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Abstract
Federated learning faces severe communication
bottlenecks due to the high dimensionality of
model updates. Communication compression
with contractive compressors (e.g., Top-K) is of-
ten preferable in practice but can degrade perfor-
mance without proper handling. Error feedback
(EF) mitigates such issues but has been largely
restricted for smooth, unconstrained problems,
limiting its real-world applicability where non-
smooth objectives and safety constraints are criti-
cal. We advance our understanding of EF in the
canonical non-smooth convex setting by estab-
lishing new lower complexity bounds for first-
order algorithms with contractive compression.
Next, we propose Safe-EF, a novel algorithm
that matches our lower bound (up to a constant)
while enforcing safety constraints essential for
practical applications. Extending our approach to
the stochastic setting, we bridge the gap between
theory and practical implementation. Extensive
experiments in a reinforcement learning setup,
simulating distributed humanoid robot training,
validate the effectiveness of Safe-EF in ensuring
safety and reducing communication complexity.

1. Introduction
Federated learning is a crucial framework for train-
ing machine learning models across distributed environ-
ments (Konečný et al., 2016; Kairouz, 2019), where data
is naturally stored in a distributed fashion. Formally, such
problems can be expressed as

min
x∈X

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where n represents the number of workers or machines
participating in the training, and x ∈ Rd denotes the model
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parameters to be optimized. The function fi:Rd → R is the
local (possibly non-smooth) loss associated with data on
worker i ∈ [n] := {1, . . . , n}, and X is a subset of Rd.

This paradigm is particularly valuable in privacy-sensitive
and resource-constrained settings, where data remains de-
centralized, and collaboration is achieved without requiring
direct data sharing. For instance, consider a fleet of robots
that operate in homes (Kalashnikov et al., 2018; Brohan
et al., 2022). In such settings, traditional centralized learn-
ing approaches are impractical, as transmitting raw sensory
data from each robot to a central server would pose severe
privacy risks and require enormous bandwidth. Furthermore,
these robots must adapt to diverse household environments,
necessitating personalized learning while still benefiting
from collective experience across the fleet. Despite its ad-
vantages, distributed training faces significant communica-
tion bottlenecks due to the high dimensionality of model
updates. This challenge necessitates the development of
communication-efficient algorithms.

Communication compression with Top-K. One promi-
nent strategy to reduce communication costs is the com-
munication compression technique, which applies possibly
randomized compression to updates prior to transmission.
One of the most practical and versatile classes of compres-
sion operators are those that satisfy the contractive property:

E
[
∥C(x)− x∥2

]
≤ (1− δ)∥x∥2 for all x ∈ Rd,

where δ ∈ (0, 1] represents the accuracy of the compression.
Prominent examples are Top-K sparsifier that preserves K
largest components of vector x in magnitude, and random
sampling methods such as Rand-K that preserves a subset of
K components of x chosen uniformly at random. Although
both Top-K and Rand-K are contractive with δ ≥ K/d,
methods utilizing Top-K operator are often empirically su-
perior due to their greedy nature (You et al., 2016).

Non-smooth challenges. The majority of works focusing
on communication compression assume that the objective
function is smooth, i.e., differentiable with Lipschitz contin-
uous gradient, simplifying theoretical analysis (Stich et al.,
2018; Richtárik et al., 2021). However, this assumption
limits the applicability of developed methods to many real-
world problems, where non-smooth functions frequently
arise. For instance, consider problems involving ReLU ac-
tivations (Glorot et al., 2011) or clipped objectives such
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as those in proximal policy optimization (PPO, Schulman
et al., 2017). This motivates the first key question of our
study:

Question 1: What are the limits of compressed
gradient methods in the non-smooth regime?

To illustrate the challenges of designing meaningful meth-
ods with contractive compressors like Top-K, we present a
non-convergence example for vanilla compressed gradient
descent (CGD) in the non-smooth setting. Consider

CGD xt+1 = xt − γ

n

n∑
i=1

C(f ′
i(x

t)), (2)

where f ′
i(x

t) ∈ ∂fi(x
t) is a subgradient of fi and γ ≥ 0 is

a stepsize.
Example 1.1. For any n ≥ 1, there exists a specific in-
stance of problem (1) where X = R2, and f(x) = ∥x∥1 is
non-smooth, convex, and 1-Lipschitz continuous. For this
instance, with some initial vector x0 ∈ R2, the iterates of
CGD (2) applied with the Top-1 compressor and any stepsize
γ ≥ 0, satisfy

f(xt)−min
x

f(x) = 1 +
γ

2
for any t ≥ 0.

This example implies that running vanilla CGD with the
Top-1 compressor even on a simple non-smooth problem
may yield no improvement. It is remarkable that this failure
occurs even in the identical data regime fi = f for all i ∈
[n], the setting where CGD is known to converge in smooth
case (Nesterov, 2012; Nutini et al., 2015; Beznosikov et al.,
2023). The idea of the construction in Example 1.1 is that
due to a rapid change of the gradients f ′ in consecutive
iterations, CGD consistently ignores the direction of the
second component of xt, which results in a pathological
cyclic behavior. See Figure 1 for an illustration.

Error feedback can make things worse! A common rem-
edy for non-convergence issues of compressed gradient
methods is error feedback (EF), a mechanism that has in-
spired several variants (Seide et al., 2014; Richtárik et al.,
2021; Fatkhullin et al., 2024; Gao et al., 2024). Among
these, EF21 is a recent approach with state-of-the-art perfor-
mance guarantees in smooth optimization due to Richtárik
et al. (2021):

EF21
xt+1 = xt − γ vt, vt =

1

n

n∑
i=1

vti ,

vt+1
i = vti + C(f ′

i(x
t+1)− vti).

(3)

where f ′
i(x

t+1) ∈ ∂fi(x
t+1) is a subgradient of fi and vti

is a local gradient estimator at each worker. While Richtárik
et al. (2021) only analyze this algorithm in the smooth non-
convex case, we extend its analysis to smooth convex setup
in Appendix C. However, we show that, surprisingly, EF21
fails to converge on the same problem as CGD.
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Figure 1: Non-convergence of CGD, divergence of EF21
and convergence of Safe-EF for the problem f(x) = ∥x∥1,
i = 1, d = 2 used in the proofs of Examples 1.1 and 1.2
with Top-1 compressor. We run all algorithms for T = 103

iterations with x0 = (γ/2,−1)⊤, γ = 1/
√
T , and v0 =

(1, 1)⊤ (for EF21). ⋆Safe-EF coincides with EF14 (Seide
et al., 2014) in this example.

Example 1.2. Consider the problem instance from Ex-
ample 1.1. For this instance, with some initial vectors
x0, v0 ∈ R2, the iterates of EF21 (3) applied with the Top-1
compressor and any stepsize γ ≥ 0 satisfy

f(xt)−min
x

f(x) = 1 +
γ

2
+ t γ for any t ≥ 0.

This example shows that EF21 does not converge for non-
smooth problems despite achieving an excellent perfor-
mance in smooth case, see Theorem C.1, and reaching the
optimal iteration complexity in smooth non-convex opti-
mization (Huang et al., 2022). Moreover, if we pick the
classical stepsize γ = 1/

√
T , EF21 diverges from the op-

timum with a rate Ω(t/
√
T ) ≈

√
T for t ≈ T , which

is even worse than CGD. We show the divergence in Fig-
ure 1, where we also observe that another EF variant, EF141,
(Seide et al., 2014) converges without problems. We find
such stark difference surprising in light of the equivalence
of EF21 and EF14, established under additivity assumption
of C (Richtárik et al., 2021). The catch is that Top-1 is not
additive, and thus the equivalence does not hold here.

Motivated by this fairly toy example, we find it important to
understand EF in non-smooth setup, and aim to study EF14.

Safety considerations. In addition to these challenges,
safety constraints play a critical role in real-world appli-
cations (Altman, 1999). Ensuring solutions satisfy feasi-
bility requirements is essential, particularly in scenarios
like federated reinforcement learning (FedRL) (Nadiger
et al., 2019; Qi et al., 2021; Jin et al., 2022). Despite
their importance, constrained optimization with commu-
nication compression remains under-explored. Although
some work develop methods assuming X is simple, i.e.,

1Our Safe-EF method presented in Algorithm 1 reduces to
EF14 in unconstrained setting with C0 = Id.
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using projection (Fatkhullin et al., 2021) or linear minimiza-
tion (Nazykov et al., 2024) oracles, they crucially rely on
smoothness. Moreover, the applications in Safe FedRL mo-
tivate us to pay attention to problems with more complex
constraints of the form

X :=
{
x ∈ Rd | g(x) := 1

n

∑n
i=1 gi(x) ≤ 0

}
, (4)

where gi:Rd → R defines a constraint for worker i.

Question 2: Can we design a provably convergent
compressed gradient method with a Top-K com-
pressor for non-smooth constrained problems?

Perhaps, the most common approach to solve (1) with (4) in
non-distributed optimization (n = 1) is to reformulate it as
a saddle point problem, which is then solved by primal-dual
methods (Nemirovski, 2004; Hamedani & Aybat, 2021).
This approach is popular in practice (Ding et al., 2020;
Moskovitz et al., 2023; Ding et al., 2024; Müller et al., 2024)
and has rich theory, e.g., (Boob et al., 2023; Boob & Khalafi,
2024; Zhang & Lan, 2022). However, such methods have
several limitations. First, they are known to be sensitive to
the tuning of the initial dual variable (e.g., the experiments
and discussion in Appendix G) and often require an estimate
of the upper bound of the optimal dual variable. Second,
their theoretical justification often requires projecting both
primal and dual variables onto an unknown bounded set,
which is not aligned with practical implementations. In the
context of EF-type methods, this projection requirement im-
plies several algorithmic and technical challenges because
only certain smooth variants of EF seem to be compatible
with projection, e.g., (Fatkhullin et al., 2021). An alter-
native is to adopt a primal only approach, e.g., switching
subgradient (Polyak, 1967; Lan & Zhou, 2020; Ma et al.,
2020; Huang & Lin, 2023; Jia & Grimmer, 2022), methods
based on the velocity field (Yu et al., 2017; Muehlebach &
Jordan, 2022; Schechtman et al., 2022; Kolev et al., 2024),
or level-set methods (Lin et al., 2018; Boob et al., 2024).
Primal methods have also been used in (non-distributed)
RL applications, e.g., (Xu et al., 2021; Chen et al., 2021;
Jordan et al., 2024; Li et al., 2024). The key advantage of
such primal schemes is their simplicity and convergence
under mild assumptions without the need for the estimation
of dual variables.

2. Contributions
• First, we establish a Ω

(
MR√
δT

)
convergence lower

bound for non-smooth convex distributed optimization
with contractive compressors for function suboptimal-
ity gap and a constraint violation. Here T is the itera-
tion count, R is the initial distance to the optimum, M
bounds the norm of subgradients of fi, and δ ∈ (0, 1]
is the compression accuracy.

• Next, we propose Safe-EF (Algorithm 1), an extension
of EF14 (Seide et al., 2014) incorporating safety con-
straints (4) via primal switching subgradient approach
and bidirectional compression including the workers to
server compressor C0. Safe-EF provably works in non-
smooth distributed settings and efficiently minimizes
the objective function, while controlling the constraint
violation. We prove the convergence rate of Safe-EF
matching the above-mentioned lower bound up to a
numerical constant under a constant accuracy of the
server compression C0. It seems our upper bound is
new even when g(x) ≡ 0 and C0 = Id.

• We further study Safe-EF in practically relevant
stochastic scenarios, where exact subgradients and
function evaluations are unavailable and need to be
estimated. We establish high probability bounds with
a mild logarithmic dependence on failure probability,
which is significant even without compression, since
our bounds feature the distance to the optimum R in-
stead of the diameter of the set, which is not bounded
in our set-up.

• Finally, we conduct extensive experiments and abla-
tion studies of Safe-EF, putting the method to the test
on a challenging task of distributed humanoid robot
training and providing important practical insights into
the performance of non-smooth EF methods.

3. Assumptions and Communication Protocol
We consider distributed constrained optimization problem
(1) with a constraint (4), and denote the optimal solution to
this problem by x∗. Unless specified otherwise, we denote
by ∥·∥ the Euclidean norm in Rd.

Assumption 3.1. We assume that fi and gi are convex for
all i ∈ [n], namely, for all x, y ∈ Rd we have

fi(y) ≥ fi(x) + ⟨f ′
i , y − x⟩ ∀f ′

i ∈ ∂fi(x),

gi(y) ≥ gi(x) + ⟨g′i, y − x⟩ ∀g′i ∈ ∂gi(x).
(5)

Each worker i has access to the oracles Ofi,i(x) and
Ogi,i(x), which return the subgradients f ′

i ∈ ∂fi(x),
g′i ∈ ∂gi(x), and the function values fi(x), gi(x) respec-
tively for any x ∈ Rd. We assume bounded subgradient,
which is a common assumption in non-smooth optimization
(Nesterov et al., 2018)

Assumption 3.2. We assume that fi and gi have M -
bounded subgradients, i.e. for any x ∈ Rd and i ∈ [n]
we have

max {∥f ′
i(x)∥, ∥g′i(x)∥} ≤M. (6)

We let the function classes FR,M and GRM denote the set
of all functions satisfying Assumptions 3.1-3.2 for any un-
derlying dimension d and a given initialization x0 ∈ Rd
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such that ∥x0 − x∗∥≤ R. We denote by HR,M the class
of problems of form (1), (4), where functions {fi}ni=1 and
{gi}ni=1 are taken from FR,M and GR,M respectively.

Compression operators. We focus on the class of algo-
rithms using contractive compressors.

Definition 3.3. We say that a (possibly randomized) map-
ping C:Rd → Rd is a contractive compression operator if
for some constant δ ∈ (0, 1] it holds

E
[
∥C(x)− x∥2

]
≤ (1− δ)∥x∥2. (7)

Beyond Top-K and Rand-K mentioned in Section 1, ex-
amples satisfying (7) include sparsification (Alistarh et al.,
2018; Stich et al., 2018; Islamov et al., 2021) and quantiza-
tion (Wen et al., 2017; Bernstein et al., 2018; Horváth et al.,
2022; Compagnoni et al., 2025) techniques, and low-rank
approximations (Vogels et al., 2019; Qian et al., 2021a; Is-
lamov et al., 2023). We refer to (Beznosikov et al., 2023;
Safaryan et al., 2021) for further examples. We denote by
C(δ) the set of all δ-contractive compressors.

Algorithm class. We follow Huang et al. (2022) to intro-
duce the class of algorithms of interest. We consider a
centralized and synchronous algorithm A, where: i) work-
ers are restricted to communicating directly with a central
server and cannot exchange information with one another
directly; ii) all iterations are synchronized, meaning all
workers begin each iteration simultaneously. In this setup,
each worker i maintains a local copy of the model, denoted
as xt

i, at iteration t. The output x̂t of the algorithm A after t
iterations can be expressed as any linear combination of all
previous local models, namely,

x̂t ∈ span ({xs
i : 0 ≤ s ≤ t, 1 ≤ i ≤ n}) . (8)

We additionally require that the algorithm A satisfies the
“zero-respecting” property (Carmon et al., 2020; Lu & De Sa,
2021). This ensures that the number of non-zero entries
in a worker’s local model can only increase through local
subgradient queries, or synchronization with the central
server. This property is upheld by a broad range of exist-
ing distributed optimization algorithms (Tang et al., 2019;
Xie et al., 2020; Richtárik et al., 2021; Gao et al., 2024).
In addition to these properties, the algorithm A must sup-
port communication compression. To achieve this, each
worker i ∈ [n] is equipped with a compressor Ci. The for-
mal definition of this algorithm class with worker to server
compression is provided below, see Appendix E for details.

Definition 3.4. Given compressors {C1, . . . , Cn}, we de-
note AU

{Ci}n
i=1

as the class of all centralized, synchronous,
zero-respecting algorithms that support unidirectional com-
pression, where compressor Ci, i ∈ [n], is applied to mes-
sages from worker i to the server.

4. Main Results
We start by presenting our first main contribution, which is
the lower iteration/communication complexity bound for a
class of first-order compressed gradient methods.

4.1. Lower Bound

Given a problem h := ({fi}ni=1, {gi}ni=1) ⊆ HR,M ,
subgradient/function value oracles {Ofi,i}ni=1, {Ogi,i}ni=1,
compressors {Ci}ni=1 ⊆ C(δ), and an algorithm A ∈
AU

{Ci}n
i=1

, let x̂A,T := x̂A,{fi}n
i=1,{gi}n

i=1,{Ci}n
i=1,T

represent
the output of algorithm A after at most T oracle queries and
communication rounds per worker. We define the minimax
convergence measure
inf
A

sup
{Ci}n

i=1

sup
h∈HR,M

{E [f(x̂A,T )− f(x∗)] ,E [g(x̂A,T )]} .

We do not require operators {Ci}ni=1 to be neither distinct
nor independent, and parameter δ can be utilized by the
algorithm A. Our first contribution is the lower bound for
algorithms that support unidirectional compression.

Theorem 4.1. For any R,M > 0, n ≥ 2, δ ≤ 0.3, T ≥
δ−2 there exists a problem h ⊆ HR,M , oracles {Ofi,i}ni=1,
{Ogi,i}ni=1, compressors {Ci}ni=1 ⊆ C(δ), and the starting
point x0 = 0 such that for any first-order algorithm A ∈
AU

{Ci}n
i=1

run for T ≤ d iterations from x0, satisfies

E [f(x̂A,T )− f(x∗)] ≥ Ω

(
RM√
δT

)
, and

E [g(x̂A,T )] ≥ Ω

(
RM√
δT

)
.

(9)

When δ = 1 and g ≡ 0, indicating no compression and
no constraints, (9) recovers the classical lower bounds for
non-smooth convex optimization (Nemirovskij & Yudin,
1983; Nemirovski, 1994; Nesterov, 2014; Braun et al., 2017;
Scaman et al., 2018). However, when worker to server com-
pression is large, the convergence rate degrades by a factor
of 1/

√
δ. Similar degradation appears in the constraint vi-

olation. An interesting implication of Theorem 4.1 is that
the convergence rate does not improve when increasing the
number of workers n, which is different from prior work in
smooth stochastic optimization (Huang et al., 2022; He et al.,
2023). The key idea of the proof is to extend and modify the
“worst-case” function from (Nesterov, 2014) and account
for compression in the distributed setting, specifically, we
use for all i ∈ [n]

fi(x) := C · max
1≤j≤T

xj +
µ

2
∥x∥2·max

{
∥x∥2;

R

2

}
,

gi(x) := fi(x)− min
x∈Rd

fi(x),

where C, µ > 0 are some constants depending on the bound
of subgradients M and the compression level δ. We refer to
Appendix E for the formal proof.

4



Safe-EF: Error Feedback for Non-smooth Constrained Optimization

Algorithm 1 Safe-EF with bidirectional compression

1: Input: w0 = x0, {Ci}ni=1, γ, c > 0, e0i = 0
2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , n in parallel do
4: Send gi(x

t) to server ➤ cheap one float comm.
5: end for
6: Send g(xt) = 1

n

∑n
i=1 gi(x

t) to workers
7: for i = 1, . . . , n in parallel do
8: Compute ht

i = f ′
i(x

t) if g(xt) ≤ c else g′i(x
t)

9: Send vti = Ci(eti + ht
i) to server

10: Compute et+1
i = eti + ht

i − vti
11: end for
12: Compute vt = 1

n

∑n
i=1 v

t
i and wt+1 = wt − γvt

13: Compute xt+1 = xt + C0(wt+1 − xt)
14: Send C0(wt+1 − xt) to workers
15: end for

4.2. Safe-EF Method

In this section, we describe Safe-EF, our main algorithm de-
tailed in Algorithm 1, which addresses two main challenges
simultaneously: handles non-smoothness and constraints.
The distinct feature of our method is a dynamical switch
between the subgradients of the objective fi and those of
the constraints gi depending on if the constraint violation
exceeds a predefined threshold c. To implement this, work-
ers compute the constraint violations gi(x

t) and commu-
nicate them to the server. This process does not increase
communication overhead, as it requires transmitting only
a single float per iteration. Equipped with this switching
rule, we use EF14 (Seide et al., 2014) type updates to limit
the communication overhead of sub-gradients from workers
to server. Furthermore, we additionally enhance Safe-EF
with server to workers compression using a “primal” EF21
variant, EF21-P, due to Gruntkowska et al. (2023), which
compresses the difference between two estimates of the
model parameters wt+1 and xt.2

4.3. Convergence Upper Bound

In our next theorem, we provide the convergence guarantees
for Safe-EF summarized in Algorithm 1. The set B denotes
all iteration counters when the constraint violation is below
the threshold c, i.e., B := {t ∈ [T − 1] | g(xt) ≤ c} .

Theorem 4.2. Assume Assumptions 3.1-3.2 hold, the server
and workers use compressors C0 ∈ C(δs), {Ci}ni=1 ⊆ C(δ).

2In fact, it was noted by Gruntkowska et al. (2023) that a pure
EF21-P used at the server level can be reformulated as EF14 on
the worker level. However, we only use EF21-P formulation for
algorithmic presentation and design the convergence proof using
EF14 formulation.

Then there exist a choice of stepsize γ and threshold c such
that the iterates of Safe-EF with bidirectional compression
satisfy

E
[
f(xT )− f(x∗)

]
≤ O

(
RM√
δsδT

)
, and

E
[
g(xT )

]
≤ O

(
RM√
δsδT

)
,

(10)

where xT := 1
|B|
∑

t∈B xt.

The proof of the theorem is detailed in Appendix D, where
we also give explicit choice of γ and c. Next, we discuss the
obtained result in several special cases as well as the main
difficulties in the convergence proof.

Single-node training with no compression. In the special
case where n = 1 and δs = δ = 1, corresponding to the
non-distributed setting without compression, (10) recovers
the rates in (Nesterov et al., 2018; Lan & Zhou, 2020).

No constraints, i.e., g ≡ 0, and C0 ≡ Id. In this case,
our algorithm, Safe-EF, simplifies to the well-known EF14
method (Seide et al., 2014). EF14 was previously analyzed
in the non-smooth setting for single-node training (n = 1)
by Karimireddy et al. (2019). Theorem 4.2 extends the
analysis to the distributed setup. Notably, the convergence
rate is consistent with that presented in their work in this
special case.

Unidirectional compression. Next, we consider the setting
with unidirectional compression, i.e., δs = 1 and C0 ≡
Id. We observe that both the functional suboptimality gap
and constraint violation diminish at a rate of O(1/√δT),
consistent with the lower bound established in Theorem 4.1,
thereby confirming the optimality of Safe-EF assuming δs
is a numerical constant independent of d and K.

Bidirectional compression. Now we discuss the setting
when the compression is applied in both directions. It is
worth noting that most prior studies focus on a more re-
stricted class of compressors, such as absolute compressors
(Tang et al., 2019) or unbiased compressors (Philippenko &
Dieuleveut, 2021; Gruntkowska et al., 2023; 2024; Tyurin
& Richtarik, 2023), in the bidirectional setting. In contrast,
our work does not impose any additional constraints on the
compressors. Other related work considers only server to
worker compression (Sokolov & Richtárik, 2024), while
often compression in both directions is important. The con-
vergence rate in (10) highlights a slowdown by a factor of√
δsδ, which aligns with similar dependencies observed in

prior works on smooth distributed optimization (Fatkhullin
et al., 2021). It remains an open question whether the depen-
dence on the compression levels δ and δs can be improved
in the non-smooth setting. Perhaps, this dependency could
potentially be reduced from

√
δsδ to

√
δ +
√
δs by incorpo-

rating multiple communication rounds per iteration, similar
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to the approach in (Huang et al., 2022). However, this pro-
cedure can be impractical since ⌈K/δs⌉ coordinates are
communicated at every iteration as observed in (Fatkhullin
et al., 2024), and we leave the study of this strategy for
future work.

Key theoretical challenges. We emphasize that controlling
constraints significantly complicates the analysis compared
to prior work (Karimireddy et al., 2019), which is limited
to the unconstrained, unidirectional, non-distributed setting.
A key novelty of our analysis lies in demonstrating that an
appropriate choice of the stepsize γ and threshold c ensures
that the number of iteration counters in B with constraint
violations below c is sufficiently large to guarantee progress
in reducing functional suboptimality. In particular, it is not
empty and thus xT is well-defined.

Communication complexity with Top-K. In unidirec-
tional case with Ci is Top-K and C0 ≡ Id, the total commu-
nication complexity is3

K︸︷︷︸
floats per iteration

× R2M2

δε2︸ ︷︷ ︸
# iterations

≤ KR2M2

K
d ε

2
=

dR2M2

ε2
, (11)

where we utilize the condition δ ≥ K
d for Top-K. This

finding indicates that the communication complexity of
Safe-EF aligns with that of parallel switching subgradi-
ent method (Safe-EF without compression) in the worst-
case scenario. However, an improvement is possible when
δ > K

d , which occurs if the entries differ substantially in
magnitude (Beznosikov et al., 2023).

Key Steps of the Proof. Our convergence proof builds on
the “virtual iterates” construction of Stich & Karimireddy
(2019) (see Equation (22)). In Lemma D.1, we then derive
a unified bound controlling both the function sub-optimality
and the constraint violation. Crucially, by enforcing appro-
priate choices of the step size γ and threshold c, we show
that this bound can be made small enough. The same lemma
also guarantees that after T iterations, either the number of
approximately feasible points are at least |B|≥ T

2 or the sub-
optimality is already below the desired tolerance. Together
with the preliminary lemma on the virtual iterates, this yields
our full convergence theorem for Safe-EF. Finally, in Corol-
lary D.4 we verify that the stipulated conditions on γ and c
are indeed feasible.

5. Extension to Stochastic Setting
In this section, we consider a stochastic formulation of our
the problem (1), (4), namely,

fi(x) := Eξi∼Di

[
fi(x, ξ

i)
]
, (12)

3We omit the numerical constants and logarithmic factors in
comparison.

and
gi(x) := Eξi∼Di

[
gi(x, ξ

i)
]
, (13)

where Di is a distribution of local environment (dataset)
at worker i ∈ [n]. We assume that the noise follows a
sub-Gaussian distribution.

Assumption 5.1. Workers have access to M -bounded
stochastic subgradients and σ2

fv/Nfv-sub-Gaussian function
evaluations of gi, namely, for some M,σ2

fv/Nfv > 0, any
x ∈ Rd, and any i ∈ [n] we have

∥f ′
i(x, ξ

i)∥2, ∥g′i(x, ξi)∥2 ≤M2, (14)

E

[
exp

(
(gi(x, ξ

i)− gi(x))
2

σ2
fv/Nfv

)]
≤ exp(1), (15)

where ξi is a sample from the local dataset Di. The latter
assumption on sub-Gaussian function evaluation can be
satisfied by implemented a mini-batch estimation of the
constraints with batch-size Nfv. Moreover, we assume that
the workers compute subgradients and function evaluations
independently for any given x.

Assumption 5.2. We assume that for all i ∈ [n] and for all
ξi ∈ Di the functions fi(x, ξi) and gi(x, ξ

i) are convex, i.e.
for all x, y ∈ Rd we have

fi(y, ξ
i) ≥ fi(x, ξ

i) + ⟨f ′
i(x, ξ

i), y − x⟩, (16)

gi(y, ξ
i) ≥ gi(x, ξ

i) + ⟨g′i(x, ξi), y − x⟩, (17)
for all f ′

i(x, ξ
i) ∈ ∂fi(x, ξ

i) and g′i(x, ξ
i) ∈ ∂gi(x, ξ

i).

Remark 5.3. We highlight that in the special (semi-
stochastic) case when subgradient evaluations f ′

i(x, ξ
i),

g′i(x, ξ
i) are stochastic, but the constraint evaluation of gi is

deterministic, the proof significantly simplifies, and conver-
gence analysis can be repeated as in Appendix D. However,
the stochastic estimation of constraint violation g(x) poses
a significant challenge and we need to use advanced tech-
niques to conduct high probability analysis.

Theorem 5.4. Let β ∈ (0, 1/2) be a failure probability
and R ≥ ∥x0 − x∗∥. Assume workers use deterministic
compressors {Ci}ni=1 ⊆ C(δ). Then there exists a choice of
stepsize γ, threshold c, and large enough batch-size Nfv ≥
Õ( σ2

fv

nc2 ) such that the iterates of Safe-EF with unidirectional
compression satisfy with probability at least 1− 2β

f(xT )− f(x∗) ≤ O

(
(MR+ σfv√

Nfv
)(1 + log 1

β )√
δT

)
,

g(xT ) ≤ O

(
(MR+ σfv√

Nfv
)(1 + log 1

β )√
δT

)
. (18)

To achieve ε-accuracy, i.e., f(xT ) − f(x∗), g(xT ) ≤ ε,
Safe-EF requires a batch-size of order Õ

(
σ2
fv/nε2

)
. The con-

vergence rate matches the lower bound (9) up to numerical
and logarithmic factors. The proof is deferred to Appendix F.
One of the key technical challenges of the above result is
that the analysis in the prior (non-distributed) work (Lan &
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Zhou, 2020) relies on bounded domain assumption, while
the iterates of our algorithm can be potentially unbounded.
To address this issue we use the ideas from (Liu et al., 2023)
to establish a strong high probability convergence.

Remark 5.5. While the iteration (and communication) com-
plexity of the method in the stochastic setting matches the
lower bound up to numerical and logarithmic factors, its
sample complexity is suboptimal. Taking into account the
necessity of Õ( 1

ε2 ) batch-size, the sample complexity of
the method becomes Õ( 1

ε4 ). Nevertheless, this complexity
is no worse than the one given by non-distributed gradient
switching method (Lan & Zhou, 2020). We use a differ-
ent technique to conduct high probability analysis than Lan
& Zhou (2020) because their analysis crucially relies on
bounded diameter assumption, which we do not have in our
formulation.

Remark 5.6. We emphasize that the proof in the stochastic
unidirectional setting can be advanced to the bidirectional
setting following the derivations of Theorem 4.2 and The-
orem 5.4. The convergence guarantees in the stochastic
bidirectional setting matches that in the deterministic up to
numerical and logarithmic factors.

6. Experiments
Now we test Safe-EF in practice. Below we provide ex-
periments on a simple problem with synthetic data which
satisfies all our assumptions, and later test our approach
in more challenging task of training the Humanoid Robot.
We include additional experiments on the classical Cartpole
problem and Neyman-Pearson classification in Appendix H.

6.1. Synthetic Data

We begin with a simple empirical setup designed to easily
verify that all assumptions of Safe-EF are satisfied. Specif-
ically, we consider the unconstrained problem of the form
(1), where fi = ∥Aix− bi∥1. For this objective, the subgra-
dient f ′

i(x) = A⊤
i sign(Aix−bi) (Beck, 2017). This choice

ensures that all assumptions required for Safe-EF hold. The
data {Ai, bi}ni=1 ⊆ Rd×d × Rd is synthetically generated,
where the parameter s controls the variability across local
datasets: smaller values of s result in matrices Ai that are
more similar to each other. We set n = 10, d = 1000, and
use the Top-K compressor with K = d

10 for all algorithms
tested. Details of the data generation process can be found in
Appendix I. We compare the proposed Safe-EF with CGD,
EF21, EF21M (Fatkhullin et al., 2024), and EControl (Gao
et al., 2024). For each method, hyper-parameters are tuned
(see Appendix I for details) based on function value after
T = 1000 iterations, and performance with the optimal pa-
rameters is shown in Figure 2. Our results indicate that for
s ∈ {0.1, 1.0}, Safe-EF converges faster than all other algo-
rithms. When heterogeneity is large, s = 10.0, EControl is

initially faster; however, Safe-EF catches up with EControl
by the end of the training.

6.2. Policy Gradients for Humanoid Robot Fleet

In this suite of experiments, we demonstrate an applica-
tion of Safe-EF for reinforcement learning. In this setup,
each worker represents a humanoid robot that collects noisy
measurements of some utility and constraint functions, to
solve a constrained Markov decision process (Altman, 1999,
CMDP).

Constrained Markov decision processes. We define a
CMDP as the tuple (S,A, r, c, p, γ, ρ), where S describes
a state space (e.g. joint positions and velocities) and A
describes a set of admissible actions (e.g. motor torques).
The function r : S × A → R describes a reward func-
tion that is ought to be maximized, while c : S × A → R
is a cost signal that must remain bounded. The system
dynamics, p, describes a probability distribution over the
next state, given a state s ∈ S and action a ∈ A. States
are initially drawn from the distribution ρ, and γ denotes
a discounting factor. In what follows, each robot-worker
interacts with a separate CMDP, such that CMDPs differ
only in their dynamics, i.e., each robot collects trajectories
from a slightly perturbed pi, relative to the nominal model
p. Collecting trajectories entails carrying out actions de-
termined by a policy π(a | s), a stochastic mapping from
states to actions. The objective and constraint for each
CMDP are defined as J i

r(π) := Eπ,pi
[
∑∞

t=0 γ
tr(st, at)]

and J i
c(π) := Eπ,pi [

∑∞
t=0 γ

tc(st, at)] where the expec-
tations are w.r.t. pi, ρ and πx, a policy parameterized by
x ∈ Rd.

Policy gradient. A common approach for policy search
is via the class of policy gradient algorithms (Sutton et al.,
1999; Schulman et al., 2017). In essence, policy gradient
algorithms use Monte Carlo sampling to obtain stochastic
gradient estimates of x w.r.t. the objective and constraints by
“rolling out” the policy and measuring the returned rewards
and costs along several trajectories. In our experiments, each
worker collects data independently to obtain these estimates,
which are then used to compute the PPO (Schulman et al.,
2017) loss

fi(x) = Es,a∼π̄

[
min

{
πx(a | s)
π̄(a | s)

Aπ̄
pi
(s, a),

clip
(
πx(a | s)
π̄(a | s)

, 1− ϵ̃, 1 + ϵ̃

)
Aπ̄

pi
(s, a)

}]
,

where, Aπ̄
pi

denotes the advantage (Schulman et al., 2015)
in terms of cumulative rewards, for picking an action com-
pared to expected action of πx, π̄ is the policy with which
the trajectory data was drawn and ϵ̃ is a hyperparameter.
Similarly, a surrogate for the constraint gi(x) is given by
replacing rewards with costs when computing the advantage.
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Figure 2: Comparison of Safe-EF against CGD, EF21, EF21M, and EControl on synthetic non-smooth problem. ⋆Safe-EF
coincides with EF14 (Seide et al., 2014) in this problem.

Crucially, both fi and gi are non-smooth functions due to
clip(x, l, u) := max{l,min{x, u}}.

Setup. Unless specified otherwise, in all our experiments,
the default number of workers is n = 16, compression ratio
is K/d = 0.1 with Top-K compression. We parameterize a
neural network policy with d = 0.2M parameters and use a
batch size Nfv = 1024 to evaluate fi and gi. Moreover, we
treat the NN parameters as a single “flat” vector when com-
pressing, rather than performing layer-wise compression.
We run all our experiments for 5 random seed initializa-
tions and report the median and a 68% confidence interval
when applicable. Empirical estimates of the objective and
constraint are denoted as Ĵr and Ĵc respectively. We use a
batch of 128 trajectories to obtain these estimates. Further
details, regarding the perturbations of models, the reward
and cost functions and additional experiments are provided
in Appendices H and I.

Experiment 1: Robust compression. We evaluate Safe-EF
with Top-K and Rand-K sparsifiers and compare it with
a constrained version of CGD with a Top-K sparsifier. To
adapt CGD to enforce the constraint, we follow the same
approach as Safe-EF and use the switching subgradient
method. Figure 3 shows the amount of communication
(in gigabytes per worker) required to reach a fixed perfor-
mance of Ĵr = 7500 as the compression ratio K/d increases.
As illustrated, both Top-K and Rand-K significantly re-
duce communication costs compared to CGD, with Top-K
demonstrating the most robust performance across vary-
ing compression rates with about 2000× improvement in
communication reduction!

Experiment 2: Safety. We study the performance of
Safe-EF in terms of constraint satisfaction and compare it
against the unsafe error feedback algorithms EF14 (Seide
et al., 2014) and EF21 (Richtárik et al., 2021). Additionally,
we compare Safe-EF against a parallel variant of CRPO (Xu
et al., 2021), a CMDP solver that enforces constraints via
the subgradient switching method. Our parallel variant of it,
indicated as Parallel-CRPO, operates independently on each
worker and transmits parameters x to the server without

compression. The results are presented in Figure 4, where
Safe-EF satisfies the constraints with a slight performance
reduction, while EF14 violates the constraint. EF21
diverges, possibly due to non-smoothness of the objective
and constraint. Next, given the same communication budget
in gigabytes per worker, Parallel-CRPO fails to converge.
This outcome highlights the non-trivial nature of the task,
emphasizing that optimal policies in the unconstrained case
are insufficient to meet the constraints.

Experiment 3: Number of workers. We analyze the
performance of Safe-EF under varying number of available
workers and present our findings in Figure 5. Our results
reveal two key observations. First, the convergence rate
decreases significantly when the number of workers is
very small. Second, beyond a certain threshold, increasing
the number of workers yields diminishing performance
gains. The latter aligns with our theoretical lower bounds
in Theorem E.2, which establish that no improvement in
n is possible in the worst case.

Experiment 4: Effect of batch-size. Theorem 5.4 has
a certain requirement of sufficiently large batch-size Nfv

due to constraint estimation process. If this requirement
is met, the convergence rate is improved when increas-
ing Nfv until it reaches the lower bound in Theorem 4.1.
To study this effect in practice, we vary the batch size
Nfv ∈ {256, 512, 1024, 2048, 4096}. Our results in Fig-
ure 6, indicate that by increasing the batch size from
Nfv = 1024 to 2048, we can see the improvement, how-
ever, a further increase from Nfv = 2048 to Nfv = 4096
does not yield more improvement. For smaller batch sizes
Nfv ∈ {256, 512}, Safe-EF did not converge, resulting
in non-numeric values, and therefore are not presented in
Figure 6. These findings are in line with our large-batch
requirement in Theorem 5.4 and highlight the need to design
algorithms that are robust to smaller batch sizes—suggesting
an important direction for future work.
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Figure 3: Gigabytes required to reach a fixed
benchmark performance for different compres-
sion ratios. Top-K can achieve the same per-
formance as CGD, but with approximately two
orders of magnitude less gigabytes.
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Figure 4: Objective and constraint during learning. Budget denotes the
level below which Jc must remain to satisfy the constraint. EF14, an un-
safe baseline, fails to satisfy the constraint. EF21, another unsafe baseline
designed for smooth problems, diverges. Parallel-CRPO, a safe baseline
without compression, suffers from communication overhead. In contrast,
Safe-EF ensures constraint satisfaction with minimal performance loss.

0.0 0.2 0.4 0.6 0.8

#Gigabytes / worker

0

2000

4000

6000

8000

Ĵ
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Figure 5: Convergence plots for different number of workers.
While increasing the number of workers helps reduce the
communication cost, the effect becomes less significant as
the number of workers continues to grow.

7. Limitations and Future Work
While we make significant progress in understanding non-
smooth EF, there are certain limitations in our work. First,
we assume all functions are convex, while Safe-EF seems
to excel even in challenging, highly non-convex RL tasks.
Thus, it is crucial to understand non-convex problems: in
a general setting (e.g. Boob et al., 2023; Jia & Grim-
mer, 2022; Grimmer & Jia, 2025) as well as in structured
RL problems (e.g. Agarwal et al., 2021; Xu et al., 2021;
Lan, 2023; Fatkhullin et al., 2023a; Barakat et al., 2023;
Islamov et al., 2024a). Second, our noise assumptions are
relatively stringent, and can be potentially relaxed using
gradient clipping (Nazin et al., 2019; Gorbunov et al., 2024)
or normalization (Hübler et al., 2024) techniques, although
this is non-trivial due to constraint estimation. Finally, our
algorithm requires large batch-sizes and is not sample effi-
cient in the stochastic setting due to constraint estimation,
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Ĵr

0.2

0.3

0.4

0.5

0.6

0.7

#G
ig

ab
yt

es
/w

or
ke

r

×2.50
×3.11

×2.00

×2.18

Nfv = 1024

Nfv = 2048

Nfv = 4096

Figure 6: Communication required to reach a desired per-
formance level for different batch samples Nfv. Beyond a
certain batch size, improvement diminishes.

and our experiments indicate it is likely an issue with the
algorithm. Primal-dual approaches (Juditsky et al., 2011;
Boob et al., 2023) can help mitigate this limitation.
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A. Additional Related Work
The Error Feedback (EF) mechanism was initially studied in the single-node setting (n = 1) by Stich et al. (2018); Alistarh
et al. (2017). Subsequent research extended its analysis to the smooth convex setting, incorporating additional unbiased
compressors (Gorbunov et al., 2020; Stich, 2020; Qian et al., 2021b). The EF21 algorithm, introduced by Richtárik et al.
(2021), was the first to establish provable convergence in the large-batch smooth regime without data heterogeneity bounds.
Later, Fatkhullin et al. (2024) removed this large-batch requirement by integrating a momentum mechanism into the EF21
framework, achieving an optimal asymptotic rate. An extension of EF14, called EControl, was proposed by Gao et al. (2024),
demonstrating convergence in both smooth convex and non-convex settings while attaining optimal asymptotic complexity.
Recent research has further advanced the analysis of EF, extending it to variational inequalities (Beznosikov et al., 2022),
decentralized communication graphs (Koloskova et al., 2020; Singh et al., 2021; Zhao et al., 2022; Islamov et al., 2024b),
local updates (Huang et al., 2023), bilevel optimization (He et al., 2024), differentially private training (Shulgin et al., 2025;
Islamov et al., 2025), and reinforcement learning (Mitra et al., 2023; Adibi et al., 2024; Beikmohammadi et al., 2024).
Additionally, Richtárik et al. (2022); Makarenko et al. (2022); Islamov et al. (2023) expanded EF analysis to a broader class
of 3PC compression operators, encompassing contractive compressors as a special case. Recent works analyzed the EF
mechanism as a special case of biased gradient descent in the single-node setting (Ajalloeian & Stich, 2020; Demidovich
et al., 2023) while Richtárik et al. (2024) improved the constant dependencies in the rate of EF21.

EF21 variant of EF has been analyzed in the context of (L0, L1)-smooth optimization (Khirirat et al., 2024), which is
different from our non-smoothness since (L0, L1)-smoothness implies smoothness on any compact set and failure examples
as in Example 1.2 cannot happen under such assumption. On the other hand, if not limited to a compact set, the gradients
under (L0, L1)-smoothness can grow when ∥x∥→ ∞.
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B. Failure of CGD and EF21 in Non-smooth Convex Setting
Proof of Example 1.1. Non-convergence of CGD.

Proof. Consider a 2-dimensional problem fi(x) = ∥x∥1, f(x) = 1
n

∑n
i=1 fi(x) with f(x∗) = 0. Set the initial vectors

x0 = (γ/2,−1)⊤ and consider CGD (2) with Top-1 compressor.

The proof for the case when γ = 0 is trivial. We consider the case when γ > 0. In this case, the function is differentiable at
every point of its trajectory, and for any t ≥ 0 it holds that

xt =

(
γ(−1)t

2
−1

)
, ∂fi(x

t) =

{(
(−1)t
−1

)}
.

The base of induction (t = 0) is trivial. For the induction step, we make the calculation

xt+1 = xt − γgt =

(
γ(−1)t

2
−1

)
− γ Top-1

(
(−1)t
1

)
=

(
γ(−1)t+1

2
−1

)
,

where in the last step, Top-1 operator always selects the first coordinate since the entries are equal in absolute value. It
remains to compute the function value at these iterates f(xt) to conclude the proof.

We remark that divergence issues of gradient methods using biased compressors were previously raised in (Karimireddy
et al., 2019). However, their examples only apply to Sign operator, while we are mainly interested in the behavior of
Top-K compressor for distributed optimization. Thus, a different construction is required to capture the interplay of Top-K
compressor with non-smoothness of f . Another divergence example using Top-K is shown by Beznosikov et al. (2023),
however, their example is smooth, strongly convex and the key effect is different, since their divergence happens due to
heterogeneity. Finally, Fatkhullin et al. (2024) show an example of divergence of EF21 in the stochastic setting, which is
also different since their function is smooth, strongly convex and the divergence occurs due to noise.

Proof of Example 1.2. Divergence of EF21.

Proof. Similarly to the proof of Example 1.1, we consider a 2-dimensional problem fi(x) = ∥x∥1, f(x) = 1
n

∑n
i=1 fi(x)

with f(x∗) = 0. Set the initial vectors x0 = (γ/2,−1)⊤ , v0i = (1, 1)⊤, and consider EF21 (3) with Top-1 compressor.

The proof for the case when γ = 0 is trivial. We consider the case when γ > 0. In this case the function is differentiable at
every point of its trajectory and for any t ≥ 0 it holds that

xt =

(
γ(−1)t

2
−1− t γ

)
, ∂fi(x

t) =

{(
(−1)t
−1

)}
, vti =

(
(−1)t
1

)
.

The base of induction (t = 0) is trivial. For the induction step, we make the calculation

xt+1 = xt − γ vt =

(
γ(−1)t

2
−1− t γ

)
− γ

(
(−1)t
1

)
=

(
γ(−1)t+1

2
−1− (t+ 1) γ

)
,

vt+1 = vt+1
i =

(
(−1)t
1

)
+Top-1

((
(−1)t+1

−1

)
−
(
(−1)t
1

))
=

(
(−1)t+1

1

)
,

where in the last step, Top-1 operator selects the first coordinate since the entries are equal in absolute value. It remains to
compute the function value at these iterates f(xt) to conclude the proof.
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C. Convergence Upper Bound for EF21 in Smooth Convex Setting
In this section, we consider EF21 method with projection

Projected-EF21
xt+1 = ΠX (xt − γ vt), vt =

1

n

n∑
i=1

vti ,

vt+1
i = vti + C(∇fi(xt+1)− vti).

(19)

where ΠX is a projection operator on a convex set X . This method was proposed and analyzed earlier in (Fatkhullin et al.,
2021) for non-convex smooth problems. In Example 1.2, we showed that this algorithm is not suitable for non-smooth
optimization because it diverges even in a simple convex example like ∥x∥1. While this algorithm was extensively studied
for smooth non-convex problems, we are not aware of any convergence results for this algorithm under convexity (with
convergence in the function value). To close this gap and complement the failure example of this method in Example 1.2 in
non-smooth convex case, we provide the convergence result for this method in smooth convex setting.

Theorem C.1. Let each fi(·) be differentiable and Li-smooth onX for all i = 1, . . . , n, i.e., ∥∇fi(x)−∇fi(y)∥≤ Li∥x−y∥
for all x, y ∈ X , and let f(·) be convex over a convex compact set X ⊆ Rd with diameter RX . Then for any T ≥ 1
Projected-EF21 with stepsize γ ≤ δ

2
√
6L

satisfies

E
[
f(xT )− f(x∗)

]
≤ R2

X
γT

(
1 + log

(
γΛ0T

R2
X

))
,

where Λ0 := f(x0)− f(x∗) + 1√
6L
∥g0 −∇f(x0)∥2, and L :=

√
1
n

∑n
i=1 L

2
i .

Remark C.2. The current stepsize restriction is γ ≤ δ
2
√
6L

, where L is the quadratic mean of the smoothness constants
Li. This restriction can be further improved by following the results in Richtárik et al. (2024), which requires weighting
workers’ contributions by non-uniform constants. This leads to the improved step-size (and eventually improved rate) of
the form γ ≤ O(1/L), where L = 1

n

∑n
i=1 Li, since L ≤ L always. However, setting the weights requires access to the

smoothness constants {Li}ni=1, which might be challenging in practice.

Before we move to the proof of this result, a few comments are in order. First, if we set γ = δ
2
√
6L

, this theorem

implies Õ
(

LR2
X

δT

)
convergence rate for Projected-EF21, where Õ hides numerical constants and a logarithmic term. This

convergence rate recovers (up to a logarithmic factor) the rate of subgradient descent when δ = 1 (no compression),
and is 1/δ times worse in the presence of compression. This is consistent with rates in non-convex and strongly convex
settings (Richtárik et al., 2021; Fatkhullin et al., 2021). We believe the logarithmic factor can be removed by a more careful
choice of parameter λ in the proof below. Second, the compactness of the set X is critical in the analysis of the method, it
would be interesting to explore if this requirement can be removed. Finally, the extension of this method to stochastic setting
is possible by replacing∇fi(xt+1) with a large mini-batch or momentum estimator, however, a batch-free version of this
method may not converge due to a counter-example in (Fatkhullin et al., 2024).

Proof. Since each fi is Li-smooth, it follows that f(x) = 1
n

∑n
i=1 fi(x) is L-smooth with L =

√
1
n

∑n
i=1 L

2
i . Next, we

follow the proof technique similar to Theorem 8 in (Fatkhullin et al., 2023b). By smoothness of f , we have for any z ∈ X

f
(
xt+1

)
≤ f

(
xt
)
+
〈
∇f

(
xt
)
, xt+1 − xt

〉
+

L

2

∥∥xt+1 − xt
∥∥2

= f
(
xt
)
+
〈
vt, xt+1 − xt

〉
+

1

2γ

∥∥xt+1 − xt
∥∥2 + ⟨∇f (xt

)
− vt, xt+1 − xt⟩ −

(
L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2

≤ f
(
xt
)
+

1

2γ

∥∥xt − z
∥∥2 − 1

2γ

∥∥xt+1 − z
∥∥2 + 〈vt, z − xt

〉
+
〈
∇f

(
xt
)
− vt, xt+1 − xt

〉
−
(
L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2 =: (∗),
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where the last inequality follows by the update rule of the algorithm. Next, rearranging we get

(∗) = f
(
xt
)
+

1

2γ

∥∥xt − z
∥∥2 − 1

2γ

∥∥xt+1 − z
∥∥2 + 〈∇f (xt

)
, z − xt

〉
+
〈
∇f

(
xt
)
− vt, xt+1 − z

〉
−
(
L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2

≤ f
(
xt
)
+

1

2γ

∥∥xt − z
∥∥2 − 1

2γ

∥∥xt+1 − z
∥∥2 + 〈∇f (xt

)
, z − xt

〉
+
γ

2

∥∥vt −∇f (xt
)∥∥2 + 1

2γ

∥∥xt+1 − z
∥∥2 − (L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2

= f
(
xt
)
+

1

2γ

∥∥xt − z
∥∥2 + 〈∇f (xt

)
, z − xt

〉
+

γ

2

∥∥vt −∇f (xt
)∥∥2 − (L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2 ,

where we used Young’s inequality ⟨a, b⟩ ≤ γ
2 ∥a∥

2+ 2
γ ∥b∥

2 for any a, b ∈ Rd. Using (lower curvature) smoothness of f , we
derive

f
(
xt+1

)
≤ f(z) +

(
1

2γ
+

L

2

)∥∥xt − z
∥∥2 + γ

2

∥∥vt −∇f (xt
)∥∥2 − (L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2

≤ f(z) +
1

γ

∥∥xt − z
∥∥2 + γ

2

1

n

∥∥vti −∇fi (xt
)∥∥2 − (L

2
− 1

2γ

)∥∥xt+1 − xt
∥∥2 ,

where the last inequality holds since γ ≤ 1/L. Now we fix some λ ∈ [0, 1] and select z = (1− λ)xt + λx∗ ∈ X , where
x∗ ∈ X∗. By convexity of f(·), we have

f(z) ≤ (1− λ)f(xt) + λf(x∗)−
λ(1− λ)

2L
∥∇f(xt)−∇f(x∗)∥2≤ (1− λ)f(xt) + λf(x∗).

Moreover, ∥xt − z∥ = λ ∥xt − xx∥ ≤ λRX , where RX = maxx,y∈X ∥x− y∥. Thus, we get for any λ ∈ [0, 1]

f(xt+1)− f(x∗) ≤ (1− λ)(f(xt)− f(x∗)) +
λ2R2

X
γ

+
γ

2
Vt −

(
L

2
− 1

2γ

)
∥xt+1 − xt∥2. (20)

For a contractive compressor we have E∥C(x) − x∥2≤ (1 − δ)∥x∥2 for some δ ∈ (0, 1]. Let Vt,i := E∥gti −∇fi(xt)∥2,
Vt :=

1
n

∑n
i=1 Vt,i. Then

Vt+1,i = E∥gt+1
i −∇fi(xt+1)∥2= E∥C(∇fi(xt+1)− gti) + gti −∇fi(xt+1)∥2

≤ (1− δ)E∥gti −∇fi(xt+1)∥2

≤ (1− δ)

(
1 +

δ

2

)
E∥gti −∇fi(xt)∥2+

(
1 +

2

δ

)
E∥∇fi(xt+1)−∇fi(xt)∥2

≤
(
1− δ

2

)
Vt,i +

3L2
i

δ
E∥xt+1 − xt∥2.

By averaging for i = 1, . . . , n, we get

Vt+1 ≤
(
1− δ

2

)
Vt +

3L2

δ
E∥xt+1 − xt∥2. (21)

Define ∆t := E[f(xt)− f(x∗)], then adding (20) + 2
δ times (21) and taking γ ≤ δ

2
√
6L

, we have

Λt+1 := ∆t+1 +
2γ

δ
Vt+1

≤ (1− λ)∆t +
γ

2
Vt +

2γ

δ

(
1− δ

2

)
Vt +

λ2

γ
R2

X −
(
L

2
− 1

2γ
+

3L2 · 2γ
δ

)
E∥xt+1 − xt∥2

= (1− λ)∆t +
2γ

δ

(
1− δ

2
+

γ

2

δ

2γ

)
Vt +

λ2

γ
R2

X −
(
L

2
− 1

2γ
+

3L2

δ

2γ

δ

)
E∥xt+1 − xt∥2

≤ (1− λ)∆t +
2γ

δ

(
1− δ

4

)
Vt +

λ2

γ
R2

X

≤ (1− λ)Λt +
λ2

γ
R2

X ,
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where in the last step we assume the choice λ ≤ δ/4. Finally, we unroll the recursion for t = 0, 1, . . . , T − 1 and setting
λ = min

{
δ
4 ;

1
N log

(
γΛ0N
R2

X

)}
, we derive

ΛT ≤ (1− λ)TΛ0 +

(
T−1∑
t=0

(1− λ)t

)
λ2R2

X
γ
≤ (1− λ)TΛ0 +

λR2
X

γ

= exp(T log(1− λ))Λ0 +
λR2

X
γ
≤ exp

(
− log

(
γΛ0T

R2
X

))
Λ0 +

λR2
X

γ

≤ R2
X

γT
+

R2
X

γT
log

(
γΛ0T

R2
X

)
.
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D. Convergence Upper Bound for Safe-EF with Bidirectional Compression
The analysis uses the “virtual iterates” framework, which is often used in the literature (Stich & Karimireddy, 2019;
Koloskova et al., 2023; Mishchenko et al., 2023; Islamov et al., 2024c). Define the virtual iterates x̂t := wt − γet with
x̂0 = x0. Note that then we have x̂t+1 = x̂t − γht. Indeed, assume that it is true at iteration t, then

x̂t+1 = wt+1 − γet+1 = (wt − γvt)− γ(et + ht − vt) = (wt − γet)− γht = x̂t − γht. (22)
We additionally define êt := wt − xt, an error that appears due to down-link (server to worker) compression.

Lemma D.1. For any x ∈ Rd, the following inequality holds∑
t∈B

γ(f(xt)− f(x)) +
∑
t∈N

γ[c− g(x)] ≤ 1

2
∥x0 − x∥2+1

2

T−1∑
t=0

γ2∥ht∥2+
T−1∑
t=0

γ2∥ht∥·∥et∥

+

T−1∑
t=0

γ∥ht∥·∥êt∥

Proof. From the update rule (22), we have
∥x̂t+1 − x∥2= ∥x̂t − x∥2−2γ⟨ht, x̂t − x⟩+ γ2∥ht∥2.

Rewriting the above, we get
2γ⟨ht, xt − x⟩ = ∥x̂t − x∥2−∥x̂t+1 − x∥2+γ2∥ht∥2+2γ⟨ht, xt − wt⟩+ 2γ⟨ht, wt − x̂t⟩

≤ ∥x̂t − x∥2−∥x̂t+1 − x∥2+γ2∥ht∥2+2γ2∥ht∥∥et∥+2γ∥ht∥∥êt∥.
Summing up both sides, we derive

2

T−1∑
t=0

γ⟨ht, xt − x⟩ ≤ ∥x0 − x∥2−∥x̂T − x∥2+
T−1∑
t=0

γ2∥ht∥2+2

T−1∑
t=0

γ2∥ht∥·∥et∥+2

T−1∑
t=0

γ∥ht∥·∥êt∥.

Dropping the non-negative term ∥x̃T − x∥2 and using x̂0 = x0 we obtain

2

T−1∑
t=0

γ⟨ht, xt − x⟩ ≤ ∥x0 − x∥2+
T−1∑
t=0

γ2∥ht∥2+2

T−1∑
t=0

γ2∥ht∥·∥et∥+2

T−1∑
t=0

γ∥ht∥·∥êt∥.

Now we split the sum over N and B. For t ∈ B we have, ht
i = f ′

i(x
t), i.e. ht = f ′(xt), and for t ∈ N ht

i = g′i(x
t), i.e.

ht = g′(xt). Therefore, armed with the convexity of f and g we have
⟨f ′(xt), xt − x⟩ ≥ f(xt)− f(x), ∀k ∈ B,
⟨g′(xt), xt − x⟩ ≥ g(xt)− g(x) ≥ c− g(x), ∀k ∈ N .

Therefore, we have∑
t∈B

γ(f(xt)− f(x)) +
∑
t∈N

γ[c− g(x)] ≤
∑
t∈B

γ⟨f ′(xt), xt − x⟩+
∑
t∈N

γ⟨g′(xt), xt − x⟩

≤ 1

2
∥x0 − x∥2+1

2

T−1∑
t=0

γ2∥ht∥2+
T−1∑
t=0

γ2∥ht∥·∥et∥+
T−1∑
t=0

γ∥ht∥·∥êt∥.

We now present the main convergence theorem, providing explicit bounds under appropriate conditions on γ and c. To do so,
we need to define xT as follows

xT :=
1∑
t∈B γ

∑
t∈B

γxt =
1

|B|
∑
t∈B

xt. (23)

Lemma D.2. Suppose that the stepsize γ and threshold c satisfy
T

2
γc >

1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 2

√
10(1− δs)

δsδ
T. (24)
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Then we have

γE

[∑
t∈B

f(xt)− f(x∗)

]
+γE

[∑
t∈N

c− g(x∗)

]
≤ 1

2
R2+

1

2
M2γ2T+2M2γ2 2

√
1− δ

δ
T+2M2γ2

√
10(1− δs)

δsδ
T. (25)

Moreover, suppose that (25) holds. Then B is non-empty, i.e. xT is well-defined, and one of the two following conditions
holds

1. |B|≥ T
2 , or

2. γE
[∑

t∈B f(xt)− f(x∗)
]
≤ 0.

Proof. Let us use x = x∗ in Lemma D.1. Taking the expectation and using the fact that ∥ht∥≤M , we get

E

[
γ
∑
t∈B

f(xt)− f(x∗)

]
+ E

[
γ
∑
t∈N

c− g(xt)

]
≤ 1

2
R2 +

1

2
M2

T−1∑
t=0

γ2 +M

T−1∑
t=0

γ2E
[
∥et∥

]
(26)

+ M

T−1∑
t=0

γE
[
∥êt∥

]
. (27)

Using the properties of the compressors {Ci}ni=1, we get by induction4 that (with the choice η = δ
2(1−δ) )

E
[
∥et+1∥2

]
= E

∥∥∥∥∥ 1n
n∑

i=1

et+1
i

∥∥∥∥∥
2
 ≤ 1

n

n∑
i=1

E
[
∥et+1

i ∥2
]
=

1

n

n∑
i=1

E
[
∥eti + ht

i − Ci(eti + ht
i)∥2

]
≤ 1− δ

n

n∑
i=1

E
[
∥eti + ht

i∥2
]

≤ (1− δ) (1 + η)
1

n

n∑
i=1

E
[
∥eti∥2

]
+ (1− δ)

(
1 + η−1

)
M2

≤
t∑

l=0

[(1− δ)(1 + η)]t−l(1− δ)(1 + η−1)M2

≤ (1− δ)(1 + η−1)

1− (1− δ)(1 + η)
M2 =

(1− δ)(1 + η−1)

δ − η(1− δ)
M2 =

2(1− δ)(1 + η−1)

δ
M2 ≤ 4(1− δ)

δ2
M2︸ ︷︷ ︸

=:C2

.

Similarly, we bound E
[
∥êt∥2

]
E
[
∥êt+1∥2

]
= E

[
∥wt+1 − xt+1∥2

]
= E

[
∥wt+1 − xt − C(wt+1 − xt)∥2

]
≤ (1− δs)E

[
∥wt+1 − xt∥2

]
= (1− δs)E

[
∥wt − γvt − xt∥2

]
= (1− δs)E

[
∥êt − γvt∥2

]
≤ (1− δs)(1 + η̂)E

[
∥êt∥2

]
+ (1− δs)(1 + η̂−1)γ2E

[
∥vt∥2

]
. (28)

Note that

E

∥∥∥∥∥ 1n
n∑

i=1

eti + ht
i

∥∥∥∥∥
2
 ≤ 2

n

n∑
i=1

E
[
∥eti∥2

]
+ E

[
∥ht

i∥2
]

≤ 2

n

n∑
i=1

(
4(1− δ)

δ2
M2 +M2

)
= 2M2 4(1− δ) + δ2

δ2
≤ 10M2

δ2
.

4The base of induction obviously holds since ∥e0i ∥= 0.
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Therefore,

E
[
∥vt∥2

]
≤ 2

n

n∑
i=1

E
[∥∥vti − (eti + ht

i)
∥∥2]+ 2E

∥∥∥∥∥ 1n
n∑

i=1

(eti + ht
i)

∥∥∥∥∥
2


≤ 2(1− δ)
1

n

n∑
i=1

E
[∥∥eti + ht

i

∥∥2]+ 2

n

n∑
i=1

E
[∥∥eti + ht

i

∥∥2]
≤ 8

n

n∑
i=1

E
[
∥eti∥2

]
+

8

n

n∑
i=1

E
[
∥ht

i∥2
]

≤ 40M2

δ2
.

Then we continue (28) as follows

E
[
∥êt+1∥2

]
≤

t∑
l=0

[(1− δs)(1 + η̂)]t−l(1− δs)(1 + η̂−1)γ2 · 40M
2

δ2

≤ (1− δs)(1 + η̂−1)

1− (1− δs)(1 + η̂)
γ2 · 40M

2

δ2

≤ γ2 160(1− δs)M
2

δ2s δ
2︸ ︷︷ ︸

:=B2

,

i.e. E [∥et∥] ≤ C and E [∥êt∥] ≤ γB. Therefore, we continue (26) as follows

E

[
γ
∑
t∈B

f(xt)− f(x∗)

]
+ E

[
γ
∑
t∈N

c− g(xt)

]
≤ 1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T

+ M2γ2 4
√
10(1− δs)

δsδ
T. (29)

Assume that B = ∅, then we have using the fact that g(x∗) ≤ 0

Tγc ≤ 1

2
R2 +

1

2
M2

T−1∑
t=0

γ2 +M

T−1∑
t=0

γ2∥et∥+M2γ2 2
√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T.

This contradicts the assumption of the lemma (24). Therefore, we must have B ̸= ∅. If we have

γE

[∑
t∈B

f(xt)− f(x∗)

]
≤ 0,

then part 2. holds automatically. If we have the opposite, i.e.

γE

[∑
t∈B

f(xt)− f(x∗)

]
> 0,

then from (29) we have

γE

[∑
t∈N

(c− g(x∗))

]
≤ 1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T.

Since g(x∗) ≤ 0, we have c− g(x∗) ≥ c. Therefore, we have

E

[∑
t∈N

γc

]
≤ 1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T. (30)

Assume |B|< T
2 , this means that |N |≥ T

2 . Therefore, from (30) we derive

T

2
γc ≤ E

[∑
t∈N

γc

]
≤ 1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T,

which contradicts (24). Therefore, |B|≥ T
2 , i.e. part 1. holds.
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Now we are ready to prove our main theorem.

Theorem D.3. Suppose that γ and c are chosen such that (24) holds. Then we have

E
[
f(xT )− f(x∗)

]
≤ R2

γT
+M2γ + 4M2γ

√
1− δ

δ
+ 8M2γ

√
10(1− δs)

δsδ
,

E
[
g(xT )

]
≤ c.

Proof. We start by using the results of Lemma D.1. Using convexity of f and Jensen inequality we get that if part 2. of
Lemma D.1 holds, we have

E
[
f(xT )− f(x∗)

]
≤ 0.

If part 2. does not hold, then we must have |B|≥ T
2 . Since g(x∗) ≤ 0, from (25) we obtain

γE

[∑
t∈B

f(xt)− f(x∗)

]
≤ 1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T.

This implies that

E
[
f(xT )− f(x∗)

]
≤ 2

γT

(
1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2 4

√
10(1− δs)

δsδ
T.

)

=
R2

γT
+M2γ + 4M2γ

√
1− δ

δ
+ 8M2γ

√
10(1− δs)

δsδ
.

Since g(xt) ≤ c for t ∈ B we get from convexity of g and Jensen inequality that
E
[
g(xT )

]
≤ c.

Corollary D.4. If γ = R
√
δsδ

M
√
T

and c = 32RM√
δsδT

, then we have

E
[
f(xT )− f(x∗)

]
≤ 32MR√

δT
,

E
[
g(xT )

]
≤ 32MR√

δT
.

Proof. Note that γc = R
√
δsδ

M
√
T

32RM√
δsδT

= 32R2

T , i.e. T
2 γc = 16R2, and

1

2
R2 +

1

2
M2γ2T +M2γ2 2

√
1− δ

δ
T +M2γ2

√
10(1− δs)

δsδ
T

=
1

2
R2 +

1

2
M2T

R2δδs
M2T

+M2T
2
√
1− δ

δ

R2δδs
M2T

+M2T
4
√
10(1− δs)

δsδ

R2δsδ

M2T

=
1

2
R2 +

1

2
R2δδs + 2R2

√
1− δδs + 4

√
10(1− δs)R

2 ≤ 16R2.

Therefore, (24) is satisfied. Hence, we have from Theorem D.3

E
[
f(xT )− f(x∗)

]
≤ R2

R
√
δsδ

M
√
T
T

+M2R
√
δsδ

M
√
T

+ 4M2R
√
δsδ

M
√
T

√
1− δ

δ
+ 8M2R

√
δsδ

M
√
T

√
10(1− δs)

δsδ

=
MR√
δsδT

+
MR
√
δsδ√

T
+

4MR
√
(1− δ)δs√
δT

+
8MR

√
10(1− δs)√
δsδ

≤ 32MR√
δsδT

,

and

g(xT ) ≤ c =
32MR√
δsδT

.
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E. Lower bound under Communication Compression for Non-smooth Convex Setting
In this section, we establish a lower bound in non-smooth convex setting, assuming workers can compute exact subgradients
f ′(x) ∈ ∂f(x) or g′(x) ∈ ∂g(x), and the compression is the only source of stochasticity in the training. First, in the next
subsection, we provide some preliminary background on the class of zero-respecting algorithms following the exposition in
(Huang et al., 2022), and justify that our Safe-EF method satisfies this general property. In the subsequent Appendices E.2
and E.3, we provide the proof of Theorem 4.1.

E.1. Zero-respecting algorithms

Let [x]j denote the j-th coordinate of a vector x ∈ Rd for j ∈ [d], and define prog(x) as

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j: [x]j ̸= 0}, otherwise.

Similarly, for a set of points X = {x1, x2 . . . }, we define prog(X) := maxx∈X prog(x). It holds that prog(X ∪ Y ) =

max{prog(X),prog(Y )} for any X,Y ⊆ Rd, and prog(X) ≤ prog(X̃) for any X ⊆ X̃ ⊆ Rd.

We examine a distributed learning framework incorporating communication compression. For each worker i and time step
t ≥ 0, we denote by yti and zti the points at which worker i queries its subgradient (of fi and/or gi) and function (of fi
and/or gi) oracles, respectively5. In more detail, Oi,fi(y

t
i , z

t
i) returns a pair of the subgradient of f ′

i(y
t
i) and the function

value fi(z
t
i), namely,

(f ′
i(y

t
i), fi(z

t
i)) ∈ Oi,fi(y

t
i , z

t
i) := (Osg

i,fi
(yti , z

t
i), O

fv
i,fi(y

t
i , z

t
i)),

where f ′
i(y

t
i) ∈ ∂fi(y

t
i) is an arbitrary selection of subgradient element from subdifferential of fi at the point yti . We

assume similarly the oracle for each constraint function gi, Oi,gi(y
t
i , z

t
i) which returns a pair (g′i(y

t
i), gi(z

t
i)), where

g′i(y
t
i) ∈ ∂gi(y

t
i). Additionally, xt

i represents the local model updated by worker i after the t-th query. It is important to note
that yti and zti are not necessarily equal to the previous local model xt−1

i ; instead, they may serve as auxiliary vectors.

Between the (t− 1)-th and t-th gradient queries, each worker is allowed to communicate with the server by transmitting
(compressed) vectors. For worker i, we let Vt

wi→s denote the set of vectors that worker i aims to send to the server, i.e., the
vectors before compression. Due to communication compression, the vectors received by the server from worker i, which
we denote by Vt,⋆

wi→s, are the compressed version of Vt
wi→s = Ci(Vt,⋆

wi→s)
6 with some underlying compressors Ci. Note that

Vt
wi→s is a set that may include multiple vectors, and its cardinality equals the rounds of communication. After receiving

the compressed vectors from all workers, the server will broadcast some vectors back to all workers. We let Vt
s→w denote

the set of vectors that the server aims to send to workers. Since we consider the setting with unidirectional compression only,
then Vt

s→w ≡ Vt,⋆
s→w

7.

We now extend the zero-respecting property (Huang et al., 2022) to distributed learning with communication compression
with functional constraints.

Definition E.1. We say a distributed algorithm A is zero-respecting if for any t ≥ 0 and 1 ≤ k ≤ d, the following
requirements are satisfied:

1. If worker i queries at yti and zti with [yti ]k ̸= 0, then one of the following must be true:
there exists some 0 ≤ s < t such that [xs

i ]k ̸= 0;

there exists some 1 ≤ s < t such that [Ofi,i(y
s
i )]k ̸= 0 or [Ogi,i(y

s
i )]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has received some v ∈ Vt
s→w with [v]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has compressed some v ∈ Vt
wi→s with [v]k ̸= 0;

5We consider deterministic oracles only.
6The compression is performed vector-wise.
7Vt,⋆

s→w = C0(Vt
s→w).
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2. If the local model xt
i of worker i, after t-th query, has [xt

i]k ̸= 0, then one of the following must be true:
there exists some 0 ≤ s < t such that [xs

i ]k ̸= 0;

there exists some 1 ≤ s < t such that [Ofi,i(y
s
i )]k ̸= 0 or [Ogi,i(y

s
i )]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has received some v ∈ Vt
s→w with [v]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has compressed some v ∈ Vt
wi→s with [v]k ̸= 0;

3. If worker i aims to send some v ∈ Vt
wi→s with [v]k ̸= 0, then one of the following must be true:

there exists some 0 ≤ s < t such that [xs
i ]k ̸= 0;

there exists some 1 ≤ s < t such that [Oi,fi(y
s
i )]k ̸= 0 or [Oi,gi(y

s
i )]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has received some v′ ∈ Vt
s→w with [v′]k ̸= 0;

there exists some 1 ≤ s < t such that worker i has compressed some v′ ∈ Vt
wi→s with [v′]k ̸= 0;

4. If the server aims to broadcast some v ∈ Vt
s→w with [v]k ̸= 0, then one of the following must be true:{

there exists some 1 ≤ s < t and 1 ≤ i ≤ n such that the server has received some v′ ∈ Vs
wi→s with [v′]k ̸= 0;

Safe-EF is zero-respecting. Fundamentally, the zero-respecting property ensures that any increase in the number of
nonzero coordinates in xt

i, y
t
i , or other related vectors at worker i stems from its past local gradient updates, local compression

operations, or synchronization with the server. Likewise, any expansion of nonzero coordinates in the server’s vectors must
result from receiving compressed messages from workers. Notably, this definition explicitly prohibits expanding the set of
nonzero entries through function value queries of fi and/or gi. Therefore, our algorithm class excludes zero-order methods.
Nevertheless, function values can be used to set a stepsize or coefficients in linear combination to compute local model xt

i.
For instance, in Safe-EF function evaluation of gi are used to define an update direction:

ht
i = f ′

i(x
t)1(g(xt) ≤ c) + g′i(x

t) (g(xt) > c).

In this case, function values are only used to choose which of the directions, f ′
i(x

t) or g′i(x
t), to follow, but they cannot be

used to compute the update direction itself.

E.2. Lower bound in unconstrained case

We first establish the lower bound in unconstrained setting when g(x) ≡ 0, which is the most challenging part of the
proof. Without loss of generality, we assume that x0 = 0. Given local loss functions {fi}ni=1 ⊆ FR,M , compressors
{Ci}ni=1 ⊆ C(δ), and an algorithm A ∈ AU

{C}n
i=1

to solve problem (1), we let x̂A,{fi}n
i=1,{Ci}n

i=1,T
denote the output of

algorithm A using no more than T subgradient queries and rounds of communication by each worker node. Let us define
the minimax measure in unconstrained case as

inf
A∈A

sup
{Ci}n

i=1⊆C(δ)
sup

{fi}n
i=1⊆FR,M

E
[
f(x̂A,{fi}n

i=1,{Ci}n
i=1,T

)− f∗] . (31)

In (31), we do not require the compressors {Ci}ni=1 to be distinct or independent. We allow the compression parameter δ to
be accessible by algorithm A. Let [x]j denote the j-th coordinate of a vector x ∈ Rd for j ∈ [d], and define prog(x) as

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.

In other words, prog(x) outputs the largest coordinate of input x that corresponds to a non-zero entry. Importantly, prog(x)
satisfies prog(X ∪ Y) = max{prog(X ),prog(Y)} for any X ,Y ∈ Rd, and prog(X ) ≤ prog(X̃ ) for any X ⊆ X̃ ⊆ Rd

(see, e.g., (Huang et al., 2022)). Now we are ready to state and prove the lower bound stated in the unconstrained setting.

Theorem E.2 (Unconstrained setting). For any R,M > 0, n ≥ 2, δ ≤ 0.3, T ≥ δ−2 there exist functions {fi}ni=1 ⊆ FR,M ,
compressors {Ci}ni=1 ⊆ C(δ), oracles {Ofi,i}ni=1, and the starting point x0 = 0 such that for any first-order algorithm
A ∈ AU

{Ci}n
i=1

run for T ≤ d iterations from x0, satisfies

E

[
f(x̂A,{fi}n

i=1,{C}n
i=1,T

)− min
x∈Rd

f(x)

]
≥ Ω

(
MR√
δT

)
.

Proof. Step 1. Let us fix some R and define S :=
{
x ∈ Rd | ∥x∥2≤ R

2

}
. Let h:Rd → R be defined as
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h(x) :=

C · max
1≤j≤T

xj +
µ
2 ∥x∥

2
2 if x ∈ S,

C · max
1≤j≤T

xj +
µR
4 ∥x∥2 if x /∈ S.

Here we assume that T ≤ d. The constant C = M
√
T

1+
√
δT

and µ = 2M
R(1+

√
δT )

. This implies that C = Rµ
√
T

2 . Note that it is
never optimal to have [x∗]j ̸= 0 for T < j ≤ d, and by symmetry, we know that

[x⋆]1 = · · · = [x⋆]T .

Thus, as long as C ≤ Rµ
√
T

2 the optimal solution x∗ and optimal value of the problem f∗ := minx f(x) are given by

[x∗]j =

{
− C

µT for 1 ≤ j ≤ T,

0 for T < j ≤ d,
and f∗ = − C2

2µT
.

One can show that the function h is convex. Indeed, this is because taking max and/or a sum of convex functions preserves
convexity. We consider the following subgradient oracle Oh

h′(x) =

{
µx+ Cek if x ∈ S,
µR x

4∥x∥ + Cek otherwise,

where k is the smallest index such that [x]k = max
1≤j≤T

[x]j . We set fi ≡ h with Oi ≡ Oh for all i ∈ [n]. Note that the first

part of the subgradient (either µx or µR x
2∥x∥ ) is proportional to x. Therefore, the algorithms are hampered by oracle Oi to

reach more non-zero coordinates due to the second part Cek only. However, it might increase prog(Oi(x)) at most by one,
namely,

prog(Oi(x)) ≤ prog(x) + 1. (32)

Step 2. Next, we assume that each worker i uses Rand-K compressor with K = ⌈dδ⌉. Moreover, we assume that the
randomness of the compressors is shared among workers. Then this compressor belongs to C(δ). This step ensures there is
no speedup of the final rate in the number of workers n.

Step 3. We let vts→w be the vector that workers receive from the central server in the t-th communication (similar definition
is used for vtwi→s) and let xt

i be the local model that worker i produces after the t-th communication round. Recall that
algorithms satisfy the zero-respecting property. Therefore, we find that each worker can only achieve one more non-zero
coordinate in the local model by local subgradient updates based on the received messages from the central server. Thus, we
have that

prog(xt
i) ≤ max

1≤s≤t
prog(vss→w) + 1. (33)

By further noting that vector vts→w sent by the central server can be traced back to past vectors received from all workers,
we have

prog(vts→w) ≤ max
1≤s≤t

max
1≤i≤n

prog(vswi→s). (34)

Combining (33) and (34), we reach
prog(xt

i) ≤ max
1≤s≤t

max
1≤i≤n

prog(vswi→s) + 1. (35)

Step 4. Let
x̂ ∈ span

({
xt
i | 0 ≤ t ≤ T, 1 ≤ i ≤ n

})
.

be the final algorithm output after T subgradient queries on each worker. By (35), we have
prog(x̂) ≤ max

1≤t≤T
max
1≤i≤n

prog(vtwi→s) + 1.

By Lemma E.3, we have
P( max

1≤t≤T
max
1≤i≤n

prog(vtwi→s) ≥ T − 1) ≤ exp ((e− 1)T ⌈dδ⌉/−T + 1) .

Note that if prog(x̂) < T then we have

f(x̂) ≥ 0⇔ f(x̂)− f⋆ ≥ −f⋆ =
C2

2µT
.

Therefore, we have

E [f(x̂)− f⋆] ≥ (1− exp ((e− 1)T ⌈dδ⌉/d− T + 1))
C2

2µT
.
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If we let d = ⌊5Tδ⌋ and T to be no less than 1
δ2 , we have

d = ⌊5Tδ⌋ ≥ 5Tδ − 1 ≥ 4Tδ +
1

δ2
δ − 1 ≥ 4Tδ ≥ 4

δ
≥ 4.

Then it is easy to verify
(e− 1)T ⌈dδ⌉/d+ 1− T ≤ (e− 1)T (dδ + 1)/d+ 1− T

= (e− 1)Tδ +
(e− 1)T

d
+ 1− T

≤ (e− 1)Tδ + (e− 1)
Tδ

4
+ 1− T

= (e− 1)
5Tδ

4
+ 1− T.

Note that since δ ≤ 0.3 and T ≥ 1
δ2 we have

(e− 1)
5Tδ

4
+ 1− T ≤ −1⇔ T

(
1− (e− 1)5δ

4

)
≥ 2⇐ 6.25 ·

(
1− (e− 1)5 · 0.4

4

)
≈ 3.95 > 2.

Since the last inequality holds, then we have (e− 1) 5Tδ
4 + 1− T < −1. Therefore, this leads to

E [f(x̂)− f⋆] ≥ Ω

(
C2

2µT

)
= Ω

(
M2T

(1 +
√
δT )2

1

2T

R(1 +
√
δT )

2M

)
= Ω

(
MR

1 +
√
δT

)
.

Lemma E.3 (Technical lemma). In example used in the proof of Theorem E.2, it holds that
P( max

1≤t≤T
max
1≤i≤n

prog(vtwi→s) ≥ T − 1) ≤ exp ((e− 1)T ⌈dδ⌉/d− T + 1) .

Proof. Note that at the t-th round of communication where 1 ≤ t ≤ T , the non-zero coordinates of v(t,⋆)wi→s, the vector that
is to be transmitted by worker i to the server before compression, are achieved by utilizing previously received vectors
{v(s)s→w: 1 ≤ s ≤ t − 1} and local subgradient queries. Following the argument in Step 3 of Theorem E.2, we find that
worker i can only achieve one more non-zero coordinate in v

(t,⋆)
wi→s by local subgradient updates based on received vectors

{v(s)s→w | 1 ≤ s ≤ t− 1}. Therefore, it holds that
prog(v(t,⋆)wi→s) ≤ max

1≤s≤t−1
prog(v(s)s→w) + 1 ≤ max

1≤s≤t−1
max
1≤i≤n

prog(vswi→s) + 1 =: B(t−1). (36)

We additionally define B(0) = 1. By the definition of B(t) and that
prog(vtwi→s) ≤ prog(v(t,⋆)wi→s), (37)

it naturally holds that
B(t−1) ≤ B(t) = max

1≤s≤t
max
1≤i≤n

prog(vswi→s) + 1

= max

{
B(t−1), max

1≤i≤n
prog(vtwi→s) + 1

}
(37)
≤ max

{
B(t−1), max

1≤i≤n
prog(v(t,⋆)wi→s) + 1

}
(36)
≤ max

{
B(t−1), B(t−1) + 1

}
≤ B(t−1) + 1. (38)

Therefore, one round of communication can increase B(t) at most by 1. Moreover, (38) implies that B(t) = B(t−1) + 1

only if max
1≤i≤n

prog(v
(t,⋆)
wi→s) = max

1≤i≤n
prog(vtwi→s). Let k = max

1≤i≤n
prog(v

(t,⋆)
wi→s). Recall that the compressors {C}ni=1 share

the randomness, we therefore conclude that having max
1≤i≤n

prog(vtwi→s) = max
1≤i≤n

prog(v
(t,⋆)
wi→s) = k is equivalent to that

coordinate index k is chosen to communicate in communication round t, which happens with probability K
d . Therefore, we
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have
P(B(t) = B(t−1) + 1) ≤ P( max

1≤i≤n
prog(vtwi→s) = max

1≤i≤n
prog(v(t,⋆)wi→s))

= P

(
the coordinate index max

1≤i≤n
prog(v(t,⋆)wi→s) is chosen at round t

)
=

K

d
.

Let us define the event Et = {the coordinate index max
1≤i≤n

prog(v
(t,⋆)
wi→s) is chosen at round t}. Since the compression

happens uniformly at random, we have 1(E(1)), . . . ,1(Et) are i.i.d. Be(Kd ) random variables where 1(·) is the indicator
function. By the above argument, we also have B(t) − B(t−1) ≤ 1(Et) for any 1 ≤ t ≤ T. As a result, we reach by
Markov’s inequality

P(B(T ) ≥ T ) = P(eB
(T )

≥ eT )

≤ e−T E
[
exp

(
B(T )

)]
= e−T E

[
exp

(
B(0) +

T∑
t=1

(B(t) −B(t−1))

)]

≤ e−T E
[
eB

(0)
] T∏
t=1

E
[
exp

(
1(Et)

)]
= e−(T−1)

T∏
t=1

(
(1− K

d
) · 1 + K

d
· e
)

= e−(T−1)
T∏

t=1

(
1 +

K

d
(e− 1)

)

≤ e−(T−1)
T∏

t=1

e(e−1)K/d

= e(e−1)TK/d−T+1.

This concludes the proof of the lemma.

E.3. Proof of Theorem 4.1 (constrained case)

Now we are ready to extend the proof of Theorem 4.1 to constrained setting based on the construction in Theorem E.2.
Notice that the function classes FR,M and GR,M for objective and constraints have the same properties: convex with
M -bounded subgradients. Moreover, in the construction of Theorem E.2, all functions fi are identical and equal to f . Thus,
we can set gi(x) := f(x) −miny∈Rd f(y) for all i ∈ [n]. Then such problem is in the class HR,M by construction, and
it has a unique feasible point, x∗, which also coincides with the solution to unconstrained problem minx∈Rd f(x). Since
∂fi(x) = ∂gi(x) for any x ∈ Rd and all i ∈ [n], the trajectory of zero-respecting algorithm on the unconstrained problem
minx∈Rd f(x) and the constrained problem

min
x∈Rd

f(x) s.t. g(x) ≤ 0

are identical. Therefore, the statement of Theorem E.2 implies the lower bound in Theorem 4.1.
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F. Convergence Upper Bound for Safe-EF in Stochastic Setting
We first recall a standard concentration inequality result for sub-Gaussian random vector.

Lemma F.1 (Lemma C.3 from Gorbunov et al. (2019)). Let {ξk}Nk=1 be the sequence of random vectors with values in Rn

such that
E [ξk | ξk−1, . . . , ξ1] = 0 a.s. ∀ k ∈ {1, . . . , N},

and set SN :=
∑N

k=1 ξk. Assume that the sequence is {ξk}Nk=1 are sub-Gaussian, i.e.,
E
[
exp(∥ξk∥2

/σ2
k | ξk−1, . . . , ξ1

]
≤ exp(1) a.s. ∀ k ∈ {1, . . . , N},

where σ1, . . . , σN are some positive numbers. Then for all b ≥ 0 we have

P

∥SN∥≥ (
√
2 +
√
2b)

√√√√ N∑
k=1

σ2
k

 ≤ exp(−b2/3).

We first establish several lemmas.

Lemma F.2. Assume that Assumption 5.1 holds. Assume that the compressors {Ci}ni=1 are deterministic (e.g., Top-K).
Then for all t ≥ 0 and i ∈ [n] we have ∥eti∥2≤

4(1−δ)
δ2 M2.

Proof. Using the properties of the compressors {Ci}ni=1, we get by induction8 that (with the choice η = δ
2(1−δ) )

∥et+1∥2 =

∥∥∥∥∥ 1n
n∑

i=1

et+1
i

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥et+1
i ∥2= 1

n

n∑
i=1

∥eti + ht
i − Ci(eti + ht

i)∥2

≤ 1− δ

n

n∑
i=1

∥eti + ht
i∥2

≤ (1− δ) (1 + η)
1

n

n∑
i=1

∥eti∥2+(1− δ)
(
1 + η−1

)
M2

≤
t∑

l=0

[(1− δ)(1 + η)]t−l(1− δ)(1 + η−1)M2

≤ (1− δ)(1 + η−1)

1− (1− δ)(1 + η)
M2 =

(1− δ)(1 + η−1)

δ − η(1− δ)
M2 =

2(1− δ)(1 + η−1)

δ
M2 ≤ 4(1− δ)

δ2
M2,

which concludes the proof.

Theorem F.3. Let Assumptions 5.1 and 5.2 hold. Let β ∈ (0, 1) be the failure probability. Suppose γ2wt ≤ n
32M2 .

9 For
every 0 ≤ t ≤ T − 1 we have

E [exp(St) | Ft] ≤ exp

(
48M2

T−1∑
l=t

γ2wl +
8σ2

fv

nNfv

T−1∑
l=t

w2
l γ

2

)
,

where St is defined in (44).

Proof. We use the same definition of x̃t established in (22):
x̃t = xt − γet where x̃0 = x0. (39)

We start by extending the norm of ∥x̃t+1 − x∥2:
∥x̃t+1 − x∥2 = ∥x̃t − x∗∥2−2γ⟨ht, x̃t − x∗⟩+ γ2∥ht∥2

= ∥x̃t − x∗∥2−2γ⟨ht, xt − x∗⟩ − 2γ⟨ht, x̃t − xt⟩+ γ2∥ht∥2.

Rearranging terms gives us
2γ⟨ht, xt − x⟩ = ∥x̃t − x∥2−∥x̃t+1 − x∥2−2γ⟨ht, x̃t − xt⟩+ γ2∥ht∥2. (40)

8The base of induction obviously holds since ∥e0i ∥= 0.
9This restriction is needed to apply Lemma 2.2 from Liu et al. (2023).
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Note that for t ∈ N we have ht = 1
n

∑n
i=1 g

′
i(x

t, ξti), and for t ∈ B we have ht = 1
n

∑n
i=1 f

′
i(x

t, ξti). Therefore, we get
from (40)

2γ

n

n∑
i=1

⟨g′i(xt, ξti), x
t − x⟩1(t ∈ N ) +

2γ

n

n∑
i=1

⟨f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2−2γ⟨ht, x̃t − xt⟩

+
γ2

n

n∑
i=1

∥g′i(xt, ξti)∥21(t ∈ N ) +
γ2

n

n∑
i=1

∥f ′
i(x

t, ξti)∥21(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2−2γ⟨ht, x̃t − xt⟩

+
2γ2

n

n∑
i=1

∥g′i(xt)∥21(t ∈ N ) +
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N )

+
2γ2

n

n∑
i=1

∥f ′
i(x

t)∥21(t ∈ B) + 2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B). (41)

Note that we have
|⟨ht, x̃t − xt⟩| ≤ ∥ht∥·γ∥et∥

≤M · γ 2
√
1− δ

δ
M =

2
√
1− δ

δ
γM2.

Therefore, we continue from (41) as follows
2γ

n

n∑
i=1

⟨g′i(xt, ξti), x
t − x⟩1(t ∈ N ) +

2γ

n

n∑
i=1

⟨f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2+4
√
1− δ

δ
γ2M2 + 2γ2M2

+
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B).

We add and subtract full subgradients and derive
2γ

n

n∑
i=1

⟨g′i(xt), xt − x⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨f ′
i(x

t), xt − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2+4
√
1− δ

δ
γ2M2 + 2γ2M2

+
2γ

n

n∑
i=1

⟨gi(xt)− g′i(x
t, ξti), x

t − x⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨f ′
i(x

t)− f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

+
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B).

Now we use convexity of gi and fi to derive
2γ

n

n∑
i=1

(gi(x
t)− gi(x))1(t ∈ N ) +

2γ

n

n∑
i=1

(fi(x
t)− fi(x))1(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2+4
√
1− δ

δ
γ2M2 + 2γ2M2

+
2γ

n

n∑
i=1

⟨gi(xt)− g′i(x
t, ξti), x

t − x⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨f ′
i(x

t)− f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

+
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B).
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We add and substract 1
n

∑n
i=1 gi(x

t, ξti) to obtain

2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x))1(t ∈ N ) +

2γ

n

n∑
i=1

(fi(x
t)− fi(x))1(t ∈ B)

≤ ∥x̃t − x∥2−∥x̃t+1 − x∥2+4
√
1− δ

δ
γ2M2 + 2γ2M2

+
2γ

n

n∑
i=1

⟨gi(xt)− g′i(x
t, ξti), x

t − x⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨f ′
i(x

t)− f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

+
2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N )

+
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B).

Now we set x = x∗. Since 1
n

∑n
i=1 gi(x

t, ξti) ≥ c for t ∈ N and g(x∗) ≤ 0 we get

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x))1(t ∈ B)− ∥x̃t − x∥2+∥x̃t+1 − x∥2−4

√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨gi(xt)− g′i(x
t, ξti), x

t − x⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨f ′
i(x

t)− f ′
i(x

t, ξti), x
t − x⟩1(t ∈ B)

+
2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N )

+
2γ2

n

n∑
i=1

∥g′i(xt)− g′i(x
t, ξti)∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥f ′
i(x

t)− f ′
i(x

t, ξti)∥21(t ∈ B).

Let us denote ωt
i := g′i(x

t)− g′i(x
t, ξt) and νti := f ′

i(x
t)− f ′

i(x
,ξti). Then we have

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))1(t ∈ B)− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−4
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x

t − x∗⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨νti , xt − x∗⟩1(t ∈ B)

+
2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N ) +
2γ2

n

n∑
i=1

∥ωt
i∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥νti∥21(t ∈ B).

We add and subtract x̃t in some terms to obtain

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))1(t ∈ B)− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−4
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨ωt
i , x

t − x̃t⟩1(t ∈ N )

+
2γ

n

n∑
i=1

⟨νti , x̃t − x∗⟩1(t ∈ B) + 2γ

n

n∑
i=1

⟨νti , xt − x̃t⟩1(t ∈ B)

+
2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N ) +
2γ2

n

n∑
i=1

∥ωt
i∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥νti∥21(t ∈ B).
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Using (39) we derive

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))1(t ∈ B)− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−4
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩1(t ∈ N ) +
2γ2

n

n∑
i=1

⟨ωt
i , e

t⟩1(t ∈ N )

+
2γ

n

n∑
i=1

⟨νti , x̃t − x∗⟩1(t ∈ B) + 2γ2

n

n∑
i=1

⟨νti , et⟩1(t ∈ B)

+
2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N ) +
2γ2

n

n∑
i=1

∥ωt
i∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥νti∥21(t ∈ B).

Since ∥ωt
i∥, ∥νti∥≤ 2M we get from Lemma F.2

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))1(t ∈ B)− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−4
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩1(t ∈ N ) +
2γ2

n

n∑
i=1

2M · 2
√
1− δ

δ
M1(t ∈ N )

+
2γ

n

n∑
i=1

⟨νti , x̃t − x∗⟩1(t ∈ B) + 2γ2

n

n∑
i=1

2M · 2
√
1− δ

δ
M1(t ∈ B) + 2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N )

+
2γ2

n

n∑
i=1

∥ωt
i∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥νti∥21(t ∈ B).

Rearranging terms, we obtain

2γc1(t ∈ N ) +
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))1(t ∈ B)− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−12
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩1(t ∈ N ) +
2γ

n

n∑
i=1

⟨νti , x̃t − x∗⟩1(t ∈ B) + 2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))1(t ∈ N )

+
2γ2

n

n∑
i=1

∥ωt
i∥21(t ∈ N ) +

2γ2

n

n∑
i=1

∥νti∥21(t ∈ B).

Now we define

At := 2γc1(t ∈ N )+
2γ

n

n∑
i=1

(fi(x
t)−fi(x

∗))1(t ∈ B)−∥x̃t−x∗∥2+∥x̃t+1−x∗∥2−12
√
1− δ

δ
γ2M2−2γ2M2. (42)

In the case t ∈ N , we have

At =
2γc

n
− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−12

√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩+ 2γ

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t)) +
2γ2

n

n∑
i=1

∥ωt
i∥2.

In the case t ∈ B, we have

At =
2γ

n

n∑
i=1

(fi(x
t)− fi(x

∗))− ∥x̃t − x∗∥2+∥x̃t+1 − x∗∥2−12
√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1

⟨νti , x̃t − x∗⟩+ 2γ2

n

n∑
i=1

∥νti∥2.

Following Liu et al. (2023) we define Zt as follows
Zt := wtAt − vt∥x̃t − x∗∥2, (43)
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where wt and vt will be defined later. Next, we define

St :=

T−1∑
l=t

Zt. (44)

Let us define the natural filtration Ft := σ(ξ0, . . . , ξt−1). We will show by induction that

E [exp(St) | Ft] ≤ exp

(
48M2

T−1∑
l=t

wlγ
2 +

8σ2
fv

nNfv

T−1∑
l=t

w2
l γ

2

)
.

The base of induction is trivial for t = T since ST = 0. Assume that the statement holds for t ∈ {0, . . . , T − 1}. We have
E [exp(St) | Ft] = E [exp(St+1 + Zt) | Ft]

= E [E [exp(St+1 + Zt | Ft+1] | Ft] .

We now analyze the inner expectation. Conditioned on Ft+1 we have Zt fixed. Using the inductive hypothesis, we derive

E [exp(Zt + St+1) | Ft+1] ≤ exp(Zt) exp

(
48M2

T−1∑
l=t+1

wlγ
2

)
.

Therefore,

E [exp(Zt + St+1) | Ft] ≤ E [exp(Zt) | Ft] exp

(
48M2

T−1∑
l=t+1

wlγ
2

)
. (45)

From (42), (43), and assuming that t ∈ N we have the following bound

exp(Zt) = exp

(
wt

2γc

n
− wt∥x̃t − x∗∥2+wt∥x̃t+1 − x∗∥2−wt

(
2 +

12
√
1− δ

δ

)
γ2M2 − vt∥x̃t − x∗∥2

)
≤ exp

(
2γwt

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩+ 2γ2wt

n

n∑
i=1

∥ωt
i∥2+

2γwt

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))

)
exp(−vt∥x̃t − x∗∥2).

Next, we use Lemma 2.2 from Liu et al. (2023) (with a = 2γwt

n (x̃t − x∗) and b2 = 2γ2wt

n for the terms with ωt
i , and with

a = 2γwt

n · 1 for the terms with gi(x
t, ξti)− gi(x

t)) and independence of function and subgradient evaluations

E

[
exp

(
2γwt

n

n∑
i=1

⟨ωt
i , x̃

t − x∗⟩+ 2γ2wt

n

n∑
i=1

∥ωt
i∥2+

2γwt

n

n∑
i=1

(gi(x
t, ξti)− gi(x

t))

)
| Ft, t ∈ N

]

≤ exp

(
n ·
[
3

{
4γ2w2

t

n2
· 4M2∥x̃t − x∗∥2+2γ2wt

n
· 4M2

}
+ 2

4γ2w2
t

n2

σ2
fv

Nfv

])
= exp

(
48γ2w2

t

n
M2∥x̃t − x∗∥2+24γ2wtM

2 +
8γ2w2

t

n

σ2
fv

Nfv

)
. (46)

Therefore, from (45) we derive using the definition of vt :=
48γ2w2

t

n M2

E [exp(St) | Ft] ≤ exp

([
48γ2w2

t

n
M2 − vt

]
∥x̃t − x∗∥2+24M2

T−1∑
l=t

wlγ
2 +

8σ2
fv

nNfv

T−1∑
l=t

w2
l γ

2

)

= exp

(
48M2

T−1∑
l=t

wlγ
2 +

8σ2
fv

nNfv

T−1∑
l=t

w2
l γ

2

)
.

This concludes the transition step in the case t ∈ N .

Now we move on to the case t ∈ B. The derivations are similar, but we do not have function values. Therefore, instead of

exp

(
48γ2w2

t

n
M2∥x̃t − x∗∥2+24M2wtγ

2 +
8σ2

fv

nNfv
w2

t γ
2

)
in (46) we get

exp

(
48γ2w2

t

n
M2∥x̃t − x∗∥2+24M2wtγ

2

)
.

Therefore, the transition step holds in both cases.

Corollary F.4. Let β ∈ (0, 1) be a failure probability. Suppose the sequence {wt} satisfy the restrictions of Theorem F.3
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and wt +
48γ2w2

t

n
M2︸ ︷︷ ︸

=vt

≤ wt−1. Let the stepsize γ = γ̃√
T

. Then with probability at least 1− β

∑
t∈N

γc+
∑
t∈B

γ(f(xt)− f(x∗)) ≤ C1 log
1

β
+ ∥x̃0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T

+
8σ2

fv

C1nNfv
Tγ2,

where C1 := 48γ̃2M2

n .

Proof. Let T = 48M2
∑T−1

t=0 wtγ
2 +

8σ2
fv

nNfv

∑T−1
t=0 w2

t γ
2 + log 1

β . By Theorem F.3 and Markov’s inequality, we have

P(S0 ≥ T ) ≤ P(exp(S0) ≥ exp(T ))

≤ exp(−T )E [exp(S0)]

≤ exp(−T ) exp

(
48M2

T−1∑
t=0

γ2wt +
8σ2

fv

nNfv

T−1∑
t=0

γ2w2
t

)
= β.

Note that since wt + vt ≤ wt−1 by the assumption of the lemma

S0 =

T−1∑
t=0

Zt

=

T−1∑
t=0

[
wt

(
2γc1(t ∈ N ) + 2γ(f(xt)− f(x∗))1(t ∈ B)

)
− (vt + wt)∥x̃t − x∗∥2+wt∥x̃t+1 − x∗∥2

−wt

(
2 +

12
√
1− δ

δ

)
γ2M2

]
≥

T−1∑
t=0

[
2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
−

T−1∑
t=0

(
wt−1∥x̃t − x∗∥2−wt∥x̃t+1 − x∗∥2

)
−

T−1∑
t=0

wt

(
2 +

12
√
1− δ

δ

)
γ2M2

]

≥
T−1∑
t=0

2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
− w0∥x0 − x∗∥2+wT−1∥x̃T − x∗∥2

−
T−1∑
t=0

wt

(
2 +

12
√
1− δ

δ

)
γ2M2

≥
T−1∑
t=0

2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
− w0∥x0 − x∗∥2+wT−1∥x̃T − x∗∥2

−
T−1∑
t=0

wt

(
2 +

12
√
1− δ

δ

)
γ2M2.
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Therefore, with a probability of at least 1− β we have∑
t∈N

2γwtc+
∑
t∈B

2γwt(f(x
t)− f(x∗)) + wT−1∥x̃T − x∗∥2

≤ S0 + w0∥x0 − x∗∥2+
T−1∑
t=0

wt

(
2 +

12
√
1− δ

δ

)
γ2M2

≤ log
1

β
+ w0∥x0 − x∗∥2+γ2

(
48M2 + 2M2 +

12
√
1− δ

δ
M2

) T−1∑
t=0

wt +
8σ2

fv

nNfv

T−1∑
t=0

w2
t γ

2.

We need to satisfy the following restrictions on wt:

wt ≤
n

32γ2M2

wt +
48γ2

n
w2

t ≤ wt−1.

Let

C1 :=
48γ̃2M2

n
. (47)

Then we set wT−1 = 1

C1+
48γ̃2M2

n

= 1
2C1

. Next, we set wt−1 such that the second inequality holds with equality, namely,

wt−1 = wt +
48γ2M2

n
w2

t = wt +
C1

T
w2

t .

We can show by induction that wt ≤ 1

C1+
C1
T t

. Indeed, the base of induction holds by the choice of wT−1. Assume it holds

at t, let us show that it holds at t− 1 as well:

wt−1 = wt +
C1

T
w2

t

≤ 1

C1 +
C1

T t
+

C1

T (C1 +
C1

T t)2

≤ 1

C1 +
C1

T t
+

(C1 +
C1

T t)− (C1 +
C1

T (t− 1))

(C1 +
C1

T (t− 1))(C1 +
C1

T t)

=
1

C1 +
C1

T t

(
C1 +

C1

T (t− 1)

C1 +
C1

T (t− 1)
+

C1 +
C1

T t− (C1 +
C1

T (t− 1))

C1 +
C1

T (t− 1)

)
=

1

C1 +
C1

T (t− 1)
.

Now we show that the first condition is satisfied as well

wtγ
2 = wt

γ̃2

T
≤ 1

C1

T t

γ̃2

T
=

1
48γ̃2M2

n t
γ̃2 =

n

48M2t
≤ n

32M2
.

Therefore, with a probability at least 1− β, we have∑
t∈N

2γwtc+
∑
t∈B

2γwt(f(x
t)− f(x∗)) + wT−1∥x̃T − x∗∥2

≤ log
1

β
+ w0∥x0 − x∗∥2+γ2

(
48M2 + 2M2 +

12
√
1− δ

δ
M2

) T−1∑
t=0

wt +
8σ2

fv

nNfv

T−1∑
t=0

w2
t γ

2. (48)

Since wT−1 = 1
2C1

and 1
2C1
≤ wt ≤ 1

C1
we have with probability at least 1− β

1

C1

∑
t∈N

γc+
1

C1

∑
t∈B

γ(f(xt)− f(x∗))

≤ log
1

β
+

1

C1
∥x0 − x∗∥2+γ2

(
50M2 +

12
√
1− δ

δ
M2

) T−1∑
t=0

wt +
8σ2

fv

nNfv

T−1∑
t=0

w2
t γ

2. (49)
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We estimate the sums
∑T−1

t=0 wt ≤ T
C1

and
∑T−1

t=0 w2
t ≤ T

C2
1
. Therefore, we derive

1

C1

∑
t∈N

γc+
1

C1

∑
t∈B

γ(f(xt)− f(x∗))

≤ log
1

β
+

1

C1
∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T

C1
+

8σ2
fv

nNfv

T

C2
1

γ2. (50)

Canceling C1 in both sides, we finally obtain∑
t∈N

γc+
∑
t∈B

γ(f(xt)− f(x∗))

≤ C1 log
1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2. (51)

Lemma F.5. Let β ∈ (0, 1) be the failure probability and C1 be defined as in(47). Suppose that the stepsize γ = γ̃√
T

and
threshold c satisfy

T

2
γc > C1 log

1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2. (52)

Then we have with probability at least 1− β∑
t∈N

γc+
∑
t∈B

γ(f(xt)− f(x∗))

≤ C1 log
1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2. (53)

Moreover, assume that (53) holds. Then B is non-empty, i.e. xT = 1
|B|
∑

t∈B xt is well-defined, and one of the following
conditions holds

1. |B|≥ T
2 , or

2. γ
∑

t∈B f(xt)− f(x∗) ≤ 0.

Proof. Assume that B = ∅. Then from Corollary F.4 we have that with probability at least 1− β we have

Tγc ≤ C1 log
1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2,

This contradicts the assumption of the lemma. Hence, we must have B ̸= ∅. Now assume that (53) holds. If we have
γ
∑

t∈B f(xt)− f(x∗) ≤ 0, then the second condition holds. Assume that γ
∑

t∈B f(xt)− f(x∗) > 0, then from (53) we
obtain ∑

t∈N
γc ≤ C1 log

1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2.

Assume that |B|< T
2 , this means that |N |≥ T

2 . Therefore, we have

T

2
γc ≤

∑
t∈N

γc ≤ C1 log
1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
T +

8σ2
fv

C1nNfv
Tγ2,

which contradicts (52). Hence, if γ
∑

t∈B(f(x
t)− f(x∗)) > 0, then |B|≥ T

2 .

Now we are ready to establish our main convergence result in the stochastic setting.

Theorem F.6. Let β ∈ (0, 1) be the failure probability and C1 be defined as in (47). Suppose that the choice of γ and c are
chosen such that (52) holds. Then we have with a probability of at least 1− β that

f(xT )− f(x∗) ≤
2C1 log

1
β + 2∥x0 − x∗∥2

γT
+ 2γM2

(
50 +

12
√
1− δ

δ

)
+

16σ2
fv

C1nNfv
γ.
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Proof. We start by using the results Lemma F.5. Using the convexity of f and Jensen’s inequality we get that if part 2.
holds, then with a probability of at least 1− β we have

f(xT )− f(x∗) ≤ 0.

If part 2. does not hold, then |B|≥ T
2 . Therefore, from (52) we obtain

f(xT )− f(x∗) ≤ 2

γT

(
C1 log

1

β
+ ∥x0 − x∗∥2+γ2M2

(
50 +

12
√
1− δ

δ

)
+

8σ2
fv

C1nNfv
Tγ2

)
=

2C1 log
1
β + 2∥x0 − x∗∥2

γT
+ 2γM2

(
50 +

12
√
1− δ

δ

)
T +

16σ2
fv

C1nNfv
γ.

Corollary F.7. Let β ∈ (0, 1/2) be the failure probability. Let

R2 ≥ ∥x0 − x∗∥2+σ2
fv/Nfv

6M2
.

If γ = γ̃√
T
= R

√
δ

M
√
T

, i.e., γ̃ = R
√
δ

M and c = 128RM(1+log 1/β)√
δT

, then we have with a probability of at least 1− 2β

f(xT )− f(x∗) ≤ MR√
δT

(
48 log

1

β
+ 128

)
,

g(xT ) ≤ 256RM(1 + log 1/β)√
δT

.

Proof. First, we check that the stepsize γ and threshold c satisfy (52). We have with C1 = 48γ̃2M2

n

48R2δ
M2 M

2

n
log

1

β
+ ∥x0 − x∗∥2+ R2δ

M2T
M2

(
50 +

12

δ

)
T +

8σ2
fv

nNfv

n

48R2δ
M2 M2

T
R2δ

M2T

≤ 48R2δM2

nM2
log

1

β
+ ∥x0 − x∗∥2+50R2δ + 12R2 +

σ2
fv/Nfv

6M2

≤ 48R2δ

n
log

1

β
+ ∥x0 − x∗∥2+62R2 +R2

≤ 64R2 log
1

β
+ 64R2.

At the same time, we have
T

2
γc =

T

2

R
√
δ

M
√
T

128RM(1 + log 1/β)√
δT

= 64R2(1 + log 1/β).

Therefore, with a probability of at least 1− β we have

f(xT )− f(x∗) ≤
48R2δ log 1

β + 2∥x0 − x∗∥2

T

M
√
T

R
√
δ

+ 2
R
√
δ

M
√
T
M2

(
50 +

12

δ

)
+

16σ2
fv/Nfv

48 R2δ
M2nn

R
√
δ

M
√
T

= (48δ log
1

β
+ 2)

MR√
δT

+ 100
RM
√
δ

M
√
T

+ 24
RM√
δT

+ 2
MR
√
δ√

δT

=
MR√
δT

(
48 log

1

β
+ 128

)
. (54)

For the constraint violation we have that

g(xT ) ≤ 1

|B|
∑
t∈B

g(xt) ≤ max
t∈B

g(xt).

Moreover, from (15) and Lemma F.1 we have

P

∣∣∣∣∣
n∑

i=1

gi(x
t)− gi(x

t, ξti)

∣∣∣∣∣ > (
√
2 +
√
2b)

√√√√ n∑
i=1

σ2
fv

Nfv

 ≤ exp(−b2/3).
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This implies that

P

(
g(xt) >

1

n

n∑
i=1

gi(x
t, ξti) + (

√
2 +
√
2b)

σfv√
nNfv

)
≤ exp(−b2/3).

‘ Since for t ∈ B we have 1
n

∑n
i=1 gi(x

t, ξti) ≤ c, then we get

P

(
g(xT ) ≤ c+ (

√
2 +
√
2b)

σfv√
nNfv

)
≥ 1− T exp(−b2/3).

Choosing b2 = 3 log T
β we obtain

P

(
g(xT ) ≤ c+ (

√
2 +
√
2b)

σfv√
nNfv

)
≥ 1− β.

Now we choose Nfv ≥ (
√
2 +
√
2b)2

σ2
fv

nc2 we obtain

P
(
g(xT ) ≤ 2c

)
≥ 1− β. (55)

Thus with probability at least 1− 2β we have both (54) and (55) hold. The batch-size Nfv depends on the problem constants
as follows

Nfv ≥ (
√
2 +
√
2b)

σ2
fv

nc2
= Õ

(
σ2
fv

nR2M2

δT

)
= Õ

(
σ2
fvδT

nR2M2

)
.

The number of iterations of Safe-EF to converge to ε-accuracy is

T = Õ
(
R2M2

δε2

)
.

Therefore, the batch-size required in the stochastic setting is of order

Nfv ≥ Õ

(
σ2
fvδ

R2M2

δε2

nR2M2

)
= Õ

(
σ2
fv

nε2

)
.

This concludes the proof.
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G. Primal-dual Methods
A short primer on primal-dual methods. In Section 1, we briefly mentioned the primal-dual approach to solving the
constrained problem (1), (4), here we elaborate more on this direction. Consider the Lagrangian with non-negative multiplier
λ:

L(x, λ) := f(x) + λ g(x) =
1

n

n∑
i=1

fi(x) +
λ

n

n∑
i=1

gi(x).

Primal-dual schemes aim to find the saddle-point of this Lagrangian. If Slater’s conditions hold, i.e., f(x) is convex and
there exists a strictly feasible solution g(x) < 0, then the strong duality holds, that is

min
x

max
λ≥0

L(x, λ) = max
λ≥0

min
x
L(x, λ),

and general purpose methods for minimizing the primal-dual gap, Gap(xt, λt) := maxλ≥0 L(λ, xt)−minx L(λt, x), can
be used. The basic variant of such a scheme is Gradient Descent Ascent:

Primal-dual
xt+1 = xt − γt (f

′(xt) + λtg′(xt)),

λt+1 = Πλ≥0(λ
t + ηt g(x

t+1)),
(56)

where {γt}, {ηt} are primal and dual stepsizes respectively, and Πλ≥0 denotes the projection onto the non-negative
ray. Similarly to the design of Safe-EF, we can write down an error feedback variant of this method for distributed
optimization Algorithm 2. The intuitive justification of Algorithm 2 is similar to that of Safe-EF in Appendix D. However, a
rigorous convergence analysis of Gap(xt, λt) for Algorithm 2 remains open since even the analysis of (56) (special case of
Algorithm 2 in case of no compression) typically requires the projection step in xt variable. This is problematic for EF
analysis because the virtual iterates x̂t defined in (22) do not have such simple form anymore.

Algorithm 2 Primal-dual Error Feedback for Constrained Optimization with Bidirectional Compression

1: Input: initial point x0, λ0 ∈ Rd, stepsizes {γt}, {ηt}, compressors C and Cs at the workers and the server
2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , n do
4: Compute ht

i = f ′
i(x

t) + λtg
′
i(x

t)
5: Compute vti = C(eti + ht

i) and send to server
6: Compute et+1

i = eti + ht
i − vti

7: end for
8: Compute vt = 1

n

∑n
i=1 v

t
i

9: Compute wt+1 = wt − γtv
t

10: Compute xt+1 = xt + Cs(wt+1 − xt) and send Cs(wt+1 − xt) to workers
11: for i = 1, . . . , n do
12: Compute xt+1 = xt + Cs(wt+1 − xt)
13: Compute gi(x

t+1) and send to server ➤ Cheap communication of one float
14: end for
15: Compute ut+1 = 1

n

∑n
i=1 gi(x

t+1)
16: Compute λt+1 = Πλ≥0(λ

t + ηtu
t+1)

17: end for

Experiments. Although a rigorous convergence analysis for Primal-dual remains open, we investigate its practical
performance through empirical evaluation. We follow the same experimental setup as before and compare Safe-EF with
Algorithm 2, analyzing its sensitivity to different dual initializations λ0. We present our results in Figure 7, where we
compare the objective and constraint after 500M samples, the number of samples required for Safe-EF to converge. As
shown, different values of λ0 have significant impact on the performance of Primal-dual. In contrast, Safe-EF that does not
require additional tuning of hyperparameters and only slightly underperforms Primal-dual when λ0 = 2.

H. Additional Experiments
Cartpole. We repeat our safety experiment using the Cartpole environment from Brax (Freeman et al., 2021), with the
exception of using K/d = 0.01 instead of K/d = 0.1. As before, we compare Safe-EF with EF14 (Seide et al., 2014),
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Figure 7: Objective and constraint values of Safe-EF compared to Primal-dual with different initialization values of λ0.
Each point represents a distinct experiment trial with a different random seed. Safe-EF ensures safety and achieves solid
performance without requiring additional hyperparameter tuning.

EF21 (Richtárik et al., 2021) and Parallel-CRPO. The results are presented in Figure 8. Similarly to the experiments with
the Humanoid, Safe-EF rapidly satisfies the constraints with only a slight performance reduction in the objective. EF14
outperforms Safe-EF, however violates the constraints. Further, EF21 diverges during the last part of training. Finally, as
Parallel-CRPO does not employ compression at all, it requires significantly more gigabytes per worker to converge.
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Figure 8: Objective and constraint in the Cartpole environment. Safe-EF satisfies the constraints while maintaining
competitive performance.

Price of compression. We follow the same evaluation protocol used in Figure 3 however now, instead of measuring how
many gigabytes are required to reach a certain benchmark performance, we use a fixed sample “budget”, and evaluate the
performance achieved by each algorithm under this budget. Accordingly, we record Ĵr after 100M and 500M samples,
corresponding to 4883 and 24415 iterations respectively, for different values of K/d. We present the results in Figure 9. As
shown, both Top-K and Rand-K perform well under diminishing values of K/d after 500M samples. For a training budget
of 100M samples, Top-K significantly surpasses CGD and Rand-K.

Non-distributed baseline. We show that Safe-EF is able to find a non-trivial policy, by comparing it against Parallel-CRPO
and its non-distributed variant, CRPO, where the latter is trained and evaluated only on the nominal model p. We present our
results in Figure 10.

Learning curves. In Figure 11 we provide the full learning curves of the experiment trials used for Figures 3 and 9.

Neyman-Pearson classification. We test Safe-EF on Neyman-Pearson (NP) classification problem following the work of
He et al. (2024). This statistical formulation aims to minimize type II error while enforcing an upper bound on type I error,
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Figure 9: Performance for different compression ratios. Safe-EF with Top-K and Rand-K strategies outperform the CGD
baseline. For a training budget of 500M samples, Top-K reaches adequate performance, even under severe compression.
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Figure 10: Safe-EF performance is only slightly degraded compared to a non-distributed baseline in terms of sample
efficiency. However, in the distributed setup, as we observed in Figure 4, Safe-EF significantly outperforms Parallel-CRPO
in communication efficiency.
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Figure 11: Objective and constraint learning curves for different compression ratio. Safe-EF with Top-K outperforms
Rand-K and CGD, even under small compression values.

making it particularly relevant for applications with asymmetric misclassification costs, such as medical diagnosis. The NP
classification is

min
x

f(x) =
1

n0

n0∑
i=1

ϕ(hx, zi,0), s.t. g(x) =
1

n1

n1∑
i=1

ϕ(hx, zi,1) ≤ c,

where fx is a classifier parameterized by x (3 layers MLP with 64 units in each layer and ReLu activation); ϕ is a cross-
entropy loss; {zi,0}n0

i=1 and {zi,1}n1
i=1 are training samples from class 0 and class 1, respectively. The constraint ensures that

the classification error for class 1 does not exceed a predefined threshold c. Our results are presented in Figure 12.

This experiment further supports the argument that Safe-EF is useful for federated learning by showing its effectiveness in a
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Figure 12: Objective and constraint for Neyman-Pearson classification. Compared to the CGD and Parallel-CRPO baselines,
Safe-EF both satisfies the constraint and minimizes the loss while requiring significantly less communication overhead.

Table 1: The algorithms’ hyperparameters used in the training from Section 6.1. Here γ denotes the stepsize for all
algorithms, β is the momentum parameter for EF21M, and η is the control stepsize for EControl.

Safe-EF CGD EF21 EF21M EControl

s = 0.1 γ = 0.01 γ = 0.01 γ = 0.003 γ = 0.01, β = 0.001 γ = 0.003, η = 0.01

s = 1.0 γ = 0.01 γ = 0.01 γ = 0.003 γ = 0.01, β = 0.001 γ = 0.003, η = 0.01

s = 1.0 γ = 0.003 γ = 0.01 γ = 0.001 γ = 0.001, β = 0.1 γ = 0.001, η = 0.1

Algorithm 3 Synthetic data generation mechanism

1: Parameters: number of nodes n, dimension d, noise scalers ζ and s
2: Generate A ∼ N (0, I) ∈ Rd×d and x0 ∼ N (0, I) ∈ Rd

3: Normalize A← A/∥A∥F
4: for i = 1, . . . , n do
5: Generate Ai ∼ N (0, I) ∈ Rd×d

6: Normalize Ai ← Ai/∥Ai∥F
7: Shift Ai ← A+ sAi

8: Sample independently ξ ∼ N (0, 1) ∈ Rd

9: Compute bi = Aix0 + ζξ
10: end for
11: Return {Ai, bi}ni=1

well-established classification framework.

I. Additional Details on the Experimental Setup
Data generation. We generate matrices {Ai}ni=1 and shifts {bi}ni=1 according to Algorithm 3. Here parameter s controls
how different the matrices Ai are from each other. In our experiments, we vary s ∈ {0.1, 1.0, 10.0} and set ζ = 10−3.

Hyper-parameter tuning for Section 6.1. For all algorithms mentioned in Section 6.1, we tune the step-
size γ ∈ {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003}. For EF21M we tune the momentum parameter β ∈
{0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}, and for EControl, we tune η ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}. The best hyper-
parameters are reported in Table 1.

Humanoid. We use the Humanoid environment implementation from Brax (Freeman et al., 2021) and extend it with an
indicator cost function for whenever any one of the joint angles goes outside of a predefined limits. We perturb the dynamics
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pi of each worker by sampling the ground’s friction coefficient and the gear parameter of the joints’ motors. Sampling is
done with a uniform distribution, with a symmetric interval centered around the nominal value given in Brax.

Cartpole. As with the Humanoid, we use the environment implementation provided by Brax. The cost function is an
indicator for whenever the ‘cart’ exceeds a predefined distance from the center position. The dynamics are perturbed in the
same fashion as the Humanoid, using a uniform distribution centered around nominal values. However in this experiment,
we perturb the mass of the ‘pole’ and the gear parameter of the cart’s motor.

Hyper-parameters tuning for Section 6.2. As mentioned before, our implementation of Safe-EF builds on PPO (Schulman
et al., 2017). We follow the standard follow the standard implementation provided in Brax, including their default hyper-
parameters used for the Humanoid environment. Notably, in all of our experiments, we keep the default value γ = 0.0003,
with Adam as optimizer (Kingma & Ba, 2014). In practice, we found the default set of parameters to work well with Safe-EF.
The only deviation from these parameters is the entropy regularization coefficient, which we set to 0.01 from 0.001.

For more specific details, please use our open-source implementation https://github.com/yardenas/safe-ef.
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