, Dalal, and Mannor 2020) show notable performance
degradation of RL methods when introducing such delays30

in a control system. The performance further deteriorates in
an environment with increased uncertainty in the next state
transition.

The system evolves from the observed state to the tar-
get state by executing a sequence of prior submitted actions35

whose effects have not been observed yet. Previous studies
(Walsh et al. 2009; Firoiu, Ju, and Tenenbaum 2018; Der-
man, Dalal, and Mannor 2020) use the observed state and the
sequence of actions to estimate the target state and to select
optimal actions based on the estimated state. These methods40

have shown good performance in environments with deter-
ministic or slightly random state transitions. However, real-

Figure 1: Illustration of control in real-time applications.

world applications can contain high level of randomness in
state transitions. For example, control schemes have to cope
with uncertain road/weather conditions as well as delays in 45

transmission. In Figure 2 we illustrate a situation where we
need to apply an action to the target state. Due to delays, the
target state is unknown, only its probability distribution may
be estimated. In this paper, we show that the aforementioned
methods may not perform well in such environments where 50

state transitions are stochastic. We design a model-based RL
method to control an agent in a stochastic environment with
a known constant delay. Our method learns a probabilistic
model of the environment to estimate multiple possible tar-
get states and their probabilities. The method evaluates the 55

consequences of each possible action taken.
The main contribution of our work is a new control

method, Stochastic Model Based Simulation (SMBS), for
problems in environments with stochastic transitions which
are observed with a constant delay. We illustrate how to train 60

the SMBS method in delayed environments. We show that
the new control method recovers the optimal policy in de-
layed environments with deterministic transitions. In the ex-
periments section, we illustrate the advantages of the pro-
posed method over two baseline methods in multiple envi- 65

ronments. We also demonstrate how the parameter of SMBS
policy function can shape its risk preference.

Preliminaries
We consider an infinite time horizon control problem with
a finite action space. General RL methods model the non-

Figure 2: The stochastic environment evolution for 5 delay
steps.

delayed environment as a Markov Decision Process (MDP)
in (Sutton and Barto 2018). An MDP can be defined as
(S,A, P, r, µ) where S is the state space, A is the action
space, P (St+1 = s′ | St = s,At = a) is the probability
of transiting to next state s′, given current state s and action
a. The reward function r(s, a) : S × A → R, quantifies
the immediate reward obtained by applying action a to cur-
rent state s. Let µ denote the probability distribution of the
initial state s0. Given a deterministic Markov control policy
π : S → A, we can define the Q-function as the expectation
of the discounted cumulative rewards for state s and action
a:

qπ(s, a) = E

[∞∑
k=0

γkr(sk, ak) | s0 = s, a0 = a

]

where ai = π(si) and si ∼ P (· | si−1, ai−1) for i =
1, 2, (Sutton and Barto 2018) show the optimal action70

value function is defined as q∗(s, a) = maxπ qπ(s, a), and
maximizing the function produces the optimal control policy
π∗(s) = arg maxa q

∗(s, a).
In MDPs, actions are assumed to be applied immedi-

ately to the current states. However, in real-world applica-75

tions, the action is applied to a later state than the observed
state because of system delays. Previous studies (Jeong and
Kim 1991; White 1988; Loch and Singh 1998; Bander and
White 1999) model control problems with delays as a spe-
cial case of a Partially Observable Markov Decision Pro-80

cess (POMDP) due to the uncertainty of the target state. A
natural solution for POMDP problems is to create another
MDP with an augmented state space. Following this idea,
(Katsikopoulos and Engelbrecht 2003) formulate the general
Augmented MDP (AMDP) for problems with constant de-85

lays in observation and action. They show that observation
delays and action delays are equivalent from the perspec-
tive of the controlling agent. In our work we use delay steps
to indicate the sum of these two types of delay. We con-
sider a control problem with d delay steps. Let M denote90

the non-delayed MDP. The corresponding augmented MDP
isMD(M, d) = (I,A, P ′, r′, ω′) where I = S × Ad, and

r′ is defined as r′(It, at) = r(st−d, at−d). Let q̃∗ denote the
optimal Q-function for this AMDP.

Although, (Katsikopoulos and Engelbrecht 2003) show 95

that q̃∗ provides the optimal control for this delayed prob-
lem, (Walsh et al. 2009) state that solving this problem in
practice is difficult since the size of state space I grows ex-
ponentially with the number of delay steps. This issue is
even more significant in modern applications, as the state 100

and action spaces are already large, even before state aug-
mentation.

Several recent studies use RL to find good control poli-
cies without solving the AMDP. We discuss these methods
and their connections to our method in detail in the next 105

section. We mention alternative approaches based on sim-
to-real learning by (Tobin et al. 2017) and robust learning
by (Pinto et al. 2017) to adapt models from simulations to
real world robots. Our work focuses on solving delay prob-
lems using RL. The methodology we develop could com- 110

plement a sim-to-real transfer but combining the ideas is be-
yond the scope of this work.

Stochastic Model Based Simulation (SMBS)
The methods developed by (Derman, Dalal, and Mannor
2020; Walsh et al. 2009; Firoiu, Ju, and Tenenbaum 2018) 115

can be classified as instances of deterministic planning. A
deterministic planning strategy consists of two components:
a model of the system dynamics, and a non-delayed policy
function. This strategy obtains a single estimate of the target
state. Then, based on this estimate, the non-delayed policy 120

function selects an optimal action to be applied to the target
state. (Walsh et al. 2009) state that this approach performs
well in deterministic tasks. Note that a fundamental require-
ment is the single estimate of the target state. In stochastic
environments, the estimator of the target state has a distri- 125

bution which may have a large variance. As the action is
chosen based on the estimator, this may lead to sub-optimal
actions if the estimator is far from the actual state. Therefore,
we must consider the effect of the action taken on multiple
possible target states, rather than a single one. 130

To expand the deterministic planning method for stochas-
tic environments, we develop a stochastic model based sim-
ulation (SMBS) method. This method develops a strategy
which consists of a probabilistic model of the system and a
value-based non-delayed policy function. This policy func- 135

tion is generated by an optimal Q-function. We denote this
non-delayed optimal Q-function with q∗. The model of the
system, denoted as µ(s, a), maps a given state/action pair to
a probability measure on the state space S. Suppose the envi-
ronment has d delay steps. We form an augmented state us- 140

ing the delayed observation and a sequence of actions, It =
(st−d, at−d, · · · , at−1). Note that st−d is the latest observa-
tion of the system state, and the effect of {at−d, · · · , at−1}
has not been observed yet. As shown in Figure 3, we sam-
ple M estimates of the target states, {s(i)t }i=1,··· ,M using 145

the one-step transition model µ(s′ | s, a). To be specific, for
each path i, we let the initial state s(i)t−d = st−d. Then, we

recursively sample the estimates of the next states s(i)t−d+k+1

using µ(· | s(i)t−d+k, at−d+k) for k = 0, 1, · · · , d−1. Finally,
we select the action using the following policy function150

at = π1(It) = arg max
a∈A

(
Q̄M (a)− αQ̂M (a)

)
,

where Q̄M (a) =
1

M

M∑
i=1

q∗(s
(i)
t , a),

Q̂M (a) =

√√√√ 1

M − 1

M∑
i=1

(q∗(s
(i)
t , a)− Q̄M (a))2.

(1)

The function Q̄M (a) estimates the average state action value
for action a. The risk of executing action a when the target
state is unknown is measured using Q̂M (a). Mathematically,
Q̂M (a) is the sample standard deviation of the Q-value of
the target state. The hyper-parameter α controls the impor-155

tance of Q̂M (a).
The policy function of SMBS (equation 1) uses the mean

and standard deviation of the sampled Q-values. Intuitively,
it will select optimal actions by maximizing the expected
action value while minimizing the deviation of the Q-values160

from their mean value. Algorithm 1 introduces the pseudo-
code used to implement the SMBS method.

Algorithm 1: Stochastic Model Based Simulation Policy
1: Input: A trained Q-function q∗, a trained system model
µ, It = (st−d, at−d, · · · , at−1), A.

2: Output: the action at which is applied on state st.
3: Initialize: a state container D, an expected Q value list
V

4: Planning:
5: for i = 1, 2, · · · ,M do
6: Let s(i)t−d = st−d;
7: for j = 0 : d− 1 do
8: s

(i)
t−d+j+1 ∼ µ(·|st−d+j , at−d+j);

9: end for
10: D ← s

(i)
t ;

11: end for
12: Evaluating:
13: for all a in A do
14: Initialize a new list L for all state-action values for

action a;
15: for all s(i)t in D do
16: L ← q∗(s

(i)
t , a);

17: end for
18: V[a] = mean(L)− α · std(L);
19: end for
20: return arg maxa V[a].

We present a training procedure for the SMBS method
in delayed environments in Algorithm 2. In the sample col-
lection step, the delayed action at+d is selected using the165

SMBS policy in 1. We record the transition sequence of
the system and determine the actions corresponding to re-
spective state transitions. This will produce the non-delayed

Algorithm 2: Training the Q-function q and the system
model µ for the SMBS method

1: Input: An interactive environment E.
2: Output: a Q-function q and a model of the system dy-

namics µ.
3: Initialization: randomly initialize the parameter in q and
µ, a data container C for transition samples.

4: /* Collecting Samples */
5: Id = (s0, a0, · · · , ad−1)← E
6: for t = d, d+ 1, · · · , N do
7: at ← SMBS(It; q, µ);
8: st−d+1, rt−d ← E(at);
9: C ← (st−d, at−d, st−d+1, rt−d); /*non-delayed tran-

sitions*/
10: It+1 ← (st−d+1, at−d+1, · · · , at);
11: end for
12: /* Training */
13: for all sample c in C do
14: Update q using DDQN in (Van Hasselt, Guez, and

Silver 2016);
15: Update µ using Maximum Likelihood Method;
16: end for
17: return q, µ

transitions (st, at, st+1, rt) which are used to train q∗ and µ.
Similar procedures are also used by (Schuitema et al. 2010; 170

Derman, Dalal, and Mannor 2020).
The main difference SMBS and the planning policy in

(Derman, Dalal, and Mannor 2020) is that the policy of (Der-
man, Dalal, and Mannor 2020) plans for the most likely next
state. As a result, once trained the planned action path is al- 175

ways the same for the same input It. This is why we term this
planning method as deterministic. In contrast, SMBS (equa-
tion (1)) obtains multiple target state estimates by sampling
trajectories using a probabilistic model of the system. The
action is selected to maximize the average Q-value subject 180

to the penalty term.
Even though the SMBS method is designed to accommo-

date a stochastic environment, it also works in determinis-
tic environments. In fact, the next result establishes that the
SMBS method provides the optimal control. A proof of this 185

theorem is provided in the supplementary material.

Theorem 1. Assume a discrete-time MDP with an infinite
time horizon. The Markovian movement is deterministic, i.e.,
for arbitrary (s, a) ∈ S × A, t ≥ 0, there exists an s′ ∈ S
such that P (St+1 = s′ | St = s,At = a) = 1 for all 190

t = 0, 1, . . . Then, the policy function of the SMBS method
(1) is equivalent to the following optimal policy:

πopt(It) = arg max
a∈A

q̃∗(It, a), (2)

where q̃∗ denotes the optimal Q-function for the AMDP.

When parameter α is set to 0, the SMBS method
is reduced to a Monte-Carlo procedure that estimates 195

Es[q∗(st, a) | It]. This conditional expectation is associ-
ated with the probability measure for st, given It. Thus, the
policy (1) in the SMBS method approximates the following

Figure 3: An illustration of the policy function of the SMBS method.

policy function

at = arg max
a∈A

Es[q∗(st, a) | It]. (3)

When the problem has a small discrete state space, the model200

of the system may be expressed using one-step transition
matrices. In such cases, we compute the distribution of the
target state using these transition matrices. Then, we calcu-
late the expectations in (3) for all actions a ∈ A and se-
lect the action with the highest expected value. We note that205

this procedure has been analyzed by (Agarwal and Aggarwal
2021). Interestingly, although the two policy functions are
similar, the two methods have been developed independently
from different perspectives. When the problem has a large
discrete state space or a continuous state space, the SMBS210

method models the system model using an artificial neural
network (ANN). Thus, instead of learning transition matri-
ces, the algorithm focuses on learning the parameters of the
ANNs approximating the model. When the problem solved
involves a complicated state space, this change avoids multi-215

plications between large matrices which are computationally
expensive and inefficient. Our method can solve complex
tasks by incorporating parametrized Q-functions which are
trained using well-known deep RL methods such as DQN in
(Mnih et al. 2015), DDQN in (Van Hasselt, Guez, and Silver220

2016), Dueling DQN in (Wang et al. 2016), etc.
We also provide a probabilistic bound for the SMBS pol-

icy in (1) when α = 0.
Theorem 2. Assume a discrete-time MDP with a positive
reward function and a finite discrete action space A. For
any a ∈ A and augmented state It ∈ I, assume the ran-
dom variable q∗(st, a) has mean Q̄(a) and variance Q̂(a)2.
Then, for δ > 0, we have

P

(
max
a∈A

Q̄M (a) ≤ 1

|A|
E [V ∗(s) | It]

− δ√
M

max
a∈A

Q̂(a)

)
≤ |A|

δ2

The proof of this theorem is provided in the supplemen-
tary material.225

If the variance Q̂(a)2 exists for any a ∈ A, its sample
estimates converges to 0 when the sample size M goes to

infinite. This implies that if we plan for sufficiently large
amount of paths, the value of SMBS policy function is not
worse than 1

|A|E [V ∗(s) | It] with high probability. 230

Experiments
In order to understand how the SMBS method performs in
delayed environment with different levels of randomness in
transitions. We train and test the SMBS method with other
baseline methods in multiple tasks. We choose the following 235

baseline methods for comparison.

1. AMDP in (Katsikopoulos and Engelbrecht 2003), which
forms an AMDP and directly solve the problem using
Double DQN by (Van Hasselt, Guez, and Silver 2016).

2. Delayed-Q in (Derman, Dalal, and Mannor 2020), which 240

is, to the best of our knowledge, the latest determinis-
tic planning method. This method follows the following
policy

π2(It) = arg max
a∈A

q∗(ŝt, a), (4)

where ŝt is obtained by a recursive propagation us-
ing a deterministic model of the system m̂(s, a) =
arg maxs′ P (St+1 = s′ | St = s,At = a). That is,

ŝt−d+1 =m̂(st−d, at−d),

ŝt−d+2 =m̂(ŝt−d+1, at−d+1),

· · ·
ŝt =m̂(ŝt−1, at−1).

We note that while the Delayed-Aware Trajectory Sam-
pling (DATS) method in (Chen et al. 2020) may be used as a 245

baseline comparison, it does require knowledge of the exact
reward function. As the other three methods learn the reward
function, we excluded DATS from our analysis.

When comparing the SMBS with the baseline methods,
we are trying to address the following questions: 250

1. Does the SMBS method obtain better average rewards?
2. Is there less performance degradation of the SMBS

method than the baseline methods when the number of
delay steps increases and when randomness in the envi-
ronment increases? 255

Tasks
We perform the experiments on these four tasks: Stormy and
Swampy Road, Frozen Lake (4-by-4), Cartpole, and Puddle
World.

(a) Stormy and Swampy
Road

(b) Cartpole

(c) Frozen Lake (d) Puddle World

Figure 4: Illustrations of tasks used for comparison.

Stormy and Swampy Road is a simple control problem260

with a 1-dimensional state space and a discrete action space
with 4 actions. Figure 4a illustrates this environment. The
task requires the agent to maneuver a car on a narrow road
during a storm. The road is through a large swamp. The car
can fall off the road and get stuck in the swamp on both265

sides of the road. There are four actions possible represent-
ing 4 forces with different directions and magnitudes, i.e.,
steering to left/right aggressively/mildly. If the car runs into
the swamp, an aggressive steering to the road has a higher
chance to move the car back to the road than a mild steering.270

If the agent cannot return the car to the road immediately,
the agent will receive a large penalty. The storm randomly
pushes the car to the left or the right. The level of random-
ness is adjusted by a parameter r. A higher r increases the
variability of transition. We test r = 0.05/0.1/0.15 in our275

experiments.
Frozen Lake is a maze-like problem which is implemented

in (Brockman et al. 2016). Figure 4c illustrates the 4-by-4
Frozen Lake task. The goal is to reach the Goal State (G)
starting from the Initial State (S). The agent goes back to280

the Initial State if at any time reaches a Hole state (in blue
in Figure 4c). This environment has a slippery parameter p
(1/3 ≤ p ≤ 1) which controls the randomness of the tran-
sition. This parameter indicates the probability of moving
to the intended target square. That is, if the agent chooses285

to go right, it will arrive to the state to its right with prob-
ability p. Otherwise, the agent may move to the two other
adjacent states (up and down) with equal probabilities 1−p

2 .
We denote r = 1−p

2 , we test r = 0.05/0.1/0.15 in our ex-
periments.290

Cartpole is a classic benchmark task, and has been imple-
mented in (Brockman et al. 2016). The agent applies left-
/right forces onto the cart to keep the pendulum balance. A

normally distributed noise with zero mean is added to the
force. The standard deviation of the noises is a parameter 295

r = 0.1/0.2/0.3.
Puddle World is another classical task mentioned in (De-

gris, White, and Sutton 2012). The goal is to navigate to
the goal state (1.0, 1.0) on a 2D world at the soonest with-
out stepping in the high penalty zone (grey area in Fig- 300

ure 4d). The movement noise is controlled by a parameter
r = 0.005/0.01/0.02.

Training/Evaluation Procedure
For each environment setting (level of randomness and num-
ber of delay steps), we train 5 models (with different random 305

seeds attached to the clock) using each of the three methods.
Each model is trained in the delayed environment with 105

steps. The policy with the highest average reward is recorded
for evaluation. Each model is evaluated using the 104 steps.
We report the average rewards by the top four models in the 310

next section.
The system dynamics model and the Q-function are

trained using the dataset collected from the delayed envi-
ronments. For the Stormy and Swampy Road and for the
Frozen Lake environments we estimate the transition ma- 315

trices using the observed frequency of transition. For the
Puddle World and for the Cartpole environments we model
system dynamics using Gaussian based probabilistic neu-
ral networks, which are often used for continuous control
problems in (Duan et al. 2016; Mnih et al. 2016). The neu- 320

ral networks have two layers, each layer has 64 units. For
the SMBS method, we plan 50 trajectories for each decision
(M = 50). The small number of paths is chosen so that the
algorithm converges in a reasonable amount of time. The α
parameter controls the importance of the variability of the 325

estimated future cumulative rewards. A large alpha produce
policies that produce stable future rewards. However, these
may not be optimal from the perspective of maximizing re-
ward. After an extensive number of experiments, we choose
α = 0.01 in our studies. 330

Results
The average rewards from three methods are reported in Fig-
ure 5. Figure 5a shows SMBS and AMDP both perform
better than Delayed-Q in all settings. SMBS outperforms
AMDP when the environment has 20 steps of delay and 335

the random factor r = 0.15. This result is not surprising
as the task is simple and easy to solve. AMDP can produce
the optimal strategy given sufficient amount of samples (105

steps). In Figure 5b, the bar plots indicate that SMBS has the
overall best performance among three methods. The perfor- 340

mance degradation is relatively smaller than the other meth-
ods. When the level of randomness is small (r = 0.1/0.15),
AMDP and SMBS have better performance than Delayed-Q.
When r = 0.2, the performance of AMDP significantly de-
grades, SMBS still outperforms the other two methods. Fig- 345

ure 5c and 5d both indicate that SMBS and Delayed-Q have
similar performance and are consistently better than AMDP.

Moreover, to understand how the SMBS method can out-
perform the Delayed-Q method in Stormy and Swampy

(a) Stormy and Swampy Road

(b) Cartpole

(c) Frozen Lake (4× 4)

(d) Puddle World

Figure 5: Illustrations of tasks used for comparison.

Road task, we evaluate the both methods using the same sys-350

tem model and the same Q-function. Figure 6 shows a com-
parison of performance between SMBS and the Delayed-
Q with a slight change of the estimated Q-function. The
two Q-functions in Figure 6a and 6b are two non-optimal
Q-functions that are consecutively recorded during training355

(Q1 is closer to the real Q-function than Q2). Figure 6d dis-
plays the main difference between two Q-functions. When
the state is close to 1,Q1 indicates the action a1 has a higher
value than a2, while Q2 indicates a2 has higher value than
a1. As a result, the policy of Delayed-Q method produces360

Figure 6: An illustration of robustness of the SMBS method
with respect to the Q-function approximation errors. Fig-
ures (a) and (b) show the values of two Q-function approx-
imations which have slight discrepancies magnified in (d).
Figure (c) shows the difference in performance for the two
methods.

different actions when the estimated target state is close to
1. In contrast, the SMBS policy is less affected by small
changes in the Q-function since it considers the expected
Q-value.

Atari Learning Environments 365

Atari Learning Environments (ALE) in (Bellemare et al.
2013) offers intricate environments for training and testing
RL methods. (Mnih et al. 2015) has shown that RL agents
can surpass human-level strategies using RL methods. With
delayed observations, (Derman, Dalal, and Mannor 2020) 370

shows the Delayed-Q method can outperform baseline meth-
ods such as AMDP and Obvious-Q method on ALE.

We apply our method to ALE and compare it with the
AMDP method and the Delayed-Q method. Across all ex-
periments, additional randomness in movements is intro- 375

duced by setting a 0.2 probability for sticky actions. Sticky
actions simulate scenarios where the controller ignores the
input action and repeats the prior action. We perform train-
ing and testing of the three methods across 7 Atari games
when the number of delay steps equals to 5 and to 25. In each 380

experiment setting, we train models with the three meth-
ods with the same amount of steps, and we load the best-
performing model for evaluation. In the SMBS method, we
set the number of planning paths M as 20 to create a trade
off between efficiency and accuracy. We set the risk prefer- 385

ence parameter α as 0 because we would like to only maxi-
mize the expected reward.

The evaluation results are reported in Figure 7. It can be
seen that the AMDP method performs worse than the other
two methods in most of the games. The AMDP method also 390

suffers from stronger performance degradation than the two
other methods when the number of delay steps increases
from 5 to 25. This is evident in Freeway and RoadRun-
ner. The performance of Delayed-Q and SMBS is consis-
tent when the number of delay steps increases. Their two 395

Figure 7: Comparisons of SMBS, AMDP, and Delayed-Q in
different Atari games with delayed feedback.

algorithms performance is comparable in Freeway, MsPac-
man, NameThisGame, and Qbert. When the number of de-
lay steps equals 5, Delayed-Q performs better than SMBS in
StarGunner, and SMBS performs better in RoadRunner and
TimePilot. When the number of delay steps increases to 25,400

SMBS outperforms Delayed-Q in StarGunner, and TimePi-
lot.

Risk Parameter α
To explore how different risk preferences impact the pol-
icy function in 1, we examine the policy function in Cliff,405

a classic control problem from (Sutton and Barto 2018). In
Cliff, the agent navigates a maze-like path from start to end
(refer Figure 8) . The agent needs to avoid falling off the
cliff during the movement. When the agent moves, the agent
has a chance to slip towards the cliff. Due to delays in ob-410

servations in this problem, the actual location of the agent
is unclear when the action is chosen. Therefore, the agent
faces the choice between a risky move to the right or a safer
move upwards. We select this task to demonstrate the impact
of the risk preference parameter because the risk involved in415

this problem is easy to understand. A more risk-averse agent
would prefer moving away from the cliff due to the risk of
falling.

We construct the SMBS policy functions using the opti-
mal Q-function and different risk preference parameters α.420

We then run these policy functions in the Cliff environment.
Figure 8 presents the average path for different risk pref-
erence parameters. When the slippery parameter is small,
the risk preference parameter has small impact on the pol-
icy functions and the resulting paths are very similar. How-425

ever, when the slippery parameter is large, thus more ran-
domness in movements, it can be seen that higher risk pref-
erence parameters lead to paths distant from the cliff edge.
This demonstrates that policies with higher α values exhibit
greater risk aversion. In Figure 9 we illustrate the SMBS430

method performance for varying α values in the Cliff en-
vironment. In a more deterministic setting (left graph with
slippery chance 5%), we see little difference in the policy
function performance regarless of the risk averse parameter
α. In Figure 9 right increasing alpha produces less variable435

results which means that the policy becomes more and more

Figure 8: Average paths in Cliff environments with different
risk preference parameters (α). Left: Paths overlap in a more
deterministic environment, indicating minimal influence of
α. Right: Divergent paths in a more stochastic setting; higher
α values result in paths farther from the cliff edge, depicted
by darker colors.

Figure 9: Comparison of the expected SMBS policy reward
for varied risk preference parameters (0 to 1) in the Cliff en-
vironment. Left plot: Slippery parameter = 0.05; Right plot:
Slippery parameter = 0.2.

conservative. This aligns with expectations, as a risk-averse
agent tends to move farther from the cliff to reduce the risk
of falling, consequently prolonging the time taken to reach
the goal. 440

Conclusion
In this study, we investigate control problems in stochastic
environments with constant delayed feedback. We develop a
new method (SMBS) designed to approximate optimal con-
trol for such problems. We show that the SMBS method 445

is optial when the system has deterministic movement. We
compare the performance of the SMBS method, with two
other baseline methods using 4 classical control environ-
ments and 7 Atari Learning Environments. We observe per-
formance degradation as the number of delay steps increases 450

and as the level of randomness in transitions is increased.
Our experiments show that the SMBS method outperforms
AMDP in most experiments and is no less than the Delayed
Q method in most Atari games. Further, the SMBS method
is more robust to errors in estimation of the Q-function. We 455

also showcase the impact of the risk preference parameter
in the SMBS policy function. This parameter may be used
to further tune the agent behavior in response to perceived
delays.

References460

Agarwal, M.; and Aggarwal, V. 2021. Blind Decision Mak-
ing: Reinforcement Learning with Delayed Observations. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 31, 2–6.
Bander, J. L.; and White, C. 1999. Markov decision pro-465

cesses with noise-corrupted and delayed state observations.
Journal of the Operational Research Society, 50(6): 660–
668.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation470

Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253–279.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.475

Chen, B.; Xu, M.; Liu, Z.; Li, L.; and Zhao, D. 2020.
Delay-aware multi-agent reinforcement learning for co-
operative and competitive environments. arXiv preprint
arXiv:2005.05441.
Degris, T.; White, M.; and Sutton, R. S. 2012. Off-policy480

actor-critic. arXiv preprint arXiv:1205.4839.
Derman, E.; Dalal, G.; and Mannor, S. 2020. Acting in De-
layed Environments with Non-Stationary Markov Policies.
In International Conference on Learning Representations.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and485

Abbeel, P. 2016. Benchmarking deep reinforcement learn-
ing for continuous control. In International conference on
machine learning, 1329–1338. PMLR.
Firoiu, V.; Ju, T.; and Tenenbaum, J. 2018. At human
speed: Deep reinforcement learning with action delay. arXiv490

preprint arXiv:1810.07286.
Jeong, B.-H.; and Kim, S.-H. 1991. Partially Observable
Markov Decision Process with Lagged Information over In-
finite Horizon. Journal of the Korean Operations Research
and Management Science Society, 16(1): 135–146.495

Katsikopoulos, K. V.; and Engelbrecht, S. E. 2003. Markov
decision processes with delays and asynchronous cost col-
lection. IEEE transactions on automatic control, 48(4):
568–574.
Loch, J.; and Singh, S. P. 1998. Using Eligibility Traces500

to Find the Best Memoryless Policy in Partially Observable
Markov Decision Processes. In ICML, volume 98, 323–331.
Mahmood, A. R.; Korenkevych, D.; Komer, B. J.; and
Bergstra, J. 2018. Setting up a reinforcement learning
task with a real-world robot. In 2018 IEEE/RSJ Interna-505

tional Conference on Intelligent Robots and Systems (IROS),
4635–4640. IEEE.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-510

ternational conference on machine learning, 1928–1937.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control

through deep reinforcement learning. Nature, 518(7540): 515

529.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In International
Conference on Machine Learning, 2817–2826. PMLR.
Ramstedt, S.; and Pal, C. 2019. Real-time reinforcement 520

learning. Advances in neural information processing sys-
tems, 32.
Schuitema, E.; Buşoniu, L.; Babuška, R.; and Jonker, P.
2010. Control delay in reinforcement learning for real-
time dynamic systems: a memoryless approach. In 2010 525

IEEE/RSJ International Conference on Intelligent Robots
and Systems, 3226–3231. IEEE.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; 530

and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 23–30. IEEE.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein- 535

forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Walsh, T. J.; Nouri, A.; Li, L.; and Littman, M. L. 2009.
Learning and planning in environments with delayed feed-
back. Autonomous Agents and Multi-Agent Systems, 18(1): 540

83.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995–2003. PMLR. 545

White, C. C. 1988. Note on “A partially observable Markov
decision process with lagged information”. Journal of the
Operational Research Society, 39(2): 217–217.

