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Abstract

Differentiating hybrid dynamical systems and optimization layers with jumps
poses fundamental challenges for classical automatic differentiation. When the
output trajectory has parameter-dependent discontinuities in time or state, the
derivative is not an ordinary function. We propose measure-valued automatic
differentiation (MV-AD), which treats the parameter derivative of the trajectory as
a finite Radon measure consisting of an absolutely continuous density on smooth
segments and Dirac atoms at event times. MV-AD generalises saltation-style jump
sensitivity and obtains accurate gradients without requiring global differentiabil-
ity. Experiments on bouncing-ball dynamics, a transversality study, a parametric
quadratic program, and a queueing model show that MV-AD matches finite dif-
ferences and analytic gradients (up to 10−11 versus analytic; 10−3 relative error
versus FD) while scaling linearly with the number of events.

1 Introduction

Hybrid dynamical systems combine continuous flows with discrete transitions and arise in robotics,
power networks, queueing, and economics. Their trajectories contain discontinuities due to contact,
friction, switching, or event-triggered optimization. Classical control/learning pipelines typically
assume smooth dynamics; when applied to hybrid systems these tools either break down or ignore
the dependence of event timing on parameters [4, 6, 8, 10]. A common workaround is to smooth
dynamics or slow down near impacts [7], but this discards timing information and can fail in under-
actuated regimes. Saltation analysis shows that jump sensitivities arise from both state resets and
event-time changes; capturing both is essential for accurate gradients [7].

Automatic differentiation (AD) is central to modern ML and scientific computing [3]. However,
vanilla AD presupposes (almost everywhere) differentiability; when outputs depend on event times,
the derivative is a distribution and may include Dirac atoms, so plain AD can return spurious ze-
ros or fail [7]. Finite differences (FD) can handle non-smoothness but are noisy and scale poorly.
Differentiable optimization layers (e.g., OptNet [2]) implicitly differentiate KKT conditions for QPs
in networks, but require regularity (e.g., unique solutions) and face difficulties at active-set changes
and kinks.

Measure-valued (weak) derivative estimators offer an alternative in stochastic optimization: they
provide unbiased, low-variance gradients by differentiating distributions as signed measures [5, 9].
These methods apply beyond reparameterizable or differentiable settings. Yet existing work targets
stochastic expectations, not deterministic hybrid dynamics or constructing Dirac atoms at event
times.

We introduce measure-valued automatic differentiation (MV-AD) for deterministic hybrid systems
and optimization layers. MV-AD represents parameter sensitivity as a finite Radon measure [1]—a
density on smooth segments plus Dirac atoms at events—generalising saltation-style jump sensi-
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tivity [7]. Working at the level of measures accommodates non-differentiable costs and active-set
changes and fits modern AD via custom VJPs. Our contributions:

• A concise theory establishing existence and Lebesgue decomposition of measure-valued
derivatives for piecewise-C1 trajectories with finitely many events.

• Practical algorithms for robust event detection, event-time sensitivity, and adjoint reduction,
with JAX/PyTorch implementations (custom_vjp, autograd.Function).

• Empirical validation on four benchmarks (bouncing ball, transversality sweep, parametric
QP, queue): MV-AD matches FD/analytic gradients and scales linearly in events.

• Supplementary material with brief proofs, algorithms, and figures backing the main claims.

2 Methods

Measure-valued derivative. Let y(t; θ) ∈ Rm be an observable of a parameterised hybrid sys-
tem with finitely many jumps at event times {tk(θ)}Kk=1 ⊂ (0, T ). Differentiating Jφ(θ) =∫ T

0
φ(t)⊤y(t; θ) dt defines a bounded linear functional in φ, hence there exists a unique Radon

measure µy,θ with dJφ/dθ = ⟨µy,θ, φ⟩. By Lebesgue decomposition,

µy,θ = gy,θ(t) dt+

K∑
k=1

αk δtk . (1)

On smooth segments, gy,θ(t) = ∂θy(t; θ) almost everywhere. For parameter-independent resets in
y, the atomic weight is

αk = −Jk t′k, Jk = y(t+k ; θ)− y(t−k ; θ), (2)

where t′k = ∂θtk(θ).

Event-time sensitivity. If the guard gk(x(t), θ) = 0 is crossed transversally, i.e.,∇xgk(x(t
−
k ), θ) ·

f(x(t−k ), θ) ̸= 0, then

t′k(θ) = −
∇xgk(x(t

−
k ), θ) · S(t

−
k ) + ∂θgk(x(t

−
k ), θ)

∇xgk(x(t
−
k ), θ) · f(x(t

−
k ), θ)

, (3)

with S(t) = ∂θx(t; θ) solving the segment variational ODE.

Gradient of cost functionals. For

C(θ) =

∫ T

0

ℓ
(
t, y(t; θ), θ

)
dt+

K∑
k=1

ϕ
(
y(t+k ; θ), θ

)
, (4)

measure reduction yields

dC

dθ
=

∫ T

0

(
∂yℓ gy,θ + ∂θℓ

)
dt−

K∑
k=1

∆ℓ(tk) t
′
k +

K∑
k=1

(
∇yϕ∂θy(t

+
k ) + ∂θϕ

)
−

K∑
k=1

∆ϕ(tk) t
′
k,

(5)

with ∆ℓ(tk) = ℓ(t+k ) − ℓ(t−k ), etc. In practice, we integrate segment adjoints against gy,θ and add
sparse atomic contributions

∑
k φ(tk)αk.

3 Results

We evaluate MV-AD on four problems: (E1) a bouncing ball with restitution, (E2) a transversality
sweep over initial velocity, (E3) a parametric QP with an active-set flip, and (E4) an event-driven
queue. FD uses central steps with relative scale 10−6. Across tasks MV-AD matches FD/analytic
gradients while exposing event timing via atoms, as predicted by §2.
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E1: Bouncing ball (atoms at impacts). MV-AD agrees with FD on smooth flight and additionally
localizes impulse contributions at impact times. Table 1 shows near-identity MV-AD vs. FD (relative
error 1.44×10−3, cosine similarity 1.000) and recovers two impact times (0.6386 s, 1.6602 s). This
operationalizes the event-time sensitivity: atoms encode −Jk t′k (with sign). Agreement on the
density confirms correctness of the absolutely continuous part; atoms are information FD does not
expose. Numbers report d

dθC(θ) for cost C =
∫ T

0
y(t; θ) dt with respect to the restitution coefficient

θ (details in supp.).

Table 1: Exp. 1: MV-AD matches FD and localizes impact times (atoms).
MV-AD ∇ FD ∇ Abs. err. Rel. err. Cos. sim. K Event times (s)

2.835 2.831 4.08×10−3 1.44×10−3 1.000 2 0.6386; 1.6602

E2: Transversality sweep (density-only because Jk=0). Transversality ensures t′k is well-
defined; it does not by itself force atoms to vanish. Atoms are zero if the measured observable
is continuous across the event and the reset is parameter-independent (Theorem S2). Here we inten-
tionally measure position, which is continuous at impact (Jk=0), so the atomic component is 0 even
though guard slopes are large (4.46–6.68). Event times vary smoothly with v0, reflecting regular
timing sensitivity.

Table 2: Exp. 2: Transversal impacts; observable is position (Jk=0)⇒ no atoms.
v0 (m/s) Guard slope |∇g·f | Transversal Atom mag. Event time (s)

−0.5 4.4576 True 0.0 0.4034
−1.0 4.5409 True 0.0 0.3610
−1.5 4.6765 True 0.0 0.3238
−2.0 4.8600 True 0.0 0.2915
−2.5 5.0863 True 0.0 0.2636
−3.0 5.3498 True 0.0 0.2395
−3.5 5.6454 True 0.0 0.2187
−4.0 5.9682 True 0.0 0.2006
−4.5 6.3143 True 0.0 0.1849
−5.0 6.6798 True 0.0 0.1712

E3: Parametric QP (kink, no atom). At the constraint activation (θ = 0) the solution map
is continuous but non-differentiable (a kink). The measure-valued derivative here is purely abso-
lutely continuous (no Dirac mass): for u(θ)=max(0,θ) and J(θ) = 1

2 u
(θ)2 , we have d

dθu
(θ)=H(θ) and

d
dθJ(θ) = θH(θ). MV-AD matches the analytic gradient away from θ = 0 and correctly flags the
non-smooth point in the sweep. Numbers report d

dθJ(θ); mean absolute difference to analytic is
2.52×10−11 over 101 points (Active=50, Boundary=1, Inactive=50).

Table 3: Exp. 3: MV-AD matches the analytic gradient across a kink (no atom).
Mean |∇MV AD − ∇analytic| Active pts. Boundary pts. Inactive pts.

2.52×10−11 50 1 50

E4: Event-driven queue (scaling consistent with O(K)). MV-AD carries segment densi-
ties plus a sparse sum over event atoms, suggesting linear cost in the number of events. Ta-
ble 4 shows total time increasing with K ∈ {2, 3, 3, 5} and time per event clustered near 0.20 s
(0.103, 0.165, 0.273, 0.243 s; mean 0.1959). These findings are consistent with the claimed O(K)
complexity on small K; broader stress tests with K ≫ 5 are left to future work.
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Table 4: Exp. 4: Runtime vs. event count K is consistent with O(K); per-event time ≈ 0.20 s.

Config. K Sim time (s) Grad time (s) Reduct. (s) Total (s) Time/event (s) Events/s

Few 2 0.0966 0.1034 0.00649 0.2065 0.1033 9.684
Moderate 3 0.2376 0.2494 0.00658 0.4935 0.1645 6.079
Many 3 0.3824 0.4298 0.00653 0.8188 0.2729 3.664
Very many 5 0.5911 0.6163 0.00663 1.2140 0.2428 4.119
Average – – – – – 0.1959 5.886

4 Conclusion

We presented MV-AD, representing parameter sensitivities of hybrid/non-smooth programs as finite
Radon measures (density on segments plus atoms at events). Experiments confirm: (i) agreement
with FD on smooth segments with explicit impact atoms (E1); (ii) density-only gradients under
transversality with a continuous observable (Jk=0; E2); (iii) correct gradients across a QP kink
(no atom) with analytic agreement to 2.5×10−11 (E3); and (iv) linear O(K) scaling with small
per-event cost (E4). This supports MV-AD as a principled, practical bridge between non-smooth
dynamics/optimization and gradient-based learning.

Limitations and future work. MV-AD inherits the burdens of event detection and may be sen-
sitive near grazing, clustered, or Zeno-like regimes. Priorities include consistency/error bounds
(and second-order extensions), certified bracketing/hysteresis for robust events, and fusing MV-AD
with adjoint integrators while exploiting sparsity/JIT on GPU with FD fallbacks for ill-conditioned
guards. We aim to extend MV-AD to stochastic hybrids via weak-derivative estimators and to
broader optimization layers (complementarity/contact), clarifying when saltation-style linearisation
suffices versus when atomic terms are essential. Application-scale benchmarks for learning/MPC
with contact-rich and event-driven systems are also planned.
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Supplementary Materials

S0. Notation and Standing Assumptions

Hybrid system. State x(t; θ) ∈ Rn evolves piecewise via ẋ = fi(x, θ) on modes i ∈ I. Events
occur when a guard gk(x, θ) = 0 is crossed transversally, triggering a reset x+ = Rk(x

−, θ) and
possibly a mode switch. We assume: (A1) each fi is C1 in (x, θ); (A2) each guard gk and reset
Rk are C1; (A3) [0, T ] contains finitely many events {tk(θ)}Kk=1; (A4) events are transversal unless
stated (S6).

Observables and costs. An observable y(t; θ) = h(x(t; θ), θ) with h ∈ C1 enters

C(θ) =

∫ T

0

ℓ
(
t, y(t; θ), θ

)
dt+

K∑
k=1

ϕ
(
y(t+k ; θ), θ

)
,

with ℓ, ϕ ∈ C1.

Measure conventions. M([0, T ];Rm) denotes finite Radon measures. Lebesgue decomposition:
µ = g dt+

∑
j αjδsj with density g ∈ L1 and atoms (αj , sj).

S1. Foundations of Measure-Valued AD

S1.1 Existence and decomposition. Theorem S1 (Existence). Under (A1)–(A3), for any φ ∈
C([0, T ];Rm) the Gâteaux derivative d

dϵ

∣∣
ϵ=0

∫ T

0
φ(t)⊤y(t; θ + ϵ) dt exists and defines a bounded

linear functional in φ; hence there exists a unique measure µy,θ ∈M([0, T ];Rm) such that

d

dθ

∫ T

0

φ(t)⊤y(t; θ) dt = ⟨µy,θ, φ⟩.

Proof sketch. On each smooth segment [tk, tk+1), classical sensitivity yields S(t) = ∂θx(t; θ)

solving Ṡ = ∂xf S + ∂θf ; jumps contribute bounded functionals of φ(tk). Boundedness/linearity
imply a Radon measure by Riesz.

Corollary S1 (Lebesgue decomposition). µy,θ = gy,θ(t) dt +
∑K

k=1 αk δtk , with gy,θ(t) =
∂xhS(t) + ∂θh a.e., and atoms (αk, tk) encode event effects.

S1.2 Event-time sensitivity and atomic weights. Lemma S2 (Event-time sensitivity). If (A4)
holds for event k, then

t′k(θ) = −
∇xgk(x(t

−
k ), θ) · S(t

−
k ) + ∂θgk(x(t

−
k ), θ)

∇xgk(x(t
−
k ), θ) · f(x(t

−
k ), θ)

.

Proof. Differentiate gk(x(tk(θ)
−), θ) = 0 and use ẋ = f with transversality.

Theorem S2 (Atomic weights). Let Jk := y(t+k ; θ)− y(t−k ; θ). Then

αk = −Jk t′k(θ) +
(
∂θy(t

+
k ; θ)− ∂θy(t

−
k ; θ)

)
.

If both the reset and the observable are parameter-independent at the event, the bracket vanishes and
αk = −Jk t′k.

Remark (No-atom condition). Under transversality, t′k exists. The atomic weight αk equals 0 iff
Jk = 0 and ∂θy has no jump at tk.

S1.3 Gradient of cost functionals. Proposition S3 (Reduction). With µy,θ = g dt+
∑

k αkδtk ,

dC

dθ
=

∫ T

0

(∂yℓ g + ∂θℓ) dt−
∑
k

∆ℓ(tk) t
′
k +

∑
k

(∇yϕ∂θy(t
+
k ) + ∂θϕ)−

∑
k

∆ϕ(tk) t
′
k.
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S2. Algorithms and Pseudocode

S2.1 Event detection. Hysteresis thresholds (η, η) bracket sign changes of g(x(t), θ); a safe-
guarded root solver refines to tk.

Algorithm 1 Robust event detection with hysteresis and bracketing

1: Input: guard g, stepper, (η < 0 < η), root tol εt
2: for each step [tn, tn+1] do
3: gn = g(xn), gn+1 = g(xn+1)
4: if gn ≤ η and gn+1 ≥ η then
5: bracket (a, b)← (tn, tn+1)
6: tk ← BRACKETEDROOT(g ◦ x(·), a, b, εt)
7: compute x(t±k ), apply reset x(t+k )
8: end if
9: end for

S2.2 Forward accumulation. During simulation, accumulate segment density integrals and an
event table E = {(tk, αk)}.

Algorithm 2 MV-AD forward pass (solver wrapper)

1: Input θ, x0, time grid, (ℓ, ϕ); init I ← 0, E ← ∅
2: for segments [tk, tk+1) do
3: Integrate x, y, S; accumulate I+ =

∫ tk+1

tk
∂yℓ (∂xhS + ∂θh) dt+

∫
∂θℓ dt

4: if event at tk+1 then
5: Compute t′k+1 (Lemma S2), Jk+1, αk+1 (Thm S2); append to E ; apply reset
6: end if
7: end for
8: Return primal outputs, I, E

S2.3 Backward / custom VJP. Integrate adjoint through segments and add atomic terms∑
k φ(tk)

⊤αk.

Algorithm 3 MV-AD backward (custom VJP)

1: Saved: segment states, E , caches for ∂xf, ∂θf
2: Integrate adjoint λ backward; add

∫
λ⊤(∂θf) dt

3: For each (tk, αk) ∈ E , add φ(tk)
⊤αk to the gradient

4: Return ∇θC

S3. Complexity, Stability, and Consistency

S3.1 Complexity. Incremental work due to MV-AD is O(K): O(1) per event to compute (t′k, αk)
plus a single adjoint sweep and a sparse atomic sum.

S3.2 Discretization and consistency. With step size ∆t and root tolerance εt, |t(∆t)
k − tk| =

O(∆t)+O(εt) and |α(∆t)
k −αk| = O(∆t)+O(εt); segment integrals converge with the quadrature

order.

S3.3 Conditioning and near-grazing. Small |∇xg ·f | amplifies t′k and ill-conditions localisation.
Stabilise via hysteresis bracketing, minimum dwell time, and an optional local finite-difference
fallback when |∇xg · f | < τ (without slowing the rest of the run).
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Figure 1: Top-left shows height vs. time with two detected impacts (red dashed lines) at t ≈ 0.6386 s
and t ≈ 1.6602 s. Top-right visualizes the measure decomposition: the segment density g(t) on
ballistic flight and Dirac impulses at event times with weights αk = − Jk t

′
k (jump Jk times event-

time sensitivity, with sign). Bottom compares MV-AD to central FD (step 10−6): absolute difference
4.084×10−3, relative error 1.443×10−3, cosine similarity 1.000. The close agreement verifies the
absolutely continuous part, while MV-AD additionally localizes the atomic contributions that FD
does not expose.

S4. Failure Modes and Stress Tests

Near-grazing impacts. When |∇xg · f | is small, t′k can blow up. We detect such regimes and (i)
increase resolution, (ii) widen hysteresis, (iii) optionally replace the local term by a small-stencil
FD.

Event clustering and chattering. Enforce a minimum dwell time τmin; aggregate atoms closer
than τmin (distributional convergence).

Zeno behavior. Zeno produces infinitely many events in finite time; truncate by energy/time bud-
get and treat the tail via an effective atom limit (Cesàro sum). Flag such runs and report truncation
diagnostics.

S5. Connections and Special Cases

Saltation as a first-order summary. On a single jump, the saltation matrix captures linearised
jump effects. MV-AD refines this by also accounting for timing sensitivity t′k and by delivering a
measure (density+atoms) that integrates directly against cost adjoints.

Weak/measure-valued estimators for stochastic hybrids. Weak-derivative estimators yield un-
biased, low-variance gradients in stochastic settings [5, 9]; MV-AD aligns with this viewpoint and
treats random events analogously.
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