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Abstract

We investigate the problem of solving ML tasks from data collected from privacy-sensitive
sellers. Since the data is private, sellers must be incentivized through payments to provide
their data. Thus, the goal is to design a mechanism that optimizes a weighted combination
of test loss, seller privacy, and payment, i.e., strikes a balance between getting a good
privacy-preserving ML model and limiting payments to the sellers. To do this, we first
solve logistic regression with known heterogeneous differential privacy guarantees. We then
consider the main problem where the differential privacy requirements are decided by the
buyer to balance the tradeoff between test loss and payments. To solve this problem, we use
our earlier result on logistic regression with known privacy guarantees along with standard
mechanism design theory to formulate an optimization problem which is nonconvex. We
establish conditions under which the problem can be convexified using a change of variables
technique. This insight is then harnessed to develop an algorithm that provides optimal
solution. Additionally, we demonstrate the resilience of our mechanism to scenarios in which
data points and privacy sensitivities are correlated. Finally, we demonstrate the utility of
our algorithm by applying it to the Wisconsin breast cancer dataset.

1 Introduction

Machine learning (ML) applications have experienced significant growth in recent years. Furthermore,
substantial efforts have been dedicated to ensuring the privacy of training data, with the prevalent adoption
of differential privacy. While existing literature presents various algorithms to guarantee differential privacy,
a lingering question persists: determining the optimal degree of differential privacy. For instance, opting for a
higher level of differential privacy may compromise the performance of the machine learning model, yet it
significantly enhances privacy protection for the data provider. Therefore, along with considering the model
performance through metrics such as misclassification loss, we need to also consider the privacy loss of the
data providers (also referred by sellers). In this paper, we delve into addressing this nuanced tradeoff by
formulating a mechanism which balances competing objectives: achieving a high quality ML model while
minimizing the privacy loss experienced by data providers.

To further motivate our problem, in practice, while some of the data for training ML models are publicly
available, sensitive information such as health or financial data may not be shared due to privacy concerns.
For instance, a hospital may want to use health vitals to predict heart disease, but patients may be reluctant
to share such data due to privacy concerns. Moreover, each patient would have a different cost for the
same loss of privacy (which we term privacy sensitivity). Addressing this, there is a growing interest in
encouraging data sharing through two strategies: (i) introducing noise to ML model’s weights to enhance
dataset anonymity, and (ii) providing compensation to data sellers to offset potential privacy risks Posner
& Weyl (2019), Kushmaro (2021). The amount of compensation that is provided to patients would, of
course, depend on their privacy sensitivity and their privacy loss, which can be measured using differential
privacy. To operationalize this concept and thus accurately represent the tradeoff between model performance
and privacy loss, we propose a robust mathematical framework for designing a data market. This market
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facilitates data acquisition from privacy-conscious sellers, utilizing (a) mechanism design to incentivize sellers
to truthfully disclose their privacy sensitivity (we consider that sellers can lie about their privacy sensitivities)
and (b) statistical learning theory to strike a balance between payments and model accuracy. The market
involves a buyer seeking data from privacy-sensitive sellers, aiming to construct a high-quality ML model while
minimizing overall payments to sellers. Conversely, individual sellers seek fair compensation for potential
privacy compromises. Therefore, through the data market, we capture the tradeoff between designing a good
ML model while ensuring that privacy loss to data providers is small.

We are motivated by the work in Fallah et al. (2023), which considers mean estimation of a scalar random
variable using data from privacy-sensitive sellers. Our objective here is to design a mechanism for the more
challenging and practically useful problem of logistic regression with vector-valued data. Now, to consider
the tradeoff between payments and model accuracy, it is imperative to mathematically represent the buyer’s
objective, i.e., model accuracy. In contrast to Fallah et al. (2023), where the buyer’s objective simplifies
to the variance of a mean estimator, which they assume to be known, our scenario considers the buyer’s
objective to be the expected misclassification error of a logistic regression model in which the statistics of the
dataset are unknown. To address this issue, we propose using Rademacher complexity to model the buyer’s
objective. Furthermore, most prior work on differentially private logistic regression, such as (Chaudhuri
et al. (2011), Ding et al. (2017)) consider homogeneous differential privacy, in which every individual has the
same privacy guarantees. However, our approach acknowledges the practical reality that sellers might have
different degrees of willingness (privacy sensitivity) to share their data. Therefore, we consider that each data
point has to be privacy protected differently (which is done by considering heterogeneous differential privacy),
leading to different utility of each data point in contributing to the ML model.

To summarize, our goal is to design a mechanism for the buyer to optimize an objective that trades off
between classification loss and payments to sellers while also taking into account the differential privacy
requirements of the sellers. Our contributions are as follows:

• In section 3, we provide an approach to accurately model the misclassification loss for logistic
regression. We further highlight that unlike the case of the same differential privacy for all users
as in Chaudhuri et al. (2011), our objective for logistic regression should include an additional
regularization term for achieving optimal test loss performance.

• Next, we build upon the above result to solve our mechanism design problem (section 4). For this
problem, we provide a payment identity that determines payments as a function of the differential
privacy guarantees. This is used to design an objective for the mechanism design problem. Further,
we show that the objective can be made convex through a change in variables trick for a large class of
model parameters. Subsequently, we propose an algorithm to optimally solve the mechanism design
problem. We note that, in practice, if we consider health data, certain segments of society may have
poorer health outcomes than other segments and it is possible that those segments of the society may
be less sensitive to privacy considerations. In other words, it is possible that the data and privacy
sensitivities are correlated. Our model allows for such correlations.

• We also perform an asymptotic analysis by considering large number of sellers to understand how
much it will cost a buyer to obtain sufficient data to ensure a certain misclassification loss in the
ML model that results from the mechanism. The interesting insight here is that, because the buyer
can selectively choose sellers to acquire data from, the budget required for a given bound on the
misclassification loss is bounded.

• Finally, we demonstrate the application of our proposed mechanism on the Wisconsin breast cancer
data set UCI (1995). We observe fast convergence, indicating the usefulness of the change of variables.

1.1 Related Work

Differentially Private ML Algorithms: While literature on creating differentially private data markets is
relatively sparse, there is a vast literature on incorporating differential privacy in statistical modeling and
learning tasks. For example, Cummings et al. (2015) builds a linear estimator using data points so that
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there is a discrete set of privacy levels for each data point. Nissim et al. (2012), Ghosh et al. (2014), Nissim
et al. (2014), and Ligett et al. (2017) use differential privacy to quantify loss that sellers incur when sharing
their data. McMahan et al. (2017) demonstrates training of large recurrent language models with seller-level
differential privacy guarantees. Works such as (Alaggan et al. (2017), Nissim et al. (2014), Wang et al. (2015),
Liao et al. (2020), Ding et al. (2017)) also consider problems concerned with ensuring differential privacy.
Some works consider a different definition of privacy. Roth & Schoenebeck (2012), Chen et al. (2018), and
Chen & Zheng (2019) use a menu of probability-price pairs to tune privacy loss and payments to sellers.
Perote-Peña & Perote (2003), Dekel et al. (2010), Meir et al. (2012), Ghosh et al. (2014), Cai et al. (2014)
consider that sellers can submit false data. In the context of differentially private ML algorithms, a portion of
our work can be viewed as contributing to differentially private logistic regression with heterogeneous sellers.

Mechanism Design: Mechanism design has a long history, originally in economics and more recently in
algorithmic game theory. Recent work such as Abernethy et al. (2019) considers auctions in which buyers bid
multiple times. Chen et al. (2018) provides a mechanism that considers minimizing worst-case error of an
unbiased estimator while ensuring that the cost of buying data from sellers is small. However, in this paper,
the cost is chosen from a discrete set of values. Other papers, such as Ghosh & Roth (2015), Liu & Chen
(2017), and Immorlica et al. (2021), also consider mechanism design for different objectives and problems of
interest. However, none of these works incorporates ML algorithms or differential privacy in their analysis.
As mentioned earlier, our work is more closely related to Fallah et al. (2023), where the authors develop a
mechanism to estimate the mean of a scalar random variable by collecting data from privacy-sensitive sellers.
However, unlike Fallah et al. (2023) where they assume some statistical knowledge of the quantity to be
estimated, our challenge is to design a mechanism without such knowledge. This leads to interesting problems
in both deriving a bound for the misclassification loss and solving a non-convex optimization problem to
implement the mechanism.

2 Logistic Regression while Ensuring Heterogeneous Differential Privacy

For designing the optimal mechanism, a major challenge is to represent the misclassification error of the
logistic regression problem. We first formally define differential privacy and then introduce the problem of
repesenting the misclassification error.

2.1 Differential Privacy

To build the necessary foundation, we define the notion of privacy loss that we adopt in this paper. We
assume that sellers trust the platform to add necessary noise to the model weights to keep their data private.
This is called central differential privacy. The first definition of differential privacy was introduced by Dwork
et al. (2006) which considered heterogenous differential privacy (same privacy guarantee to all data providers).
In our paper, we consider a slight extension wherein all the users are provided different privacy guarantees,
i.e., heterogeneous differential privacy. More formally, it is defined as follows.

Definition 1 [Alaggan et al. (2017)]: Let ϵ = (ϵi)m
i=1 ∈ Rm

+ . Also, consider S, S′ be two datasets that
differ in ith component with |S| being cardinality of set S. Let A be an algorithm that takes a dataset as
input and provides a vector in Rn as output. We say that the algorithm provides ϵ-centrally differential
privacy, if for any set V ⊂ Rn,

e−ϵi ≤ P[A(S) ∈ V ]
P[A(S′) ∈ V ] ≤ e

ϵi ∀i ∈ {1, 2, . . . , |S|}. (1)

This definition states that if the value of ϵi is small, then it is difficult to distinguish between the outputs of
the algorithm when the data of seller i is changed. Note that a smaller value of ϵi means a higher privacy
guarantee for the seller.

2.2 Representing the Misclassification Error

In this subsection, we formulate and solve the problem of representing the misclassification error in logistic
regression with heterogeneous user privacy requirements. To do this, we initially focus on a related yet simpler
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scenario: logistic regression with heterogeneous differential privacy requirements. Later, when we consider
the mechanism, the results in this subsection will be used.

In this section, we consider the following problem:

• We have a set of m users, with user i having data point zi = (xi, yi), where we assume ∥xi∥ ≤ 1 ∀i.
We let D = {(x1, y1), . . . , (xm, ym)} denote the data set.

• Each user i demands that ϵi differential privacy must be ensured for their data.

• The platform aims to design best estimator w by minimizing misclassification loss E[I{sign(wT x) ̸=y}]
such that ∥w∥ ≤ β while ensuring differential privacy ϵ.1

Chaudhuri et al. (2011) present an algorithm to solve logistic regression while ensuring homogeneous differential
privacy, i.e., each user demands same differential privacy. A natural extension of their algorithm for minimizing
heterogenous differential privacy can be stated as follows (proof that this algorithm ensures heterogeneous
differential privacy is presented in Proposition 1 of the appendix):

Algorithm 0:

1. Choose (a, η) ∈ F, where the constraint set is F = {(a, η) : η > 0,
∑

i ai = 1, ai > 0, ai ≤ k/m, aiη ≤
ϵi ∀i} where k is a fixed constant.

2. Pick b′ from the density function h(b′) ∝ e− η
2 ∥b′∥. To ensure this, we pick ∥b′∥ ∼ Γ(n, 2

η ) and
direction of b′ uniformly at random. Let b′ = 2b

η . Thus, ∥b∥ ∼ Γ(n, 1) and direction chosen uniformly
at random.

3. Given a dataset D and differential privacies ϵ, compute ŵ = argminwL̂(D,w,a, η), where
L̂(D,w,a, η) =

∑m
i=1 ai log(1 + e−yi·wT xi) + b′T

w + λ
2 ||w||

2 for some λ > 0. Output ŵ.

Proposition 1 shows that any choice of (a, η) satisfying the aforementioned constraints satisfies (ϵi + ∆(m,λ))-
differential privacy requirements for ∆(m,λ) = 2 log

(
1 + k

mλ

)
.

Remark: Note that in most machine learning models, m is large enough such that mλ >> 1 and thus the
term ∆ is much smaller than the differential privacy guarantees used in practice. Therefore, for brewity, we
consider (ϵi + ∆(m,λ)) ≈ ϵi for further analysis.

However, it is unclear how to choose a and η to get a good test error performance. For example, one can choose
ai = 1/m and η = mmini ϵi. However, such a choice is clearly unable to exploit the fact that we need to
protect some data points more than others. Besides, our numerical experiments in Section 5 demonstrate that
solving minwL̂(D,w,a, η) over feasible set of (a, η) does not provide good results. Therefore, to understand
how to choose (a, η), we appeal to statistical learning theory to get an upper bound on E[I{sign(wT x) ̸=y}] in
terms of L̂(D,w,a, η) with the true loss. This leads to following result.

Theorem 2.1. Given a classification task, let D be the dataset from m users with ∥xi∥ ≤ 1. Further, consider
that users have differential privacy requirements ϵ = (ϵi)m

i=1 ∈ Rm
+ respectively. Also, let L(D, c; ϵ,w) =

E[I{sign(wT x) ̸=y}] be misclassification loss and L̂(D,w,a, η) be as defined above. Then, the following holds
for appropriate µ, σ with probability at least (1− δ)(1− δ′) for every choice of ϵ ∈ Rm and (a, η) ∈ F and w
chosen such that ∥w∥ ≤ β for some β > 0.

E[I{sign(wT x)̸=y}]| ≤ L̂(D,w,a, η) + µ(δ, β)∥a∥+ σ(δ, δ′, β)
(1
η

)
. (2)

1∥w∥ is the l2 norm of w, and I{·} is the indicator function.
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Using the above bound for generalization error, we add additional regularization terms, namely µ||a|| and
σ/η to incorporate generalization loss in the objective function.

min
a,η,w

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + λ

2 ||w||
2 + 2bT w

η
+ µ∥a∥+ σ

η

]
s.t.(a, η) ∈ F and µ, σ, λ are hyperparameters (3)

Further, we can choose an appropriate value of λ to satisfy the constraint ||w|| ≤ β. Therefore, the objective in
Eq. (3) with the mentioned constraints can be used to solve logistic regression with heterogeneous differential
privacy requirements. Additionally, Eq. (3) serves as a proxy for representing misclassification loss. In section
4, we will discuss algorithmic considerations in solving the above optimization problem and also provide an
algorithm to optimally choose parameters (µ, σ, λ) using validation data.

Figure 1: Interaction between sellers and the platform

3 Mechanism Design

We will now use our logistic regression result to consider the mechanism design problem. We consider a
platform (buyer) interested in collecting data from privacy-sensitive users (sellers) to build a logistic regression
model. Further, sellers may have different costs associated with the privacy lost by sharing their data, i.e.,
they may have different privacy sensitivities. Therefore, the platform buys data from sellers in exchange
of a payment and provides them with differential privacy guarantees. The differential privacy guarantees
are determined by optimizing an objective consisting of the misclassification error and the payments. More
specifically, our problem has the following components

• We have a set of m sellers, with seller i having data zi = (xi, yi). with yi ∈ {+1,−1}. Therefore, let
D = {(x1, y1), . . . , (xm, ym)} denote the dataset.

• We model the cost that the sellers incur due to loss of privacy using privacy sensitivity ci ≥ 0. In
other words, if the seller is provided a differential privacy guarantee of ϵi, then the seller incurs a
total cost of ci · u(ϵi) where u(.) is considered to be a convex and strictly increasing function with
u(0) = 0. This is consistent with the practical observation that the privacy cost increase of seller i
for a slight increase in ϵi, will be higher for larger values of ϵi. Additionally, the knowledge of the
function u(.) is public information.

• Sellers can potentially lie about their privacy sensitivity to get an advantage. Therefore, we denote
the reported privacy sensitivity of seller i by c′

i. The mechanism will be designed so that c′
i = ci.

• As is standard in the mechanism design literature, we assume that seller i’s cost ci is drawn from a
probability density function fi(·), which is common knowledge. Moreover, we assume that sellers
cannot lie about their data. This assumption is valid in scenarios such as healthcare data, where
patient information is already within the possession of the hospital. In this context, sellers merely
need to grant permission to the hospital (a trusted authority) to utilize their data, specifying their
privacy sensitivities in the process.
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• The buyer announces a mechanism, i.e., in return for {(xi, yi), ci}, each seller is guaranteed a
differential privacy level ϵi and payment ti both of which depend on dataset D and reported privacy
sensitivities c′. 2

• Based on the privacy loss and the payment received, the cost function of seller i with privacy
sensitivity ci, reported privacy sensitivity c′

i, and data point zi = (xi, yi) is given by

COST(ci, c−i, c
′
i, c−i; ϵi, ti) = ci · u(ϵi)− ti. (4)

To design the mechanism, we next state the objectives of the buyer.

• The buyer learns an ML model θ(D, c′) from dataset D, and computes a payment ti(D, c′) to seller
i while guaranteeing a privacy level ϵi(D, c′) to each seller i. To do this, the buyer optimizes a
combination of the test loss incurred by the ML model L(D, c′; ϵ, θ) and the payments ti(D, c′). The
overall objective of the buyer is to minimize

Ec

[
L(D, c′; ϵ, θ) + γ

∑
i

ti(D, c′)
]
, (5)

where γ is a hyperparameter that adjusts the platform’s priority to get a better predictor or reduce
payments.

• The buyer is also interested in ensuring each seller is incentivized to report their privacy sensitivities
truthfully. To that end, the IC property imposes that no seller can misrepresent their privacy
sensitivity if others report truthfully, i.e.,

COST(ci, c−i, ci, c−i; ϵi, ti) ≤ COST(ci, c−i, c
′
i, c−i; ϵi, ti) ∀i, c′

i, c. (6)

• Moreover, the buyer wants to ensure that sellers are incentivized to participate. Thus, the IR property
imposes the constraint that the platform does not make sellers worse off by participating in the
mechanism.

COST(ci, c−i, c
′
i, c−i; ϵi, ti) ≤ 0 ∀i, c′

i, c (7)

Using ideas from Myerson (1981) we show that, if ϵi(D, c′) is privacy guarantee provided to seller i, then using
the IC and IR constraints, we can replace the payments ti(D, c′) in the objective function by Ψi(ci)u

(
ϵi(D, c′)

)
where Ψi(c) = c+ Fi(c)/fi(c) 3 Further, the IC constraint incentivizes sellers to be truthful, and henceforth,
we can replace c′ with c. Since this replacement is a generalization of the payment identity in Fallah et al.
(2023) we state and prove this result along with mentioning the required regularity assumptions on Ψi in a
later section. Substituting it in Eq. (5), we get

min
w,ϵ(·)

Ec

[
L(D, c; ϵ,θ) + γ ·

m∑
i=1

Ψi(ci)u(ϵi(D, c))
]
. (8)

Therefore, buyer’s problem reduces to solving Eq. (8) while ensuring ϵi(D, c) differential privacy. We refer to
Appendix C for a simple numerical example. The order of operations of our mechanism can be summarized
as follows.

• The sellers provide the platform with their data (xi, yi) and their privacy sensitivity ci.

• The platform announces that in exchange for the data, it will pay according to the payment identity.

• The platform uses this data to obtain an ML model θ(D, c′) and sets privacy levels ϵ(D, c′), i.e.,
even if the model θ(D, c′) is released publicly, each seller i will be guaranteed differential privacy of
ϵi.

Note that the payment mechanism does not depend on the choice of loss function. Since we consider our ML
problem to be logistic regression the loss function L(D, c; ϵ,θ) in our case becomes the misclassification loss
E[I{sign(wT x) ̸=y}], where w(D, c) is the weight vector corresponding to the regression model.

2c = [c1, c2, . . . , cm]. Same notation is used in writing ϵ, c′, t.
3F (ci) and f(ci) denote the values of CDF and PDF functions for privacy sensitivities at ci, respectively.
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3.1 Calculating the Payments

Before we proceed to solve Eq. (8), we first state the result which calculates the payments based on IC and IR
Assumption 3.1. The virtual cost Ψi(c) = c+ Fi(c)

fi(c) is an increasing function of c.
Theorem 3.2. Assume that ci is drawn from a known PDF f(·). Given a mechanism design problem with
privacy sensitivities c and privacy guarantees ϵ, let the sellers’ costs be given by Eq. (4). Then, using the IC
and IR constraints, the payments ti(c) can be substituted by Ψi(ci)u

(
ϵi(c)

)
where Ψi(ci) is the virtual cost

function given by
Ψi(ci) = ci + Fi(ci)

fi(ci)
∀i ∈ N, ci ∈ R (9)

The theorem is a generalization of the payment identity in Fallah et al. (2023). The result is similar to
Myerson’s interpretation of mechanism design to virtual welfare maximization.

3.2 Solving the Mechanism Design Problem

Now, we use the results in previous subsections to solve the mechanism design problem, i.e., Eq. (8). From
Theorem 3.2, we obtain the payments, and Eq. (3) provides us with a proxy for the logistic loss, i.e.,
E[Isign(wT x)̸=y] while also satisfying differential privacy constraints. Thus, our mechanism design objective
can be written as

min
a,η,w,ϵ

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ λ

2 ||w||
2 + µ∥a∥+ σ

1
η

+ γ

m∑
i=1

u(ϵi)Ψi(ci)
]
,

s.t.
∑

i ai = 1,a ≥ 0,a ≤ k/m, η ≥ 0, aiη ≤ ϵi.

Note that the above objective is minimized with respect to ϵ when aiη = ϵi ∀i. Using this equality and∑
i ai = 1, we get ai = ϵi/η, where η =

∑
i ϵi. Thus, the final objective function for mechanism design can be

written as

min
a,η,w

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ λ

2 ||w||
2 + µ∥a∥+ σ

1
η

+ γ

m∑
i=1

u(ai, η)Ψi(ci)
]
, (10)

subject to η > 0,a ≤ k/m,a ≥ 0, and
∑

i ai = 1. Here, {β, µ, σ} are hyperparameters while γ is used to
tradeoff between test loss and payments. After solving the optimization problem (10), ϵ can be obtained
using ϵi = aiη.

Remark: The constraint ai ≤ k/m for some k > 0 indirectly imposes the condition that ϵi is upper-bounded
by a finite quantity. Since η =

∑
ϵi, we can write η = mϵavg, which together with ϵi = aiη implies ϵi ≤ kϵavg.

Later, we will show that it is sufficient to constraint ϵavg to a bounded set while optimizing the objective.
Therefore, the upper bound constraint on ai means that ϵi is upper-bounded. In other words, we can
incorporate constraints such as sellers unwilling to tolerate more than a certain amount of privacy loss even if
they are paid generously for it.

3.3 Interpretation of the terms in the objective

We can divide the objective function Eq. (10) into three parts.

1. The first part is given by
∑m

i=1 ai log(1 + e−yi·wT xi) + 2bT w/η. This focuses on obtaining w to solve
the differentially-private logistic regression problem.

2. The second part µ∥a∥+ σ/η denotes the difference between true loss L(D, c; ϵ,w) and L̂(D,a,w, η).
This tries to reduce the gap between L(D, c; ϵ,w) and L̂(D,a,w, η). We see that the gap reduces as
ai approach 1/m and η →∞. Therefore, higher weight on these terms would mean that the optimal
solution is forced to pick similar values for ai and smaller noise, which leads to the standard logistic
regression problem.
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3. Finally, γ
∑m

i=1 u(aiη)Ψi(ci) accounts for payments made to sellers. Here, increasing γ would mean
that the platform would focus more on reducing the payments rather than designing a better logistic
regression model.

To gain more insight into the optimal solution of Eq. (10), we first state the first-order necessary conditions.
For this analysis, we consider u(.) to be linear, i.e., u(aiη) = aiη.
Theorem 3.3. Let (a∗,w∗, η∗) be the optimal solution for the optimization problem (10). Then

a∗
i = ∥a

∗∥
µ

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+

where (f(x))+ = max(0, f(x)), with τ such that

m∑
i=1

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+

= µ

∥a∗∥
, (11)

Thus,

ai =

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi)

)+

∑m
j=1

(
τ − γη∗ψj(cj)− log(1 + e−yj ·(w∗)T xj )

)+

where η∗ is given by

η∗ =
( σ + 2bT w

γ
∑m

i=1 ψi(ci)a∗
i

)1/2
.

From Theorem 3.3, we can make certain observations:

1) First, we note that ai depends inversely on the privacy sensitivities ci, i.e., ψi(ci) is an increasing function
of ci. Therefore, the platform will be willing to buy relatively more privacy from sellers whose per-unit
privacy costs are lower. Additionally, the platform will choose not to use data points with excessively high
virtual costs.

2) Note that from Eq. (11), τ is directly proportional to µ (the weight on ∥a∥). Further, a higher τ will
reduce the variance in a∗

i because τ will dominate over γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi). Therefore, if µ→∞
then τ →∞ which would make ai → 1/m. Additionally, by considering a higher value of µ, we can indirectly
satisfy the constraint ai ≤ k/m.

3) Finally, η is inversely proportional to γ. Therefore, a lower weight on payments, i.e., smaller γ and thus
more focus on getting a better model would mean that the optimal solution will try to reduce noise by making
η∗ →∞.

3.4 Discussion

We make the following remarks on our solution:

• The payment mechanism is independent of L(D, c; ϵ,w). Thus, using an upper bound for the
misclassification loss does not affect the mechanism. Therefore, if one uses a tighter bound, it will
help the platform get a better estimator for the same payments. However, it would not affect the
behavior of sellers, i.e., sellers will still be incentivized to be truthful and willing to participate in the
mechanism.

• Since the payment mechanism does not depend on the choice of the function L(D, c; ϵ,w), designing
payment mechanism and solving objective function can be treated as two separate problems. Thus,
any such mechanism design problem can be decoupled into separate problems.
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• Finally, we can see that our algorithm can be used to solve the logistic regression problem with
heterogeneous privacy guarantee requirements. Previous work in the literature, such as Chaudhuri
et al. (2011), solves the problem in the case when it is assumed that all users have the same differential
privacy requirements. In our paper, Eq. (3) extends it to the case when users are allowed to have
different privacy requirements.

3.5 Robustness to correlations between the data points and privacy sensitivities

In our model, we consider that the data point (xi, yi) is independent of privacy sensitivity ci. However, in
some applications, this might not hold. For example, if xi is the income of an individual then people with a
high income might be reluctant to share their data. Therefore their privacy sensitivities ci would be higher.
This could potentially deter the platform from incorporating data points from high-income individuals, as it
would imply higher costs.

Our model, however, remains versatile in handling such practical intricacies, thanks to the presence of the
regularization term µ||a||. Since, ||a|| is minimized when ai = 1/m, a higher value of µ will force ai to be
closer to 1/m. This can also be inferred by the observations made from Theorem 3.3. Therefore, we can
always tweak µ to ensure that all data points are sufficiently considered in the objective therefore helping
the platform get a higher classification accuracy while also making sure that the payments are small. The
robustness of the model to correlations between (xi, yi) and ci further highlights the importance of adding
additional regularization terms which we derived in Thm 2.1.

3.6 Asymptotic Analysis

It is also instructive to analyze the objective function in the regime where the number of sellers is large, i.e.,
when m→∞. For this purpose, we make the following assumptions:

1. The data set is linearly separable, that is, there exists a w∗ such that w∗T xiyi ≥ δ ∀i for some
δ > 0.

2. c has a bounded support implying that ψi(ci) is bounded. Therefore, let ψi(ci) ∈ [p, q].

3. There is sufficient finite probability mass around c = p such that the following condition holds:
∃ k > 0, such that lim

m→∞
m · P

(
ψi(ci) ≤ p+ 1/mk

)
→∞.

Theorem 3.4. Assume that dataset and privacy sensitivities satisfy (a)-(c) above. Furthermore, let ∥b∥ ∼
Γ(n, 1). Then, as m→∞, the objective function can be upper-bounded almost surely as

lim
m→∞

min
w,ϵ,∥w∥≤β

E[I{sign(wT x) ̸=y}] + γ
∑
i=1

ϵiΨi(ci) ≤ log(1 + e
− δ√

pγ ) + 2
√
σpγ + 2∥b∥√pγ (12)

wherein the payment is at most
√
σpγ + 2∥b∥√pγ/γ. In particular, the inequality is non-trivial if pγ satisfies

log(1 + e
− δ√

pγ ) + 2
√
σpγ + 2∥b∥√pγ < 1.

Furthermore, as p→ 0, the above limit becomes zero.

The first term log(1 + e
− δ√

pγ ) represents maximum possible error for logistic loss. The second term is extra
error due to payment costs and errors associated with ensuring differential privacy. This is unavoidable
because there is finite cost (ψi(ci) ≥ p) associated with each data point.

We observe a dynamic interplay: as p decreases, the cost per data point diminishes, leading to a reduction
in payments. Notably, as p → 0 and m → ∞, the upper bound on the error can be driven to 0. This
phenomenon is intuitively explained by the platform’s ability to select a lot of samples with nearly zero
virtual cost from a large pool, enabling the reduction of misclassification error.

9
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4 Algorithmic Considerations

This section will discuss algorithmic considerations in solving the optimization problem associated with our
mechanism design solution.

4.1 Making the objective function convex

The objective functions for logistic regression with heterogeneous differential privacy, i.e., Eq. (3) and for
solving the mechanism design problem, i.e., Eq. (10) are nonconvex in (a,w). Therefore, we introduce a
change of variables trick to make the function convex. We will first prove the convexity result for Eq. (3)
and then argue that it also holds for Eq. (10). We make the substitution ai = ezi . With the proposed
modifications, the logistic regression objective in Eq. (3) becomes

min
z,η,w

f(w, z, η),

f(w, z, η) =
[ m∑

i=1
ezi log(1 + e−yi·wT xi

) + λ

2 ∥w∥
2 + 2bT w

η
+ µ∥ez∥+ σ

1
η

]
(13)

The following theorem states that the new objective is strongly convex in (w, z) for sufficiently large λ, and
thus gradient descent converges exponentially to global infimum.
Theorem 4.1. Given a classification task, let D be a set of data points from m users with ∥xi∥ ≤ 1, for each
i. Then, there exists a value λconv such that the objective function as defined in Eq. (13) is convex in (w, z)
for λ > λconv and µ, σ, η ∈ R+. Let (wt, zt)t∈N be the sequence of iterates on applying projected gradient
descent on f(·) for a fixed η on a convex set S, and let f∗

η = infw,z f(w, z, η). Then, for λ > λconv, there
exists 0 < α < 1, such that

f(wt, zt, η)− f∗
η ≤ αt(f(w0, z0, η)− f∗

η ).

We also observe experimentally that the projected gradient descent on (w, z) for a fixed η converges to the
same stationary point for different initializations for the real dataset considered in this paper. This suggests
that the condition on λ in Theorem 4.1 is not very restrictive.

Remark: Note that the same change of variables and adding a regularizer for w also makes the mechanism
design objective Eq. (10) convex in (w, z) for λ > λconv. This is because γ

∑m
i=1 u(ηezi)ψi(ci) is convex for a

fixed η.

4.2 Algorithm

Let us denote the mechanism design objective (10) with the change of variables by

g(w, z, η) = f(w, z, η) + γ

m∑
i=1

u(ηezi)Ψi(ci).

To optimize this objective, we first optimize g(w, z, η) with respect to (w, z) for a fixed η over the constraint
set using projected gradient descent, and then perform a line search over the scalar parameter η. Now, to
determine the range of η, note that η =

∑m
i=1 ϵi = mϵavg, where ϵavg =

∑
i ϵi/m. Considering that, in

practice, the differential privacy guarantees ϵ cannot be excessively high, we restrict the range of ϵ by taking
ϵavg ∈ [0, L] for some L ∈ R+. Thus, we can choose different values of η by discretizing [0, L] to any required
precision and choosing ϵavg from it. The pseudocode for the algorithm is provided in the provided table.

As a result, for each combination of {λ, µ, σ, γ}, the algorithm provides the corresponding optimal weight
vector w and privacy guarantees ϵ. The privacy guarantees are then used to determine payments. Moreover,
the misclassification error is computed over a validation dataset using w. Therefore, we fix γ and optimize our
objective E[I{sign(wT x) ̸=y}] + γ

∑
i ti(D, c′) wrt {λ, µ, σ}. Subsequently, the platform can pick appropriate

value of γ by comparing different combinations of payment sum (
∑

i ti(D, c′)) and misclassification loss
(E[I{sign(wT x) ̸=y}]) corresponding to each value of γ.

10
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Remark: Note that the same algorithm can be used to solve the logistic regression problem, i.e., Eq. (3) by
considering the projection set S to be {z :

∑
ezi = 1, ηezi ≤ ϵi}.

An Iterative Algorithm to Optimize the Mechanism Design Objective

Set step-size α ∈ (0, 1], gmin =∞.
Discretize [0, L] to any required precision and choose ϵavg from this discrete set.
Sample ∥b∥ from Γ(n, 1) with its direction chosen uniformly at random.
foreach ϵavg do

Initialize w from N(0, 1), zi = log( 1
m ) ∀i;

while not converged do
w ← w − α d

dwg(w, z, ϵavg),
z ← z − α d

dz g(w, z, ϵavg),
z ← ProjS(z) s.t. S = {z :

∑m
i=1 e

zi = 1}.

end
if gmin > g(w, z, ϵavg) then

wopt ← w,
zopt ← z,
ϵopt ← ϵavg,
gmin ← g(w, z, ϵavg)

end
end

4.3 Assumption on Validation data

In addition to (w, z), our objective function needs to be minimized on a set of parameters {λ, µ, σ, γ}.
Therefore, we require a validation dataset to compare different values of the hyperparameters. Since
hyperparameters are chosen based on the validation set, if the validation dataset is private, it may violate
differential privacy guarantees. Chaudhuri et al. (2011) provides a detailed discussion on ensuring differential
privacy using validation data. Referring to their work, we assume existence of a small publicly available
dataset that can be used for validation. This assumption ensures that differential privacy guarantees are not
violated.

Figure 2: a) Misclassification error and payments b) Comparison of overall error

11
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5 Numerical Results

5.1 Application to Medical Data

Dataset and Specifications: To demonstrate the applications of our proposed mechanism, we perform our
mechanism design approach on the Wisconsin Breast Cancer dataset UCI (1995). Furthermore, c is drawn
from U[e−4, 5e−4] and ψ(c) is calculated accordingly to be 2c− e−4. Also, we consider u(x) = x.
Implementation:The optimization of the loss function in Eq. (10) is conducted on the training data, and
subsequently, the hyperparameters {λ, µ, σ} are selected based on the validation data for each value of γ.
Therefore, the corresponding misclassification error (misclassified samples/total samples) and payments are
plotted for each γ in Fig. 2(a). The values are plotted by taking the mean over 15 different samples of
the noise vector b. Given that our approach is first to consider the tradeoff between payments and model
accuracy for ML models, there is a lack of existing methods in the literature for direct comparison. However,
to showcase increase in efficiency of our approach due to addition of extra regularization terms (µ||a||, σ/η),
we compare our results with a naive model whose objective does not consider these terms, i.e. Eq. (10) with
µ = σ = 0. Finally, all results are benchmarked with the baseline error which is misclassification error of the
model in absence of payments and differential privacy guarantees. Additionally, to evaluate the efficiency of
all the methods the overall error (misclassification error + γ*payments) is plotted in Fig. 2(b). It is important
to note that additional experiments in the appendix provide further insight about the hyperparameters.
Observations and Practical Usage: As depicted in Fig. 2(a), there is a tradeoff between misclassification
loss and payments, with an increase in misclassification loss and a decrease in payments as γ rises. Consequently,
the platform can tailor γ based on its requirements. For example, if the platform has a budget constraint, the
platform can iteratively adjust γ to obtain the optimal estimator within the given budget. Finally, from Fig.
2(b), we see that the incorporation of regularization terms (µ||a||, σ/η) in the model yields a more efficient
mechanism with a lower overall error.
Robustness to Correlations: We repeat the above experiment by adding correlations between the data
points and their corresponding privacy sensitivities. This is done by mapping elements in c and datapoints
using a predefined rule. Specifically, c is sampled and its elements are sorted, while datapoints are sorted based
on one of their indices. Consequently, kth datapoint is mapped with kth element of c. These observations are
plotted in Fig. 2 and which shows that performance of our algorithm is similar, affirming robustness of our
approach to correlations between datapoints and privacy sensitivities. This underscores the adaptability and
efficacy of our method even in scenarios where correlations are introduced, further validating its practical
utility.

6 Conclusion

We introduce a novel algorithm to design a mechanism that balances competing objectives: achieving a high-
quality logistic regression model consistent with differential privacy guarantees while minimizing payments
made to data providers. Notably, our result in Thm. 2.1 can extend to scenarios where individual data points
require different weights in loss calculations. Such weighting enables accommodation of noisy measurements or
varying costs associated with sample retrieval. Additionally, we note that our model considers heterogeneous
privacy guarantees, acknowledging the diverse privacy needs of individuals. Finally, through Thm. 3.2 we see
that the payment mechanism does not depend on choice of loss function. Therefore designing a payment
mechanism and minimizing the objective can be effectively decoupled and treated as separate problems. This
observation along with Thm. 2.1 which highlights the necessity of additional regularization terms opens
avenues for design of mechanisms tailored to ML problems of higher complexity.
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A Appendix A: Omitted Proofs

In this section of the appendix, we provide the omitted proofs. We start with the following proposition,
whose proof is inspired by that in Chaudhuri et al. (2011).
Proposition 1. For any (a, η) ∈ F, the output of Algorithm 1, denoted by ŵ, preserves ϵ differential privacy.
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Proof: Let d and d′ be two vectors over Rn with norm at most 1, and y, y′ being either −1
or 1. Consider two different inputs given by D = {(x1, y1), . . . , (xm−1, ym−1), (d, y)} and D′ =
{(x1, y1), . . . , (xm−1, ym−1), (d′, y′)}. Since the function L̂(D,w,a, η) is strictly convex in w, for every
b′ = 2b

η , there is a unique output ŵ for each input. Let us denote the values of b′ for the first and the second
input such that the optimal solution is ŵ by b′

1 and b′
2, respectively, with the corresponding densities h(b′

1)
and h(b′

2). We know that the derivative is 0 at ŵ. Thus, we have

b′
1 −

am · dy
1 + eyŵT d

= b′
2 −

am · d′y′

1 + ey′ŵT d′ .

Since 1
1+eyŵT d

< 1 and 1
1+ey′ŵT d′ < 1, we have ∥b′

1 − b′
2∥ < 2am, which implies

∣∣∥b′
1∥ − ∥b′

2∥
∣∣ < 2am.

Therefore, for any pairs (d,y), (d′,y′), and any set V ⊂ Rn, we can write

P[w(x1, . . . ,xm = d, y1, . . . , ym = y) ∈ V ]
P[w(x1, . . . ,xm = d′, y1, . . . , ym = y′) ∈ V ] = h(b′

1)
h(b′

2) ·
|det(J(ŵ → b′

1|D))|−1

|det(J(ŵ → b′
2|D′))|−1

where J(ŵ → b′
1|D) is the Jacobian matrix of the mapping from the space of w to b.

We first bound the ratio of the determinants. By taking the gradient at ŵ to be 0, we have

b′
1 =

∑
i

ai · xiyi

1 + eyiŵT xi
− λŵ

Thus, taking the gradient of b′
1 with respect to ŵ, we have

δb′
1

δŵ
=
∑

i

−aie
yiŵT xi · xi(xi)T

(1 + eyiŵT xi)2 − λI (14)

We define two matrices A and E such that

A =
∑

i

aie
yiŵT xi · xi(xi)T

(1 + eyiŵT xi)2 + λI (15)

E = −ame
ymŵT d′m

· d′(d′)T

(1 + eymŵT d′)2 − −ame
ymŵT dm · d(d)T

(1 + eymŵT d)2 (16)

Now,
|det(J(ŵ → b′

1|D))|−1

|det(J(ŵ → b′
2|D′))|−1 = |det(A+ E)|

|det(A)| (17)

Let λ1(M) and λ2(M) denote the first and second largest eigenvalues of a matrix M . Since, E is of rank 2,
from Lemma 10 of Chaudhuri et al. (2011), we have

|det(A+ E)|
|det(A)| = |1 + λ1(A−1E) + λ2(A−1E) + λ1(A−1E)λ2(A−1E)| (18)

Now, since we consider logistic loss which is convex, any eigenvalue of A is atleast λ. Thus |λj(A−1E)| ≤
1
λ |λj(E)|. Now, applying the triangle inequality to the trace norm, we have

|λ1(E)|+ |λ2(E)| ≤ 2||d||2am
eymŵT dm

(1 + eymŵT dm)2 ≤ 2am (19)

Therefore by AM-GM inequality λ1(E)λ2(E) ≤ a2
m

Thus
|det(A+ E)|
|det(A)| ≤

(
1 + am

λ

)2
(20)
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Therefore, we have

P[w(x1, . . . ,xm = d, y1, . . . , ym = y) ∈ V ]
P[w(x1, . . . ,xm = d′, y1, . . . , ym = y′) ∈ V ] ≤ e

η(∥b′
1∥−∥b′

2∥)/2 · |det(A+ E)|
|det(A)| ≤ eamη ≤ eϵm ,

≤ exp(amη + 2 log(1 + am

λ
))

≤ exp
(
amη + 2 log

(
1 + k

mλ

))
≤ exp(ϵm + 2 log

(
1 + k

mλ

))
≤ exp(ϵm + ∆) (21)

where the last inequality holds because (a, η) ∈ F. Note that, we also consider that am are constrained such
that am ≤ k

m for some k > 0. Note that

■

Theorem A.1. Given a classification task, let D be the dataset from m users with ∥xi∥ ≤ 1 ∀i. Fur-
ther, consider that users have differential privacy requirements ϵ = (ϵi)m

i=1 ∈ Rm
+ , respectively. Also, let

L(D, c; ϵ,w) = E[I{sign(wT x)̸=y}] be misclassification loss and L̂(D,w,a, η) be as defined in Algorithm 1.
Then, the following holds with probability at least (1− δ)(1− δ′) for every ϵ ∈ Rm and (a, η) ∈ F:

sup
∥w∥≤β

∣∣∣L(D, c; ϵ,w)− L̂(D,a,w, η)
∣∣∣ ≤ µ∥a∥+ σ

η
.

Thus, the misclassification loss can be upper-bounded by

L(D, c; ϵ,w) ≤ L̂(D,a,w, η) + µ∥a∥+ σ

η
. (22)

∀w s.t. ∥w∥ ≤ β, (a, η) ∈ F.

Proof: For any sample S=
{

(x1, y1), . . . , (xm, ym)
}

and any w ∈ Rn, we define the empirical loss function as

L̂S [w] =
m∑

i=1
ai log(1 + e−yi·wT xi

) + b′T
w,

where ∥b′∥ ∼ Γ(n, 2
η ), and the direction of b′ is chosen uniformly at random. The true loss function is given

by
E[I{sign(wT x)̸=y}] ≤ E[log(1 + e−y·wT x)] = L[w].

Since
∑

i ai = 1 and E[w] = 0, we have

E
[
L̂S [w]

]
=
∑

i

aiE[log(1 + e−y·wT x)] + E[b′T
w]

= E[log(1 + e−y·wT x)] = L[w]. (23)

Let ϕ(S) = supw∈Rn(L[w]− L̂S [w]). To bound
∣∣b′T

w
∣∣, we consider the event where

∣∣b′T
w
∣∣ < r. This should

be true for all w such that ∥w∥ ≤ β. This is possible only when ∥b′∥ < r/β. Consider that this event happens
with probability 1− δ′. From the CDF of Γ(n, 2

η ), we get

n−1∑
i=0

( ηr
2β )i

i! e− ηr
2β = δ′. (24)

Let ηr/β = t and v(t) =
∑n−1

i=0
(t/2)i

i! e− t
2 . Also, it is known that v(t) is a monotonously decreasing function.

Therefore, its inverse exists, and we have

r = βv−1(δ′)
η

.

16
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Now, using McDiarmid’s inequality,

P (|ϕ(S)− ES [ϕ(S)]| > t) ≤ exp
(

−2t2∑
a2

i log2(1 + eβ) + ( 2βv−1(δ′)
η )2

)
.

Thus, with probability at least (1− δ)(1− δ′),

ϕ(S) ≤ ES [ϕ(S)] +

√√√√ ln 1
δ

(∑
a2

i log2(1 + eβ) +
( 2βv−1(δ′)

η )2
)

2 . (25)

Moreover, we can write

ES [ϕ(S)] = ES

[
sup

∥w∥≤β

(L[w]− L̂S(w))
]

= ES

[
sup

∥w∥≤β

ES′ [L̂S′(w)− L̂S(w)]
]

= ES,S′
[

sup
∥w∥≤β

[L̂S′(w)− L̂S(w)]
]

= ES,S′,σi

[
sup

∥w∥≤β

[ m∑
i=1

aiσi

(
log(1 + e−y′i·wT x′i

)− log(1 + e−yi·wT xi

)
)]]

≤ ES,σi

[
sup

∥w∥≤β

[ m∑
i=1

aiσi

(
log(1 + e−yi·wT xi

)
]]

+ ES′,σi

[
sup

∥w∥≤β

[ m∑
i=1
−aiσi

(
log(1 + e−y′i·wT x′i

)
]]

= 2Rm(w),

where in the above derivations, Rm(w) is given by

Rm(w) = Eσ,S [ sup
∥w∥≤β

m∑
i=1

aiσi log(1 + e−yi·wT xi

)],

and the fourth equality is obtained by introducing uniformly independent random variables σi taking values
in {−1, 1}. Now, we can again use McDiarmid’s inequality to get

Rm(w) ≤ R̂S(w) +

√√√√ ln 1
δ

(∑
i a

2
i log2(1 + eβ) +

( 2βv−1(δ′)
η )2

)
2

≤R̂S(w)+

√
ln 1

δ

2

(√∑
a2

i log2(1 + eβ) + 2βv−1(δ′)
η

)
.

Finally, we calculate R̂S(w) as

R̂S(w) = Eσ[ sup
w∈Rn

∑
i

aiσi log(1 + e−yiwT xi

) + b′T
w]

≤ 1
ln 2Eσ[sup

w

∑
i

aiσi(−yiwT xi)] + βv−1(δ′)
η

≤ ∥w∥ln 2 Eσ[
∑

i

aiσix
i] + βv−1(δ′)

η

≤ β

ln 2

√∑
i

a2
i + βv−1(δ′)

η
,

17
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where the first inequality holds by the Lipschitz property, and the last inequality uses ∥x∥ ≤ 1 and ∥w∥ ≤ β.
Putting it together, we have

E[I{sign(wT x)̸=y}] ≤
m∑

i=1
ai log(1 + e−yiwT xi)) + b′T

w +
[(3 ln 1

δ√
2

)
log(1 + eβ) + β

ln 2

]√∑
i

a2
i

+
(6 ln 1

δ√
2

+ 1
)(2βv−1(δ′)

η

)
+ λ

2 ||w||
2

Thus, it is enough to define µ(δ, β) =
(

3 ln 1
δ√

2

)
log(1 + eβ) + β

ln 2 and σ(δ, δ′, β) =
(

6 ln 1
δ√

2 + 1
)(

2βv−1(δ′)
)

. ■

Assumption A.2. The virtual cost Ψi(c) = c+ Fi(c)
fi(c) is an increasing function of c.

Theorem A.3. Assume that ci is drawn from a known PDF f(·). Given a mechanism design problem with
privacy sensitivities c and privacy guarantees ϵ, let the sellers’ costs be given by Eq. (4). Then, using the IC
and IR constraints, the payments ti(c) can be substituted in the objective by Ψi(ci)u

(
ϵi(c)

)
where Ψi(ci) is

the virtual cost function given by

Ψi(ci) = ci + Fi(ci)
fi(ci)

∀i ∈ N, ci ∈ R (26)

Proof: The proof follows similar steps as those in Fallah et al. (2023). Let hi(c) = Ec−i
[L(D, c; ϵ,θ)], where

c is the argument corresponding to the privacy of agent i. Similarly, let ti(c) = Bc−i
[ti(D, c, c−i)] and u(ϵi(c))

= Ec−i
[u(ϵi(D, c, c−i))]. Using the IC constraint, we have

ci · u(ϵi(ci))− ti(ci) ≤ ci · u(ϵi(c′
i))− ti(c′

i).

From the IC constraint, the function ci · u(ϵi(c)) − ti(c) has a minima at c = ci. Thus, by equating the
derivative to 0 and substituting c = ci, we get

ci ·
(du(ϵi(c))

dc

)
c=ci

= t′i(ci) (27)

Solving for ci from this equation we get,

ti(ci) = ti(0) + ciu(ϵi(ci))−
∫ ci

0
u(ϵi(z))dz. (28)

If an individual does not participate in estimating the parameter by not giving their data, then their loss
function will be 0. Thus, using the IR constraint, for all ci we have

ti(0) ≥
∫ ci

0
u(ϵi(z))dz.

Because u(ϵi(ci)) ≥ 0, it implies

ti(0) ≥
∫ ∞

0
u(ϵi(z))dz

Plugging this relation into Eq (28), we get

ti(ci) ≥ ciu(ϵi(ci)) +
∫

ci

u(ϵi(z))dz.

Thus, for given c, the payments are calculated to be ciu(ϵi(ci)) +
∫

ci
u(ϵi(z))dz. Also, note that the minimum

cost required for ci =∞ would be 0. Therefore, this can also be written as −
∫

ci
z d

dzu(ϵi(z))dz. This is an

18
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interesting observation because the payment obtained in our problem is similar to the Myerson’s payment
mechanism. Now, we can compute Eci [ti(ci)] as

Eci [ti(ci)] = Eci [ciu(ϵi(ci))] + Eci [
∫

ci

u(ϵi(z))dz]

=
∫

z−i

∫
zi

(
ziu(ϵi(zi, z−i)) +

∫
yi=zi

u(ϵi(y, z−i))dyi

)
fi(zi)dzif−i(z−i)dz−i.

By changing the order of integrals, we have

Eci
[ti(ci)] = Ec[Ψi(ci)u(ϵi(c))],

where Ψi(ci) = ci + Fi(ci)
fi(ci) . Therefore, to minimize the expected error, for any given c′, one can choose

ti(D, c′) = Ψi(ci)u(ϵi(D, c′)),

which completes the proof. ■

Theorem A.4. Let (a∗,w∗, η∗) be the optimal solution for the objective function given in Eq. (10). Then 4

a∗
i =

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+(∥a∗∥

µ

)
,

with τ such that
m∑

i=1

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+

= µ

∥a∗∥
,

where η∗ is given by

η∗ =
( σ + 2bT w

γ
∑m

i=1 ψi(ci)a∗
i

)1/2
.

Proof: The Lagrangian for the objective function (10) is given by

min
a,η,w

m∑
i=1

ai log(1 + e−yi·wT xi

) + λ

2 ∥w∥
2 + 2bT w

η
+ µ∥a∥+ σ

1
η

+ γη
∑

aiΨi(ci)

+ τ(1−
m∑

i=1
ai)−

m∑
i=1

ζiai − κη.

Now if (a∗,w∗, η∗) is the optimal solution, then it should satisfy the first order necessary conditions. Therefore,
by taking the derivatives of the Lagrangian function with respect to a and η and setting them to 0, we get

a∗
i =

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+(∥a∗∥

µ

)
,

η∗ =
( σ + 2bT w

γ
∑m

i=1 ψi(ci)a∗
i

)1/2
.

Finally, using the constraint
∑m

i=1 ai = 1, we obtain

m∑
i=1

(
τ − γη∗ψi(ci)− log(1 + e−yi·(w∗)T xi

)
)+

= µ

∥a∗∥
.

■

4(f(x))+ is used to denote max(0, f(x)).
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Theorem A.5. Assume that dataset and privacy sensitivities satisfy conditions (a)-(c) given in section
3.6. Furthermore, let ∥b∥ ∼ Γ(n, 1). Then, as m→∞, there exists a constant d > 0 such that the objective
function can be upper-bounded almost surely as

lim
m→∞

min
w,ϵ,∥w∥≤β

E[I{sign(wT x) ̸=y}] + γ
∑
i=1

ϵiΨi(ci)

≤ log(1 + e
− δ√

pγ ) + 2
√
σpγ + 2∥b∥√pγ,

wherein the payment is at most
√
σpγ + 2∥b∥√pγ/γ. In particular, the inequality is non-trivial if pγ satisfies

log(1 + e
− δ√

pγ ) + 2
√
σpγ + 2∥b∥√pγ < 1.

Furthermore, as p→ 0, the above limit becomes zero.

Proof: We first consider the case where p > 0. We can write

lim
m→∞

min
a,η,w,∥w∥≤β,β

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ µ∥a∥+ σ

1
η

]
+ γη

m∑
i=1

aiΨi(ci)

≤ lim
m→∞

min
β,η

[
log(1 + e−δ∥x∥·∥w∥) + ∥b∥2β

η
+ µ∥a∥+ σ

1
η

]
+ γη

∑
aiΨi(ci)

≤ lim
m→∞

min
β,η

[
log(1 + e−δβ) + ∥b∥2β

η
+ µ∥a∥+ σ

1
η

]
+ γη

∑
aiΨi(ci)

≤ min
β

log(1 + e−δβ) +
√
σ + 2β∥b∥√pγ

≤ log(1 + e
− δ√

pγ ) +
√
σpγ + 2∥b∥√pγ (29)

Let us choose ai = 1
N for ψi(ci) ≤ p + 1

mk for some k > 0, where N is a random variable denoting the
number of datapoints for which ψi(ci) ≤ p+ 1

mk . Therefore, N → mP
(
ψi(ci) ≤ p+ 1

mk

)
almost surely. Thus,

lim
m→∞

∥a∥ = 0. Further, take η =
√

(σ+2β||b||)
√

pγ . For the last step, we set β = 1√
pγ . The minimum value of the

function will be smaller than this particular choice of variables. Note that a trivial solution can be η = 0.
Also, misclassification loss can be at most 1. Therefore,

lim
p→0

lim
m→∞

min
w,ϵ

β,∥w∥≤β

E[I{sign(wT x)̸=y}]+γ
m∑

i=1
ϵiΨi(ci)≤1.

Thus, Eq. (29) is non-trivial when pγ is such that

log(1 + e
− δ√

pγ ) +
√
σpγ + 2||b||√pγ < 1.

For p→ 0, the above loss converges to 0. Therefore,

lim
p→0

lim
m→∞

min
w,ϵ

E[I{sign(wT x)̸=y}] + γ

m∑
i=1

ϵiΨi(ci)

≤ lim
p→0

lim
m→∞

min
a,η,w,∥w∥≤β,β

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ µ∥a∥+ σ

1
η

]
+ γη

∑
aiΨi(ci) = 0.

Next, we consider the case of p = 0. We choose ai = 1
N for ψi(ci) ≤ 1

mk for some k > 0. Therefore,
N → mP

(
ψi(ci) ≤ 1

mk

)
almost surely. Thus, lim

m→∞
∥a∥ = 0. Further, take η = 1

mk′ , where 0 < k′ < k, and
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β = mk′′ , where 0 < k′′ < k′. By substituting these parameters into the above expression, we get

lim
m→∞

min
a,η,w

∥w∥≤β,β

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ µ∥a∥+ σ

1
η

+ γη

m∑
i=1

aiΨi(ci)
]

≤ lim
m→∞

log(1 + e−δmk′′

) + 2||b||mk′′

mk′ + σ
1
mk′ + γ

mk′

mk

= 0.

This completes the proof. ■

Theorem A.6. Given a classification task, let D be a set of data points from m users with ∥xi∥ ≤ 1, for
each i. Then, there exists a value λconv such that the objective function as defined in Eq. (13) is convex
in (w, z) for λ > λconv and µ, σ, η ∈ R+. Let (wt, zt)t∈N be the sequence of iterates on applying projected
gradient descent on f(·) for a fixed η on a convex set S, and let f∗

η = infw,z f(w, z, η). Then, for λ > λconv,
there exists 0 < α < 1, such that

f(wt, zt, η)− f∗
η ≤ αt(f(w0, z0, η)− f∗

η ).

Proof: We prove that the function

m∑
i=1

[
ezi log(1 + e−wT xi·yi

) + λi
0

2 · ∥w∥
2 + γ ·mϵavge

ziΨi

]
,

where
∑m

i=1 λ
i
0 = λ, is jointly convex in w and z, which implies that the objective function will also be jointly

convex. The Hessian matrix for the ith term of the loss function takes the form of

a b(xi
1y

i) . . . b(xi
ny

i)
b(xi

1y
i) 2λi

0 + c(xi
1y

i)2 . . . c(xi
1y

i)(xi
ny

i)
b(xi

2y
i) c(xi

1y
i)(xi

2y
i) . . . c(xi

2y
i)(xi

ny
i)

. . . . . .

. . . . . .

. . . . . .
b(xi

ny
i) c(xi

1y
i)(xi

ny
i) . . . c(xi

ny
i)2 + 2λi

0


,

where a, b, and c in the above matrix are given by

a = ezi log(1 + e−wT xi·yi

),

b = ezi
e−wT xiyi

1 + e−wT xiyi

1
ln 2 ,

c = ezi
e−wT xiyi

(1 + e−wT xiyi)2
1

ln 2 .

Using column elimination, we get

a b(xi
1y

i) 0 . . . 0
b(xi

1y
i) 2λi

0 + c(xi
1y

i)2 −2λi
0

xi
2yi

xi
1yi . . . −2λi

0
xi

nyi

xi
1yi

b(xi
2y

i) c(xi
1y

i)(xi
2y

i) 2λi
0 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
b(xi

ny
i) c(xi

1y
i)(xi

ny
i) 0 . . . 2λi

0


.
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Thus, the determinant is equal to

a ·


2λi

0 + c(xi
1yi)2 −2λi

0
xi

2yi

xi
1yi −2λi

0
xi

3yi

xi
1yi . . . −2λi

0
xi

nyi

xi
1yi

c(xi
1yi)(xi

2yi) 2λi
0 0 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
c(xi

1yi)(xi
nyi) 0 0 . . . 2 ∗ λi

0



−b(xi
1yi)


b(xi

1yi) −2λi
0

xi
2yi

xi
1yi −2λi

0
xi

3yi

xi
1yi . . . −2λi

0
xi

nyi

xi
1yi

b(xi
2yi) 2λi

0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .

b(xi
nyi) 0 0 . . . 2λi

0

.

The first matrix (whose determinant is multiplied by a ) is of the form A + 2λi
0I, where A is a rank 1

matrix. Thus, A has (n− 1) eigenvalues of 0, and we calculate the non-zero eigenvalue to be c∥x∥2. Hence,
its determinant equals (2λi

0)(n−1)(2λi
0 + c∥x∥2). Expanding the second term, we get (2λi

0)(n−1)b2∥x∥2. Thus,
to ensure that the Hessian is positive definite, we need

2λi
0 >

b2 − ac
a
∥xi∥2

⇒2λi
0 > ∥xi∥2

(
1

ln 2

)2
· ezi

(
e−wT xiyi

1 + e−wT xiyi

)2( 1
log(1 + e−wT xiyi)

− ln 2 · ewT xiyi

)
.

Thus, the coefficient of ∥w∥2 (denoted by λ) needs to be

2λ >
∑

i

ezi∥xi∥2
(

1
ln 2

)2
·
(

e−wT xiyi

1 + e−wT xiyi

)2( 1
log(1 + e−wT xiyi)

− ln 2 · ewT xiyi

)
,

⇒2λ >
(

1
ln 2

)2
·max

i
∥xi∥2

(
e−wT xiyi

1 + e−wT xiyi

)2( 1
log(1 + e−wT xiyi)

− ln 2 · ewT xiyi

)
. (30)

Next, we proceed to prove the second part. First, observe that for λ > λconv, the function is (λ−λconv)-strictly
convex. Let the function be µ-strictly convex. Denote (w, z) by v, and let infv f(v) = L. Then, there exists
v∗ ∈ Rm+n, such that ∀ δ > 0

f(v∗)− L < δ

Thus, we have

f(v)− L = f(v)− f(v∗) + f(v∗)− L

≤ δ + ⟨▽f(v), v − v∗⟩ − µ

2 ∥v
∗ − v∥2

≤ δ + 1
2µ∥ ▽ f(v)∥2. (31)

Next, we prove that f is L-smooth. Let ▽wf(v) and ▽zf(v) denote the gradient vectors of f with respect
to w and z, respectively. Then

∥ ▽ f(v1)−▽f(v2)∥2

= ∥ ▽w f(v1)−▽wf(v2)∥2 + || ▽z f(v1)−▽zf(v2)∥2

= ∥ ▽w f(v1)−▽wf(v2)∥2 + ∥ez1
(log(1 + e−w1T

xy) + ez1

∥(ez1)∥
− ez2

(log(1 + e−w2T
xy) + ez2

∥(ez2)∥
∥2.

Now, the logistic loss is L1-smooth for some L1 > 0. Moreover, since ∥x∥, ∥w∥ is bounded, ∥ log(1+e−wT xy)∥
is bounded. Further, ∥(1/∥(ez)∥)∥ <

√
m. Thus, there exists an K such that f is K-smooth.
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Consider that the step size for gradient descent is chosen such that, γK ≤ 1. Therefore, by descent lemma,
we have

f(vt+1) ≤ f(vt) + ⟨▽f(vt), vt+1 − vt⟩+ K

2 ∥v
t+1 − vt∥2

≤ f(vt)− γ|| ▽ f(vt)||2 + Kγ2

2 ∥ ▽ f(vt)∥2

= f(vt)− γ

2 (2−Kγ)∥ ▽ f(vt)∥2

≤ f(vt)− γ

2 ∥ ▽ f(vt)∥2.

The second inequality uses the condition for projection, and that projection is non-expansive. Finally, the
update rule is substituted to obtain terms with ∥▽ f(vt)∥2. By using Eq (31) and applying recursion, we get

f(vt)− L ≤ (1− γµ)t(f(v0)− L) + δ.

■

B Appendix B: Additional Experiments

In this appendix, we perform additional experiments on generated synthetic data to demonstrate more trends
in the solution. For synthetic data, we consider the classification boundary to be a linear separator passing
through the origin. Input data xi is generated by sampling from i.i.d. zero-mean Gaussian distribution with
bounded variance. Corresponding outputs, yi, are generated using the linear separator. Furthermore, c is
drawn from U[p, q], where p, q ∈ R. Moreover, unless stated otherwise, we consider the same hyperparameter
values as in the case of real data, and γ is taken as 1.0.

Intuition behind hyperparameter µ

Figure 3: Algorithm performance with respect to η.

Experiment Details: We start with validating our earlier point about the importance of considering
generalization loss in the objective function. For this, we solve the logistic regression problem while ensuring
heterogeneous differential privacy, i.e., Eq. (3). The misclassification error is compared for different values of
µ. A higher value of µ means a higher focus on generalization error. Averaged results for different values of
the differential privacy guarantee ϵ and noise vector b are plotted in Figure 3. Train/test misclassification
error is the percentage of misclassified samples while empirical loss is given by

∑m
i=1 ai log(1 + e−yi·wT xi).

Observations: We see that as µ increases, there is a reduction in both train and test misclassification errors
at first, and then it increases slightly. Therefore, choosing the correct value of µ is important to achieve the
best classification accuracy. Moreover, we observe that empirical loss increases as µ increases. This means

23



Under review as submission to TMLR

that for a smaller µ, the empirical loss is small even if samples are misclassified. Therefore, optimizing over
the empirical loss alone might not result in a good logistic regression model. Hence, it is also necessary to
consider generalization terms in the optimization.

Performance with respect to distribution of c

In order to observe the effect of the distribution of c on the solution, we vary p and q where c ∼ U[p, q]. The
results are illustrated in Figure 4. As expected, it is observed that the variance in a (weight attached to each
datapoint) decreases as the variance of c decreases. Moreover, as the variance of c goes to 0, the variance
of a also vanishes. This implies that, as the cost per unit loss of privacy (i.e., privacy sensitivity of all the
users) becomes the same, the optimal choice for the platform is to treat each data point almost equally by
providing them the same privacy guarantee while performing logistic regression.

Figure 4: Effect of the variance of c on the variance of a.

Performance with respect to parameter η

Here, we show how the addition of noise affects the performance of logistic regression. We fix ai = 1
m and vary

η. We write η = m · ϵavg and vary ϵavg. Therefore, we solve logistic regression by minimizing the following
objective while adding noise to ensure differential privacy.

min
w

[
m∑

i=1
ai log(1 + e−yi·wT xi

) + λ

2 ∥w∥
2 + 2bT w

η

]
,

As before, ∥b∥ ∼ Γ(n, 1) and its direction is chosen uniformly at random. Note that this has been done
in Chaudhuri et al. (2011). However, we performed the experiments and show our observations to show
completeness. The experiments are repeated for different values of b, and the observations are averaged and
depicted in Figure 5.

It can be seen that when η increases (and, therefore, the amount of noise decreases), the algorithmic
performance increases, as expected. This is seen through a decrease in both train and test misclassification
errors.
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Figure 5: Algorithm performance with respect to η.

C Appendix C: A Simple Example

Consider a simple problem of solving logistic regression using a dataset collected from privacy sensitive sellers.
Also consider that u(x) = x. Therefore, the buyer’s objective is as before

Ec

[
E[I{sign(wT x)̸=y}] + γ

∑
i

ti

]
(32)

Thus, the problem is formulated as follows

• Let the input be one-dimensional and the dataset consist of two sellers. Therefore let D =
{(x1, y1), (x2, y2)} = {(1, 1), (−1,−1)}.

• Moreover, let the privacy sensitivities be c1 = 0.1, c2 = 0.6. Further, assume that the privacy
sensitivities are iid and come from U[0, 1].

• Therefore, our goal is to find the optimal model weights w, differential privacy guarantees ϵ1, ϵ2 and
the payments t1, t2. Additionally, w needs to be calculated such that it is consistent with ϵ1, ϵ2.

To solve this, we will first calculate ψi. For c ∼ U[0, 1]

ψi = ci + F (ci)/f(ci) = 2ci (33)

Thus, ψ1(c1) = 0.2, ψ2(c2) = 1.2

Therefore, we calculate w, ϵ1, ϵ2 by optimizing the below equation

min
a,η,w

[ m∑
i=1

ai log(1 + e−yi·wT xi

) + 2bT w

η
+ µ∥a∥+ σ

1
η

+ γη

m∑
i=1

aiΨi(ci)
]
, (34)

For different values of {µ, σ, γ} we get corresponding values of w, ϵ1, ϵ2. Next, w is evaluated on a validation

dataset to get the misclassification error Ec

[
E[I{sign(wT x)̸=y}]

]
. Moreover, we use the payment identity to

get the payments corresponding to ϵi. Finally, the best combination of payments and model accuracy is
selected based on the platform’s needs.
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