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ABSTRACT

In this work, we break the classic assumption of data coming from a single func-
tion fθ∗(x) followed by some noise in output space P(y|fθ∗(x)). Instead, we
model each data point (xi, yi) as coming from its own function fθi . We show that
this model subsumes Empirical Risk Minimization for many common loss func-
tions and captures more realistic noise processes. We derive Functional Risk Min-
imization (FRM), a general framework for scalable training objectives that results
in better performance in supervised, unsupervised, and reinforcement learning ex-
periments. We also show that FRM can be seen as finding the simplest model that
memorizes the training data, providing an avenue towards understanding general-
ization in the over-parameterized regime.

1 INTRODUCTION

1.1 MOTIVATION

In most machine learning settings, we only have limited control over how data is collected and even
less so over the process generating it. For this reason, data is often correlated in complex ways, like
data coming from similar times or locations. When these correlations are known, one can handle
them appropriately as is done in frameworks such as multi-task or meta learning. However, in the
absence of obvious reasons to specialize models to subsets of the data, practitioners often take an
opposing perspective where differences in labels belonging to similar inputs are regarded as noise,
often modeled in the output space. This idea serves as the basis for the training objectives we prefer,
e.g., mean-squared error objective for gaussian noise or cross-entropy objective for multinomial
distributions. By not accounting for highly structured noise, we expect that a singular model will
appropriately average out noise differences during training.

For instance, consider training a language model on Wikipedia, then fine-tuning it to work on a
dataset of books. In doing so, we use two different functions fθbooks

and fθwiki
with fθbooks

≈ fθwiki
.

In contrast, when we train a model on general internet data, using Wikipedia and the dataset of books,
we typically use a single function fθinternet , and we explain each training example with multinomial
noise in output space, i.e., yi ∼ P (·|finternet(xi)). However, whether we arrange the data into
different datasets or a single one, the datapoints remain the same. Therefore, it is contradictory to
handle the same variability using two different models: functional diversity vs. output noise.

To remedy this contradiction, this paper proposes to model noise in function space instead of output
space. We propose Functional Generative Models (FGMs), where each point (xi, yi) comes from
its own (unseen) function, fθi , which fits it: yi = fθi(xi). FGMs don’t assume the existence of a
privileged function fθ∗ , but consider a distribution over functions P(θ), see fig. 1.

Most supervised machine learning is based on variants of empirical risk minimization (ERM), which
searches for a single function that best fits the training data. There, the training objective acts in
output space, comparing the true answer with the prediction. In contrast, assuming that data comes
from an FGM, we derive the Functional Risk Minimization (FRM) framework, where training
objectives act in function space. Although the full version requires a high-dimensional integral, we
derive a reasonable approximation that scales to training neural networks.

Recently, neural networks have been observed to generalize despite memorizing the data, contra-
dicting the classic understanding of ERM (Zhang et al., 2017). Interestingly, we find a connection
between FRM and a recent theory explaining this benign overfitting of over-parameterized neural
networks under ERM.
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Figure 1: For many common losses, ERM and FRM can be related to maximum likelihood under
simple generative models. Red lines ending in a circle are stochastic, blue arrows are deterministic.

The main contributions of this work are the following:

1. We introduce Functional Generative Models, a simple class of generative models that as-
signs a function to each datapoint.

2. We derive the Functional Risk Minimization framework, compute a tractable and scalable
approximation and link it to the generalization of over-parameterized neural networks.

3. We provide empirical results showcasing the advantages of FRM in supervised learning,
unsupervised learning, and reinforcement learning.

2 BACKGROUND AND RELATED WORK

2.1 INFERENCE AND RISK MINIMIZATION

In parametric machine learning, the user specifies a dataset D = ((xi, yi))
n
i=1, a parameterized

function class fθ, and a loss function L (y, fθ(x)). Our goal is to design a learning framework that
provides the θ̂ that minimizes the expected risk over unseen data: minθ̂ E

[
L
(
y, fθ̂(x)

)]
. However,

since we do not have access to unseen data, we cannot compute this expectation.

Empirical risk minimization (ERM) In machine learning, we often rely on variants of ERM
where a loss function L evaluated on the given dataset is optimized, i.e., minθ

∑n
i=1 L(yi, fθ(xi)).

However, what we want to have is low expected risk (test loss), not empirical risk (training loss).
In general, the best choice for a training objective depends on the loss function L, but also on the
(known) functional class fθ and the (unknown) data distribution P(x, y). Often, ERM can be seen
as doing maximum likelihood by assuming a very particular noise model for the data that makes
P(y|x) a function of P(y|fθ∗(x)) for some unknown, but fixed, θ∗. However, in general, the user-
defined loss function L, and thus the optimal θ∗, need not have any relation to the data distribution.

Bayesian learning The Bayesian setting explicitly disentangles inference of P(y|x) from risk
minimization of L. However, it usually assumes the existence of a true θ∗, and further assumes it
comes from some known prior q: θ∗ ∼ q(·). Then, similar to maximum likelihood, the Bayesian
setting often assumes a noise model P(y|fθ∗(x)) on the output. Thus inference about the posterior,
P(θ|D) ∝ q(θ) · P(D|θ), becomes independent of the loss. Only in the final prediction step, the
loss function is used, together with the posterior, to find the output with the lowest expected risk.

Relations to FRM Similar to Bayesian learning, Functional Risk Minimization benefits from a
clean distinction between inference and risk minimization. However, FRM assumes fundamental
aleatory noise in function space P(θ), not to be confused with epistemic uncertainty in the Bayesian
setting. Similar to ERM, FRM aims at only using a single parameter θ∗ at test-time, which avoids
the challenging integration required in the Bayesian setting and its corresponding inefficiencies.

2.2 RELATED WORK

FGMs essentially treat each individual point as its own task or distribution. In this way, FGMs are
related to multi-task learning (Thrun & Pratt, 1998) and meta-learning (Hospedales et al., 2020).
Within them, connections between learning to learn and Hierarchical Bayes are the most rele-
vant (Tenenbaum, 1999; Griffiths et al., 2008; Grant et al., 2018). Implementation-wise, FRM
is closer to works looking at distances in parameter space (Nichol et al., 2018) or using implicit
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(a) Changes in light
and translation naturally
cause large, but struc-
tured, variations.

(b) Images with high and low functional loss for a series of fixed empirical losses,
when predicting the edges of the image on the left. The model is a simple two-
layer fully-convolutional network. One can see that images with low functional
loss retain most of the structure despite having high errors in output (pixel) space.

Figure 2: Functional losses provide a way to capture structured noise, typical in natural settings.

gradients (Lorraine et al., 2020; Rajeswaran et al., 2019). However, these are still fundamentally
ERM-based as noise is modeled in output space within each task.

Other works have noted the importance of function space for applications such as minimizing
catastrophic forgetting in continual learning (Kirkpatrick et al., 2017), optimization (Martens &
Grosse, 2015), or exploration in reinforcement learning (Fortunato et al., 2017). Information geom-
etry (Amari, 2016), formalizes the geometrical structure of distributions using tools from differential
geometry. In contrast, we leverage stochasticity in function space for modeling and learning.

Multiple alternatives to ERM have been proposed, particularly in the multi-task setting, such as
adaptive (Zhang et al., 2020) and invariant risk minimization (Arjovsky et al., 2019). It is also rele-
vant the line aiming at flat minima (Hochreiter & Schmidhuber, 1997)/minimizing sharpness (Foret
et al., 2020) in order to improve generalization on standard supervised learning. In contrast to these
works, our perturbations are per-point, and they come from the data distribution giving rise to the
noise, instead of a regularization made on top of ERM with classic loss functions. Other works
proposed per-point adaptations to tailor a model to each specific input either to encode an inductive
bias (Alet et al., 2020; 2021) or adapt to a new distribution (Sun et al., 2019; Wang et al., 2020).
However, these adaptations fine-tune an imperfect model trained with ERM to get it closer to an
ideal model. In contrast, in this work, per-point models are not a mechanism, but a fundamental part
of reality, which then defines losses in function space rather than output space.

3 FUNCTIONAL GENERATIVE MODELS: SAMPLING PER-POINT FUNCTIONS

3.1 DESCRIPTION

In machine learning, we want to reach conclusions about a distribution P(x, y) from a finite dataset
((xi, yi))

n
i=1. However, there is no generalization without assumptions. From convolutions to graph

neural networks and transformers, most research has focused on finding the right inductive biases
for the mappings x 7→ y. However, much less research has challenged the assumptions about the
uncertainty of those mappings: P(y|x). For instance, whenever we minimize mean-squared error
on an image-prediction problem we are doing maximum likelihood assuming gaussian noise in pixel
space. However, the actual noise is usually much more structured, as we show in figure 2.

In this work, we start from a single principle, which we call Functional generative models (FGMs):
we model each data-point (xi, yi) as coming from its own function fθi such that yi = fθi(xi) and
θi ∼ P(θ). Notably, P(θ) is unknown in the same way that we do not know P(x, y). FGMs can be
seen as a special type of hierarchical Bayes (Heskes, 1998; Griffiths et al., 2008), where each group
has a single point, the lower-level is deterministic and each θi is an unobserved latent variable.

Example: predicting house prices with linear regression Let’s consider predicting the price of
a house given its surface area using a linear regressor: y = λx+ β and the mean-squared error loss
function. ERM would simply find the λ, β leading to the lowest squared error on the training data.
This is equivalent to doing maximum likelihood on a gaussian noise model yi ∼ N(λxi + β, σ2)
with constant σ. However, this may be suboptimal. For instance, we intuitively know that prices of
bigger houses tend to be higher, but also have larger variances: we expect the price of a large house
to vary by 500k, but we would not expect the same 500k variation for a small house.
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(a) Functional subspaces (lines in this example)
that fit each point in the dataset (top plot). Each
line in is colored according to its datapoint.

(b) The best parameter distribution (in green) being
quite certain in the offset β, and uncertain in the
slope λ.

Figure 3: Functional generative models for a linear function class in house price prediction. Since
we only have two parameters, we can plot the function space in 2D on the bottom-left of each
sub-figure, with the actual data is plotted on the top-right.

When using the FRM framework, we assume that, for each house (xi, yi) there are different λi, βi,
satisfying yi = λixi + βi. For instance, we may believe that agent commissions vary and are well-
modeled by βi, and that the price-per-meter-squared (captured by λi) changes depending on the
neighborhood. This is the modeling made by FGMs, which is more flexible than the output-level
noise model corresponding to mean-squared error. We show this effect in figure 3.

3.2 PROPERTIES OF FGMS

FGMs model the arbitrariness of dataset definitions A dataset implicitly defines which points
belong to the data distribution P(x, y) and which points do not. For instance, a dataset of houses
sold in Boston in the last 5 years, doesn’t contain houses sold in other cities, or Boston houses sold in
2005. Each of these categories would follow a slightly different distribution and, using Hierarchical
Bayes, we could model them as similar parameter assignments to a single function class.

More subtly, even the dataset of a single city encompasses multiple distributions, such as houses
from different neighborhoods, years, or colors. These hidden intra-distributions are a source of noise
when not described in the input. In the absence of any information, the least restrictive assumption is
that each point comes from its own distribution, giving rise to what we refer as noise. It is therefore
natural to use Hierarchical Bayes to model the differences in P(yi|xi) from a single θi ∼ P(θ).

FGMs entrust what the user already trusts A user needs to provide a learning framework with
three ingredients: a dataset ((xi, yi))

n
i=1, a function class fθ, and a loss function L. Compared to the

Bayesian setting, FGMs don’t assume an independent noise model, which may have little connection
with the user specifications. Instead, they leverage the user’s trust in the function class fθ to be a
good model of the mapping x 7→ y. They simply go one step further and also entrust the uncertainty
in that mapping to the same function class, which now also models individual mappings xi 7→ yi.

FGMs encode structure through their function class FGMs draw their representational power
from the function class fθ. Therefore, if the function class has a particular constraint, the FGM will
have a corresponding constraint in probability space. For example, for the function class of linear
functions, the expectation of P(y|x) is also linear. Similarly, as shown in figure 2, using convo-
lutional neural networks we can create meaningful, structured noise priors in image space. From
graph neural networks and neural differential equations to probabilistic programs, FGMs leverage
structured function maps to construct structured probability distributions.

FGMs can be arbitrarily expressive FGMs assume that P(y|x) = Pθ∼P(θ) [fθ(x) = y]. As just
described, this need not be arbitrarily expressive. However, for some arbitrarily expressive function
classes, such as multi-layer perceptrons, their corresponding FGM can be shown to be arbitrarily
expressive, in probability space. We formalize this in the following definition.
Definition 1. Given a function class F with parameterisation Θ, we define a Functional generative
model (P(x),P(θ)) ∈ FGM [FΘ,X ] as a probability density function P(x, y) ∈ L2[X × Y] with
x ∼ P(x) ∈ L2[X ], and y ∼ δ(fθ(x)), θ ∼ P(θ) ∈ L2[Θ].
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Figure 4: ERM with common losses is equivalent to maximum likelihood under an FGM that is only
stochastic in the output parameters. The particular distribution depends on the loss: a) MSE with
a Gaussian b) L1 with a Laplace c) cross-entropy with a Gumbel d) accuracy with a delta plus flat
distribution. In practice, the axis for ”other parameters” will often refer to thousands of parameters.
Note that P(θ ∈ Θ) and P(x ∈ X ) are independent and y is deterministic given x, θ; see figure 1.

Theorem 1 (Universal Distribution Theorem). Let q(x, y) ∈ L2[X × Y],X = [0, 1]n ⊂
Rn,Y = [0, 1]m ⊂ Rm be a given probability density distribution function. Let FkΘ be the
class of 3-layer neural networks with sigmoidal activation function and k neurons in the hidden
layer. For any ε > 0, ∃K and a functional generative model (P(x),P(θ)) ∈ FGM

[
FKΘ ,X

]
s.t.

DTV ((P(x),P(θ)) , q) < ε, with DTV being the total variation distance. [Proof in appendix C.]

FGMs is a superset of some instances of ERM In appendix B we prove that ERM for four com-
mon objectives (MSE, L1 loss, accuracy and cross-entropy) can be seen as a subcase of maximum
likelihood on an FGM where all the stochasticity is restricted to the ’output’ parameters. Figure 4
provides a visual intuition on how empirical losses correspond to functional losses in output space.

4 FUNCTIONAL RISK MINIMIZATION: LEARNING IN FUNCTION SPACE

Now, we look at the supervised learning problem under the FGM assumption.

4.1 MATCHING PROBABILITY DISTRIBUTIONS IN FUNCTION SPACE

We start with our goal to minimize the expected risk, impose the FRM generative model assumption
and do basic math manipulations. In the derivation, whenever we use P(θ) we refer to an unknown
probability distribution entirely characterized by the data distribution P(x, y) and function class f .

Figure 5: Finding the pro-
jection of the unknown dis-
tribution P(θ) to the fam-
ily Qθ∗(θ) of probability dis-
tributions in function space.
Here θ∗3 (green) is best.

arg min
θ∗

Ex,y [L(y, fθ∗(x)] = (1)

arg min
θ∗

∫
x

∫
θ

L (fθ(x), fθ∗(x))P(θ)P(x)dθdx = (2)

arg min
θ∗
−
∫
θ

P(θ) log
(
e−

∫
x
L(fθ(x),fθ∗ (x))P(x)dx

)
dθ = (3)

arg min
θ∗
−
∫
θ

P(θ) log

(
e−ExL(fθ(x),fθ∗ (x)) · Z(θ∗)

Z(θ∗)

)
dθ = (4)

arg min
θ∗

H

(
P(θ),

e−ExL(fθ(x),fθ∗ (x))

Z(θ∗)

)
− log (Z(θ∗)) = (5)

arg min
θ∗

H (P(θ),Qθ∗(θ))− log (Z(θ∗)). (6)

with H(P,Q) being the H cross-entropy operator and Qθ∗(θ) = e−ExL(fθ(x),fθ∗ (x))/Z(θ∗),
Z(θ∗) =

∫
θ
e−ExL(fθ(x),fθ∗ (x))dθ being a class of probability distributions and their normalizers.

To gain some intuition, we first observe that the second term − logZ(θ∗) = log 1/Z(θ∗) =
log 1/

(∫
θ
e−ExL(fθ(x),fθ∗ (x))dθ

)
is a label-independent regularizer that penalizes θ∗ leading to

small
∫
θ
e−ExL(fθ(x),fθ∗ (x))dθ; i.e. a sharp distribution. Now, we can see that the first term is

encouraging the matching of two probability distributions in function space:

1. P(θ): the unknown data-dependent distribution, which does not depend on the loss func-
tion L. This target distribution is defined entirely by the model class f and the unknown
data distribution P(x, y), which we will have to estimate from the training data.
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2. Qθ∗(θ): a class of probability distributions which depends on the loss function L and the
θ∗ used to make predictions, but not on the labels. This approximating distribution makes
a parameter θ more likely the closer the function fθ is to fθ∗ according to the problem-
specified loss L. Intuitively, it is a gaussian-like distribution centered at θ∗, with a metric
that captures the differences in task space. This will be formalized in section 4.2.

This equation also shows that we need not know the exact shape and distribution of P(θ), which
could be very complex without further assumptions. We only need to know its ’projection’ to a
particular class of probability distributions defined by the task at hand. This also happens in ERM-
based learning: we need not know P(y|x) in order to estimate a x 7→ y map.

We would like to optimize equation 6, but we do not have access to samples for P(θ), we only have
(x, y) pairs. However, we can compute the cross-entropy on P(y|x) following the FRM generative
model. Thus, for a given dataset Dtrain = ((xi, yi))

n
i=1 the FRM objective is:

arg max
θ∗

∑
(xi,yi)

log

∫
θi:fθi (xi)=yi

e−Ex[L(fθi (x),fθ∗ (x)] dθi. (7)

Note that often we will not have access to the true input distribution P(x) to compute
Ex [L(fθi(x), fθ∗(x)]. In that case, we can also estimate it from samples.

4.2 APPROXIMATING THE FRM OBJECTIVE BY LEVERAGING OVER-PARAMETERIZATION

Equation 7 is an integral in high dimensions under a non-linear constraint. In general, this is well-
known to be computationally challenging. Fortunately, for this particular class of systems, we can
rely on over-paramterization to propose a reasonable approximation. First, as a sanity check, we
observe that all constraints fθi(xi) = yi are independent and that they all have a viable solution,
as we are only trying to fit each single data-point (xi, yi) with the entire parameter set θi. For
instance, even a constant model f(x) = c fits the data with ci = yi ∀i. In other words, the system
(θ∗, θ1, . . . , θn) is always over-parameterized.

Moreover, it is often extremely over-parameterized. For reasonably parameterized models this is in-
deed the case: even small models of 104 parameters (compared to modern models of more than 1010

parameters) may be underparameterized w.r.t. the entire dataset, but extremely over-parameterized
w.r.t. fitting a single data point. Therefore, similar to the Neural Tangent Kernel literature (Jacot
et al., 2018) for extremely wide neural networks, we can assume that a very small perturbation will
be enough to fit each datapoint 1.

Now, we assume that we only need to analyze small perturbations ∆i around a parameter θ∗
for |∆i| << 1. We can therefore take the Laplace approximation of the probability distribu-
tion we want to fit and assume it is a Gaussian with mean at θ∗: N (θ,H−1

f,L,θ∗), (Hf,L,θ∗)j,k :=
∂2Ex[L(fθ+∆(x),fθ)]

∂∆j∂∆k
. Similarly, we can take the first-order Taylor approximation of the function

fθ+∆(xi) ≈ fθ(xi)+Jθfθ(xi)T ·∆, assuming it is linear. Omitting the normalizer term, this leads to:

arg max
θ∗

∑
(xi,yi)

log

∫
∆i:fθ(xi)+Jθfθ(xi)T ·∆i=yi

e−∆T
i ·Hf,L,θ∗∆i

Z(θ∗)
dθi. (8)

Under these conditions, computing the likelihood of fθ+∆i
fitting xi involves integrating a gaussian

distribution over either a subspace (for regression) or a half-space (for binary classification).

Regression We first note that the integral of the gaussian under a constraint can be seen as the
pdf of yi ∼ Jθfθ(xi) · ∆ + fθ(xi),∆ ∼ N (0, H−1

f,L). Because it is a fixed linear transformation
of a gaussian distribution it can also be expressed as a gaussian. In particular using the notation

1Note that this justifies that there is a large probability mass for |θi − θ| << 1, but it does not justify that
this is an accurate approximation of the entire integral. However, this is a common and useful approximation.
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Ji := Jθfθ(xi), we have p(yi) ∼ N
(
fθ(xi), J

T
i H

−1
f,LJi

)
. Computing its log-likelihood we obtain

the following training objective where both Ji and Hf,L depend on θ:

arg min
θ?

n∑
i=1

(yi − fθ?(xi))
T
(
JTi H

−1
f,LJi

)−1

(yi − fθ?(xi)) +

n∑
i=1

log
(
|JTi H−1

f,LJi|
)

(9)

Classification For binary classification the solution is similar, except that we integrate over a half-
space instead of a hyper-plane. Thus, we take the gaussian ccdf (complementary cumulative distribu-
tion function) instead of the gaussian pdf. Therefore, to maximize the logprobability of a function fit-
ting a point, we minimize the gaussian logcdf of the signed distance function to the decision bound-
ary: minθ

∑n
i=1 logcdf (∆i) where ∆i := sign

(
σ(fθ(xi))yi − 1

2

)
minθi:σ(fθi (xi))yi=

1
2
|θi−θ|Σf,L

is the signed distance to the decision boundary.

Note that in classification the best perturbation is not zero, but a very negative (i.e. opposite to
the gradient) value, since this implies that the parameter θ is well within the correct classification
region.This is also similar to regular ERM in binary cross-entropy, where we maximize the sigmoid,
which has a very similar shape as the gaussian cdf.

For multi-class classification the integral is over an intersection of C − 1 half-spaces (comparing
each class with the correct class yi). The efficient integration in that case is still an active area of
research (Gessner et al., 2020). Two potential alternatives may be practical: turning the training
of an n-way classification into n binary classifications, and linearizing the softmax of all incorrect
classes jointly instead of linearizing each one independently.

4.3 FRM MAY DO EXPLICTLY WHAT OVER-PARAMETERIZED ERM DOES IMPLICITLY

Figure 6: Minimal functional adap-
tations using a generalized linear
model with Fourier features.

It has been observed that neural networks often generalize
despite memorizing the training dataset (Zhang et al., 2017;
Poggio et al., 2017; Belkin et al., 2019; Nakkiran et al.,
2021), seemingly contradicting classic understanding of
generalization in ERM, which relies on controlled capacity.

FRM implicitly assigns to every datapoint (xi, yi) its own
latent model fθi which fits it: fθi(xi) = yi. In this way, we
can turn a model fθ into an over-parameterized hyper-model.
Although θi is unobserved in FGMs, the previous Taylor ver-
sion of FRM becomes equivalent to this optimization:

min
θ1,...,θn:
fθi (xi)=yi

∑
i,j

|θi − θj |2Mf,L,θ
= min

θ

∑
i

min
θi:

fθi (xi)=yi

|θi − θ|2Mf,L,θ
(10)

where explicit θi are sought that are as close as possible according to the metricM. Whereas ERM
finds the function that best fits the data among a class of simple functions, FRM finds the simplest
hyper-model to explain the data, related to the principle of Occam’s Razor.

This can be seen as finding the simplest hyper-model {θ1, . . . , θn} that fits the data. Simplicity is
measured as the distance of parameters being close to a central parameter given a metric that captures
the relationship between the function class fθ and the loss L. This encourages each independent
function to be close to the central one, and thus all functions being close to each other, as shown in
figure 6. This is related to the line of research exposed by Bartlett et al. (2021), which conjectures
that ERM under gradient descent may implicitly find a function with two components fstable+fspiky,
such that the spiky component has negligible norm but allows overfitting. In this regard, FRM can
be seen as explicilty searching for the smallest necessary perturbation for each point.

5 EXPERIMENTS

To scale to neural networks, we leveraged the Taylor approximation in section 4.2. However, that re-
quires inverting a Hessian, which is usually too big to even instantiate in memory. We bypassed this
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Figure 7: Ratio of train and test error between ERM and FRM as a function of the ratio between
noise in the scale vs. offset components in 1-D and 10-D linear regression. As expected, we can
see that ERM always has lower training loss as well as slightly lower test loss (12% lower) when its
assumption (gaussian noise only on the offset) is perfectly satisfied. When noise is heteroscedastic,
ERM has up to 40% higher test error. In 10 dimensions, the advantage of FRM is even starker: ERM
can have 4 times more test error than FRM, despite having lower training error.

problem by 1) relying on iterative solvers to avoid the cubic cost and 2) materializing only Hessian-
vector products. To do so, we use JAX (Bradbury et al., 2018) and the jaxopt package (Blondel
et al., 2021), which implements implicit gradients.

5.1 LINEAR LEAST SQUARES

To better understand the trade-offs between FRM and ERM we analyze the simple case of
linear regression under mean-squared error risk. We consider a d-dimensional input and a
one-dimensional output. The classic ERM solution minimizes the risk on the training data:
minλ,β

∑
(xi,yi)

(λ · xi + β − yi)2. This is equal to doing maximum likelihood on a fixed gaus-
sian noise on β. Thus, we expect ERM to do well in this situation, but not necessarily otherwise.

For linear regression with squared loss, the Taylor approximations in section 4.2 are exact.
Furthermore, both the Hessian and the gradients are independent of the parameters, which
further simplifies the objective function to just a specific re-weighting of the per-point risks:
minλ,β

∑
(xi,yi)

(λ·xi+β−yi)2

[xi,1]H−1[xi,1]T
, with H = Ex

[
[x, 1]

T
[x, 1]

]
. Figure 7 shows that indeed ERM

does slightly better with gaussian noise in the bias, but FRM does much better when the noise is en-
tirely in the slope. We also observe that the FRM is more than 4 times better in higher dimensions.

5.2 VALUE FUNCTION ESTIMATION

We demonstrate here that the proposed approach can be broadly applied on an illustrative offline
value estimation task using the mountain car domain (Sutton & Barto, 2018). We consider the
problem of learning a linear value function using a 15 × 15 grid of radial basis functions (RBFs)
using the 1-step temporal difference (TD) error (Sutton, 1988) as the training loss function and
using sampled transition gathered by a near-optimal policy. Both approaches were optimized with
stochastic gradient descent with a constant learning rate best suited for it, selected by a grid search
over hyper-parameters, and a batch size of 256. Performance is then evaluated using the root mean
squared error (RMSE) between predictions and the true values on unseen samples.

We consider two different arrangements of RBFs, a uniform layout and one that is denser towards the
center of the environment. Note that although the true value function has a discontinuity spiraling
out from the center, which might benefit from finer resolution, the more poorly conditioned nature
of this non-uniform arrangement of features makes the problem harder, as can be seen in figure 8.
We see that FRM is competitive in the easier of the two cases while outperforming ERM by over
20% in the harder one. We hypothesize that TD loss is commonly subject to complex noise that
can severely hinder ERM when its features are poorly aligned. Furthermore, due to the use of
bootstrapping (L(s, r, s′) := (fθ(s) − r − γfθ(s

′))2) the temporal difference error is inherently
functional through the term fθ(s

′) affecting the label.

8
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Figure 8: Comparison of the RMSE for ERM and FRM for the learned value function in mountain
car under a fixed policy using a temporal difference loss with different features: (left) using a uni-
form grid of radial basis functions, (right) using a distorted grid of radial basis functions denser in
the middle. Solid lines are the average over 20 seeds; shaded areas show the 95th percentile interval.

Figure 9: Accuracies of an MLP trained from latents of two CNN-based VAEs, trained with ERM
and FRM. FRM provides small gains in vanilla MNIST, and large gains in all three variants.

5.3 FGM-BASED VAE FINDS BETTER REPRESENTATIONS WITHIN STRUCTURED VARIATIONS

To better understand when FRM works better than ERM, we build a Variational AutoEncoder(VAE)
on top of MNIST (LeCun et al., 1998) and combinations of two popular variations: colored
MNIST (Arjovsky et al., 2019) and translated MNIST (Jaderberg et al., 2015). We build a vanilla
VAE with MLP encoder and CNN decoder. Then, we evaluate the quality of the representation to
do classification for the vanilla VAE and an FGM-based decoder where noise is modeled in function
space. For FGM, we train a small MLP on top of the latent representation, with a stop-gradient,
and measure accuracy depending on the size of the latent. We see that in MNIST, where natural
variations in orientation, translation, and color have been unnaturally removed, some gains exist but
are small. In the datasets containing variations in color or translation, the FRM gains are substan-
tial. This is because noise in CNN weights can easily explain these structured variations, as shown
in figure 2. Similarly, papers such as Deep Image Prior (Ulyanov et al., 2018) have argued that
neural networks are good models for real-world variability, making FRM particularly appealing for
modeling real-world data. Results are shown in figure 9.

6 CONCLUSION

The main limitation of FRM in its current form is its compute cost. Thanks to the approximations
proposed in sections 4.2 and 5 we can run FRM on a ResNet-50 using a single GPU, but with a
prohibitive iteration cost. However, long term, FRM could be orders of magnitude more efficient
than ERM-based approaches. As explained in section 4.3, under-parameterized FRM may behave
similarly to over-parameterized ERM by making models have n times more parameters θ1, . . . , θn.
There, each θi is instantiated on the fly for loss computation and thus doesn’t need to be in memory,
this could provide orders of magnitude of benefit for modern datasets where often n > 106.

In the last years, there has been a clear tendency towards building large models capable of per-
forming many tasks which were previously modeled individually. FGMs propose the natural step to
model the diversity in these datasets in function space rather than output space, allowing for richer
and more meaningful noise models. Despite noise being pervasive across real-world data, modern
deep learning approaches still largely use simple unstructured noise models. As we keep moving to-
wards larger, more varied datasets, properly modeling the internal data diversity will become crucial.
We believe FRM provides a first step towards an effective solution.
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Table 1: FRM outperforms ERM in a small CNN environment despite ERM having 0 training loss.
Furthermore, the Hessian can be enough to express the dependence on the loss function.

Objective Train Test

positives negatives positives negatives

ERM positives .000 ± .000 .283± .016 .130± .006 .278± .013
negatives .336± .020 .000 ± .000 .323± .018 .119± .005

FRM positives .052± .002 .109± .007 .085 ± .004 .124± .006
negatives .131± .010 .052± .002 .136± .009 .084±.004

A FUNCTIONAL NOISE IN A CNN

To show the value of the Taylor approximation, we create a dataset by sampling different parameter
assignments on a 4-layer CNN architecture. The CNN takes in a CIFAR-10 image and outputs a real
number. We provide only 8 labels to each method, allowing empirical risk minimization to easily
memorize the dataset. Despite FRM obtaining substantially higher training losses (.000 vs .052),
we observe FRM obtains significantly less test error (.125 to .085).

We also test the ability of FRM to modify its training depending on the loss function. Although this
is obviously the case for ERM, in approximate FRM the loss function enters only in an indirect way,
affecting the hessian in equation 8. We modify the objective by creating two different losses, which
assign zero loss to labels that are either positive or negative, respectively. Table 1 shows that indeed
FRM performs better when trained and tested on the same loss (0.085 vs 0.128).

B PROOFS OF EMPIRICAL LOSSES BEING SUB-CASES OF FUNCTIONAL
LOSSES

B.1 MEAN-SQUARED ERROR AND L1 LOSS AS A FUNCTIONAL LOSSES

Let our dataset Dtrain = {(xi, yi)}ni=1, yi ∈ R1, and let LMSE = 1
n

∑n
i=1(f(xi) − yi)2, i.e. the

mean-squared error loss.

Lemma 1. For any arbitrary function class fθ,β(x) expressible as fθ,β(x) = fθ(x) + β, there
exists a functional loss restricted to functional adaptations θi = θ that only change β → βi which
is equivalent to the mean-squared error loss.

Proof Since we can only change β there is a single solution to the per-point constraint: fθ(xi) =
fθ(xi) + βi = yi ⇒ βi = yi − fθ(xi). We can now model the probability distribution over
functions F (θ, βi|θ, β,LMSE) as a gaussian centered at (θ, β). Since θ doesn’t change, this will
just beN (βi−β). Maximizing the mean of the log-probabilities will result in 1

n

∑
i logN (βi−β) =

1
n

∑
i(βi − β)2 = 1

n

∑
i(yi − fθ(xi)− β)2 = 1

n

∑
i(yi − fθ,β(xi))

2 = LMSE .

Of note, the Gaussian model of the functional distribution satisfies

F (θ, βi|θ, β,LMSE) = N ((θ, βi)− (θ, β)) ∝ e−|β−βi|
2

= e−ExLMSE(fθ,β ,fθ′,β′ ).

This is because for all x, LMSE (fθ,β(x)− fθ′,β′(x)) = |fθ,β(x)− fθ′,β′(x)|2 = |β − β′|2.

Finally, we note that the entire derivation can be equivalently followed for the L1 loss by swapping
| · |2 for | · | and the Gaussian distribution for the Laplace distribution.

B.2 CLASSIFICATION ERROR AS A FUNCTIONAL LOSS

Let us now look at multi-class classification and let our dataset Dtrain = {(xi, yi)}ni=1, yi ∈
{1, . . . , C}. Our function class will output in an unconstrained logit space RC and we define Lcls =
1
n

∑n
i=1 1Jyi = arg maxc (fθ,β(xi))cK, i.e. the classification error. As in previous sections, abusing

notation we will refer to 1Jyi = arg maxc (fθ,β(xi))cK as 1Jyi = fθ,β(xi)K.
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Lemma 2. For any arbitrary function class fθ,β(x) expressible as fθ,β(x) = fθ(x) + β, β ∈ Rc,
constrained on fθ(x) being finite, there exists a functional loss restricted to functional adaptations
θi = θ that only change β → βi which is equivalent to the classification error.

Proof We will show that a solution is given by F (θ, βi|θ, β,Lcls) = p · δ(βi − β) + (1 −
p) limσ→∞N (0, σ)(β), with p = e−1

C+e−1 ∈ (0, 1). In other words, a specific positive (note the
open brackets) combination of an infinitely-sharp distribution (Dirac’s delta) with an infinitely-flat
distribution. Given a fixed p, θ, β, the probability of yi = arg maxc fθi,βi(xi) will be equal to
p ·
[
yi = arg maxc (fθ,β)c

]
+ 1−p

C . This comes directly from the definition of the functional prob-
ability distribution: with probability p, we have (θi, βi) = (θ, β) and thus the result depends solely
on (θ, β); with probability (1− p) the logits are perturbed by an infinitely strong noise and thus the
arg max will just be a uniform distribution over the classes, i.e. 1

C .

Now, the average log-likelihood of the functional loss will be:

1

n

n∑
i=1

log

(
p · 1Jyi = fθ,β(xi)K +

1− p
C

)
=

log
1− p
C

+
1

n

n∑
i=1

log

(
p · 1Jyi = fθ,β(xi)K + (1− p)/C

(1− p)/C

)
=

log
1− p
C

+ log

(
p+ (1− p)/C

(1− p)/C

)
1

n

n∑
i=1

1Jyi = fθ,β(xi)K =

log
1− p
C

+ log

(
1 +

pC

1− p

)
Lcls =

− log (C + e− 1) + Lcls.
where in the second step we observe that the log term within the sum is zero when yi 6= fθ,β(xi) and,
in the last step, we have set p = e−1

C+e−1 , which by construction is in (0, 1). We can now easily see
that this is equivalent to Lcls up to a constant additive term, which will not affect any optimization.

B.3 CROSS-ENTROPY LOSS AS A FUNCTIONAL LOSS

Continuing in multi-class classification and let our datasetDtrain = {(xi, yi)}ni=1, yi ∈ {1, . . . , C}.
Our function class will output in an unconstrained logit space RC and we define LCE =
1
n

∑n
i=1 log σ (fθ,β)yi , i.e. the cross-entropy loss. Here, σ(·)c corresponds to taking the c-th com-

ponent of the softmax of a given logit to obtain the probability of a given class c given the logit
predictions.
Lemma 3. For any arbitrary function class fθ,β(x) expressible as fθ,β(x) = fθ(x) + β, β ∈ RC ,
there exists a functional loss restricted to functional adaptations θi = θ that only change β → βi
which is equivalent to the cross-entropy loss.

Proof As shown in (Jang et al., 2016; Maddison et al., 2016) if we have logits γc = fθ(xi)c + βc
we can sample from the probability distribution of distribution equal to σ(γ) by c = arg maxi(γi +
gi) where each gi follows an independent Gumbel distribution, i.e. gi = − log(− log ui), ui ∼
U(0, 1). This gives us a trivial expression for a functional distribution over which to make maximum
likelihood: βi ∼ β+G, where G consists of c independent Gumbel noise variables. This is because,
since β lives in logit space, adding noise to β is equivalent to adding noise to the logits. Finally,
since the cross-entropy loss is the maximum likelihood assuming a probability distribution given
by the logits and we have shown a functional distribution with the same distribution, performing
maximum likelihood on that distribution is equivalent to minimizing the cross-entropy loss.

C UNIVERSAL DISTRIBUTION THEOREM

Definition 2. Given a function class F with parameterisation Θ, we define a Functional generative
model (P (x), P (θ)) ∈ FGM [FΘ,X ] as a probability density function p(x, y) ∈ L2[X × Y] with
x ∼ P (x) ∈ L2[X ], and y = fθ(x), θ ∼ P (θ) ∈ L2[Θ].
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Note that, in particular, P (θ ∈ Θ) and P (x ∈ X ) are independent and y is deterministic given x, θ;
as shown in figure 1.

Theorem 2 (Universal Distribution Theorem). Let q(x, y) ∈ L2[X × Y],X = [0, 1]n ⊂
Rn,Y = [0, 1]m ⊂ Rm be a given probability density distribution function. Let FkΘ be the
class of 3-layer neural networks with sigmoidal activation function and k neurons in the hidden
layer. For any ε > 0, ∃K and a functional generative model (P (x), P (θ)) ∈ FGM

[
FKΘ ,X

]
s.t.

DTV ((P (x), P (θ)) , q) < ε, with DTV being the total variation distance.

For the first layer we use deterministic weights with arbitrarily-big slope to implement the functions
1Jxi ≥ cjK for all coordinates 1 ≤ i ≤ n and cj = {−1,−1 + ε, . . . , 1− ε, 1}. For the second layer,
we again use deterministic weights to implement functions 1Jx ∈ [a1, a1 + ε)× · · · × [an, an + ε)K
to determine whether a given input is within a hyper-cube of side ε. Exactly one of those two-layer
nodes will be active for any given input. From the node corresponding to [a1, a1 + ε) × · · · ×
[an, an + ε) the each of the output nodes there are m weights θ, we assign them a distribution equal
to θ1:m ∼ P (y|x = (a1, . . . , an)). Because P (y|x) is continuous, P (y|x = (a1, . . . , an)) will
be arbitrarily close to P (y|x) for any x in the hyper-cube [a1, a1 + ε) × · · · × [an, an + ε) for a
sufficiently-small ε.

We note that this universality also holds for a 2-layer neural network as well (also a universal func-
tion class). However, the prove for that case is more cumbersome and less insightful for our pur-
poses.

D FURTHER UNDERSTANDING THE DIFFERENCE BETWEEN
ERM AND FRM

The ERM assumption: by assuming that the training objective is equal to the test loss L, ERM
can be suboptimal for certain P(θ), like the house example on section 3. As shown in appendix B,
for many loss functions L, including most of the common ones, ERM is equivalent to assuming the
functional generative model and then doing maximum likelihood on P(θ) by assuming it has a form
parameterized by θ̂ whose uncertainty is only on the output offset parameters. In other words, the
assumption equivalent to performing ERM is often strictly more assuming than FGMs.

For instance, consider predicting the price of different houses as a function of their size and having
MSE as the loss. Doing empirical risk minimization with the MSE would be equivalent to doing
maximum likelihood on the following price model: yi ∼ N (f(xi), σ

2). However, we would expect
noise to be heteroskedastic with higher variations for higher prices.Thus, even if we are evaluated
on MSE on the test data, it may not be advisable to use it as our training criteria.

Similarly, consider a child learning a concept from examples on a textbook rather than from stan-
dardized images of a dataset. Images may receive different illuminations from the sunlight, or be
in different positions than we expect. These factors will produce massive changes in pixel space,
but in very structured ways (fig 2). However, humans can still easily grasp the idea because the
’conceptual’ noise is small.

How can we have more meaningful noise models? By construction, we will often believe that the
function class fθ is a good characterization of the relationship between x and y. It is thus a natural
assumption to define a noise model by leveraging the function class itself. More concretely, we
can think of a generative model of the data as first sampling the input xi, then sampling a function
fi ∼ F(L, θ) from some parameterized distribution over functions, which will depend on both the
problem-specified loss function L as well as the function class fθ. Once the function and the input
have been sampled, the output is automatically determined yi = fi(xi), see the right of figure 1.

For example, in our house-price prediction, if we are using a linear model f(x) = λ · x + β, then
it makes sense to think about our data as coming from first sampling xi ∼ p(x) and (λi, βi) ∼
F(L, (λ, β)), then computing yi = λi · xi + βi, as shown on the right of figure 1. For instance,
βi can model different commissions or taxes, and λi can model the per-meter-square price being
variable across neighborhoods. Even if we care about making accurate predictions in dollar-space,
assuming our uncertainty is only in the offset term βi may be too restrictive.
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D.1 ERM VS FRM FOR THE LINEAR CASE

Let us now take a deeper look at our linear regression example. We have a dataset Dtrain =
{(xi, yi)}, depicted in the top-right of figure 3a, with an arbitrary color per point. For every point,
there is a subspace of models (λi, βi) s.t. λixi + βi = yi. Since we only have two parameters, we
can also look at function-space in 2-D, and plot the corresponding subspace for each point, in the
bottom-left of figure 3a. We observe that every point gives us a line in function space, which we plot
with the corresponding color.

Our goal is to produce a probability distribution P(λ, β) such that the sum of the log-densities of
each line (λi, βi)λixi+βi=yi is maximal. Intuitively, this means that each line should pass through
a high-density area of the probability distribution, but it does not mean that the line should be
covered by the high-density area (which is not possible, since they’re unbounded). This can be seen
in figure 3b where all lines pass near the center of the distribution generating the data (marked in
green).

We can further see that ERM with the MSE loss is equivalent to finding a point (λERM , βERM )
that minimizes the vertical distance to each line:

(λERM , βERM ) = min
λ,β

∑
i

(yi − λxi − β)2

= min
λ,β,

λi:λi=λ

∑
i

(yi − λixi − β)2

= min
λ,β,{λi,βi}:

λi=λ,
λixi+βi=yi,

∑
i

(βi − β)2.

In contrast, if the probability distribution in parameter space is a Gaussian, FRM involves taking
the distance of the entire vector (λ, β), using the inverse covariance matrix as the metric. For cases
where most of the uncertainty is in the slope, as in figure 3b, ERM measures the distance in the
vertical direction and FRM measures it almost horizontally, leading to different results.

D.2 VISUALIZATION FOR A SIMPLE FULLY CONVOLUTIONAL NETWORK

Figure 2 shows the difference between MSE and its functional correspondent for a small
fully-convolutional network mapping images to images fθ. Images y with the same empirical loss
|y−fθ(x)|2 could require very different functional adaptations to explain: minθ′:fθ′ (x)=y |θ′−θ|f,L.
For instance, if one does edge detection and mistakenly translates its prediction a bit to the right,
this small change in functional space could lead to a large error in pixel space. Similarly, if we have
a pattern detector and we slightly change its threshold, it could make the entire prediction darker or
lighter.

Conversely, if we add unstructured noise onto our image, it is to be expected that it will have a high
functional loss as no small perturbation of the function could simultaneously explain pure noise.
That’s indeed what we observe in figure 2b when we look for images with high and low functional
loss for a fixed empirical loss. Images with high functional loss contain salt-and-pepper-like noise
that breaks the smooth pattern of the original image. In contrast, images with low functional loss
preserve the overall structure while uniformly shifting large blocks of pixels to a much lighter color.
If the noise in our data is better represented by our functional class than noise in the output, we can
take this into account to improve learning.
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