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Abstract

Domain Generalization (DG) seeks to train mod-
els that perform reliably on unseen target do-
mains without access to target data during training.
While recent progress in smoothing the loss land-
scape has improved generalization, existing meth-
ods often falter under long-tailed class distribu-
tions and conflicting optimization objectives. We
introduce FedTAIL, a federated domain general-
ization framework that explicitly addresses these
challenges through sharpness-guided, gradient-
aligned optimization. Our method incorporates
a gradient coherence regularizer to mitigate con-
flicts between classification and adversarial ob-
jectives, leading to more stable convergence. To
combat class imbalance, we perform class-wise
sharpness minimization and propose a curvature-
aware dynamic weighting scheme that adaptively
emphasizes underrepresented tail classes. Fur-
thermore, we enhance conditional distribution
alignment by integrating sharpness-aware per-
turbations into entropy regularization, improving
robustness under domain shift. FedTAIL unifies
optimization harmonization, class-aware regular-
ization, and conditional alignment into a scalable,
federated-compatible framework. Extensive eval-
uations across standard domain generalization
benchmarks demonstrate that FedTAIL achieves
state-of-the-art performance, particularly in the
presence of domain shifts and label imbalance,
validating its effectiveness in both centralized and
federated settings. Our code is publicly available
at: https://github.com/sunnyinAl/FedTail
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1. Introduction

Deep learning has excelled in computer vision, especially
when source and target data share similar, independently
and identically distributed characteristics. However, per-
formance often degrades when models encounter target
domains differing from the training distribution. Domain
generalization (DG) techniques (Zhang et al., 2022; Qiao
et al., 2020; Balaji et al., 2018) aim to train models only on
source domains to generalize well to unseen targets with-
out extra fine-tuning. Various DG methods include domain
alignment (Muandet et al., 2013), meta-learning (Li et al.,
2018a), and data augmentation (Wang et al., 2022b). Yet,
the DomainBed benchmark showed that a simple entropy-
based regularization, DG via ER (Zhao et al., 2020a), can
outperform more complex DG strategies under standard
evaluation.

However, minimizing empirical loss on a non-convex land-
scape does not ensure robust generalization. Like many em-
pirical risk minimization approaches, DG via ER can overfit
and converge to sharp minima. To address this, sharpness-
aware minimization (SAM) (Foret et al., 2020) improves
generalization by minimizing loss surface sharpness. SAM
minimizes the worst-case loss in a parameter neighborhood
by computing an adversarial perturbation e that maximizes
loss, then updating parameters to minimize the perturbed
loss. Though effective, SAM simplifies the min-max ob-
jective for tractability. Building on this, our work applies
sharpness minimization to enhance generalization. Yet, as
(Rangwani et al., 2022) notes, SAM struggles with long-
tailed settings, where tail classes may converge at saddle
points in high-curvature regions, harming performance.

Long-tailed class distributions are common in real-world
data but often overlooked in DG research. Entropy mini-
mization is popular in semi-supervised learning to encour-
age confident predictions (Chen et al., 2019; Grandvalet
& Bengio, 2004), but its DG effects are less studied. Ex-
amining entropy-based gradient flow (Chen et al., 2019)
reveals that high-confidence samples receive larger gradi-
ents, causing easier-to-transfer classes to dominate training,
while harder classes remain undertrained. This probability
imbalance leads to insufficient optimization of tail classes.
Our method directly addresses this gradient imbalance to
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improve generalization across both head and tail classes.

2. Related Work

Domain Generalization. Domain Generalization (DG)
aims to learn a model from one or several observed source
datasets that can generalize effectively to unseen target do-
mains (Zhao et al., 2020a). A variety of approaches have
been proposed to tackle domain shift, including domain
alignment techniques (Muandet et al., 2013; Ganin et al.,
2016; Li et al., 2018b; Bahng et al., 2020; Zhao et al., 2020a),
meta-learning strategies (Zhang et al., 2021; Dou et al.,
2019; Balaji et al., 2018; Li et al., 2018a), data augmen-
tation (Zhou et al., 2021; Shankar et al., 2018; Carlucci
et al., 2019), disentangled representation learning (Peng
et al., 2019b; Khosla et al., 2012; Wang et al., 2020a), and
methods based on causal reasoning (Krueger et al., 2021;
Arjovsky et al., 2019). Among these, a growing body of
work has addressed DG from a gradient-based perspective
(Li et al., 2018a; Balaji et al., 2018; Dou et al., 2019; Zhang
et al., 2021), aiming to stabilize learning across diverse do-
mains. For instance, Mansilla et al. (Mansilla et al., 2021)
introduced a gradient surgery mechanism to address inter-
domain conflicts by preserving gradient components with
matching signs and nullifying those with opposite directions.
While such techniques improve robustness during training,
they do not guarantee convergence to flat minima—an im-
portant factor for out-of-distribution generalization, espe-
cially in low-resource or noisy domains. Moreover, most
prior works assume balanced and centralized data distribu-
tions, limiting their effectiveness in real-world federated
settings where data is inherently non-i.i.d. and long-tailed.

Sharpness-Aware Minimization (SAM). Sharpness-
Aware Minimization (SAM) (Foret et al., 2020) is a pow-
erful regularization method that improves generalization
by minimizing the maximum loss within a neighborhood
around model parameters. By formulating optimization
as a min-max problem, SAM encourages convergence to
flatter loss regions, avoiding sharp minima linked to poor
generalization. However, SAM mainly operates globally
and ignores class-specific curvature variations—limiting its
effectiveness in long-tailed class distributions. Variants like
GSAM (Liu et al., 2022) and LookSAM (Du et al., 2021)
improve sharpness estimation and efficiency but still neglect
issues like class imbalance and the distributed, non-i.i.d.
data nature in federated learning.

Sharpness and Generalization. Sharpness’s connection
to generalization was first studied in (Hochreiter & Schmid-
huber, 1994) and further explored under i.i.d. assumptions
(Keskar et al., 2016; Dinh et al., 2017; Foret et al., 2020).
For example, (Keskar et al., 2016) showed sharpness in-
versely correlates with generalization, and (Dinh et al.,

2017) linked it to the Hessian’s eigenvalues. Extensions
to out-of-distribution settings, like SWAD (Cha et al., 2021),
show flatter minima reduce domain generalization gaps but
don’t explicitly enforce flatness during training. This mo-
tivates our focus on sharpness-aware generalization in fed-
erated and long-tailed contexts, where inductive biases are
critical with limited data.

Domain generalization methods like EISNet (Wang et al.,
2020b) and FACT (Zhao et al., 2020a) improve feature trans-
ferability and domain invariance. SAMALTDG (Su et al.,
2024) addresses class imbalance by combining SAM with a
loss that emphasizes tail classes but remains centralized and
ignores optimization conflicts in federated setups. Our pro-
posed method, FedTAIL, extends sharpness-aware learning
to federated domain generalization by incorporating gradi-
ent coherence, class-wise curvature weighting, and domain-
agnostic optimization, jointly addressing long-tailed imbal-
ance, sharpness, and gradient conflicts in decentralized data.

3. Preliminaries

3.1. Domain Generalization under Federated
Long-Tailed Distributions

Let X and )Y denote the input and label spaces, respec-
tively. We assume access to K source domains {D;} X |,
each distributed across decentralized clients. Data samples
from domain 4 follow a joint distribution P;(X,Y"), and we

denote D; = {(xg-l), ](Z))}j\f: 1- No target domain data is
available during training. The objective is to train a global
model hg = Ty (Fy(-)), composed of a feature extractor Fy
and a classifier Ty, that generalizes to an unseen domain

Dr.

In the federated setting, data is kept locally on each client
and model updates are aggregated using federated averaging
(FedAvg). Additionally, class imbalance is assumed across
clients, yielding long-tailed label distributions where certain
classes dominate the training set while others are severely
underrepresented.

3.2. Empirical Risk and Adversarial Alignment

The standard classification loss across the K source domains
is given by the empirical risk:

K
Las = — ZE(a:,y)NDi [IOg T¢(F9(T))y} ’ 6]

i=1
where Ty (Fy(x)), denotes the predicted probability for the
true label y.

To encourage domain-invariant representations, we adopt
adversarial domain alignment (Ganin & Lempitsky, 2015),
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introducing a domain discriminator D, trained to distin-
guish between domains, while Fy is updated to fool D,.
The adversarial loss is:

K
Lady = Z EwNDq' [1Og le (F9 (x))] ) @)

i=1
where Dy, (Fy(z)) predicts the domain label for sample x.

3.3. Sharpness-Aware Minimization (SAM)

SAM (Foret et al., 2020) aims to improve generalization
by minimizing the worst-case loss within an ¢5-bounded
neighborhood of model parameters. The SAM objective is:

min max L(0 + €), 3)
0 lell<p ( )
where p is a radius controlling the perturbation strength. In

practice, SAM approximates the inner maximization via
first-order Taylor expansion:

VoL (0)

O~ e @

The outer minimization is then computed using the per-
turbed parameters 6 + €(6).

3.4. Surrogate Gap and Gradient Matching

SAGM (Wang et al., 2023) improves upon SAM by mini-
mizing both the empirical loss £(#) and the perturbed loss
L,(0) = L(0 + €(0)), as well as aligning their gradient
directions. The sharpness of the solution is captured by the
surrogate gap:

h(0) = L,(0) — L(0), (5)

which approximates the curvature of the loss landscape.
SAGM minimizes the following joint objective:

Lsaam = L(0) + L,(0) — - (VL(0), VLy(0)),  (6)

where the last term promotes gradient alignment to facilitate
stable descent toward flat minima.

3.5. Long-Tailed Class Distributions and Maximum
Square Loss

In long-tailed settings, standard losses such as cross-entropy
are prone to bias toward head classes. SAMALTDG (Su
et al., 2024) addresses this using the Maximum Square Loss:

1 N C )
Ln=—55D > (ne) (7

n=1c=1

where p,, . is the predicted probability of class c for sample
n. Compared to entropy loss, the maximum square loss
yields more balanced gradients across classes and prevents
confident head classes from dominating the optimization.

4. Methodology

FedTAIL, a novel framework for federated domain general-
ization (FedDG) designed to address the dual challenges of
optimization instability and class imbalance under domain
shift. FedTAIL builds upon three complementary principles:
(i) gradient coherence to harmonize competing objectives,
(i) class-wise sharpness-aware regularization to improve
tail-class learning, and (iii) sharpness-guided conditional
alignment to enhance feature-label consistency across do-
mains. Together, these modules form a unified, scalable
approach that is robust to both federated settings and long-
tailed distributions.

We consider a federated DG setting where data from K
source domains {D; } X | are distributed across K clients,
each holding samples drawn from a joint distribution
P;(X,Y). The learning goal is to train a global model
that generalizes well to an unseen target domain Dr with-
out direct access to its data. The model comprises a shared
feature extractor Fy and a classifier T. In this context,
naive empirical risk minimization (ERM) often leads to con-
vergence at sharp local minima, especially under non-i.i.d.
distributions and long-tailed label frequency—resulting in
poor generalization.

To overcome these issues, FedTAIL introduces a gradi-
ent coherence regularization mechanism that explicitly
resolves conflicts between task objectives—particularly be-
tween classification and domain adversarial components. In
conventional domain adversarial learning, the joint objective
typically comprises a classification loss L5 and a domain
discrimination loss L,qy, where the gradients may point in
divergent directions. FedTAIL mitigates this by introducing
an auxiliary alignment term that penalizes negative inner
products between their gradients:

Leoh = —a <v0£cls, V9‘Cadv> 5 8)

where « is a tunable hyperparameter. This encourages con-
sistency across gradient directions, thereby stabilizing train-
ing and ensuring that adversarial alignment does not hinder
classification performance.

Beyond harmonizing gradients, FedTAIL directly addresses
class imbalance by extending sharpness-aware minimiza-
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tion (SAM) to operate at the level of individual classes.
Standard SAM seeks flatter minima by minimizing the
worst-case loss in a neighborhood of the current parameters.
However, this global perspective fails to capture dispari-
ties across classes—particularly those underrepresented in
long-tailed settings. FedTAIL therefore adopts class-wise
sharpness minimization, wherein separate perturbations €,
are computed for each class ¢ by normalizing the gradient
of the class-specific loss:

VoL
€e=p )
‘ IVoLell2”
where p is the sharpness control radius and £, denotes the
classification loss restricted to class c.

The corresponding sharpness-aware objective for class c is
given by:

sharp = ZE (z,y= c)

C(hote (), y)],  (10)

where £(-, ) is the loss function (e.g., cross-entropy) and
hg+. denotes the perturbed model parameters for class c.

To further prioritize minority classes, we introduce a
curvature-aware dynamic weighting scheme. This mech-
anism adjusts the contribution of each class-specific loss
based on the sharpness of its local loss landscape. Specifi-
cally, the weight . for each class c is computed as:

1

B 11
14 omax(V2L,)’ (n

Ye =

where o,.x () denotes the largest eigenvalue of the class-
specific Hessian V2L£,.. This adaptivity ensures that well-
optimized head classes (with flatter curvature) are down-
weighted, while sharp, under-trained tail classes receive
increased gradient signal.

Complementing these advances, FedTAIL enhances con-
ditional distribution alignment by injecting sharpness-
awareness into the entropy regularization term. Traditional
entropy-based approaches often amplify prediction confi-
dence for easily aligned examples while neglecting ambigu-
ous or hard-to-transfer samples. To address this, we define
a sharpness-aware entropy regularization term that perturbs
the feature space via SAM and aligns the perturbed predic-
tions to a global conditional distribution:

sharper* § KL

W(YIF(X) | Qr(Y[F(X +¢))),

(12)

where € is the SAM perturbation, and Qr is a target-
like predictive distribution computed from the ensemble
or momentum-updated model. This formulation explicitly
penalizes high-curvature regions in the conditional land-
scape, encouraging smoother, more consistent predictions
across domains.

Finally, the overall training objective for FedTAIL integrates
all components as follows:

EFedTAIL = Ecls + Ladv + Lsharp-er + Z 'Ycﬁc + ﬁcoh~ (13)

All modules in FedTAIL are lightweight and compatible
with federated optimization. During training, each client
computes local gradients, class-specific perturbations, and
sharpness-aware updates. These are then aggregated us-
ing standard federated averaging without sharing raw data,
enabling scalable deployment under real-world privacy con-
straints.

5. Experiments

We conduct extensive experiments to evaluate the effective-
ness of FedTAIL on challenging domain generalization
benchmarks that exhibit both significant domain shift and
long-tailed class distributions. We compare our approach
with state-of-the-art DG methods across several backbone
architectures and perform detailed ablation studies to assess
the contribution of each component in our framework.

5.1. Datasets

We evaluate FedTAIL on four standard domain general-
ization benchmarks: PACS, OfficeHome, Digits-DG, and
mini-DomainNet. PACS (Li et al., 2017b) includes four
domains (Photo, Art Painting, Cartoon, Sketch) with seven
object categories and significant style variation. Office-
Home (Venkateswara et al., 2017) contains 65 classes across
Art, Clipart, Product, and Real-World domains, exhibiting
moderate domain shift. Digits-DG (Zhou et al., 2020b)
spans MNIST, MNIST-M, SVHN, and SYN, with notable
variation in texture and background. mini-DomainNet is
a subset of the comprehensive DomainNet dataset (Peng
et al., 2019a) which has severe domain shift. This subset
features four domains, including Clipart, Painting, Real, and
Sketch, each with images from 126 categories.

5.2. Experimental Settings

We follow the leave-one-domain-out evaluation protocol as
used in prior works (Su et al., 2024). For each benchmark,
we train on all but one domain and evaluate on the held-out
target domain. The reported accuracy is the average over all



FEDTAIL

Table 1. Leave-one-domain-out accuracy (%) on PACS using ResNet-50. Best results per column are in bold.

Method Art Cartoon Photo Sketch Avg
D-SAM (D’Innocente & Caputo, 2018)  77.3 72.4 95.3 77.8 80.7
ERM (Vapnik, 1998) 81.0 74.0 96.2 71.0 80.8
Epi-FCR (Li et al., 2022) 82.1 77.0 93.9 73.0 81.5
DomMix (Wang et al., 2020c) 85.9 72.8 97.1 73.6 82.3
L2A-OT (Zhou et al., 2020b) 83.3 78.2 96.2 73.6 82.8
DeepAll (Li et al., 2017a) 86.3 77.6 98.2 70.1 83.0
MetaReg (Balaji et al., 2018) 87.2 79.2 97.6 70.3 83.6
NKD (Wang et al., 2021) 82.5 83.3 97.2 75.6 84.6
SSPL (Zhao et al., 2024) 87.9 76.9 97.8 71.5 85.0
DG via ER (Zhao et al., 2020b) 87.4 79.3 98.0 76.3 85.3
DDAIG (Zhou et al., 2020a) 85.4 78.5 95.7 80.0 84.9
EISNet (Wang et al., 2020b) 86.6 81.5 97.1 78.1 85.8
CrossGrad (Shankar et al., 2018) 87.5 80.7 97.8 73.9 85.7
RISE (Huang et al., 2023b) 85.7 85.2 974 78.2 86.6
MixStyle (Zhou et al., 2021) 87.4 83.3 98.0 78.5 86.8
RSC (Huang et al., 2020) 87.9 82.2 97.9 834 87.8
FACT (Xu et al., 2021) 89.5 81.5 96.7 84.0 87.9
MDGH (Mahajan et al., 2021) 86.7 82.3 98.4 82.7 87.5
FSDCL (Jeon et al., 2021) 88.5 83.8 96.6 82.2 88.0
FFDI (Wang et al., 2022a) 89.3 84.7 97.1 83.9 88.8
PCL (Yao et al., 2022) 90.2 83.9 98.1 82.6 88.7
DDG (Zhang et al., 2022) 88.9 85.0 97.2 84.3 88.9
STNP (Kang et al., 2022) 90.4 84.2 96.7 85.2 89.1
DCG (Lv et al., 2023) 90.2 85.1 97.8 86.3 89.8
FedTAIL (Ours) 89.7 86.1 98.2 86.6 90.2

such splits. We use both ResNet-18 and ResNet-50 (He
et al., 2015) backbones pre-trained on ImageNet (Deng
et al., 2009) to assess model scalability and robustness.

For PACS, OfficeHome, and Digits-DG, each source domain
is randomly split into 90% training and 10% validation data.
For mini-DomainNet, we use the official training/validation
split provided by (Peng et al., 2019a).

5.3. Implementation Details

Our method is implemented in PyTorch and optimized us-
ing Stochastic Gradient Descent (SGD) with momentum 0.9
and weight decay 0.0005. The learning rate is set to 0.001
for baselines and 0.01 when using SAM-based modules.
The sharpness perturbation radius p in SAM is set to 0.05
by default. For our sharpness-aware components, we use
non-adaptive SAM with Nesterov momentum. The maxi-
mum square loss coefficient -y is set to 1 unless otherwise
specified. During training, we use a batch size of 64 for all
experiments.

In federated settings, each domain corresponds to a sepa-
rate client. We apply standard FedAvg to aggregate model
updates across clients. Local models are trained for one
epoch before synchronization. For domain alignment, we
use a domain discriminator with two fully-connected layers
and ReL.U activations. For conditional alignment, the KL
divergence is computed over batch-wise class distributions.

All results are averaged over three independent runs with
different random seeds. We report both overall accuracy and
average per-class accuracy to account for class imbalance.

5.4. Results

We evaluate FedTAIL across four domain generalization
benchmarks—PACS, OfficeHome, Digits-DG, and mini-
DomainNet —and compare its performance against a di-
verse set of state-of-the-art methods. Our approach con-
sistently outperforms existing baselines, demonstrating the
effectiveness of integrating sharpness-aware optimization,
gradient coherence, and class-wise curvature control under
domain shift.

On the PACS dataset (Table 1), FedTAIL achieves state-
of-the-art performance across most domains. In particular,
it attains the highest accuracy on Cartoon (86.1%) and
Sketch (86.6%), outperforming strong baselines including
STNP (Kang et al., 2022), RISE (Huang et al., 2023a), and
MixStyle (Zhou et al., 2021). Additionally, it surpasses
DDG (Zhang et al., 2022) and FACT (Xu et al., 2021), both
of which have been widely regarded as top-performing DG
methods. FedTAIL achieves an average accuracy of 90.2%,
exceeding the prior best result (89.8% by DCG), showcasing
the impact of gradient alignment and class-specific sharp-
ness minimization under domain shift.

On OfficeHome (Table 2), FedTAIL again leads in per-
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Table 2. Leave-one-domain-out accuracy (%) on OfficeHome us-
ing ResNet-50. Best results per column are in bold.

Table 3. Leave-one-domain-out accuracy (%) on Digits-DG using
ResNet-50. Best results per column are in bold.

Method Art Clipart Product Real Avg Method MNIST MNIST-M SVHN SYN Avg
MLDG 52.9 45.7 69.9 727  60.3 NKD 71.6 40.8 30.3 58.7 504
D-SAM 58.0 44.4 69.2 71.5 60.8 RISE 72.1 41.4 313 623 51.8
RSC 58.4 479 71.6 745 63.1 CrossGrad 96.7 61.1 65.3 80.2 75.8
CrossGrad 58.4 49.4 73.9 75.8 644 MixStyle 96.5 63.5 64.7 812 76.5
DeepAll 57.9 52.7 73.5 74.8  64.7 DDAIG 96.6 64.1 68.6 81.0 77.6
DDAIG 59.2 52.3 74.6 76.0 65.5 L2A-OT 96.7 63.9 68.6 83.2 78.1
L2A-OT 60.6 50.1 74.8 77.0 65.6 ERM 96.5 64.2 70.3 88.2 79.8
STNP 59.6 55.0 73.6 75.5 65.9 DomMix 96.7 67.0 69.2 86.6 799
DG via ER 61.2 52.8 74.5 75.6  66.0 DG via ER 96.9 63.8 71.0 88.8  80.1
DSU 60.2 54.8 74.1 75.1  66.1 EISNet 96.4 64.2 71.5 89.4 803
EISNet 62.6 53.2 74.0 752 66.2 FFDI 97.7 69.4 72.1 84.5 809
FACT 61.0 55.7 74.5 76.4  66.9 FACT 97.6 65.2 72.2 903 813
DCG 60.7 55.5 75.3 76.8 67.1 EDFMix 97.6 68.1 70.7 903 81.7
ERM 67.1 55.1 78.2 82.0 70.6 SSPL 97.6 68.2 70.8 90.6 81.8
DomMix 69.0 54.6 77.5 81.5 70.7
MixStyle 636 554 789 83 713 FedTAIL (Ours) 97.9 79.8 81.7 97.3 89.2
NKD 68.7 54.7 79.5 823 71.3
EDFMix 69.1 57.1 79.1 823 719
RISE 69.5 55.8 797 826 719 Table 4. Leave-one-domain-out accuracy (%) on mini-DomainNet
SSPL 69.4 58.3 79.7 81.6 723 using ResNet-50. Best results per column are in bold.
FedTAIL (Ours) 70.3 589 80.1 830 73.1 Method Clipart  Painting Real Sketch Avg
DDAIG 61.3 51.4 61.0 50.6 56.1
DomMix 63.5 53.1 63.4 52.1 58.0
MixStyle 63.9 54.2 64.1 52.9 58.8
SSPL 63.9 55.2 64.3 53.2 59.2
ERM 65.5 57.1 62.3 57.1 60.5
NKD 63.9 56.3 71.9 50.5 60.7
MLDG 65.7 57.0 63.7 58.1 61.1
. MMD 65.0 58.0 63.8 58.4 61.3
formance across all four domains. It reaches an average SagNet 65.0 581 64.2 58,1 61.4
accuracy of 73.1%, outperforming notable methods such as RISE 64.3 57.2 72.6 24 616
SSPL (72.3%), RISE (71.9%), and EDFMix (71.9%). The DeepAll 65.3 584 64.7 59.0 619
largest improvements are observed in the Clipart and Art MTL 65.3 59.0 656 585  62.1
domains, which are especially challenging due to their high Mixup 67.1 59.1 643 592 624
c e . . CORAL 66.5 59.5 66.0 59.5 62.9
variability and sparse representation. These results validate BOLD 64.8 60.2 75.4 559  64.1
that FedTAIL not only effectively mitigates class imbalance DCG 69.4 61.8 66.3 63.2 65.2
but also maintains generalization across diverse visual styles FedTAIL (Ours) 705 64.6 758 642 688

and feature distributions.

For the Digits-DG benchmark (Table 3), FedTAIL achieves
notable gains on all domains. It reaches 97.9% on MNIST,
79.8% on MNIST-M, 81.7% on SVHN, and 97.3% on
SYN, resulting in a significantly higher average accuracy of
89.2% compared to the previous best of 81.8% by SSPL.
These improvements, particularly on noisy domains such as
SVHN and MNIST-M, illustrate the robustness of FedTAIL
under extreme visual heterogeneity and class distribution
shifts.

In summary, across all evaluated benchmarks and domains,
FedTAIL consistently outperforms prior methods in both ac-
curacy and robustness. These results affirm our hypothesis
that combining sharpness-aware training, gradient align-
ment, and curvature-sensitive regularization yields signifi-
cant benefits for federated domain generalization, particu-
larly under long-tailed data distributions.

6. Conclusion

We introduced FedTAIL, a unified framework for federated
domain generalization under long-tailed distributions. Fed-
TAIL overcomes key limitations of prior DG methods by
integrating sharpness-aware optimization, gradient coher-
ence regularization, and curvature-adaptive class balancing
within a federated setting. By applying per-class sharpness
minimization and entropy-aware conditional alignment, our
approach achieves consistent generalization across domains
and class frequencies—especially in challenging federated
scenarios with heterogeneous, imbalanced data. Experi-
ments on PACS, OfficeHome, and Digits-DG show FedTAIL
surpasses state-of-the-art methods in accuracy, stability, and
representation quality. Visualizations verify that FedTAIL
generates semantically meaningful, domain-aligned fea-
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tures, highlighting the importance of flatness and alignment
in learning transferable representations. Our work paves
the way for future research in federated and decentralized
generalization, particularly toward communication-efficient
sharpness-aware training, extensions to multimodal and
structured prediction, and tighter theoretical links between
curvature, fairness, and out-of-distribution generalization.

Impact Statement

This work advances federated domain generalization by
improving model robustness under domain shift and long-
tailed distributions, which are common in real-world appli-
cations. FedTAIL promotes fairness by enhancing perfor-
mance for underrepresented classes and preserves privacy
by operating in a federated setting. While the method has
broad utility, responsible deployment remains essential to
avoid unintended consequences in sensitive domains.
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A. Technical Appendices and Supplementary Material
Ablation Studies

To further substantiate the effectiveness of Fed TAIL, we present additional experiments evaluating its convergence dynamics,
loss component contributions, and the construction of the target-like predictive distribution used in entropy regularization.
These results provide deeper insight into the mechanisms behind FedTAIL’s robustness and generalization capabilities under
federated, long-tailed, and domain-shifted settings.

We begin with an ablation study on the PACS dataset to isolate the impact of each component in the overall FedTAIL
loss. Starting with a baseline model trained using only the classification loss (L), we incrementally integrate additional
modules and evaluate their effects on performance. Adding adversarial domain alignment (L,q,) improves the average
leave-one-domain-out accuracy from 83.8% to 86.0%, affirming the importance of domain-invariant feature learning.
Introducing sharpness-aware entropy regularization (Lparp-cr) further enhances the performance to 88.2%, demonstrating
the benefit of using sharpness-informed perturbations to smooth the conditional distribution. Subsequently, including
class-wise sharpness minimization with curvature-aware weighting (3 . v.£L.) leads to a robust handling of long-tailed data
and improves the average accuracy to 89.6%. Finally, the addition of the gradient coherence loss (L), which resolves
optimization conflicts between classification and domain adversarial components, yields the best performance of 90.2%.
This progression, detailed in Table 5, confirms that each component plays a complementary role in harmonizing optimization
and mitigating the effects of domain shift and class imbalance.

Table 5. Ablation study showing the effect of each loss term on Leave-one-domain-out accuracy (%) on PACS using ResNet-50. v/
indicates the use of a loss term.

Method Las  Laav  Lsparper  DooVeLe Leon | Art  Cartoon Photo Sketch | Avg

Baseline v X X X X 86.1 77.5 96.6 75.0 83.8
+ Adv v v X X X 87.2 80.8 97.4 78.5 86.0
+ Sharp-er v v v X X 88.4 83.9 98.0 82.6 88.2
+ Class Bal. v v v v X 89.2 85.2 98.1 85.8 89.6
+ Coherence v v v v v 89.7 86.1 98.2 86.6 90.2

Figure 1 illustrates the accuracy trends over training epochs for FedTAIL compared to the DGviaER baseline across different
domains (Art, Cartoon, Photo, Sketch) on the PACS dataset. As shown, FedTAIL consistently achieves higher accuracy
throughout the training process, across all domain splits. These trends confirm that FedTAIL facilitates faster convergence
and improved robustness to domain shift. The learning curves demonstrate that our sharpness-guided, gradient-coherent
optimization helps the model escape poor local minima early and promotes stable training dynamics, making it especially
suited for federated scenarios where communication efficiency and convergence speed are critical.

To qualitatively assess representation quality, Figure 2 presents t-SNE visualizations of learned features across different
methods. FedTAIL exhibits well-separated class clusters and improved domain alignment, compared to Raw features
and DeepAll. The compact and consistent feature distributions reflect both strong intra-class cohesion and inter-domain
alignment. This supports the role of class-wise sharpness minimization and entropy-regularized perturbations in achieving
domain-agnostic and discriminative representations.

As shown in Figure 2, FedTAIL consistently achieves higher accuracy than DGviaER across training epochs in both
class-wise and domain-wise evaluations. These trends confirm that FedTAIL facilitates faster convergence and better
robustness to domain shift over the course of training.

To provide further clarity on the sharpness-aware entropy regularization component (Lsparp-er), W€ €xamine how the target-
like predictive distribution Q)7 is constructed. Specifically, we estimate Q1 based on class representation within each
domain, calculated as the relative frequency of each class (i.e., freg_class / freg_-total). For PACS, which exhibits
clear domain-specific class imbalance, these distributions vary considerably across domains, as shown in Table 6. These Q1
values are derived from a momentum-updated ensemble model and reflect domain-dependent prediction tendencies.

In contrast, Table 7 reports Q)7 values for the Digits-DG dataset, which is inherently balanced across digit classes (0-9),
resulting in a uniform Q7 = 0.1 across all domains. These insights validate that our formulation adapts well to both
imbalanced and balanced data regimes.
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Figure 1. Accuracy vs. Epoch comparison between FedTAIL and DGviaER across different domains (Art, Cartoon, Photo, Sketch) on
the PACS dataset using ResNet-50.

Raw Data (Class-wise) Raw Data (Domain-wise) DeepAll (Class-wise)
person sketch person DeepAll {Domain-wise)

photo

Figure 2. t-SNE visualizations of feature embeddings across class and domain. Top row: Raw features and DeepAll. Bottom row:

Standard DG and the proposed FedTAIL. Left: class-wise separation. Right: domain-wise alignment. FedTAIL achieves better
inter-class separability and cross-domain consistency.

Table 6. Qr values for PACS dataset across domains. Classes are ordered as: Dog, Elephant, Giraffe, Guitar, Horse, House, Person.

Domain Dog  Elephant Giraffe Guitar Horse House Person
Art Painting  0.1851  0.1245  0.1392  0.0898 0.0981 0.1440 0.2192
Cartoon 0.1660  0.1950  0.1476 0.0576 0.1382 0.1229 0.1728
Photo 0.1132  0.1210  0.1090 0.1114 0.1192 0.1677 0.2587
Sketch 0.1965  0.1883  0.1917 0.1547 0.2077 0.0204 0.0407
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Table 7. Qr values for Digits-DG dataset across domains. All classes (0-9) have uniform Q7 = 0.1.

Domain 0 1 2 3 4 5 6 7 8 9

MNIST 01 01 01 01 01 01 01 01 01 0.1
MNIST-M 0.1 01 01 01 01 01 0.1 01 0.1 0.1
SVHN 0r o1 o1 o1r o1 o1 01 01 01 0.1
SYN 0r or1r o1 o0r1r or or or1r o1 01 0.1

Importantly, we applied the same frequency-based ()7 estimation approach to Office-Home and DomainNet datasets. Due
to the large number of classes in these datasets, their tables are omitted for brevity. Nonetheless, these results collectively
demonstrate that our sharpness-aware entropy regularization mechanism generalizes effectively across datasets with diverse
class distributions and domain characteristics. This capability further confirms FedTAIL’s robustness to real-world federated
learning challenges, where heterogeneity in class presence and data distributions is the norm rather than the exception.
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