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ABSTRACT

Hallucinations—where generative models produce invalid or nonsensical out-
puts—remain a critical challenge for reliable deployment. We present the first
computationally and query-efficient algorithm that provably addresses the halluci-
nation problem by actively querying the model’s own invalid outputs. Specifically,
we impose a strict constraint on the hallucination rate while maximizing the like-
lihood of valid target examples via projected stochastic gradient descent. Our
method works in very general settings with arbitrary distributions parameterized
by sufficiently expressive exponential families. Our approach is enabled by a novel
connection to the field of truncated statistics and settles an open problem posed by
Hanneke et al. (2018).

1 INTRODUCTION

Hallucinations—instances where large language models (LLMs) produce factually incorrect or
misleading content—have emerged as a critical challenge to the safe and effective use of Al across
numerous domains. In telecommunications, such inaccuracies can lead to miscommunications and
flawed decision-making, undermining the reliability of communication services and potentially
causing significant operational disruptions (Ji et al., 2023; Liu et al., 2024). Similarly, in autonomous
driving, hallucinations can cause LLMs to misinterpret the environment or generate unrealistic
predictions, compromising real-time decision-making and overall vehicle safety (Wang, 2024). This
issue is particularly concerning as LLM-based self-driving systems aim to bridge the gap between
real and virtual environments while maintaining efficiency and minimizing computational overhead.
Meanwhile, in medical practice, these same hallucinations pose serious safety risks by generating
false or incomplete information, which can jeopardize patient outcomes and erode trust in clinical
decision-making tools (Mello & Guha, 2023). As LLMs continue to proliferate and power essential
applications, addressing the hallucination problem is not only a technical challenge but also a
societal imperative to ensure reliability and trust in Al systems.

This work adopts a distribution learning perspective on the hallucination problem. Specifically, we
posit that there exists an underlying distribution p which generates data points x1.,, = {1,..., %}
within a space X. However, only a subset V' C X represents valid or accurate data, while the
complement V¢ = X \ V constitutes the hallucination set.

Our objective is to fit 0 so that pg approximates the true distribution p (i.e., fits the data x1.,) while
minimizing py(V°).

One straightforward approach to mitigating hallucinations is to form a mixture between our original
model and another model M’ that always generates a fixed valid output x*, akin to saying I
don’t know.” By adjusting how often M’ is activated, hallucinations can be reduced arbitrarily low.
However, while this method ensures that the model never produces invalid outputs, it significantly
limits the ability to generate diverse and meaningful responses, ultimately compromising the model’s
utility. Instead, we seek a balance: the model should provide informative and varied responses while
keeping the hallucination rate under control. We formalize this objective as maximizing the likelihood
of the observed training data while ensuring that the probability of hallucination remains below a
predefined threshold.

More precisely, given a parametric family of distributions {py} over the data space X, our objective
is to find a distribution py~ that maximizes the likelihood of the observed data while ensuring that the
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hallucination rate does not exceed «:

n
po- = arg meZ; —logpo(z:) s.t. pp[VC] < a. (1
=
This formulation ensures that the learned distribution remains faithful to the observed data z.,,
while appropriately restricting the probability mass assigned to the hallucination set V¢, thereby
maintaining both reliability and utility.

Passive learning is insufficient for general distributional learning (Hanneke et al., 2018)—and,
inadvertently, for LLM settings as well. Hanneke et al. (2018) introduce active distribution learning
with an invalidity oracle, define Valid Generative Modeling (VGM), and show that proper learning
can require exponentially many invalidity queries (an information-theoretic barrier), whereas an
improper learner can be statistically and query efficient. For a relaxed validity constraint, they
obtain statistical efficiency but explicitly pose as an open problem whether one can also achieve
computational efficiency (even with access to an optimization oracle). We resolve this open problem
in the affirmative.

Central question (Hanneke et al. (2018)). Does there exist a statistically, query-, and computation-
ally efficient algorithm that fits the data while driving the hallucination rate to an arbitrary target
a?

1.1 OUR RESULTS

While the problem of maintaining a low hallucination rate is statistically solvable, it is computationally
intractable in general. For instance, Hanneke et al. (2018) have demonstrated that proper learning
in this context is intractable, underscoring the significant challenges in developing computationally
efficient models. This intractability highlights the necessity to operate within a family that is
expressive enough. Furthermore, even a simple Gaussian parametrization is not expressive enough
and the resulting hallucination problem can be NP-hard. Formally:

Claim 1 (Computational intractability for simple model). Even when py is restricted to the Gaussian

Jamily N'(0, 1), it is NP-hard to find a feasible solution to the constrained optimization problem (1)
(i.e., to ensure q[V ] < «) under this model.

For a formal proof we defer the reader to Section E. This negative result is disappointing. However,
we demonstrate that intractability only arises in models that are insufficiently expressive to shift
probability mass from the hallucination set V¢ to valid regions without unduly sacrificing likelihood
on the observed data. To formalize this idea, we introduce the notion of a powerful model:

Definition 2 (Powerful model (informal)). A distribution family P is powerful at level « if for any
p € P with p[V¢] > «, there exists p' € P with p'[V°] = « such that, for any valid data ., C 'V,

Ve _ I p(w)
p[Vc] B H?:1p(xi)’

where V° is the hallucination set.

Intuitively, the ratio condition in Definition 2 says that if we reduce the hallucination mass by a factor
r = p'[V]/p[V°] < 1, then the likelihood of the observed valid data {x;} C V under p’ can decrease
by at most the same factor: [], p’(z;) > r [[, p(«;). In other words, we can cut hallucinations
without the data likelihood collapsing. This property is straightforward for model families that are
closed under mixtures—probability mass can be reallocated toward V' while keeping likelihood on
the observed data from vanishing—and we show exponential families satisfy it (see Section D.2).

With the notion of powerful models established, we are now equipped to state our main theorem,
which provides both theoretical and algorithmic guarantees for reducing hallucinations in these
expressive families. We state now an informal version of our main theorem Theorem 16.

Theorem 3 (Generation without Hallucinations (informal)). Let {pg} be a powerful exponential
family Definition 2 of distributions over a space X, with an unknown validity set V. C X with
an invalidity oracle 1yc(x) and a collection of positive examples x1., drawn from an unknown
distribution p over X; and a desired maximum hallucination rate o > 0.
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There exists an algorithm that computes a parameter 6 € O such that the loss E(é) satisfies

L£(8) < mingee {L(0) : Pymp, [z € VO] < a} + ¢, where € > 0 is a small approximation parameter.
The probability of generating invalid samples is bounded: Py, [z € V] < a+ e. The algorithm

makes poly(k, L,log(1/a)) invalidity queries and runs in poly(k, 1,1og(1/a)) time.
Theorem 3 establishes proper learning for any powerful exponential family. The assumption is
mild and purely about expressivity: any parametric family {py} can be embedded into a slightly
augmented, powerful family (e.g., by appending a benign auxiliary component that reallocates excess
mass from S to a designated valid point). Importantly, this construction only certifies expressivity—it
is not the target of our optimizer. Our method trades off data fit and validity and neither relies on nor
promotes degenerate “always-valid” mixtures.

1.2  OUR TECHNIQUES

Our novelty relies on establishing a bridge between model generation and truncated statistics. To
elucidate this connection, we briefly introduce the framework of truncated statistics. In truncated
statistics, we consider a parametric family of distributions {pg} over a space X, where py~ represents
the true distribution, and S C X denotes a truncation set. The objective is to estimate the parameter
0* based on truncated data samples z; € .S, which are drawn according to the truncated distribution

S(r) — Por(2)ls(x)
P (7) = 5,075
minimizer of the truncated negative log-likelihood defined by L5(0) = —Eqps, [log pj (z)] =
—Epps, [log po(x)] + logpe(S) = L(6) + logpy(S), where L(0) is the negative log-likelihood
of pp. We establish the connection to truncated statistics and model generation by considering a
Lagrangian relaxation of the constrained optimization problem (1). Specifically, we replace the
validity constraint p[V°] < « as a regularizer term:

mein(ﬁ(@) +X-pa(V)), (2)

. To estimate 6*, truncated statistics leverages 6*’s universal property as the

where £(0) is the negative log-likelihood (NLL) of the observed samples x1.,, measures the probability
mass assigned to the hallucination set V¢, and A > 0 is a hyperparameter balancing these two
objectives.

Truncated Log-Likelihood and the Role of ). A key observation is that when A = 1, the objective
in (2) corresponds to a truncated log-likelihood with the truncation set V¢, thereby allowing us to
utilize the extensive tools developed in truncated statistics. In exponential families, this objective
is convex, enabling efficient optimization via standard gradient-based methods. Generally, in the
regime where A < 1, the objective remains convex, hence ensuring computational efficiency for
all A € [0,1]. Specifically, the instance A = 0 corresponds to fitting the model solely based on
the observed data without considering the hallucination set. However, when A > 1, the objective
becomes non-convex, making the optimization landscape more challenging. Intuitively, increasing A
places higher importance on penalizing the mass assigned to V¢, potentially leading to solutions that
reduce hallucinations more aggressively but at the risk of losing convexity. We find that setting A = 1
is the ideal choice for our purposes, as it effectively balances the reduction of hallucinations while
maintaining computational tractability.

Optimal Choice of )\ in Powerful Models. In powerful model families definition 2 an important
insight is that simply setting A = 1 already allows the model to push all mass off the hallucination set,
effectively driving pg (V¢) — 0as A — 1 from the left. Consequently, there is no advantage in making
A larger; doing so would only enter a non-convex regime without additional benefits in reducing
hallucinations. This property ensures that powerful models can enjoy both strong hallucination
mitigation and computational tractability.

Algorithmic Overview. Building on these observations, our algorithm incrementally relaxes the
negative log-likelihood L(0) until it finds a feasible solution. Concretely, we fix a sublevel L such
that £(0) < L, and then solve

rrbin(ﬁ(H) +po(V°)) subjectto L(#) < L.

As L£(0) is convex, this constitutes a convex optimization problem. If the resulting solution 6 satisfies
pe(V¢) < «, we halt and perform a binary search on L in case of overshooting. Otherwise, if
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pe(V€) > «, we increase L and repeat. Thus, we reduce the hallucination problem to a continuum
of constrained parameter estimation tasks (similar to those appearing in truncated statistics), each
corresponding to a hallucination rate .

1.3 RELATED WORK

Our work builds upon and extends several lines of research:

Generative Models and Hallucinations. Recent studies have identified the tendency of generative
models to produce invalid or nonsensical sequences, particularly in complex or constrained environ-
ments (Kusner et al., 2017; Janz et al., 2018; Kalai & Vempala, 2024; Wang, 2024; Liu et al., 2024;
Mello & Guha, 2023). Our approach advances this field by providing theoretical guarantees.

Active Learning with Queries. In supervised learning, the use of queries, such as membership
queries, has been pivotal in learning complex hypothesis classes, often achieving near-optimal
performance relative to information-theoretical bounds (Angluin, 1987; Jackson, 1997; Hopkins
et al., 2020; Diakonikolas et al., 2024). Active learning techniques have primarily been employed
to reduce sample complexity by selecting informative examples. However, Hanneke et al. (2018)
have demonstrated that active learning is essential for addressing the hallucination problem. This
theoretical necessity is further supported by practical training approaches like Reinforcement Learning
with Human Feedback (RLHF) in recent advancements, such as (OpenAl et al., 2024). In our work,
we build upon this querying paradigm by utilizing invalid samples to reduce hallucinations while
maintaining explainability.

Truncated Statistics. A pivotal influence on our study is the work of Lee et al. (2023), which builds
upon a substantial body of literature in truncated statistics (Daskalakis et al., 2018; 2020b;a; 2021;
Ilyas et al., 2020; Kontonis et al., 2019). Truncated statistics addresses the estimation and learning
of distributions from selectively censored or truncated data, presenting unique computational and
statistical challenges. Similar to Lee et al. (2023), our research operates within the framework of
exponential families, adapting and extending tools from truncated statistics to mitigate hallucinations
in generative models. By establishing a direct connection between truncated statistics and hallucina-
tion reduction, we bridge these fields and demonstrate that it is a natural framework to model the
hallucination problem.

In summary, we synthesize generative-model validity, query-based learning, and truncated statistics
to obtain provable hallucination reduction in a simplified parametric setting (exponential families
with an invalidity oracle). This serves as a necessary precursor for broader LLM applications—any
method that claims to reduce hallucinations should at least meet these guarantees in the simplified
case—and provides a principled baseline for future LLM-specific work.

2 PRELIMINARIES

Here’s a compact combined version:

A distribution is in the exponential family if py(z) = h(z) exp(0 " T'(z) — A()), where h is the
carrier (weight) function; for a set .S, write pg(S) = Pg~p, [ € S]. The parameter space is © = {0 €
R* : A(f) < oo}, an open set; under a minimal representation (after reparameterizing if needed so
that 6 and T'(x) are linearly independent), the log-partition A is convex with VA(0) = E,.p, [T(x)]
and V2A(0) = Covy, [T (x)].

We include the definition of a univariate sub-exponential random variable, which can be used to
define a corresponding class for the multivariate case by taking the supremum over the unit sphere.
While there are multiple equivalent definitions, the most convenient for our purposes is based on the
moment generating function (MGF). Namely,

Definition 4 (Moment Generating Function). The moment generating function (MGF) of a distribu-
tion D, denoted by Mp(t), is defined as Mp(t) = E,..ple'*], provided this expectation exists. The
Sunction M p(t) is defined for all values of t in some interval containing t = 0.

We provide a definition of the sub-exponential distribution, which we will rely on throughout. This
definition is similar to the one in (Vershynin, 2010), with a minor adjustment to account for potential
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restrictions that arise when scaling moves us outside the natural parameter space © of our model.
Note that, aside from some scaling, the definition used here aligns with that in (Lee et al., 2023).

Definition S (Sub-exponential distribution). Let x be a univariate random variable with zero mean.

The random variable w is said to belong to the class SE(K?%, 3) if the following condition holds:
Elexp(Az)] < exp(KZA?), forall X such that |\| < %

The following proposition provides an equivalent definition for the sub-exponential class, adapted
from (Vershynin, 2010) with slight modifications to suit our needs. However, since the proof remains
unchanged, we omit it.

Proposition 6 (Sub-exponential distribution). Let x be a univariate random variable with zero
mean. Fix parameters K; > 0 fori = 1,2, and 3 > 0, such that v € SE(K?,[3). Then, the
Sollowing two properties are equivalent. Additionally, the quantities max(K1, 8) and K, which
appear in the properties, differ by a universal constant. (a) The moment generating function (MGF)
of x satisfies Elexp(Ax)] < exp(K2\?) for all X such that |\ < % (b) The moments of  satisfy

(E [|z[?)V? < Kop forall p > 1.

This class of functions is typically associated with a concentration inequality. The one we use, which
can also be found in (Vershynin, 2010), is as follows:

Fact 7 (Bernstein’s Inequality). Let x1,...,x N be independent, identically distributed, mean-zero,
sub-exponential random variables belonging in the SE(K?, 3), and set z = max (K1, 3). Then, for

everyt > 0, we have
(2t
P >t] <2exp|—cNmin| —,~ ,
2%z

where ¢ > 0 is an absolute constant.

1 N
N2

i=1

2.1 TRUNCATED STATISTICS

Truncation and S-truncated oracle. For a density py on R? and measurable S C R? with
pe(S) > 0, define the truncation

po(z) 15(x) ps(z) _ 1s(z)
po(S) 7 po(z)  po(S)

We call any procedure that, on input 6, returns a sample from the conditional distribution pg whenever
pe(S) > B (and may return an arbitrary output otherwise) a S—truncated sample oracle. With a
sampler for py and a membership oracle Mg(x) = 15(z), this is implemented by rejection sampling;
the expected number of proposals is pg(S) > 8 when the condition holds.

Py (x) =

Non-truncated and Truncated NLL  Given some exponential family pg parameterized by 6 € R¥,
the negative log-likelihood (NLL) over a population distribution ¢ is defined as follows: £(6) =
—E,~qllog pa(z)] . In what follows we will refer to £ as “non-truncated”. Moreover, for a truncated
exponential family pg , such that the support of ¢ is contained in S, we define the following “truncated”
version of the NLL objective as: Lg(0) = —E,,[logp; (x)] = L(0) + logpy(S). The gradient
and Hessian of Ls(-) are given next. VoLs(0) = E, s [T(2)] — Eung [T(2)], ViLs(0) =
Covyps [T(2)].

3  GENERATION WITHOUT HALLUCINATIONS: AN OPTIMIZATION PROBLEM

In our setup, we work within a parametrized space of distributions {pg }¢gco, defined by O, with
an associated loss function £(#). A natural choice is for £ to be the negative log-likelihood. The
optimization problem of interest is formulated as:

0 = arg mein L(0) st.Pyup,[re S <a. 3)

To solve this problem, we rely on three resources: (i) an initial sample set {x;}!_;; (ii) for each
6 € ©, sample access to © ~ py; and (iii) an invalidity oracle Mg(x) that returns 1 if z € S and
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0 otherwise. However, the resulting optimization is typically non-convex because the feasibility
constraint P, [z € S] < a is itself non-convex—even in simple settings such as a one-dimensional
Gaussian.

Example 8. Consider the following scenario: Let S = (—1,1), and suppose the distribution is
a one-dimensional Gaussian, N'(j1, 1), with u = M or n = —M. As M — oo, we observe that
PyonEmnylz € S] — 0, indicating a decreasing probability within the interval S. However,
Pyno,1)[r € S] = 0.6827, suggesting that for small o < 0.6827, the parameter space satisfying
the constraint becomes disconnected. This example illustrates the non-convex behavior discussed
earlier.

4 CONCENTRATION RESULTS FOR TRUNCATED EXPONENTIAL FAMILIES

In order to accomplish that, we have to bound Cov (T'(X)), and in order to do that we need

T~pss
[Eqnps [T(z)] — pll2 < log (ﬁ) The next lemma will deal with those two latter stepping stones.

Lemma 9 (Moment preservation after truncation). Assume that E..,,[T(z)] = p
CoVanpy (T'(x)) 2 L1, and po(S) > 0. Then, |[E, ,s[T(x)] — pll2 < log (ﬁ) . Similarly,

we have the following covariance estimate: Covmwpg (T(x)) = (O (log2 (pe%s))) + L) 1.

The previous lemma gives us an estimate of how much the smoothness is affected by the truncation.
Hence, tighter bounds guarantee needing fewer samples since the truncated distribution enjoys
stronger concentration properties. The analysis is achieved by performing a worst-case analysis.

Next, we see how truncation affects the sub-exponential property that the non-truncated distribution
possesses. For the proof we defer the reader to Section C.

Lemma 10 (Truncated density is sub-exponential). Let F be an exponential family with sufficient
statistic T(-) such that for any pg € F, we have A\I = Covgp,[T(z)] = LI. Let x follow the

truncated distribution: pj (x) = %, where pg(x) = hs(x) exp(0T T (x) — As(0)) and pg(S)
is the normalization constant. Then, the random variable T'(x), under this truncated distribution, is
sub-exponential, denoted SE(K?, 8), with parameters K* = (1 + log*(1/a))L as K appears in
Definition 5, and B is the reciprocal of the largest radius r of the ball B(0,r), centered at 0, that is
contained in B(0,r) C ©.

Remark: Corollary 13 shows that we can restrict our attention to 6 € {6 : L(0)—L(6p) < log(1/a)}.
Any such 6 satisfies P,p, [z € S| > poly(a), therefore log(1/Pyp,[z € S]) < O(log(1l/c)).
Specifically, in Lemma 25, the bound K2 = (1 + log®(1/a))L follows from this observation.

4.1 THE FEASIBLE REGION AROUND INITIALIZATION

To ensure feasiblity we will use the following simple observation.

Observation 11 (Mass along the sub-level sets). Let pg be some exponential family and define 0’
to be a minimizer of the constrained objective {ming Lg(8) : s.t. L(0) < L} for some L. For any 0
such that £(0) < L, it holds Py[S] > Pg:[S] exp(L(0") — L(0)).

For the proof we defer the read to Section C.4. Using Observation 11 the following technical corollary
provides the geometry of optimization landscape, for a proof we defer the reader to Section C.5.

Corollary 12 (Mass monotonicity along sub-level thresholds). Let 6* be the minimizer of the
truncated NLL objective Lg for some exponential family py, constrained on the convex domain
{60 : L(0) < L(0*)}. Denote by oo = Pyp,,. [« € S| the mass assigned to the survival set S. Define
the following constrained optimization problem: {ming Lg(0) : s.t. L(8) < L} and denote by 0, its
solution with L = L1 and by 05 its solution of the same optimization problem with L = Lo, where
Lo > L.

1. (Monotonicity) The mass assigned to S is decreasing as a function of L: Pyrpo, (S) > Pyrpo, [z €
S] > a.
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2. (Exponential decrease) The mass assigned to S by 02 drops exponentially fast, i.e., it holds that
Pynp, [xe s < Pyrpe, [z € 5] e—(L2—L1).

Given the exponential decrease, i.e. Corollary 12 we obtain the following corollary. Which is
ensuring that our initialization of PSGD is close in LLN distance, and that all our parameters inside
our projection domain give poly(1/«) to the survival set S.

Corollary 13 (Feasibility of 6°). Suppose that 6° is such that Py, , [z € S] > o Suppose 6}, is
the solution of Equation (3). Then, L(0*) < L(6°) + log (%). Furthermore, if for any 0 such that
L(6) < L(6°) + e+ log (L), then pg(S) > po- (S)oe.

Proof. From Corollary 12 it holds that pgo (S) > «. Hence, by the exponential decrease, provided
by the same corollary, we find that £(6%) < L£(6°) + log (1). The second part is an immediate
consequence of the Observation 11. [

The following lemma is a smoothness result that specifies how much we need to expand the sub-level
sets to avoid overshooting and subsequently reducing the mass by more than a constant factor. For
the proof we defer the reader to Section C.6.

Lemma 14 (Bounded gaps and proximity of a (d,¢) minimum). Let 0, the solution 0;, =
arg mingeg Ls(0) such that L(0) < L. Suppose 01, approximates the loss by €, i.e. Ls(01) —
Ls(01) < e. Denote § = L — L(01,), and set 0,5 the solution 0;, = arg mingeg Ls(0) such that
L(0) < L — 6. Then, the following approximation is true e‘e_‘;]P’INp@L (v € 8] < Prpy, [z €

S] < e*‘s]P’gmng [S]. Also, Ls(01—s5) — Ls(01) < e. Lastly, for g = O((% log2(1/a))71), we get
Ls(0r) = Ls(Or4g) < 1.

‘We now show that when consecutive minima are close, the overall progress must be negligible.

Proposition 15 (Progress of the Truncated Loss along Sublevel Sets). Suppose 03, is the minimizer of
the optimization problem {ming Lg(0) : s.t. L(0) < L} for L := Lyyi, + mb, where m € N, b > 0.
Moreover, let | be the smallest integer, such that 0 is the solution of the same constrained minimization
problem for L := Ly, + 1b. Then, form <1 —1, Ls(6;,) — Ls(05,.1) > W and for

" % Ls(0))—Ls(0™)
allm, Ls(05,) — Ls(0,41) = T les(D)p

5 LEARNING WITHOUT HALLUCINATIONS

In this section we define the class of distributions named powerful, and show that there the optimiza-
tion problem Equation (3) can be solved efficiently. A crucial property for the powerful class is that
we may define a regularized log-likelihood function for which the approximate minima are pushed to
the boundary. We now state the main theorem of this section.

Theorem 16 (Generation without hallucinations). Fix € > 0. Let {pg} be a powerful exponential
family, with sufficient statistic T : R™ — R¥ such that for any pg, \I < Covp, [T(x)] < LI. Fix
an unknown subset of X, S with oracle access 1g. Suppose x1, 2, -+ , T, are samples drawn from
an unknown distribution, and 6y = argming £(6, 1,22, -, Ty), such that Py, [z € S] > ¢,
and an Q(o)-truncated sample Mg over S. Denote 0* as a solution of 0* = argmin,y £(0), with
hallucination rate «, i.e., such that Pyp:[x € S] < a. There exists an algorithm that makes

o) (lz—j log (é)Q) calls to Mg, runs in time poly(k, 1/¢,1og(L)) and computes an estimate 0, such

1
that KL(pj. pg) <eand P,y [x € S| < (1 + €)a with probability at least 99%.

To minimize the number of queries to the oracle, our approach cautiously progresses towards the
optimal parameter 67, see Equation (3). Specifically, we incrementally explore increasingly larger
convex sets, ensuring each set assigns sufficient probability mass to the set S. To this end, for a given
threshold L, we formulate and solve the following constrained optimization problem:

0 = arg mein Ls(0) st L(O) <L 4)
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Roadmap of the proof We describe the main ideas for proving Theorem 16. First, we note that the
initial point 6 that minimizes the observed samples is close to 87, as in Equation (3). More precisely
0* € {6 : L(0) < L(6) + O(log 1)}. To this end, we quantify the rate at which the mass assigned
by the minima to S decreases along the sublevel sets. For this a crucial both observation 11 to see
how much far we need to search and lemma 14 to make sure we do not overshoot too much. Second,
we implement projected gradient descent along the sublevel sets. This process requires identifying
when we are within the sublevel set where the true minimum lies.

The Algorithm | generates the desired output, 6, while incorporating all subsequent algorithms. The
algorithm terminates at line 4 when the successive outputs for Equation (4), corresponding to the
sublevel sets Ly and Lo (with Ly — Ly = g), differ by no more than ¢”. The parameter €¢” is chosen
to be small enough such that, at termination, we are within ¢ of the minimizer of Lg(6) so that we
are close to boundary. This comparison is justified by Proposition 15, which compares the successive
distances to the distance from the global minimum.

Algorithm 1 Algorithm for reducing the hallucination rate to «

1: for L € {Luin + g5 Linin + 29, ..., Lmin + ([log(1/)/g] +1)g} do
2: Execute PSGD (Algorithm 2) on sublevel L and obtain 67
: Compute Lg(01)
if Py, [ € S] exp(L — L(07)) < o then

3
4
5 return binary-search(£(fz)) (Algorithm 4)
6: end if

7. if|Ls(0r_,) — Ls(01)| < <" then

8 return 0y

9 end if

10: end for

5.1 POWERFUL MODEL

Here, we develop the framework of powerful models.

Definition 17 (Powerful model). Let F' be a family of probability density functions on a space X,
and let S C X be a measurable subset. Suppose we have observed data {x;}_; C X. The family
F is called a-powerful with respect to S if, for all p € F such that p(S) > «, there existsp' € F
satisfying p/(S) = « and: %SS')) < exp (% Z?:l (lnp’(xl) — h’lp(.’I}Z))) . Should the family F' be
powerful for all o we simply call F' powerful.

Definition 18 («-Closed Under Mixtures). Let F be a space of families of probability distributions
over a domain X, and let S C X be a measurable subset. Extend X by adding a point * ¢ X,
forming X' = X U{x*}. For a family F € F and any p € F with p(S) > «, define the extended
distribution p,, on X' as:

p(z), ifreX\S,
pm(@) = (P() - 55y, ifz €S,
p(S)_aa lff:ir*

We say that F is a-closed under mixtures with respect to S if there exists a family F' € F such that
Pm,P € F' forall p € F with p(S) > «, and the extension p(x*) = 0 holds for distributions in F.

The next lemma shows that if we can output something valid with increased probability, then the
model must be powerful. For the proof of this lemma see Section D.1.

Lemma 19 (Closed Under Mixtures Implies Powerful). If a family F is a-closed under mixtures
with respect to S, then F' is a-powerful with respect to S.

An exponential family can be thought as closed under mixtures. See Section D.2 for the proof.

Corollary 20 (Exponential Family is a-Closed Under Mixtures). Let {pg} be an exponential family
of probability density functions on a space X, with sufficient statistic T'(x) and base measure h(x).
Then, for any o € (0,1], the exponential family is a-closed under mixtures with respect to any
measurable subset S C X.
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Putting all the pieces together we conclude this section with the following corollary.

Corollary 21 (Exponential Families are a-Powerful). Since the exponential family is a-closed under
mixtures (Corollary 20), and closed under mixtures implies powerful (Lemma 19, it follows that the
exponential family is a-powerful with respect to any measurable subset S C X.

5.2 APPROXIMATE MINIMA LIE ON THE BOUNDARY

Here, we develop the main technical tools necessary for our approach, demonstrating that in powerful
models, there always exists a direction in which the NLL decreases, along with a corresponding
proxy objective that leverages this.

Proposition 22 (A direction in which Lg is decreasing). Suppose that {pe}gceo forms an exponential
Sfamily that is powerful (see Definition 17) with respect to a set S C X, taking values in X. Let
A C © be such that maxg gca |0 — 0'||, < M, and let o < minge o Pyp, [x € S|. Then, there
exists a unit vector u such that for all § € A, we have u"V Lg(0) < 0. Furthermore, if we sample
a random unit vector v, then with probability at least ©(1), we have that u" v/ ||v||, > a, where

a = O(k~Y/?), where k the dimension of .

Proof. Fix € > 0 and observe that, since A is a bounded set, there exists a point . such that for all

0 € A, Ls(0,) < Ls(6), and (L=l 002 > 1 — ¢ forall 6,6, € A. On the other hand, if

we take ¢ — 0, then, by the compactness of the unit sphere, there exists a unit direction  such that
Ls(6 + tu) is decreasing as function of t, for all fixed § € A and t > 0. For the final part notice that

[|[v]| = vk for large k by the law of large numbers. So, u”v/ [|v[|, ~ N(0, £). O

Next, we define a regularized version of Lg(6) that we will later see that it has the property that its
minima lie close to the boundary.

Definition 23 (e-Regularized loss function). Suppose that {po}oco forms an exponential family
taking values in X, and let S C X. Define L3"(0) = Ls(0) + ev” (0 — 6y), where Ls is the
truncated negative log-likelihood over the truncated density ps, and u is a unit vector acting on the
parameter space ©.

The next proposition is very crucial to our analysis, it shows that the regularized loss cannot admit
approximate minima as interior point. For a proof see Section D.3.

Proposition 24 (Minima lie near the boundary). Suppose that {pg }oco forms an exponential family
that is powerful (see Definition 17) with respect to a set S C X, taking values in X. Let v be a vector
satisfying uT v > a, where u is the direction of decrease as defined in proposition 22. Define A C ©
as the domain A = {0 € © : L(0) — L(0y) < M}, and set 05, = arg minge 4 £(0). Then, an é-

minimizer Oy of L over A, where é = O(€'ealog(1/pex, (S))) satisfies M+ L(60) —e < L(0nr),

where /.:g’" is the €'-regularized loss function (see definition 23), and L(0) is the negative log-
likelihood of the exponential family.

5.3 SKETCH OF THEOREM 16

By Proposition 24 we pass to the truncated loss Lg, preserving “minima on the boundary” up to a
linear penalty in €; on each sublevel L we run PSGD and, via Theorem 26 plus amplification and a
Hoeffding estimate of P, [ € S], obtain with high probability a candidate 7, that is O(€)-optimal
for that sublevel. The outer routine Algorithm 1 then either (i) overshoots the target mass «, in
which case Lemma 14 shows the PSGD iterate output 6 and the true sublevel minimizer have close
mass and £ (hence proximal Lg), so a binary search between the last two visited sublevels returns

10g (Pynp, [z € S]) = v O(€) while keeping L(0) within O(e) of £ (6, ) thus also keeping Lg(0)
within O(e) of Lg(0,-); or (i) does not overshoot, in which case small successive sublevel gaps
trigger termination and Proposition 15 implies any further descent could improve L£g by at most
O(e), so the current iterate is already O(¢€)-optimal. Using boundary inheritance again to translate
L(6) proximity to £(6,-) (and thus mass), we conclude that 0 satisfies Lg(0) — Lg(04-) < O(€)
along with log (Py~p, [z € S]) = o £ O(e) which completes Theorem 16.
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A PSGD CONVERGENCE

We show that the sufficient statistics of the truncated densities are sub-exponential, see Section C.

Lemma 25 (Sub-exponential Property for the Truncated Distribution). Let x follow the truncated
distribution: pj(x) = %, where pg(x) = h(z) exp(0T T(x) — A(0)) and Pynp, [S] is the
normalization constant. Then the random variable T (x) under this truncated distribution is sub-
exponential. More specifically, it belongs to the family SE(K, 3) where K? = L+log? ( L ) , Bl =

inf), =1 sup{y : yu+ 6 € O}.
The result for PSGD we will use is the following. Its proof is standard, see, .e.g, (Shalev-Shwartz &
Ben-David, 2014) or Section C for a proof.

Theorem 26 (Convergence of Projected Stochastic Gradient Descent). Consider the Projected
Stochastic Gradient Descent (PSGD) algorithm for minimizing a convex function f over a convex set
K. Assume the following:

1. Lipschitz Continuous Gradients: There exists a constant M > 0 such that for all x and y,
IVf(z) = Vi)l < Mz -yl

2. Bounded Variance: The variance of the stochastic gradients is bounded, i.e., there exists a
constant b* such that B[] g®||?] < b2, where g) = V f(z).

Then, for & = % ZZ;I w where the {w"} are generated by the PSGD algorithm with step size

. - % w0 ¥ 2 2,2
hy = ﬁ, it holds E [f(w)] — f(w*) < I AT I 12bM2T.

To apply Theorem 26 we first show that our unbiased gradients have bounded second moment. The
proof can be found in Section C.

Lemma 27 (Bounded variances of stochastic gradients ). Let T'(z) : R% s R¥ be the sufficient
statistic of a truncated exponential family pg*. We have that v = T(z) — T(x), where z ~ pg and
T~ pg* is an unbiased estimator of V Lg(0). Moreover, v has bounded second moment, namely,
Ell[o]2] = E.psEqps. [IT(2) = T(@)[2] S kLlog®(1/a).

zepy Hap,
B ALGORITHMIC IMPLEMENTATION DETAILS

In this appendix, we provide detailed descriptions of algorithms used in Theorem 16. These algorithms
include the Projected Stochastic Gradient Descent (PSGD) algorithm for optimizing the loss function
within a sublevel set, the sampling procedure for computing stochastic gradients via rejection
sampling, and the Binary Search procedure for finding the optimal parameter € that satisfies the
hallucination constraint when we overshoot and need to scale back.
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Algorithm 2 Projected SGD with Truncated Samples

Require: Sublevel threshold L; positive samples {z;}"_, from pg*; initial parameter 6y <
LS T(x;); step-size parameter L
fort=1to N do
Sample z(*) from the positive examples
hy + 7
g® < SAMPLEGRADIENT (6, ("))
9t+1 < 0,5 — ht g(t) B
Project 6,41 onto {0 : L(0) < L}
end for
return 0

RN A 2N

Algorithm 3 Sampling Procedure for Stochastic Gradient

Require: Current parameter 6, data point x
1: while true do
2: Sample z ~ pg
3 if Mg(z) =1 then > Mg is the invalidity oracle indicating z € S
4: return 7'(z) — T'(z)
5: end if
6: end while

B.1 PROJECTED STOCHASTIC GRADIENT DESCENT (PSGD)

The PSGD (Algorithm 2) is utilized to optimize the loss function £(¢) while ensuring that the
parameter updates remain within a specified sublevel set defined by L. At each iteration, the
algorithm computes a stochastic gradient using samples from the data distribution and adjusts the
parameter ¢ accordingly, followed by projection back onto the feasible set.

B.2 SAMPLING PROCEDURE FOR GRADIENT COMPUTATION

The computation of the stochastic gradient requires sampling from the truncated distribution pg . The
sampling procedure (see Algorithm 3) employs rejection sampling using the invalidity oracle Mg/(2)
to ensure that only valid samples from S are used in the gradient computation.

B.3 BINARY SEARCH FOR OPTIMAL 6

In some cases, during the iterative optimization, the PSGD algorithm may overshoot the optimal
parameter that satisfies the hallucination constraint, resulting in a hallucination rate below the desired
maximum «. To adjust for this, we employ a Binary Search algorithm (Algorithm 4) to efficiently
find the parameter 6 that precisely meets the hallucination rate requirement. This procedure scales
back the parameter to ensure compliance with the constraint.

The binary search is needed when the parameter moves beyond the optimal point when we increase
the sublevel set , resulting in a hallucination rate that is too low (i.e., the model is overly conservative).
By performing binary search, we can efficiently find a parameter that satisfies the hallucination
constraint e-close.

C OMITTED PROOFS

C.1 THE PROOF OF PROPOSITION 15
Proof. Suppose u = M. Then, the functions
mil2

9(t) = Ls(0, + tu),  w(t) = L0, + tu),

are convex. Furthermore, the functions ¢ and w are decreasing and increasing, respectively, for
t € [0,][0* —6;,|l5]. Denote by t;, the points such that w(ty) = L' + mb + kb, where k =

13
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Algorithm 4 Binary Search for Optimal 6§

Require: Left bound Left = L, right bound Right = g, initial params 6,
1: for i = 1to [log(1/¢)] + 1 do

2: L < (Left + Right)/2 -

3: Execute PSGD (Algorithm 2) on sublevel L to obtain 6;
4: Estimate Pyp, [z € S]

5: if Py py, [z € S| < o then

6: Right «+ L

7: else B

8: Left + L

9: end if
10: end for

11: return Qflog(l/e)'\—i-l

0,....,l —k—1land t;_,, = ||6* — 0} ||,. Since the function w is convex and increasing, the length
of the line segments [t;_1, t;] is decreasing. Also, since g is convex and decreasing,

g(te) — g(tk—1) < g(tk—1) — g(tg—2), form=1,... 1L

Consequently,

‘CS(G:;L) - ‘CS(Q*) = g(O) - g(”a* - 9;;”2)
l

=S (gt 1) — 9lt)
=1
< (I —=m)(g(to) — g(t1))
< (1=m) (Ls(0;,) — L5(05,11)) -

Hence, we divide by [ — mn and obtain the first part. Also, since [ —m < log (1), we conclude.

O

C.2 THE PROOF OF LEMMA 25

The truncated exponential family distribution can be written as:
pi () = hs(z) exp(8 T T(x) — As(6)),
where:

* hg(z) = h(z)1g(x) is the modified base measure, zero outside the set .S,
* Ag(0) = A(0) + log pp(S) is the modified log-partition function reflecting truncation.

Define the truncated log-partition function:

Ag(0) = log/sh(x)exp(HTT(x)) dz.

The expected value and covariance under truncation are given by:
ps = VAs(0),
COVtwpg (T(x)) = V2As(6).

Consider the moment generating function (MGF): To simplify the calculations deal with the push-
forward measure induced by the mapping x — 7'(x) and we denote the corresponding density as

p3 (t) = hs(t) exp(0t — Ag(0)).
ZS(*yu + 9)
Zs(0)

yuT (t—ps)] — ,—vu' pis
e ]=e

E

twpg

14
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and to establish subexponentiality, we need to establish an inequality of the form:

Zs(yu +0)

T 2 2
LeT YU Bs < oV K
Zs(0) -

for « such that both § 4+ yu and € + yu belong in our parameter space. Using the (L + log? (é) ) -
smooth property of Ag(6):

1
As(yu+6) — Ag(9) < yu'ps + (L + log? ( )) 72,

(0%

completing the proof that T'(x) under the truncated distribution retains sub-exponential behavior.

uT(t— T ZS(’yu—l—G) 2 9 (1
Etwpg[ev (t=ns)) = = usTw)gexp v | L+log -

Therefore, T'(z) is SE(K?, 3) with

K? = (L—i—log2 <;>> , B71 = min (sup{y : yu+ 0 € O},sup{y: —yu + 6 € ©}).

C.3 THE PROOF OF LEMMA 9

First, for convenience, suppose that pg(.S) = «. To establish the bound, we will show that for any
vector i € RY, the following holds:

By 07 T(0)] - Bany 7T < 0 (102 (1)),

Indeed, for all vectors w and all norms || - ||, there is a linear functional f such that f(w) = |lw]].
Since every linear functional is of the form w — uT - w, we can be sure that, after choosing the
proper u, we can get a bound for any norm that may be of use.

Define Cp = {z : u'T(x) > R}. We change the measure in the first expectation, so we can compare
them more readily, namely,

By s [uT T(2)] = Eqnp, [u” T()]]

MS

= ‘EINPS ];uTT(J;):| — E$Np9 [UTT(x)] ’
e

= |Eumps ( — O‘) uTT(x)} |

= |Eznps <ls; a> uT(2) 1o |+ Eanp, [(15; a) uTT(x)lcRc} |
L | o

< |Ex~p9’ < Sa a> UTT(I’)ICR| 4 |ch~p9 {< Sa Oé> R} |
e i o

< [Eonp ( Sa a) uTT(x)lcR_ |+ |Eqrpe {( Sa Oé) R} |

< aEw~p9 [UTT(x)lCR] + Eopo

1
< —Eaomp, (W' T(2)1c,] + R
It remains to work on the term By, [u” T(2)1¢,]:
Eanpy [u"T(2)1c] = Eanp, [u7T()|Cr] po(Cr)

15
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= Eunp, [log(expu” T(2)|Cr)] po(Cr)
=108 (Eqnp, [exp u” T(2)|Cr)]) po(Cr)

(m%wammm )mwm

1
po(Cr)

<lo (Ewpe expu’ T(x )1031)]91() po(Cr)
< lo (Ewwm exp u T( )ICR])) po(Cr) —log (pe(Cr)) pe(Cr)

We switch our focus to the term log (Exwpe lexpuT T(z)1c,])

10g (Egrp, [expu” T(z)1c,,)])

IN

Eznp, [exp QUTT( ))] Egpo [ICR)])

IN

0g (Eonp, [exp(2u" T(2))]) - log (Bonp, [1c5)])

0g (
(
(
0g (

IN

08 (Eznpy [exp (2uT' T (x ))]) -log (pe(CR))

IN
w\»—le—ll\D\»—ll\D\»—ll\D\

exp (4L + 2u"E, ., [T(2])) - log (po(Cr))

< = (4L + 2u" Eqnpy [T (2)]) - log (po(Cr))

For convenience, we set pg(Cr) = ¢(R), and by putting everything together, we obtain

By [0 T(2)] ~ B [0 T(@)]| < 5o (1L + 27y, [T(@)]) - log (e B)) ()

1
- log(¢(R)) - ¢(R)+ R
Since uTT(z) is subexponential, we have that py(Cr) < Cexp(—cLR). Where the constant

C = O (log Eznp,[p(x)]), which is paid since p(x) is not centered. Substituting back into the
original inequality, we get a bound of the form

0 (;exp (—cL- R)) VR

We used the big O notation to suppress any constants, which we may eliminate by paying only
log(constant). Therefore, since the above holds true for all R, we may minimize it or choose an R
that is satisfactory for our purposes. We may choose R = O(log(1/«)). Therefore,

o (Lowi-etm) 10 (e (1))

so we conclude the first part.

For the second part we use a similar analysis. To establish the bound, we will bound the corresponding
quadratic form of the matrix Cov,,s (T'(x)). It suffices to bound

r~p

Eynps [u"T(2) - TT(2)u] — Egmp, [u" T(z) - T" (x)u] ‘ .
To simplify the expression we set u” - T'(x) = p(x) where p(z) is a polynomial of degree k.

wrpS [uTT(:c) TT () ] = Ezrpe [uTT(:zr) ~TT(3:)U] f
= [Eonpg [P°] = Banpy [P*(@)] |

(25 ]
e (5 k] 5 (5 ]
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< EINPG [pzlcR} +R2

Q| =

The term E, ., [p?(2)1¢,,] can be bounded using Cauchy-Schwarz as follows

2
EINPS [pQ(a;‘)lcR] < E$~pe [p4(33)] 'EINPS [ICR] < CeXp(—CLR),
where C' is a constant. To obtain the constant C', we use Proposition 6 (b), which gives

]Emfvpg [p4] S (4K2)4
Substituting back into the original inequality, we get a bound of the form

1 cL 9
(0] (aexp <_2R)> + R~

We used the big O notation to suppress any constants, which we may eliminate by paying only
log(constant). Therefore, since the above holds true for all R, we may minimize it or choose an R

that is satisfactory for our purposes. We may choose R = O(log?(1/a)). Therefore,
1 L 1
o 2 o

C.4 THE PROOF OF OBSERVATION 11

so we conclude.

Observation 28 (Mass along the sub-level sets). Let pg be some exponential family and define 0’
to be a minimizer of the constrained objective {ming Lg(0) : s.t. L(0) < L} for some L. For any 0
such that £(0) < L, it holds Py[S] > Py [S] exp(L(0") — L(0)).

Proof. Since ' is the minimizer of the constrained optimization problem L, we immediately de-
duce that L5(6") < Ls(0). Interestingly, this result is purely a consequence of this observation.
Specifically, by rearranging terms, we obtain: log(Py:[S]) < log(Py[S]) + L(8) — L(6’). Applying
the exponential function to both sides yields: Py [S] exp(L(0') — L(0)) < Py[S]. Thus, the result
follows. O

C.5 THE PROOF OF COROLLARY 12

Corollary 29 (Mass monotonicity along sub-level thresholds). Let 6* be the minimizer of the
truncated NLL objective Lg for some exponential family py, constrained on the convex domain
{60 : L(8) < L(6%)}. Denote by a = Py-[S] the mass assigned to the survival set S. Define the
following constrained optimization problem: {ming L5(0) : s.t. £(0) < L} and denote by 0 its
solution with L = L1 and by 05 its solution of the same optimization problem with L = Lo, where
Lo > L.

1. (Monotonicity) The mass assigned to S is decreasing as a function of L: Py, [S] > Py, [S] > .

2. (Exponential decrease) The mass assigned to S by 05 drops exponentially fast, i.e., it holds that
]ng [S] < P@l [S] e~ La—L1),

Proof. Notice that by definition of 01, §; € {ming L5(0) : s.t. £(8) < Ls}. Hence, Py, [S] >
Py, [S] exp(La — L1) > Py, [S]. It only remains to show that Py, [S] > a. Since, the ming{Ls(0) :
s.t. £(0) < Lo} decreases as Lo increases, £(6*) = ming{Ls(0) : s.t. £L(#) < oo} = ming{Ls(0) :
s.t. £(0) < L(6*)}. Which means for ¢’ that is the solution to a constrained optimization problem
with lower L = Ly, we have ¢’ € {Ls(0) : s.t. £(0) < L(6*)}. Hence, L < £(#*) and from the
previous part this implies a = Py« [S] < Py [S]. Hence, we conclude. O

17
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C.6 THE PROOF OF LEMMA 14

Lemma 30 (Bounded gaps and proximity of a (d,e) minimum). Let 6j, the solution 0; =
arg mingeg Ls(0) such that L(0) < L. Suppose 01, approximates the loss by €, i.e. Ls(0) —
Ls(01) < €. Denote § = L — L(01,), and set 0,5 the solution 0], = arg mingeg Ls(0) such that
L(0) < L — 4. Then, the following approximation is true e‘e_‘sPIN%L () < Pyrpy, [z € 5] <

¢ Py, [ € S|. Also, Ls(015) — Ls(01) < e Lastly, for g = O((£log?(1/a)) "), we get
Ls(r) — Ls(0r1g) < 1.

Proof. We get the upper bound P,p, [r € S] < e*‘gE”INZ,gL [v € S] from Ls(0r) < Ls(071),
after rearranging. And the lower bound e*E*‘S]P’szgL [z € S] < Panyp,, [ € S] from Lg(0L) <
Ls(01,) + €, after rearranging.

For the inequality L£s(01_s) — L5(01) < €, just notice that Lg(07,_5) < Ls(01).

Lastly, to show Ls(81) — L5(0r+4) < 1 we will use that the function L£g(0) is Lg = L(1 +
log (1/a))-smooth.

Denote, for simplicity, 0y = 0, and ¢, = 01,4 By smoothness we obtain,
L
Ls(60) — Ls(61) < VLEB)(B0 — 01) + =7 161 — 6ol
L
< (VLE(O1) — VLE(00)) (0o — 01) + VLE(00) (00 — 1) + 78 161 — 6o]3 .
)
We estimate now the term VLZ (6), since (01 — 0p)TVL(6p) < 0, it suffices to estimate the term

VoPurpg, [zeS]

R We have the following,

VoPonpg, [ € 5] [g [M(x) exp(6 T(x) — A(60))T(z) — h(=) exp(6 T(x) — A(6h)) A’ (6o)] x

Parpg, [z € 5] Parpg, [z € 5]
_ Js [M@) exp(0F T(x) — A(00)) (T(x) — A'(60))] x
Py, [T € S]

= Eacfvpgo [T(x) - A/<90)]
=Eovpg [T(@)] = Eonpy, [T(2)]

so by Lemma 9 we obtain

1£5(00)], <O <1og (W)) <0 (1og (i)) |

Going back to Equation (5), by the previous deduction and smoothness, we find
2 Lg 2
Ls(00) = Ls(61) < Ls [|fo — Oull; +log(1/a) |01 — Ooll + == |61 = boll5,
therefore, by strong convexity of £(6)
2Lg 12 , Ls
Ls(bo) — Ls(b1) < T(ﬁ(ﬁl) — L(6o)) + log(1/a)(L(61) — L(60)) "~ + 7(5(91) — L(th))
L
<log(1/a)(L(61) — E(@o))1/2 +0 (;(£(¢91) — E(Go)))

Hence we conclude.

18
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C.7 THE PROOF OF THEOREM 26

Proof. We aim to show that the sequence {w(t)} generated by the algorithm converges to an optimal
point w*.

We use the non-expansiveness of the projection operator. Namely, the projection operator onto a
convex set is non-expansive, meaning for any x and y,

Mk (z) = Me @)l < llz -yl

Using the convexity and smoothness properties, and the non-expansiveness of the projection operator,
we can see the progress achieved after each iteration.

lo® —w|* < [l = Reg® — w1,
Expanding the right-hand side, we get:
[ —w|* < D —w* | = 2k (gD, w D —w*) + B [lg P,

Since f is convex, we have:

Pt = ) < (V50w — ),

Taking expectations conditioned on w(*~1), and noting that E [¢®) | w(*=D] = V f(w(~1)), we get:

E [f(w™)] = f(w) <E [(VF(), 0D —w)].

Combining everything together, taking expectations, and summing over ¢t = 1 to 7T,

iE /@ )] = Tfw) < iE (7w ), 0D — )]

T
SlLZ; [l = w12 = w® = w|2] + BZE (Jlg]?) -

~~
Il

Using the boundedness of E [[g¥||?] < b, and that h; = =,

ZhZHg(t ||2<bz <i§:l<i s
22~ 22~ 12\ 6 )’

So,

1 (t—1) X —
T;E[ﬂw 1)}_f(w)§ oLT | 120°T

Finally, from convexity we obtain

Zf tl)

hence we conclude. O

C.8 THE PROOF OF LEMMA 27

Let v denote the output of the rejection sampling procedure to find an unbiased estimate of the
gradient. We have

E(]lo]|*)

19
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= E.pE,p. [I7(2) ~ [T(@)] 7]

—E.psEops [ITR) - 27()TT(@) + | [T(@)] 7]

— Tr(Co [T(zm (E[IT()]))? + Tr(Cov[T(@))) + (E[|IT(@)|])? — 2(EIT (=)}, EIT ()]
= Tr(Cov[T(=)) + THCOVT(@))) + By [T()] ~ Epep [T

TP

SkiL+hg(i))+kL+%)((A‘%L—%bgz(;)))2kg2(i).
[Eanps [T(2)] = Eppg, [T(@)]] = [IVLs(0:) — VL (67)]

<o((reme (2 )))uei—e*n
<o (e (1)) s (2)

where we used Lemma 9 in combination with the assumption of strong convexity of £(#) and the
upper bound of the smoothness of Lg(8).

Since,

D PROOFS FROM SECTION 5

D.1 PROOF OF LEMMA 19

Lemma 31 (Closed Under Mixtures Implies Powerful). If a family F is a-closed under mixtures
with respect to S, then F' is a-powerful with respect to S.

Proof. Assume that F is a-closed under mixtures with respect to S. Let p € F with p(S) > «, and
let p,,, be the mixture distribution defined in definition 18, such that p,,, (S) = .
For a single observation z € X, consider the ratio:
p(z) _ 1,(5) ifxe X\ S,
pm(z) |22 ifzes.

(0%

Taking the natural logarithm:
p(z) 0, ifreX\S,
1 p(S) :
(Pm($)> In ( ) , ifzes.

Compute the right-hand side (RHS) of the inequality in definition 17 for a single observation:

- (1“ (p]:,ffa);))) - p]f%'

Compute the left-hand side (LHS): 2 m(s = p(“—s).

We need to show that: p"z(f) < " ((;) We consider two cases, z € X \ S and x € S. In the first

o
case py}f(;) =1, p;’zg) = (— < 1. Since () < 1, the inequality holds:
@ _,_ p)
(5) Pm ()

In the second case
p(x) _ plS)  pm(S)  «

pm(x) a7 p(S)  p(S)

20
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Therefore, the inequality becomes:
a__pl5)

p(S) T «a

S 2 2
Multiplying both sides by M: (ﬁ) < 1. Since 0 < o < p(S) < 1, we have (ﬁ) <1,so0
@
the inequality holds.
To extend to the general, we use that this the wanted property holds for each observation x; by

multiplying all ;;7,27%3)) < 2@ and then normalizing by taking the n-th root we conlcude that

= pm(®i)
(S N
pp(g)) < exp (n ; (Inp(x;) — lnpm(xi))> :

D.2 PROOF OF COROLLARY 20

Corollary 32 (Exponential Family is a-Closed Under Mixtures). Let {pp}gco be an exponential
Sfamily of probability density functions on a space X, with sufficient statistic T'(x) and base measure
h(z). Then, for any o € (0, 1], the exponential family is a-closed under mixtures with respect to any
measurable subset S C X.

Proof. We need to show that for any py € F with py(S) > «, the mixture distribution p,, defined in
Definition 18 is also in the exponential family.

Consider the extended space X’ = X U {z*}. Define the extended sufficient statistic 7'(z) and base
measure h(x) as:

- (T(x), ifzxelX, = o [h(x), ifzelX,
T(x)_{O, if z = x*, h(x)_{h(x*), if x = x*,

where h(x*) > 0 is finite.

Define the extended natural parameter 6 = (0,t), where t € R is an additional scalar parameter
controlling the mass at z*.

The extended density function g;(x) is given by:
qz(x) = h(zx)exp <9TT(9U) + bt Lppegey — A(é)) ,

where 1¢,_,+} is the indicator function, and A(é) is the log-partition function ensuring normalization:
A(0) = In < /X h(z)exp (07T (z)) dz + h(z") exp(t)) .
By adjusting ¢, we can set ¢;(.S) = . Specifically, we solve for ¢ such that:
q;(S) = /Sqé(x)dx =a.

Since g remains within the exponential family for all € © and ¢ € R, and the mixture distribution

Pm corresponds to a particular choice of 9, it follows that p,, € F. Therefore, the exponential family
is a-closed under mixtures with respect to .S. O

Remark: By selecting ¢ to be a finite but negative number enough, we can ensure that the probability
assigned to x* is extremely small. Specifically, we choose ¢ such that: h(z*)exp(t) = &, with
¢’ < 1. The log-partition function becomes: A(f) = In (Z(6) + ') ~ A(0), since ¢’ is negligible
compared to Z(6).

21
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The total variation distance between pg and g; is then:

i) = 5 ( [ Ione) = a5 o+ J0 - )

1
< = (" +¢€') < ¢, for some small € > 0

)

Therefore, g; is e-close to py in total variation distance, and the inequality in Definition 17 holds
with negligible difference. In other words we may assume that our distributions exist in the same
parameter space.

D.3 PROOF OF PROPOSITION 24

Proposition 33 (Minima lie near the boundary). Suppose that {pe}gco forms an exponential family
that is powerful (see Definition 17) with respect to a set S C X, taking values in X. Let v be a vector
satisfying uT v > a, where u is the direction of decrease as defined in proposition 22. Define A C ©
as the domain

A={0€0:L0)—L(O) <M},

and set 0%, = argmingea L£(0). Then, for a é-minimizer 0) of Eg’v over A, where € =
O(c'ealog(1/pex, (S))) such that 0 satisfies

M+ E(Go) —e< E(GM),

where /.:g’v is the €'-regularized loss function (see definition 23), and L(0) is the negative log-
likelihood of the exponential family.

Proof. Fix € > 0. By the assumption that the family F is powerful, we invoke Proposition 22
and take a unit vector v such that vTu > §/d £ a, where v is such that for all ' € {# € © :
L(0) — L(0y) < log(1/a)}, the gradient of L satisfies u? VLg(6") < 0.

Suppose that we pick 6, such that
Ls(Op) < Ls(03) + €,

where 0%, is the minimizer of Lg on the domain Ay, = {0 : £(0) — L(0y) < M}. From lemma 9,
we know that Lg is L g-smooth with

Ls=0 (L (1 + log? (1/1@%,,% [z € 5]))) .

A standard property for this class of functions is (see lemma 2.25 in (Garrigos & Gower, 2024)):

Ls
Fy) < f(@) + V@) (y =) + <y — =
Rearranging and setting f,y,x = Lg, 0, 0as, respectively, we obtain the following:

€,V L67v €,V €,V €,V * €,V ~
(0=0n)" VLS (On)+=5-10=0m* > LG (0) = L§"(011) > LG (031) = L§" (011) > —& (6)

The above holds for all § € Ajy;. On the other hand, for  — 6 = yu, where v = max{y : y €
[0,00) : yu + Opr € Apr} and w is the unit direction of decrease as described in Proposition 22.
Therefore, we find

(0 = 0a)" VLG (1) = (yu)" (VLs(0n) — €'v)
= (yu)" (VLs(Oar) — €'v)
=yl VLs(0r) — €va
< —€ay.

v

Substituting back into Equation (6), we get —é < —¢’ary + %72. Therefore,

g'a—/(e'a)? — 2L%E
L

7<
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or approximately, v < -=. However, there exists 6, such that £(6,) = M + L(6o) and ||, — 0/ |2 <
7. Moreover,

1£8) — £(0a0)| < 2 log(1/0) 6 — Oar o,

2\
S0
M+ £(60) — 2 log(1/a) (=) < £(6ar)
0) 7 o) OB Gy ) = HIM):
-1
Our choice of € is €'alog (1/]P’prm [z € S]) 6,80 M + L(0p) —e < L(Op). O

E NP-HARDNESS OF SOLVING EQUATION (3) WITHOUT ADDITIONAL
ASSUMPTIONS

To show NP-hardness of (3), we will make a reduction to a variant of MAX-CUT. A common
formulation of the MAX-CUT problem is to find a partition that achieves the cut score prescribed in
the input. To be more precise, let G = (V, E) be a graph with d vertices. A cut is a partition of V'
into two subsets S and 5 = V'\ S and the value of the cut (S, 5) is (5, 5) = 32, yep H{u €

S,v € S°.

An equivalent formulation of the MAX-CUT is the following maximization problem, given the same
set-up as before.

find ) (z; — ;) = OPT,subjectto z; € {—1,+1} Vi€ [d]. (7
(i,§)EE
It is easy to verify the more succinct version of the objective
2 Lax = Z (z; — a:j)z
(4,5)EE
where L is the Laplacian matrix of the graph G.

Furthermore, the reduction will use the NP-hardness for any close enough approximation to the
MAX-CUT problem. Namely, we quote Hastad (2001) about the inapproximability of the MAX-Cut
problem.

Lemma 34 (Inapproximability of MAX-CUT Hastad (2001)). It is NP-hard to approximate MAX-
CUT to any factor higher than 16/17.

To solve (7), one constraint is that the feasible set should be on the hypercube, and secondly, that the
term
2T Loz = Z (z; — x;)?
(i.4)EE
is approximately maximized. Denote Hy = {1} the hypercube in d-dimensions. Also, set
Hj = H;+ Ble),
the e-neighborhood of the hypercube, where B(e) = {z € R? : ||z|| = €}.

The set S from the optimization problem (3) is defined as follows

o"Lex 33\
—(He -
S (dﬂ{OM“>MD’
where the constant € is chosen such that, whenever, z,y € Hg such that ||z — y|| < € then,
OPT

T T
Lox—vy* L < —.
|z* Lgx —y* Lgy| o

For the previous fixed € we choose d small enough so that

N(6,6;5) >«
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whenever 0 € S.

In order to find a solution of the optimization problem (3) it is required first to locate a 6, such that
Prpe [z € S] < . On the other hand, any such 6 must lie in the complement of S, i.e. § € S°.

Denote, 6 the solution of _
0 := argmin||§’ — 6] .
0'€Hy

Since Hé — 9” < €, we see that

- ~ OPT 16
0TLg0 > 0L — ——— > —OPT.
S YRR T
Hence, we conclude the result for the family N (6, d). However, by simple change of coordinates we

may rescale our family to be N (0, I).

F COMPLETE PROOF OF THEOREM 16

We present the full proof of Theorem 16 in two parts.

Part I treats the “no-overshoot” regime, where the outer search does not cross the « threshold and
termination is triggered by the small successive-sublevel gap; this is the critical case and drives the
main bounds.

Part II handles the complementary case where the procedure crosses « and invokes the binary search,
showing it returns a parameter with the desired truncated loss and mass guarantees. Across both parts,
we use Proposition 24 to pass to a truncated loss Lg that preserves boundary behavior, and we apply
the PSGD guarantee plus a standard amplification step to obtain high-probability e-accurate solutions
on each sublevel.

F.1 FIRST PART OF THE PROOF OF THEOREM 16

Proposition 24 allows us to assume that we can work with the function £g while inheriting the
property that its approximate minima lie on the boundary. Indeed, we may choose € such that
supgea |£5"(0) — Ls(0)] < € as long as A is bounded, which is the case for us. The penalty we
incur for choosing e is linear in terms of €, as shown in Proposition 24.

Furthermore, to ensure this property holds, we will need to restart the optimization process ©(1)

times to find a vector v such that u”v > a/ V'k, where k is the dimension of & € © and u is the
direction of increase of Lg as defined in Proposition 22.

The parameter 6 that will satisfy the properties of the theorem will be the output of the Algorithm 1.
We will distinguish two main cases, depending on which stopping condition is triggered. However,
before handling this, we first show that there is a way to amplify the probability of the output §; as it
appears on line 3, by running the PSGD independently and then choosing the best output among all
the trials.

Apply Theorem 26 (PSGD) to the optimization problem Equation (4), for the sublevel set L =
Linin +mg form € [0,1og (1) /g]. We have the following bound:

= (L(0) ~ £82)) < O (i o (i))

Clog®(1/c) + br?
2(L+log(1/a))T T 12(L+log(1/a))T "

T>1 (C10g2(]ié?%i?c()gal/of)()lz/a))b7r2 ) , Theorem 26 gives us a § such that: E [f(0)] — f(6%) < e.

From Markov’s inequality, we get: P [ f(6) — f(6*) > 3¢] < % We can easily amplify this probability
by repeating this process independently and hence obtaining a sequence of wy, wa, . .., Wy, and
then choosing: @ = arg ming, f(;). Since § := w satisfies: P (f(0) — f(6*) > 3¢) < ()™,
by choosing m > log(8)/log(1/3), we obtain an w that satisfies: P (f(6) — f(6*) > 3¢) < 6. To
accomplish this, however, we need access to the value of: Lg(w;) = L(w;) + log (wawi [x€9]).

160 — 0515 <

Hence, Theorem 26 in our setup gives an upper bound: So, for:
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Since we have access to .S only through its oracle, in order to calculate log (IE”INWi [z € S]), we use
concentration for a Bernoulli random variable. More specifically, by Hoeffding’s inequality, we need
0] (% log (é)) samples to estimate log (mepmi [z € SD e-close with probability at least 1 — 4.

Therefore, for each sublevel set L,;,, + mg, when we perform PSGD, we have an output 6,,, such
that, with high probability, it achieves high precision: Lg(6,,) — Ls(6%,) < € where 07, is the
solution to the optimization problem Equation (4) for the sublevel set L,,i, + mg.

We return our attention to the time that Algorithm 1 is terminated. Suppose Algorithm 1 is ter-
minated when the if statement on line 7 is verified. Then, the 67 generated at line 3 satisfies

|Ls(67_ g)—L'g(GL)| < €. Fix € > 0 such that ¢ < g, and set ¢ = €’ = m =
o (2\ €T T /a)) We claim that for this choice of €”, Algorithm 1 produces an output §; with

high probability, such that Ls(6f) — L5(67) <.

Suppose that Algorithm 1 is terminated at line 7 of Algorithm I at iteration m. First, we argue
that 0% ¢ {0 : L(0) — Lypin < (m — 1)g}. We argue by contradiction, namely suppose that
0% € {0: L(0) — Lymin < (m — 1)g}. From Observation 11 we get Porp . [ € S] < a, which
in turn implies Py, (S) < aexp(—g). On the other hand, since Algorithm 1, at iteration m, did
not terminate at line 4, it implies that P, ., [z € S] > aexp(d). But, from Lemma 14 we know
that Py, [2 € S] < ]P’zwpg* [z € 5] exp(e + 0). Therefore, aexp(d) < Pyup, [z € 5] <
Ponpys [# € Slexp(e’ +0) < aexp(e + 6 — g) < aexp(d), a contradiction.
Then 67, is either in {6 : £(€) — Lin < mg} oritis not. Suppose the first case, i.e. 6%, € {9 L
Lin g mg}. By Observation 11, Lg(0m—1) > Ls(6},) > L5(07,). Also, Ls(8f) — Ls(6;,) < €
Therefore, using |Lg(0f) — L’S(Gm_lﬂ < €, we get

[Ls(05) — Ls(07)] < 26"+ €,
and we are done.

* LS(H:n 1)— ACS(QZ)
> £5Um—1)—~5WVa)
Ls(Or) 2 log(1)/g ’
and suppose we get 65 = 6,,,. From our assumption, recall that |Lg(6,,) — L5(0m—1)| < €”, where
€¢” is our threshold value for stopping Algorithm 1. Then,

Ls(0r,—1) — Ls(0r,) <|Ls(Om-1) — Ls(0m)]
+2¢ < €' 4 2¢€.

We deal now with the other case. From Proposition 15 Lg(6,_;) —

Therefore, by our choice of €, ¢”, we find that LS(ef’;g(l)é_)f;(ez) < log:zel!;a) = Ls(05) — Ls(07) <
Ls(07,-1) — Ls(07) < 3e.

In the previous case, when termination occurred on line 7, we obtained a suitable output by virtue
of identifying a threshold value €¢” so small that if the difference in the values of the approximated
minima between two successive sets was bounded by €”, then even if we had continued our search, our
progress in terms of reducing the value of £g would have been negligible. Finally, by Proposition 24
since the both L5(6y) and L(0) are close to the boundary we conclude that P,s, [x € S] is close
to . What remains is the case where Algorithm | terminates on line 4, however that is a simple
binary search and we defer the reader to Section F.2.

F.2 SECOND PART OF THE PROOF OF THEOREM 16

We deal now with the case when Algorithm 1 is terminated when calling Algorithm 4. Suppose,
that Algorithm 1 enters line 9 at iteration m, and denote L,, = L = Ly, + mg, and 6, the
corresponding solution of Equation (4) for L = Ly, + mg.

Therefore, by Lemma 14, we get
PxNPB:n [:E € S] < owvpe [JC € S] eXp( [’( )) <aq,

hence, by Observation 11, L,, > L(6%). Next, we show that £(0%) > L,,_2. As before, we
argue by contradiction and assume £(0%) < L,,_o, which in turn implies Prrpo, [z €S <a.

Indeed, as we saw before, since Algorithm 1 did not terminate on line 5 in iteration m — 1, we get
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Pypy, _ [7 € S] > aexp(d). Also, by Lemma 14 and Observation 11, as we argued in the previous
case, we get

aexp(d — 0 —e) < exp(—6 — e)]P’GENpe"H1 [x € S] < Porps, . [z € S] < aexp(—g),

a contradiction. Hence, 0o € {0 : L,_2 < L() < L,,}. Now, in order to obtain ; such
that L5(0;) — L5(0,), we call binary search(L,,). We argue that the output of Algorithm 4
(binary search(-))indeed possesses the desired properties.

We distinguish two cases. Suppose that P, [z € S| < a. Then, immediately, we have L(0;) >
_ 1
L(07,). Henceforth, Ls(6) — Ls5(07,) < €. Furthermore, the current Left at the time of termination
had an associated 0. that satisfied Py, [ € S] > «, hence Lg(OLer) > Ls(67). On the other
Left

hand, £(6;) — L(01et) < €g, which by Lemma 14 implies that the corresponding minima differ by at
most €. So, by the triangle inequality,

L5(01) > Ls(Orer) — € — € — € = Ls(Oren) — 3e,

where the first e comes from the previous observation, and the next two € come from the fact that
both Lg(0;) and Lg(01r) are e-approximate minima. Putting everything together,

—3¢ < Ls() — Ls(07) < e.

In the other case, suppose that Py, [z € S] > a. Therefore, as before, L5(6;) > Lg(67). Also, the
current Right at the time of termination had a corresponding §Righ[ that satisfied Pzwpg ) [x € 5] > a,
Right

hence L (Origh) > L5(0},). Finally, similarly as before, we have £(frigh) — £(6;) < eg, which
by Lemma 14 implies that the corresponding minima differ by at most €. So, by the triangle inequality,
we obtain B

0<Ls(b) — Es(GZ) < 3e,

So in all cases we conclude that

—3e < [:5(51) — 55(0;;) < 3e.

At each 6 € © in our parameter space in order to calculate, with high probability, a gradient through
rejection sampling we need to make O (P~ [x € S]) calls to the oracle. So, to upper bound the
number of calls needed at each iteration, we need to identify how small P, [z € S] can become.

By Observation 11, it suffices to lower bound the mass of P,.,,[x € S] of § =
argmin £(6), L(6) < Limax, where Ly is the largest sublevel set that Algorithm 1 needs to
access, which is the last L before the algorithm terminates, that the loop on line 1 iterates on.

Again, we distinguish two cases, depending on where Algorithm | terminates. First, we deal
with the more direct case, i.e., where the algorithm terminates on line 7. As we have already
seen, 0% € {0 : L(0) — Lyin > Lm—1}. 0% & {0 : L(0) — Lnin < L;,}, then all the
0 €{0:L(0) — Linin < Ly, } satisfy Py, [v € S] > aor Pyp, [z € S]71 = O(L). We deal now
with the case 6% € {0 : L(0) — Lyin < Ly, }. In this case, £(6%) — L(67,) < 3e since the stopping
condition implies £(6%,_1) — L(0,) < 2e + ¢”” < 3e. Therefore, after rearranging, we obtain

a(l = 3e—g) < avexp(—3e — g) <Purp,. [v €]

hence again we achieve a rate of P, [z € S| = O(1/«) for all § accessed in Algorithm 1.
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