
Evolutionary Web Service Composition: A Graph-based

Memetic Algorithm

Longfei Yan, Yi Mei, Hui Ma, Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Email: yanlong@myvuw.ac.nz | {yi.mei, hui.ma, mengjie.zhang}@ecs.vuw.ac.nz

Abstract—Web Service Composition (WSC) is a prominent
way of actualizing service-oriented architecture by integrating
network-accessible Web services into a new invokable application.
Evolutionary computation techniques have provided rewarding
approaches in automatic Web service composition over the last
decade. However, the studies on considering both functionality
and non-functionality (i.e. Quality-of-Service, QoS) properties are
still limited. In this paper, we propose a novel Graph-Based
Memetic Algorithm (GBMA) for solving the QoS-aware WSC
problems. GBMA adopts the graph representation proposed by
GraphEvol, which is one of the state-of-the-art algorithms. More
importantly, GBMA designs and uses a local search based on
two newly designed move operators to overcome the drawbacks
of the mutation operator in GraphEvol. The experimental results
show that the proposed GBMA outperformed GraphEvol, which
is the counterpart without local search, in terms of both solution
quality and convergence speed. This demonstrates the efficacy
and efficiency of combining local search with global search in
solving QoS-aware WSC problems.

I. INTRODUCTION

Web services are self-contained software units readily to

be utilized across the network with or without human inter-

vention, supporting machine-to-machine interactions. Differ-

ent Web services, owing to their well-defined interfaces and

functionality modules, can be integrated into another Web

service to satisfy more complex requests of E-business users

[1]. This self-reliant integration process is based on Service-

Oriented Architectures (SOA), which allows Web service com-

munication between heterogeneous systems and platforms [2].

This is guaranteed by using standard Web service protocols,

description languages and data types [1]–[3].

Service-oriented Web service composition (WSC) treats

existing Web services as atomic components to construct a

value-added new Web service [3], [4]. This paradigm avoids

building new Web service from scratch and encourages the

sharing of available services and legacy code [5]. Thus, Web

services can become more transferable, distributable, reusable

and economic [1], [3].

As a potentially large number of candidate services can

realize overlapping or identical functionality with disparate

Quality-of-Service (QoS) characteristics, it is vital to find an

optimal composition of Web services from the service pool

[6]. Determining an optimized composite Web service based

on the QoS global constraints while satisfying the functional

goal is an NP-hard problem [7]. This means the difficulty

of solving the problem with an exhaustive method increases

exponentially when the search space grows. Traditional ap-

proaches such as mathematical programming suffer from the

size of WSC problem. Once the size is sufficiently large, either

time or space complexity of a traditional algorithm will easily

consume an enormous amount of computing power.

Integer Linear Programming (ILP) technique has been at-

tempted for automatic WSC [8]–[10]. Zeng et al. [10] decom-

pose a composite Web service into stages within a predefined

workflow. One or several Web services in parallel are selected

for each stage. A practical WSC can be obtained after combin-

ing Web services in all stages. This idea is followed by [9],

which adopts GraphPlan algorithm [11] to decompose Web

services. The issue of this stage-decomposition ILP technique

is that the upper bound of the number of stages, in the worst

case, is equal to the number of Web services. It might take

too long to solve some large-scale problems. In [8], stage-

decomposition is replaced by using service dependency graph

(SDG) to enhance the scalability of ILP [12]. However, the

time taken for constructing a complete SDG is not given.

Genetic Programming (GP) [13] is a evolutionary computa-

tion approach that will not look for an exact optimal solution,

but quasi-optimal solutions [14]. The advantage of GP is that it

can solve an optimization problem efficiently even if the search

space of the problem is large. In [15], [16], GP is successfully

applied to WSC by using a tree structure, in which a non-

terminal node represents a workflow pattern and a terminal

node represents a Web service invoked in the composition. The

limitation of this approach is that it incurs a heavy execution

cost to check the correctness of service dependency on the

tree.

Another evolutionary computation technique, Particle

Swarm Optimization (PSO), has also been attempted in the

field of WSC [5], [17]. Each single particle in the swarm

population is regarded as a candidate solution. All particles

will explore the search space independently to spot the best

solution, leading to a fast convergence rate [5]. The disadvan-

tage of PSO is that every time a PSO solution is evaluated,

the decoding process can be time consuming.

A promising method in terms of service composition evo-

lution called GraphEvol has been proposed in [4]. In this

work, WSCs are encoded in a form of Directed Acyclic Graph

(DAG), which demonstrates the natural workflow and service

dependency of WSC. This graph representation of WSC saves

the cost of service dependency checking and composition

decoding. Graph-based evolutionary operators like crossover

201978-1-5090-0623-6/16/$31.00 c©2016 IEEE
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

and mutation are also designed. The drawback of GraphEvol

is that the graph mutation space contains a lot of invalid service

compositions that either violate the constraints of service

dependency or deteriorate the fitness performance. This makes

it hard for the composition to evolve towards the optimal goal.

Memetic algorithm comprises evolutionary scheme and lo-

cal search methods [18]. It is suitable for solving complex

combinatorial problems by fine-tuned local search in the

population [19]. Memetic algorithm has achieved great success

in many combinatorial optimization problems [20]–[23]. Since

WSC problem is about finding an optimal combination of

services from a large search space, research on memetic algo-

rithms may shed light on a more useful path in solving WSC

problems. Therefore, in this paper, we focus on designing

memetic algorithm for solving WSC problems.

In WSC problems, the solution representation is a key

issue, as different representations can lead to different fitness

landscapes, and thus different search difficulties. There have

been several representations proposed in literature, such as

the tree-based [16], graph-based [4] and sequence-based [24]

representations. Among these representations, the graph-based

representation showed advantage in the sense that it directly

represents the solutions, making it easier to check feasibility.

In this paper, we adopt the graph-based representation, and

propose a Graph-Based Memetic Algorithm (GBMA). The

main goal of this paper is to consider both the functionality

and QoS properties in the composition, so that the algorithm

can keep the feasibility of the WSC solutions in terms of

the functionality constraints, as well as optimizing the QoS

properties. To this end, problem-specific search operators have

to be designed. The overall goal of this paper is to design

effective move operators and local search process in the

graph-based search space of the QoS-aware WSC problems,

and propose the GBMA by combining the newly designed

local search with global search (e.g. crossover) operators.

Specifically, the paper has the following contributions.

• Two move operators are designed for locally modifying

an individual while keeping its feasibility. One operator

focuses on the service selection, and the other considers

modifying the graph structure as well.

• A local search process is designed based on the two move

operators.

• A Graph-Based Memetic Algorithm (GBMA) is proposed

by combining the GraphEvol approach and the newly

designed local search, and evaluated on WSC benchmarks

to verify its efficacy.

The remainder of the paper is organized as follows. Section

II presents the background of the research. Section III de-

scribes the implementation details and pseudo-code of the pro-

posed Memetic Algorithm. Section IV explains the experiment

design. Section V analyses the experimental results. Section

VI gives the conclusion and outlines future work.

II. BACKGROUND

A. Problem Description

Given a Web service repository W , WSC aims to create

a composition by selecting certain Web services from W
and connecting them together to achieve the functionalities

requested by users. Specifically, each service w ∈ W requires

certain inputs I(w) to be executable and produces a set of

outputs O(w). Then, given the specified overall inputs I0
and outputs O0, the composition X takes I0 as the inputs

and produces O0, so that for each service in the composition

w ∈ X , its required inputs can be satisfied by the outputs of

its preceding services (the first services take I0 as the inputs).
In addition to the above functionality, there are a number

of non-functionality properties to be considered, which are the

so-called QoS properties. In the QoS-aware WSC problems,

the goal is to find a WSC solution so that the functionality is

satisfied and the considered QoS properties are optimized.
An example of a WSC solution is given in Fig. 1. The

WSC solution is for booking flight and resort tickets together.

The overall inputs include the customer information, departure

date, origin and destination. In this example, two Web services

are selected in the WSC solution, i.e. the Flight Booking

Service and the Resort Booking Service. The Flight Booking

Service takes all the overall inputs, and produces the flight

ticket and the arrival date. Then, the Resort Booking Service

takes the customer information and destination from the over-

all inputs, and the arrival date from the Flight Booking Service,

and produces the resort ticket. Finally, both the flight and resort

tickets are taken by the end node, and the WSC solution is

finished.

Fig. 1. An example of a Web service composition solution for booking flight
and resort tickets together.

There can be a number of QoS properties in practice [25].

Out of all the properties, four of them are looked into by many

researchers [4], [7], [10], [16], i.e. availability, reliability, cost

and response time. The QoS properties of a WSC solution

depends on the corresponding QoS properties of its service

components. Specifically, the availability of a WSC solution

indicates the probability that all its service components are

accessible. The reliability of a WSC solution is the probability

that all the service components can correctly respond within

the time limit. The cost of a WSC solution is the total cost

202 2016 IEEE Congress on Evolutionary Computation (CEC)
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

of executing all the service components. The response time

of a WSC solution depends on both the response time of its

service components and workflow patterns. Here, we consider

two workflow patterns in WSC solutions: sequential pattern

and parallel pattern. The two patterns are described below:

1) Sequential pattern: The services are executed in a se-

quential order, i.e. a service cannot be executed until all

its preceding services have been finished.

2) Parallel pattern: The services are executed simultane-

ously, and their executions do not affect each other.

If a WSC solution follows a sequential pattern, then its

response time is the total response time of all its service

components. If a WSC solution follows a parallel pattern, then

its response time is the longest response time of all its service

components.

In summary, for a WSC solution X , its availability A(X),
reliability R(X), cost C(X) and response time T (X) can be

calculated as follows:

A(X) =
∏

w∈X

A(w), (1)

R(X) =
∏

w∈X

R(w). (2)

C(X) =
∑

w∈X

C(w), (3)

T (X) =

{∑
w∈X T (w), sequential pattern,

maxw∈X T (w), parallel pattern,
(4)

where w stands for a service, and A(w), R(w), C(w) and

T (w) are the availability, reliability, cost and response time of

the service w, respectively.

In practice, both patterns can exist in a single WSC solution.

Regardless of the pattern mixture, the availability, reliability

and cost can always be calculated according to Eqs. (1)–(3).

To calculate the response time, the longest path needs to be

found first. Then, the response time is the total response time

of all the services along the path.

Availability and reliability are positively correlated with the

quality, i.e., the quality increases with their values. On the

contrary, cost and response time are negatively correlated with

the quality. Our work focuses on the aforementioned four

properties due to their great importance to the users. However,

our work is not limited to these properties, and any other

properties can be easily added.

III. GRAPH-BASED MEMETIC ALGORITHM

The framework of GBMA is given in Fig. 2. First, the

population is randomly initialized. Then, in each generation,

a new population is generated by applying the crossover,

reproduction and local search to the current population. The

algorithm continues until the predefined stopping conditions

are met, e.g. the maximal number of generations is reached.

In the following, we will describe the solution representation,

fitness evaluation, and the evolutionary operators in detail.

Fig. 2. Flow chart of major steps in GBMA.

A. Solution Representation

An intuitive way to represent a WSC individual is by

using DAG [4], [5]. Given the overall inputs and outputs, two

abstract nodes are included in the graph, which are called the

start (source) node and the end (target) node. For the start

node, the required inputs are empty, and the outputs are the

overall inputs specified by the user. For the end node, the

required inputs are the overall outputs, and the outputs are

empty. Each of the other nodes stands for a concrete Web

service, which is selected from the repository. A directed edge

from one Web service to another indicates that the latter Web

service requires some outputs of the former one. If there is no

edge between two Web services, then they can be executed in

parallel. An example of a graph-represented solution to WSC

is shown in Figure 1.

B. Fitness Evaluation

A simple weighted sum approach is adopted for aggregating

the four QoS properties in to a single fitness value. Specif-

ically, the fitness function f(X) of a WSC solution X is

defined in Eq. (5).

f(X) = λ1Â(X) + λ2R̂(X) + λ3(1− Ĉ(X))+

λ4(1− T̂ (X)), (5)

where
∑4

j=1 λj=1, and Â(X), R̂(X), Ĉ(X) and T̂ (X) are

the normalized availability, reliability, cost and response time

of X , respectively.

The four QoS properties are of different scales. For example,

A(X) is between 0 and 1, while T (X) can be any positive

number. Therefore, it is necessary to normalize the QoS

properties into the same scale. To this end, for a QoS property

Q ∈ {A,R,C, T}, the normalization is done as follows:

Q̂ =

{
Q−Qmin

Qmax−Qmin
, if Qmax −Qmin �= 0.

1, otherwise.
(6)

2016 IEEE Congress on Evolutionary Computation (CEC) 203
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

where Qmax and Qmin are the maximal and minimal values

of Q. As a result, f(X) ranges between 0 and 1.
The minimum of A(X) and R(X) are set to 0, whereas

the minimum of C(X) and T (X) are set to the smallest cost

and response time amongst all services in the repository. The

maximum of all the four overall QoS property values are set

to their largest values amongst all services in the repository.
A(X), R(X) and C(X) can be calculated by Eqs. (1)–(3).

When calculating T (X), the longest path is identified first by

the Bellman-Ford algorithm [26].

C. Evolutionary Operators

At each generation, a new population is generated by repeat-

edly calling one of the crossover, reproduction and local search

for the current population. To be specific, the new population

is first set to empty. Then, one of the three above operators

is selected according to the crossover, reproduction and local

search rates. The operators select one or two parents from

the current population and generate one or two offsprings for

the new population. Details of the crossover and reproduction

operators are given below.

• Crossover: Two parents are selected from the current

population through tournament selection. Then, the two

corresponding graphs are merged, and two offsprings are

generated by picking different subgraphs of the merged

graph. The subgraphs inherit the graph structures (e.g.

edges) from both parents. Details of the crossover oper-

ator can be found in [4].

• Reproduction: A parent is selected from the current

population by tournament selection, and an offspring is

generated by simply copying the parent.

• Local search: A parent is selected from the current

population by tournament selection, and an offspring is

generated by applying local search to the parent. The

local search is the main contribution of the paper, and

will be described in detail separately.

The offsprings are added to the new population until the

number of offsprings in the new population reaches the pop-

ulation size.

D. Local Search

The local search in GBMA is a standard hill-climbing

iterative process. At each step, a neighbourhood N(G) of the

current solution G is generated by some move operator(s).

Then, G is moved to the best neighbour G′ in N(G), if G′ is

better. The process continues until no improvement is found.

The framework is shown in Algorithm 1.
The definition of N(G) relies on some move operators.

Here, two move operators are defined, namely the Single Re-

placement Operator (SRO) and Double Replacement Operator

(DRO). They are defined as follows:

• Single Replacement Operator (SRO): SRO replaces a

single service node in the graph with another service node

from the repository while keeping its feasibility.

• Double Replacement Operator (DRO): DRO selects

two connected service nodes in the graph and replaces

Algorithm 1 Local search of GBMA

1: repeat
2: Generate a neighbourhood N(G);
3: for each G′ in N(G) do
4: Evaluate G′;
5: if G′.fitness > G.fitness then
6: G ← G′;
7: end if
8: end for
9: until No improvement is found

them with another service node from the repository while

keeping its feasibility.

For keeping the solutions feasible, the replaced node has to

satisfy the inputs and outputs constraints in the original graph

structure. To this end, we need to find out a list of suitable

candidate nodes qualified for the replacement.

For a selected node v, let I be its inputs, and O be its

outputs. A node v′ from repository has inputs I ′ and outputs

O′. Then, node v′ can replace node v if it satisfies the

following conditions:

Condition 1. I ′ ⊆ I and O ⊆ O′.
That is, The node v′ requires no more inputs than v, and

produces no less outputs than v.

In DRO, identifying replacement nodes of a selected edge

involves consideration of inputs and outputs from both nodes

connected by the edge. Let v1 and v2 be the originating and

receiving nodes in the selected edge Let I1 and O1 be the

inputs and outputs of v1, and I2 and O2 be the inputs and

outputs of v2. In addition, the subset of the outputs of v1 that

are required by v2 is denoted as O12 ⊆ O1. Then, another node

v′ (with inputs of I ′ and outputs of O′) in the repository can

replace the selected edge (v1, v2) if the following condition is

met:

Condition 2. I ′ ⊆ I1∪(I2\O12) and O′ ⊇ (O1\O12)∪O2.

In other words, the candidates to replace (v1, v2) require no

more inputs than both nodes, and produce no less outputs than

both nodes, but ignore the information from v1 to v2.

Based on SRO and DRO, two neighbourhood structures N1

and N2 are defined accordingly. Specifically, N1 is defined

based on SRO solely, while N2 is defined based on both

SRO and DRO. They are described in Algorithms 2 and 3,

respectively.

In the two algorithms, a key step is to find the dependent

node and edge lists. The dependent lists contain the nodes

and edges to be replaced during the local search, and can

be much smaller than the entire node and edge sets in the

solution graph. This way, the efficiency of the local search

can be improved. Given a randomly selected node v (other

than the start and end nodes), the dependent node list contains

v and all the service nodes that require the outputs of v directly

or indirectly (i.e. their preceding nodes require the outputs of

v). Similarly, the dependent edge list is defined as all the edges

induced by the dependent nodes. However, if the replacement

204 2016 IEEE Congress on Evolutionary Computation (CEC)
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Generation of the neighbourhood N1

1: N1 ← ∅;

2: V s ← ∅;

3: Randomly select a node v
4: V s ← V s ∪ v;

5: Find dependent node list V ′

6: V s ← V s ∪ V ′

7: for each vs in V s do
8: Find the candidate list Us

9: for each us in Us do
10: Generate G′ by replacing vs with us

11: N1 ← N1 ∪ G′

12: end for
13: end for
14: return N1

Algorithm 3 Generation of the neighbourhood N2

1: N2 ← ∅
2: V s ← ∅
3: Randomly select a node v
4: V s ← V s ∪ v
5: Find dependent node list V ′

6: V s ← V s ∪ V ′

7: Find dependent edge list Es

8: for each vs in V s do
9: Find the candidate list Us

10: for each us in Us do
11: Generate G′ by replacing vs with us

12: N2 ← N2 ∪ G′

13: end for
14: end for
15: for each es in Es do
16: Find the candidate list W s

17: for each ws in W s do
18: Generate G′′ by replacing es with ws

19: N2 ← N2 ∪ G′′

20: end for
21: end for
22: return N2

of an edge will cause a cycle, then the edge cannot be replaced

and is considered not to be dependent.

Afterwards, the candidate list of each dependent node (edge)

is to be identified. For each dependent node, all the nodes that

are not in the current graph and meet Condition 1 are included

in the candidate list. For each dependent edge, all the nodes

that are not in the current graph and satisfy Condition 2 are

considered to be candidates.

To illustrate how SRO and DRO work, we give an example

of a graph solution which is undergoing the local search in Fig.

3. The graph consists of five Web services, namely services A,

B, C, D and E. Assuming that the node A is randomly selected,

it can be seen that the nodes C, D and E are influenced by

A, and thus are included in the dependent node list. On the

contrary, the node B is independent of A. Then, based on the

dependent node list {A, C, D, E}, the dependent edge list {(A,

C), (C, D), (C, E), (D, E)} is obtained.

SRO replaces a dependent node with another node from its

candidate list without changing the graph structure. However,

DRO changes the graph structure as well as the service nodes.

For example, after replacing (D, E) with another node V, the

changed graph is shown in Fig. 4.

Fig. 3. Example of a DAG for SRO and DRO.

Fig. 4. Example of a DRO replacement.

The neighbourhood N1 consists of all the solutions that can

be obtained by replacing one of the nodes in the dependent

node list with another candidate node. The neighbourhood N2

is broader, which includes all the solutions in N1 as well as the

solutions that can be obtained by replacing one edge from the

dependent edge list with another candidate node. This way,

the graph structure is changed by replacing two nodes with

only one node.

At the end of each replacement, dangling nodes are re-

moved. Some nodes in the original graph will become dangling

because some of the inputs of the original node may no longer

be useful after the replacement. The service nodes providing

these inputs could become redundant if their outputs are not

taken by any other service nodes. Moreover, some of the

ancestors of the redundant node may become useless as well

if their outputs are only meaningful for the redundant node.

2016 IEEE Congress on Evolutionary Computation (CEC) 205
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

For the sake of convenience, the GBMA using the neigh-

bourhood N1 is called GBMA-I, and the one using the

neighbourhood N2 is called GBMA-II hereafter.

IV. EXPERIMENTAL STUDIES

In order to verify the efficacy of GBMA and the effect of

using local search with different neighbourhood structures for

improving the graph-based WSC solutions, experiments were

carried out to compare between GraphEvol proposed in [4],

GBMA-I and GBMA-II.

First, both GBMA-I and GBMA-II are compared against

GraphEvol to verify that adopting local search can lead to

a more effective search than using the traditional mutation

operator for solving WSC. Then, GBMA-I is compared with

GBMA-II to investigate the effect of different neighbourhood

structures in improving the WSC solutions.

A. Datasets

Two datasets were utilized in the experiments: WSC 2008

[27] and WSC 2009 [28]. The WSC dataset consists of 8

instances, whose problem size (number of Web services in the

repository) ranges from 158 to 8119. The WSC 2009 dataset

contains 5 larger instances, with the problem size ranging

from 572 to 15211. That is, The WSC 2009 dataset is much

more challenging than the WSC 2008 dataset. The four QoS

measures (availability, reliability, cost and response time) were

taken into account in the problem.

B. Parameter Setting

In the algorithm, the fitness function is defined as the

weighted sum aggregation of the four QoS measures, with

a uniformly distributed weight vector. That is, the weights of

all the QoS measures were set to 0.25. The population size

was set to 500 and the maximal number of generations was

set to 51. The crossover, reproduction and local search rates

were set to 0.8, 0.1, and 0.1, respectively. When selecting the

parents using the tournament selection, the tournament size

was set to 2. All these parameters were set the same as in

GraphEvol to have a fair comparison.

For each test instance, 30 independent runs were conducted

for each algorithm. Then, the t-test was conducted between

GBMA and GraphEvol (GBMA-I versus GraphEvol and

GBMA-II versus GraphEvol, respectively) under significance

level of 0.05 to test the significance of the difference.

C. Results and Discussions

Table I shows the mean and standard deviation of the fitness

values obtained from the 30 independent runs of the compared

algorithms. The first column gives the instances, with the

problem size in the parenthesis. Under the t-test with the

significance level of 0.05, if GBMA-I or GBMA-II performed

significantly better than GraphEvol, then the corresponding

entry is marked with an upward arrow.

From the table, it can be seen that both GBMA-I and

GBMA-II significantly performed better than GraphEvol in

most of the test instances (11 out of the total 13 instances

for GBMA-I and 12/13 instances for GBMA-II). For WSC-

08-1, there is no significance found between GBMA-I and

GraphEvol. This might be due to the small problem size, for

which the traditional mutation can already obtain reasonably

good results. For WSC-08-2, all the compared algorithms

consistently achieved the same result (0.59930), which seems

to be the optimal solution. More studies will be conducted to

verify this observation. Overall, it is obvious that both GBMA-

I and GBMA-II significantly outperformed GraphEvol, which

demonstrates the efficacy of using local search for solving

WSC under the graph representation.

When comparing between GBMA-I, and GBMA-II, on

the other hand, no significant difference was found for all

the test instances. In other words, GBMA-I and GBMA-II

performed statistically the same. Since the neighbourhood N2

(dependent nodes plus edges) adopted in GBMA-II contains

the neighbourhood N1 (only dependent nodes) used in GBMA-

I, the results suggest that considering the dependent edges

did not lead to a significant improvement. To verify this, we

record the average numbers of local search steps replacing a

dependent node and replacing a dependent edge during the

local search of GBMA-II for all the test instances. The results

are given in Table II. It can be easily seen that the average

number of local search steps replacing the dependent nodes

is much larger than that replaces the dependent edges in most

cases. For example, in WSC-09-2, almost all the local search

steps selected the dependent nodes to replace. In this situation,

GBMA-II’s behaviour is almost the same as that of GBMA-I.

From Table I, we can see that the final results of GBMA-II and

GBMA-I are almost the same for WSC-09-2 (0.49937 versus

0.49938).

On the other hand, there are some instances on which

there are decent number of local search steps replacing the

dependent edges (e.g. WSC-08-7). Nevertheless, no significant

difference is found in the final results as shown in Table I.

In order to have a deeper understanding of the effect of dif-

ferent neighbourhood structures, we investigate the temporal

behaviour of the algorithms rather than the final performance,

by plotting the convergence curves of the compared algorithms

on WSC-08-7 and WSC-09-2. The results are shown in Figs. 5

and 6. One can see that for WSC-08-7, including the dependent

edges in the local search leads to a faster convergence of

GBMA-II, although reaching the same final results as GBMA-

I. On the contrary, for WSC-09-2, the convergence curves

of GBMA-I and GBMA-II are almost the same, since the

dependent edges are seldom replaced.

Table III shows the computational time (mean ± standard

deviation in milliseconds) of the compared algorithms. The t-
test with the significance level of 0.05 is conducted between

GraphEvol and the two GBMAs respectively. If a GBMA is

significantly faster than GraphEvol, then the corresponding

entry is marked with a downward arrow. If GraphEvol is

significantly faster than both GBMAs, then the entry of

GraphEvol is marked with a downward arrow. It is obvious

that GBMA-II is slower than GBMA-I on all the instances,

since it adopts a broader neighbourhood, and thus needs to

206 2016 IEEE Congress on Evolutionary Computation (CEC)
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The (mean ± standard deviation) of the fitness values obtained by the 30 independent runs of the compared algorithms.

Instance (#servs.) GraphEvol GBMA-I GBMA-II

WSC-08-1 (158) 0.49164 ± 0.00005 0.49167 ± 0.00014 0.49177 ± 0.00016 ↑
WSC-08-2 (558) 0.59930 ± 0.00 0.59930 ± 0.00 0.59930 ± 0.00

WSC-08-3 (608) 0.48795 ± 0.00015 0.49036 ± 0.00008 ↑ 0.49037 ± 0.00008 ↑
WSC-08-4 (1041) 0.50877 ± 0.00121 0.51435 ± 0.00 ↑ 0.51435 ± 0.00 ↑
WSC-08-5 (1090) 0.49687 ± 0.00004 0.49707 ± 0.00004 ↑ 0.49707 ± 0.00006 ↑
WSC-08-6 (2198) 0.49763 ± 0.00002 0.49802 ± 0.00003 ↑ 0.49801 ± 0.00003 ↑
WSC-08-7 (4113) 0.49912 ± 0.00002 0.49922 ± 0.00002 ↑ 0.49923 ± 0.00001 ↑
WSC-08-8 (8119) 0.49937 ± 0.000002 0.49939 ± 0.00 ↑ 0.49939 ± 0.00 ↑
WSC-09-1 (572) 0.56631 ± 0.00994 0.58360 ± 0.01263 ↑ 0.58491 ± 0.01186 ↑
WSC-09-2 (4129) 0.49934 ± 0.000008 0.49937 ± 0.000003 ↑ 0.49938 ± 0.00 ↑
WSC-09-3 (8138) 0.50600 ± 0.00123 0.50848 ± 0.00 ↑ 0.50848 ± 0.00 ↑
WSC-09-4 (8301) 0.49921 ± 0.00001 0.49923 ± 0.00001 ↑ 0.49924 ± 0.00001 ↑
WSC-09-5 (15211) 0.49960 ± 0.000005 0.49964 ± 0.00 ↑ 0.49964 ± 0.00 ↑

TABLE II: Average numbers of local search steps replacing a dependent
node and replacing a dependent edge during the local search of GBMA-II.

Dataset (#servs.) Node Edge

WSC-08-1 (158) 234.20 ± 29.19 1.67 ± 1.21

WSC-08-2 (558) 124.40 ± 17.42 22.80 ± 5.93

WSC-08-3 (608) 7560.17 ± 499.21 0.03 ± 0.18

WSC-08-4 (1041) 1584.93 ± 178.82 0.03 ± 0.18

WSC-08-5 (1090) 1746.27 ± 93.89 90.53 ± 11.46

WSC-08-6 (2198) 3913.23 ± 183.97 0.47 ± 0.63

WSC-08-7 (4113) 3459.50 ± 138.37 396.93 ± 20.70

WSC-08-8 (8119) 2100.17 ± 209.97 0.13 ± 0.43

WSC-09-1 (572) 315.33 ± 31.37 6.73 ± 2.52

WSC-09-2 (4129) 1180.37 ± 103.32 0.23 ± 0.43

WSC-09-3 (8138) 711.43 ± 94.08 0.70 ± 0.75

WSC-09-4 (8301) 2375.73 ± 69.36 9.00 ± 3.47

WSC-09-5 (15211) 2234.60 ± 110.72 4.27 ± 2.77

Fig. 5. Convergence curves of GraphEvol, GBMA-I and GBMA-II on WSC-
08-7.

examine more neighbours during the search. However, both

GBMA-I and GBMA-II are much faster than GraphEvol on

most instances (11 out of 13 instances). This phenomenon

is contrary to the intuition that local search tends to slow

down the search process, and leads to a longer computational

time. This can be due to two reasons. First, the mutation

operator in GraphEvol needs to rebuild a subgraph starting

from the selected node, which can be computational expensive.

In contrast, the local search does not have to dramatically

Fig. 6. Convergence curves of GraphEvol, GBMA-I and GBMA-II on WSC-
09-2.

change the current graph structure, and can much reduce the

cost of rebuilding the graph. Second, the efficiency of the

local search has been much improved by only selecting the

dependent node and edge lists rather than enumerating all the

nodes and edges.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a memetic algorithm is proposed for solv-

ing QoS-aware WSC problems. The proposed Graph-Based

Memetic Algorithm (GBMA) combines the global search

with local search to enhance the search capability. Derived

from the framework of GraphEvol [4], which is the state-

of-the-art graph-based optimization algorithm for WSC, we

design the local search with two different neighbourhood

structures. A neighbourhood filtering strategy is developed to

improve the efficiency of the local search. The experimental

studies demonstrate that the proposed GBMA outperformed

the GraphEvol counterpart in both solution quality and speed.

In the future, we will investigate more neighbourhood

structures to further improve the efficacy and efficiency of the

local search, and consider solving the problem in the context

of multi-objective optimization.

2016 IEEE Congress on Evolutionary Computation (CEC) 207
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The computational time (in ms) of GraphEvol, GBMA-I and GBMA-II on the test instances.

Dataset (#servs.) GraphEvol GBMA-I GBMA-II

WSC-08-1 (158) 4076.57 ± 295.20 3149.57 ± 231.95 ↓ 3625.90 ± 303.01 ↓
WSC-08-2 (558) 3840.30 ± 345.90 2803.33 ± 283.17 ↓ 3119.40 ± 256.99 ↓
WSC-08-3 (608) 21200.87 ± 613.37 ↓ 80038.17 ± 3527.97 109819.97 ± 6081.11

WSC-08-4 (1041) 8629.57 ± 316.94 5659.50 ± 315.95 ↓ 6315.20 ± 943.23 ↓
WSC-08-5 (1090) 15289.23 ± 450.21 10372.30 ± 373.89 ↓ 11259.57 ± 372.26 ↓
WSC-08-6 (2198) 31751.20 ± 876.44 ↓ 39321.97 ± 896.11 42436.00 ± 1106.97

WSC-08-7 (4113) 86712.27 ± 3300.01 35455.37 ± 1020.75 ↓ 43705.07 ± 1608.94 ↓
WSC-08-8 (8119) 136136.83 ± 3026.95 53247.93 ± 2534.59 ↓ 68334.83 ± 1941.75 ↓
WSC-09-1 (572) 4429.70 ± 299.60 2642.37 ± 331.24 ↓ 3288.87 ± 253.80 ↓
WSC-09-2 (4129) 28035.00 ± 1899.63 14641.10 ± 741.61 ↓ 16909.23 ± 1239.05 ↓
WSC-09-3 (8138) 32565.80 ± 1144.38 18861.87 ± 1531.02 ↓ 21547.70 ± 880.03 ↓
WSC-09-4 (8301) 115429.77 ± 2439.21 67694.80 ± 3833.31 ↓ 90583.20 ± 2989.70 ↓
WSC-09-5 (15211) 282523.00 ± 5204.78 105281.57 ± 6131.59 ↓ 155509.43 ± 4750.86 ↓

REFERENCES

[1] N. Milanovic and M. Malek, “Current solutions for web service com-
position,” IEEE Internet Computing, no. 6, pp. 51–59, 2004.

[2] M. C. Jaeger and G. Mühl, “Qos-based selection of services: The im-
plementation of a genetic algorithm,” in Communication in Distributed
Systems (KiVS), 2007 ITG-GI Conference. VDE, 2007, pp. 1–12.

[3] S. Dustdar and M. P. Papazoglou, “Services and service composition–
an introduction (services und service komposition–eine einführung),” it-
Information Technology (vormals it+ ti), vol. 50, no. 2/2008, pp. 86–92,
2008.

[4] A. da Silva, H. Ma, and M. Zhang, “Graphevol: A graph evolution
technique for web service composition,” in Database and Expert Sys-
tems Applications, ser. Lecture Notes in Computer Science, Q. Chen,
A. Hameurlain, F. Toumani, R. Wagner, and H. Decker, Eds., 2015, vol.
9262, pp. 134–142.

[5] A. S. da Silva, H. Ma, and M. Zhang, “A graph-based particle swarm
optimisation approach to qos-aware web service composition and se-
lection,” in Evolutionary Computation (CEC), 2014 IEEE Congress on.
IEEE, 2014, pp. 3127–3134.

[6] L. Wang, J. Shen, and J. Yong, “A survey on bio-inspired algorithms for
web service composition,” in Computer Supported Cooperative Work in
Design (CSCWD), 2012 IEEE 16th International Conference on. IEEE,
2012, pp. 569–574.

[7] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A lightweight
approach for qos-aware service composition,” in Proceedings of 2nd
international conference on service oriented computing (ICSOC’04),
2004.

[8] V. Gabrel, M. Manouvrier, and C. Murat, “Optimal and automatic
transactional web service composition with dependency graph and 0-1
linear programming,” in Service-Oriented Computing. Springer, 2014,
pp. 108–122.

[9] F. Paganelli, T. Ambra, and D. Parlanti, “A qos-aware service composi-
tion approach based on semantic annotations and integer programming,”
International Journal of Web Information Systems, vol. 8, no. 3, pp.
296–321, 2012.

[10] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–
327, 2004.

[11] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial intelligence, vol. 90, no. 1, pp. 281–300, 1997.

[12] Q. A. Liang and S. Y. Su, “And/or graph and search algorithm for
discovering composite web services,” International Journal of Web
Services Research, vol. 2, no. 4, pp. 48–67, 2005.

[13] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[14] K. Holzinger, V. Palade, R. Rabadan, and A. Holzinger, “Darwin or
lamarck? future challenges in evolutionary algorithms for knowledge
discovery and data mining,” in Interactive Knowledge Discovery and
Data Mining in Biomedical Informatics. Springer, 2014, pp. 35–56.

[15] L. Aversano, M. Di Penta, and K. Taneja, “A genetic programming
approach to support the design of service compositions,” International

Journal of Computer Systems Science & Engineering, vol. 21, no. 4, pp.
247–254, 2006.

[16] Y. Yu, H. Ma, and M. Zhang, “An adaptive genetic programming
approach to qos-aware web services composition,” in Evolutionary
Computation (CEC), 2013 IEEE Congress on. IEEE, 2013, pp. 1740–
1747.

[17] H. Yin, C. Zhang, B. Zhang, Y. Guo, and T. Liu, “A hybrid multiob-
jective discrete particle swarm optimization algorithm for a sla-aware
service composition problem,” Mathematical Problems in Engineering,
vol. 2014, 2014.

[18] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[19] S. A. Ludwig, “Memetic algorithm for web service selection,” in
Proceedings of the 3rd workshop on Biologically inspired algorithms
for distributed systems. ACM, 2011, pp. 1–8.

[20] H. Ishibuchi and T. Murata, “A multi-objective genetic local search
algorithm and its application to flowshop scheduling,” Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, vol. 28, no. 3, pp. 392–403, 1998.

[21] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European journal of operational research, vol. 137, no. 1,
pp. 50–71, 2002.

[22] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[23] Y. Mei, X. Li, and X. Yao, “Cooperative co-evolution with route
distance grouping for large-scale capacitated arc routing problems,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.
435–449, 2014.

[24] A. da Silva, Y. Mei, H. Ma, and M. Zhang, “Particle swarm optimisation
with sequence-like implicit representation for web service composition,”
in European Conference on Evolutionary Computation in Combinatorial
Optimisation, 2016, to appear.

[25] D. Menasce et al., “Qos issues in web services,” Internet Computing,
IEEE, vol. 6, no. 6, pp. 72–75, 2002.

[26] R. Bellman, “On a routing problem,” DTIC Document, Tech. Rep., 1956.
[27] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise, and M. C. Jaeger,

“Wsc-08: continuing the web services challenge,” in E-Commerce Tech-
nology and the Fifth IEEE Conference on Enterprise Computing, E-
Commerce and E-Services, 2008 10th IEEE Conference on. IEEE,
2008, pp. 351–354.

[28] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise, “Wsc-2009:
a quality of service-oriented web services challenge,” in Commerce and
Enterprise Computing, 2009. CEC’09. IEEE Conference on. IEEE,
2009, pp. 487–490.

208 2016 IEEE Congress on Evolutionary Computation (CEC)
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on September 13,2024 at 05:00:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

