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Abstract

Differentiating hybrid dynamical systems and optimization layers with jumps
poses fundamental challenges for classical automatic differentiation. When the
output trajectory has parameter-dependent discontinuities in time or state, the
derivative is not an ordinary function. We propose measure-valued automatic
differentiation (MV-AD), which treats the parameter derivative of the trajectory as
a finite Radon measure consisting of an absolutely continuous density on smooth
segments and Dirac atoms at event times. MV-AD generalises saltation-style jump
sensitivity and obtains accurate gradients without requiring global differentiabil-
ity. Experiments on bouncing-ball dynamics, a transversality study, a parametric
quadratic program, and a queueing model show that MV-AD matches finite dif-
ferences and analytic gradients (up to 10~*! versus analytic; 103 relative error
versus FD) while scaling linearly with the number of events.

1 Introduction

Hybrid dynamical systems combine continuous flows with discrete transitions and arise in robotics,
power networks, queueing, and economics. Their trajectories contain discontinuities due to contact,
friction, switching, or event-triggered optimization. Classical control/learning pipelines typically
assume smooth dynamics; when applied to hybrid systems these tools either break down or ignore
the dependence of event timing on parameters [4} 6 8, [10]. A common workaround is to smooth
dynamics or slow down near impacts [[7]], but this discards timing information and can fail in under-
actuated regimes. Saltation analysis shows that jump sensitivities arise from both state resets and
event-time changes; capturing both is essential for accurate gradients [7]].

Automatic differentiation (AD) is central to modern ML and scientific computing [3]. However,
vanilla AD presupposes (almost everywhere) differentiability; when outputs depend on event times,
the derivative is a distribution and may include Dirac atoms, so plain AD can return spurious ze-
ros or fail [7]. Finite differences (FD) can handle non-smoothness but are noisy and scale poorly.
Differentiable optimization layers (e.g., OptNet [2]) implicitly differentiate KKT conditions for QPs
in networks, but require regularity (e.g., unique solutions) and face difficulties at active-set changes
and kinks.

Measure-valued (weak) derivative estimators offer an alternative in stochastic optimization: they
provide unbiased, low-variance gradients by differentiating distributions as signed measures [} 9.
These methods apply beyond reparameterizable or differentiable settings. Yet existing work targets
stochastic expectations, not deterministic hybrid dynamics or constructing Dirac atoms at event
times.

We introduce measure-valued automatic differentiation (MV-AD) for deterministic hybrid systems
and optimization layers. MV-AD represents parameter sensitivity as a finite Radon measure [1]—a
density on smooth segments plus Dirac atoms at events—generalising saltation-style jump sensi-
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tivity [[7]. Working at the level of measures accommodates non-differentiable costs and active-set
changes and fits modern AD via custom VJPs. Our contributions:

* A concise theory establishing existence and Lebesgue decomposition of measure-valued
derivatives for piecewise-C'! trajectories with finitely many events.

* Practical algorithms for robust event detection, event-time sensitivity, and adjoint reduction,
with JAX/PyTorch implementations (custom_vjp, autograd.Function).

» Empirical validation on four benchmarks (bouncing ball, transversality sweep, parametric
QP, queue): MV-AD matches FD/analytic gradients and scales linearly in events.

* Supplementary material with brief proofs, algorithms, and figures backing the main claims.

2 Methods

Measure-valued derivative. Let y(¢;0) € R™ be an observable of a parameterised hybrid sys-
tem with finitely many jumps at event times {t;(0)}X_, C (0,T). Differentiating J,(f) =

fOT ©(t)Ty(t;0) dt defines a bounded linear functional in ¢, hence there exists a unique Radon
measure /i, 9 With dJ,,/df = (11,6, p). By Lebesgue decomposition,
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On smooth segments, g, ¢(t) = Jgy(t; #) almost everywhere. For parameter-independent resets in
vy, the atomic weight is

ar=—Juty,  Jr=y(t:0) —y(ty;0), )
where ¢} = Jgt(0).
Event-time sensitivity. If the guard g;,(z(t), ) = 0 is crossed transversally, i.e., V,gi (z(t; ), 0) -
f(z(t,),0) # 0, then

tr(0) = — - — . 3)
: Vagr(x(ty),0) - f(x(ty),0)
with S(t) = dgx(t; 0) solving the segment variational ODE.
Gradient of cost functionals. For
T K
C(9) =/ 0(ty(t:0),0) dt + > p(y(t]:0),0), (4)
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measure reduction yields
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with Al(ty) = £(t]) — £(t;,), etc. In practice, we integrate segment adjoints against g, o and add
sparse atomic contributions ), ¢(tx) ou,.
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3 Results

We evaluate MV-AD on four problems: (E1) a bouncing ball with restitution, (E2) a transversality
sweep over initial velocity, (E3) a parametric QP with an active-set flip, and (E4) an event-driven
queue. FD uses central steps with relative scale 1075, Across tasks MV-AD matches FD/analytic
gradients while exposing event timing via atoms, as predicted by



E1: Bouncing ball (atoms at impacts). MV-AD agrees with FD on smooth flight and additionally
localizes impulse contributions at impact times. Table[I|shows near-identity MV-AD vs. FD (relative
error 1.44x1073, cosine similarity 1.000) and recovers two impact times (0.6386's, 1.6602 s). This
operationalizes the event-time sensitivity: atoms encode —Jj t;, (with sign). Agreement on the
density confirms correctness of the absolutely continuous part; atoms are information FD does not

expose. Numbers report d—déC’ (9) for cost C = fOT y(t; 0) dt with respect to the restitution coefficient
0 (details in supp.).

Table 1: Exp. 1: MV-AD matches FD and localizes impact times (atoms).
MV-ADV FDV Abs. err. Rel.err. Cos.sim. K  Event times (s)

2.835 2831 4.08x107% 1.44x1073 1.000 2 0.6386; 1.6602

E2: Transversality sweep (density-only because J,=0). Transversality ensures ¢} is well-
defined; it does not by itself force atoms to vanish. Atoms are zero if the measured observable
is continuous across the event and the reset is parameter-independent (Theorem S2). Here we inten-
tionally measure position, which is continuous at impact (J; =0), so the atomic component is 0 even
though guard slopes are large (4.46-6.68). Event times vary smoothly with v, reflecting regular
timing sensitivity.

Table 2: Exp. 2: Transversal impacts; observable is position (J;=0) = no atoms.

vo (m/s) Guard slope |Vg- f| Transversal Atom mag. Event time (s)

—0.5 4.4576 True 0.0 0.4034
—1.0 4.5409 True 0.0 0.3610
—-1.5 4.6765 True 0.0 0.3238
—-2.0 4.8600 True 0.0 0.2915
—2.5 5.0863 True 0.0 0.2636
—-3.0 5.3498 True 0.0 0.2395
—3.5 5.6454 True 0.0 0.2187
—4.0 5.9682 True 0.0 0.2006
—4.5 6.3143 True 0.0 0.1849
—5.0 6.6798 True 0.0 0.1712

E3: Parametric QP (kink, no atom). At the constraint activation (§ = 0) the solution map
is continuous but non-differentiable (a kink). The measure-valued derivative here is purely abso-
lutely continuous (no Dirac mass): for u(?)=m2x(0:0) and J(9) = % u®’, we have d%u(e):H(e) and
d%J (8) = 6 H(6). MV-AD matches the analytic gradient away from 6 = 0 and correctly flags the
non-smooth point in the sweep. Numbers report %J (0); mean absolute difference to analytic is

2.52x 107! over 101 points (Active=50, Boundary=1, Inactive=50).

Table 3: Exp. 3: MV-AD matches the analytic gradient across a kink (no atom).

Mean |[Varv AD — Vanalytic| Active pts. Boundary pts. Inactive pts.

2.52x10" 1 50 1 50

E4: Event-driven queue (scaling consistent with O(K)). MV-AD carries segment densi-
ties plus a sparse sum over event atoms, suggesting linear cost in the number of events. Ta-
ble 4| shows total time increasing with K € {2,3,3,5} and time per event clustered near 0.20s
(0.103,0.165,0.273,0.243 s; mean 0.1959). These findings are consistent with the claimed O(K)
complexity on small K'; broader stress tests with K >> 5 are left to future work.



Table 4: Exp. 4: Runtime vs. event count K is consistent with O(K); per-event time ~ 0.20s.

Config. K Simtime (s) Grad time (s) Reduct. (s) Total (s) Time/event (s) Events/s
Few 2 0.0966 0.1034 0.00649 0.2065 0.1033 9.684
Moderate 3 0.2376 0.2494 0.00658 0.4935 0.1645 6.079
Many 3 0.3824 0.4298 0.00653 0.8188 0.2729 3.664
Very many 5 0.5911 0.6163 0.00663 1.2140 0.2428 4,119
Average - - - - - 0.1959 5.886

4 Conclusion

We presented MV-AD, representing parameter sensitivities of hybrid/non-smooth programs as finite
Radon measures (density on segments plus atoms at events). Experiments confirm: (i) agreement
with FD on smooth segments with explicit impact atoms (E1); (ii) density-only gradients under
transversality with a continuous observable (J;=0; E2); (iii) correct gradients across a QP kink
(no atom) with analytic agreement to 2.5x10~ ! (E3); and (iv) linear O(K) scaling with small
per-event cost (E4). This supports MV-AD as a principled, practical bridge between non-smooth
dynamics/optimization and gradient-based learning.

Limitations and future work. MV-AD inherits the burdens of event detection and may be sen-
sitive near grazing, clustered, or Zeno-like regimes. Priorities include consistency/error bounds
(and second-order extensions), certified bracketing/hysteresis for robust events, and fusing MV-AD
with adjoint integrators while exploiting sparsity/JIT on GPU with FD fallbacks for ill-conditioned
guards. We aim to extend MV-AD to stochastic hybrids via weak-derivative estimators and to
broader optimization layers (complementarity/contact), clarifying when saltation-style linearisation
suffices versus when atomic terms are essential. Application-scale benchmarks for learning/MPC
with contact-rich and event-driven systems are also planned.
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Supplementary Materials

S0. Notation and Standing Assumptions

Hybrid system. State x(¢;0) € R™ evolves piecewise via © = f;(x,0) on modes i € Z. Events
occur when a guard gi(z,0) = 0 is crossed transversally, triggering a reset xt = Rp(z~,0) and
possibly a mode switch. We assume: (A1) each f; is C' in (x 0); (A2) each guard gy, and reset
Ry, are C''; (A3) [0, T contains finitely many events {¢j(6)}_,; (A4) events are transversal unless
stated (S6).

Observables and costs. An observable y(¢;6) = h(z (t' 6),0) with h € C* enters

T
C(e):/ 0(t,y(t;6),6 dt+Z¢>
0
with £, ¢ € C*.

Measure conventions. M([0,T]; R™) denotes finite Radon measures. Lebesgue decomposition:
p=gdt+3; a;ds with density g € L' and atoms (a;, s;).

S1. Foundations of Measure-Valued AD

S1.1 Existence and decomposition. Theorem S1 (Existence). Under (A1)-(A3), for any ¢ €
C(]0,T); R™) the Gateaux derivative % —o fOT () Ty(t; 0 + €) dt exists and defines a bounded
linear functional in ¢; hence there exists a unique measure g, 9 € M ([0, T]; R™) such that

d (T -

=5 [ o) y(t:0)dt = (py,0, 9)-

Proof sketch. On each smooth segment [ty, ¢r11), classical sensitivity yields S(t) = Opx(t;0)

solving S = 8, f S + 9y f; jumps contribute bounded functionals of ¢(t). Boundedness/linearity
imply a Radon measure by Riesz.

Corollary S1 (Lebesgue decomposition). 1, 9 = g,¢(t)dt + Zle ay Oy, With gy 0(t) =
0:h S(t) + Oph a.e., and atoms (g, tx) encode event effects.

S1.2 Event-time sensitivity and atomic weights. Lemma S2 (Event-time sensitivity). If (A4)
holds for event k, then

ty(6) =

 Vagu(eltp). 0) - S(tp) + dogn(a(tp),6)
Vagr((ty),0) - f(a(ty),0)
Proof. Differentiate g (x(tx(6)7),0) = 0 and use & = f with transversality.
Theorem S2 (Atomic weights). Let J;, := y(t;;0) — y(t; ; 6). Then
ap = —Jp t},(0) + (Ooy(t:0) — Doy(t; :0)).

If both the reset and the observable are parameter-independent at the event, the bracket vanishes and
ap = —Jg t;c .

Remark (No-atom condition). Under transversality, ¢ exists. The atomic weight «y, equals 0 iff
Jr = 0 and Jpy has no jump at t.
S1.3 Gradient of cost functionals. Proposition S3 (Reduction). With /i, 9 = gdt + >, a6y,

ac ("
5 = | @ula+s0) dt—ZA€ (t) tk+z V6 Opy(tf) + Do) — ZA¢> (t) th-
0



S2. Algorithms and Pseudocode

S2.1 Event detection. Hysteresis thresholds (7,7) bracket sign changes of g(x(t),0); a safe-
guarded root solver refines to ty,.

Algorithm 1 Robust event detection with hysteresis and bracketing

1: Input: guard g, stepper, (n < 0 < 7), root tol &¢
2: for each step [t,, 1] do

3 gn = g(mn)a In+1 = g(xn+l>

4. if g, <nandg,y1 > 7 then

5: bracket (a,b) < (tn,tn11)

6 ty < BRACKETEDROOT(g o x(-),a, b, &)
7 compute z(t;), apply reset z(t;)

8 end if

9: end for

S2.2 Forward accumulation. During simulation, accumulate segment density integrals and an
event table & = {(ty, ax)}.

Algorithm 2 MV-AD forward pass (solver wrapper)

. Input 0, zq, time grid, (¢, ¢); initZ + 0, € + 0
. for segments [tg,tx+1) do
Integrate x, y, S; accumulate 7+ = ftt:“ Oyl (Ozh S + Dgh) dt + [ Dl dt
if event at ;1 then
Compute t;_, ; (Lemma S2), Jy 41, 41 (Thm S2); append to £; apply reset
end if
end for
: Return primal outputs, Z, £

e A A S oy

S2.3 Backward / custom VJP. Integrate adjoint through segments and add atomic terms
> K ‘P(tk)Tak'

Algorithm 3 MV-AD backward (custom VIP)
1: Saved: segment states, £, caches for 0, f, Op f
2: Integrate adjoint A backward; add [ AT (0 f) dt
3: For each (tg, ay,) € &, add ¢(t1) Ty, to the gradient
4: Return VoC

S3. Complexity, Stability, and Consistency

S3.1 Complexity. Incremental work due to MV-AD is O(K): O(1) per event to compute (¢}, o)
plus a single adjoint sweep and a sparse atomic sum.

S3.2 Discretization and consistency. With step size At and root tolerance &, |t,(€m) —tg] =

O(At)+O(ey) and |a,(€At) —ag| = O(At) + O(et); segment integrals converge with the quadrature
order.

S3.3 Conditioning and near-grazing. Small |V, g- f| amplifies ¢}, and ill-conditions localisation.
Stabilise via hysteresis bracketing, minimum dwell time, and an optional local finite-difference
fallback when |V g - f| < 7 (without slowing the rest of the run).



Trajectory with events Measure representation
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Figure 1: Top-left shows height vs. time with two detected impacts (red dashed lines) at ¢ ~ 0.6386 s
and ¢t ~ 1.6602s. Top-right visualizes the measure decomposition: the segment density g(¢) on
ballistic flight and Dirac impulses at event times with weights ay, = — Jj, ¢}, (jump Jj, times event-
time sensitivity, with sign). Bottom compares MV-AD to central FD (step 10~°): absolute difference
4.084x 1073, relative error 1.443x 1073, cosine similarity 1.000. The close agreement verifies the
absolutely continuous part, while MV-AD additionally localizes the atomic contributions that FD
does not expose.

S4. Failure Modes and Stress Tests

Near-grazing impacts. When |V,g - f| is small, ¢} can blow up. We detect such regimes and (i)
increase resolution, (ii) widen hysteresis, (iii) optionally replace the local term by a small-stencil
FD.

Event clustering and chattering. Enforce a minimum dwell time 7,,;,; aggregate atoms closer
than 7, (distributional convergence).

Zeno behavior. Zeno produces infinitely many events in finite time; truncate by energy/time bud-
get and treat the tail via an effective atom limit (Cesaro sum). Flag such runs and report truncation
diagnostics.

S5. Connections and Special Cases

Saltation as a first-order summary. On a single jump, the saltation matrix captures linearised
jump effects. MV-AD refines this by also accounting for timing sensitivity ¢, and by delivering a
measure (density+atoms) that integrates directly against cost adjoints.

Weak/measure-valued estimators for stochastic hybrids. Weak-derivative estimators yield un-
biased, low-variance gradients in stochastic settings [5, 9]; MV-AD aligns with this viewpoint and
treats random events analogously.
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