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Abstract
The rapid expansion of AI in healthcare has led
to a surge in medical data generation and stor-
age, boosting medical AI development. However,
fears of unauthorized use, like training commer-
cial AI models, hinder researchers from sharing
their valuable datasets. To encourage data sharing,
one promising solution is to introduce impercepti-
ble noise into the data. This method aims to safe-
guard the data against unauthorized training by
inducing degradation in the generalization ability
of the trained model. However, they are not effec-
tive and efficient when applied to medical data,
mainly due to the ignorance of the sparse nature of
medical images. To address this problem, we pro-
pose the Sparsity-Aware Local Masking (SALM)
method, a novel approach that selectively perturbs
significant pixel regions rather than the entire im-
age as previously. This simple yet effective ap-
proach, by focusing on local areas, significantly
narrows down the search space for disturbances
and fully leverages the characteristics of sparsity.
Our extensive experiments across various datasets
and model architectures demonstrate that SALM
effectively prevents unauthorized training of dif-
ferent models and outperforms previous SoTA
data protection methods.

1. Introduction
The expansion of artificial intelligence (AI) in healthcare
has significantly increased the production and storage of
sensitive medical data (Rajkomar et al., 2018; Rasmy et al.,
2021). This data plays a crucial role in advancing research
in related fields (Zhang et al., 2022; Kelly et al., 2019;
Rasmy et al., 2021). The more high-quality, open-source
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datasets that are available, the more contributions can be
made by talented researchers to the development of the
field (Johnson et al., 2019; Irvin et al., 2019; Pedrosa et al.,
2019; Bilic et al., 2023; Rasmy et al., 2021). However,
many dataset creators are reluctant to open-source their
work due to concerns over unauthorized use, such as training
commercial models (Edwards, 2022; Hill & Krolik, 2019).

Conventional image classification datasets are relatively
easy to obtain and label by laypersons, as shown by Im-
ageNet’s use of online crowdsourcing (Deng et al., 2009;
Zhang et al., 2021). But in the medical field, annotating is a
much more complex process requiring specialized knowl-
edge, usually undertaken by experts like radiologists (Ker-
many et al., 2018; Simpson et al., 2019; Kather et al., 2019).
In addition, it is also necessary to describe the severity of
the disease and its relationship with the surrounding tissues.
This means that constructing a medical dataset is a labor-
intensive task. Unauthorized use could lead to infringement
of the creator’s rights, leading to a reluctance to release
further data publicly. Moreover, from a patient’s perspec-
tive, concerns about their information being exploited for
commercial purposes might decrease their willingness to
authorize their data for research (Koh et al., 2011; Trinidad
et al., 2020). Therefore, the construction and release of
a medical dataset are not only time-consuming and labor-
intensive but also fraught with significant ethical and privacy
challenges. The reduction in quality open source datasets,
resulting from both of the scenarios mentioned, in turn,
slows down the development of medical AI (Alberdi et al.,
2016; Forghani et al., 2019; Gunraj et al., 2020).

To defend unauthorized use and encourage sharing data,
Huang et al. (2021) proposed the technique of contaminating
data with imperceptible noise. Models trained on this noise-
contaminated data exhibit poor performance for normal
utilization. Specifically, these methods create “unlearnable”
examples from clean data by adding imperceptible noise,
demonstrating significant protective capabilities. The design
of this error-minimizing noise is based on the intuitive idea
that an example with a higher training loss could contain
more information to learn. Consequently, this noise protects
the data by minimizing the corresponding loss, effectively
reducing the informativeness of the data.
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Medical Unlearnable Examples

Nevertheless, applying this method directly to medical im-
ages may not be optimal, as it overlooks the unique proper-
ties inherent in medical images (Liu et al., 2023d). The most
important property that is overlooked is sparsity (Ye & Liu,
2012; Chuang et al., 2007; Huang et al., 2009; Otazo et al.,
2015; Davoudi et al., 2019; Fang et al., 2013). For instance,
in cellular microscopy images, even after cropping, there re-
mains a substantial amount of blank background. Similarly,
techniques such as CT or tomographic scanning inherently
produce sparse data (Chen et al., 2018; Davoudi et al., 2019;
Fang et al., 2013). Previous methods often struggled to pin-
point specific feature regions in medical data, inadvertently
emphasizing sparse areas when generating noise. This led
to a major waste of computational resources and suboptimal
noise performance, impacts on protection effectiveness, and
the time consumed for protection.

To address these challenges, we introduce a novel Sparsity-
Aware Local Masking method, which leverages the inherent
nature of medical data. Our approach assesses the con-
tribution of pixels to the task based on their gradient and
selects pixels with higher contributions for perturbation.
This method not only narrows the perturbation search space
but also enables the noise generator to focus more on fea-
ture regions, yielding noise with stronger protective effects.
Additionally, since the protective performance of the noise
is entirely derived from feature regions, the performance
can be maintained even when cropping large background
areas, a common practice in real-world medical workflows.
These advancements could significantly motivate medical
institutions and researchers to share their data for research or
education purposes. In summary, the primary contributions
of our research are as follows:

1. We are the first to find that the existing Unlearnable
Example overlooks the sparse nature of medical data.
Specifically, their performance is not optimal and it is
not robust against medical-domain data preprocessing.

2. To address these issues, we propose Sparsity-Aware
Local Masking (SALM), specifically designed for the
medical domain by limiting the perturbation to features
improved protection effectiveness and robustness.

3. Experiments on multiple medical datasets across differ-
ent modalities, scales, and tasks demonstrate that our
SALM achieves SoTA performance and is consistently
effective in various medical scenarios.

2. Related Works
In this paper, we seek to protect medical data from unautho-
rized exploitation via a data poisoning approach. Data Poi-
soning is a technique used to compromise the performance
of machine learning models on clean data by deliberately

altering training samples. This form of attack has proven
effective against both Deep Neural Networks (DNNs) and
traditional machine learning methods such as SVM (Biggio
et al., 2012). Muñoz-González et al. (2017) has highlighted
the susceptibility of DNNs to data poisoning, although these
attacks typically result in only a modest reduction in DNN
performance. However, Yang et al. (2017) found there is
a clear distinction between poisoned samples and normal
samples, which comes at the cost of reduced data usability.
Backdoor Attacks represent a specialized form of data poi-
soning. Traditional backdoor attacks (Chen et al., 2017; Liu
et al., 2020) involve the introduction of falsely labeled train-
ing samples embedded with covert triggers into the dataset.
A relatively new approach within this realm is the creation
of Unlearnable Examples (Huang et al., 2021). These are
considered a more subtle form of backdoor attack, free of
labels and triggers. Unlearnable Examples show promising
results in protecting data from unauthorized exploitation in
various domains and applications (Liu et al., 2023c;b;a; Sun
et al., 2022; Zhang et al., 2023; Li et al., 2023; He et al.,
2022; Zhao & Lao, 2022; Salman et al., 2023; Guo et al.,
2023), such as natural language processing (Ji et al., 2022),
graph learning (Liu et al., 2023a), and contrastive learning
(Ren et al., 2022). However, the flexibility of protecting
medical data has not yet been fully explored. Recently, Liu
et al. (2023d) took a first step to evaluate the performance
of conventional image protection methods on medical im-
ages. Nevertheless, the methods in (Liu et al., 2023d) are
straightforward adaptations from the previous approach and
are suboptimal due to a lack of consideration of the intrinsic
characteristics of medical data. To better address this, in
this study, we leverage the inherent features of medical data
to design more effective protection.

3. Methodology
3.1. Problem Statement

Assumptions on Defender’s Capability. We assume that
defenders are capable of making arbitrary modifications to
the data they seek to protect, under the premise that these
modifications do not impair the visual quality. To better
simulate real-world conditions, defenders cannot interfere
with the training processes of unauthorized users and do not
know the specific models they use. Additionally, once the
dataset is publicly released, defenders can no longer modify
the data.

Objectives. This question is posed in the context of uti-
lizing Deep Neural Networks (DNNs) for the classification
of medical images. In a classification task comprising K
categories, the clean training dataset and test dataset are
denoted as Dc and Dt, respectively.

Suppose the clean training dataset consists of n clean exam-
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Figure 1. Our SALM method comprises a comprehensive framework that encompasses two primary steps: important pixel acquisition and
noise generator training. In the first phase, the model calculates the gradient at each pixel within the image and ranks them, generating a
sparse mask through a pre-set K value. In the second phase, the noise generator focuses on perturbing the pixels selected in the previous
step and updates its parameters. By implementing this noise, models trained without authorization exhibit poor performance on clean
datasets. Conversely, the performance for authorized users remains comparable to that achieved with the original data.

ples, that is, Dc = {(xi, yi)}ni=1 with x ∈ X ⊂ Rd are the
inputs and y ∈ Y = {1, · · · , N} are the labels and N is the
total number of classes. We denote its unlearnable version
by Du = {(x′

i, yi)}
n
i=1, where x′ = x + δ is the unlearn-

able version of training example x ∈ Dc ,and δ ∈ ∆ ⊂ Rd

is the “invisible” noise that makes x unlearnable. The noise
δ is bounded by ∥δ∥p ≤ ϵ with ∥ · ∥p(Lp norm), and ϵ is set
to be small such that it does not affect the normal utility of
the example.

In the specific scenario, a DNN model fθ parameterized
with θ, is trained on Dc to learn the mapping from the input
domain to the output domain. For simplicity, we will omit
the θ notation in the rest of this paper. To generate an
unlearnable dataset, our objective is to induce the model
to learn a spurious correlation between noise and labels:
fθ : ∆→ Y,∆ ̸= X , when trained on Du:

min
θ

E(x′,y)∼Du
L (fθ (x′) , y) . (1)

3.2. Sparsity-Aware Local Masking

In an ideal scenario, the generation of noise involves a class-
matching process to protect each category within Dc. For
simplicity, we define the noise generation process on Dc

here. Given a clean example x, by generating the imper-
ceptible noise ∆ for the training input x by solving the
following bi-level optimization problem:

min
θ

E(x,y)∼Dc

[
min
δ
L (f ′

θ(x+ δ), y)

]
, s.t. ∥δ∥p ≤ ϵ,

(2)
where f ′ denotes the source model used for noise generation.
Note that this is a min-min bi-level optimization problem:
the inner minimization is a constrained optimization prob-
lem that finds the Lp-norm bounded noise δ that minimizes
the model’s classification loss, while the outer minimiza-
tion problem finds the parameters θ that also minimize the
model’s classification loss. However, such an approach does
not impose any constraints on the selection of pixels for
perturbation. If this method is directly applied to medical
data, it overlooks the sparsity inherent in medical datasets.

To bridge the gap in the biomedical domain, motivated by
the observation that the important features in the biomedical
image are often sparse as we observed before, we propose
a sparsity-aware objective that only modifies a portion of
important pixels in the image x. Formally, we introduce
an additional constraint to limit the noise δ in terms of ℓ0
sparsity norm, i.e., ∥δ∥0 ≤ m, we have
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min
θ,δ:∥δ∥p≤ϵ and ∥δ∥0≤m

E(x,y)∼Dc
L(fθ(x+ δ), y). (3)

To address the bi-level optimization problem in Eq. (2),
existing studies have proposed methods such as iterative
generator training (Fu et al., 2022), target poisoning with
a pretrained model (Fowl et al., 2021). Specifically, in this
work, we adopt the iterative generator training framework,
with the training termination condition being solely the train-
ing steps M . When the training step M is sufficient, the
noise will be continued optimizing to achieve better perfor-
mance since there’s no accuracy stop condition like (Huang
et al., 2021). In each step of noise update, we employ the
PGD (Madry et al., 2017) to solve the constrained minimiza-
tion problem as follows:

δut+1 =
∏

∥δ∥p≤ρu

(δut − αu · sign (∇xL (f ′
θ (xt + δut ) , y))) ,

(4)

where t is the current step in the training process,
∇xL (f ′

θ (x
′
t)) is the gradient of loss, Π is a projection func-

tion that clips the noise back to the refined area around the
original example x when it goes beyond, αu is the step size.

Existing methods do not account for the additional ℓ0 con-
straint as proposed in Eq (3). In this paper, we leverage the
principle that a pixel’s contribution to the task is propor-
tional to the magnitude of its gradient. Using the gradient
as a basis, we rank pixel importance and subsequently gen-
erate a localized mask. This approach aims to achieve both
high performance and efficiency. Specifically, the gradient
corresponding to x is defined as Gx = ∇xL (f ′

θ (x
′
t) , y).

The projection P is then applied to the obtained gradient:

P (Gx, k) = M ⊙Gx,Mij =

{
1, gij ≥ g0(k)
0, otherwise , (5)

where we seek to modify the top-k percent of the pixels,
gij denotes the value of position (i, j) of the gradient Gx,
and g0(k) is the k-th percentile value in Gx. If Mij = 0, it
means any modification at position (i, j) will result in δu
not satisfying the constraint conditions of ∥δ∥0 ≤ m.

With projection P to refine the local region, the perturbation
δ is crafted with a PGD (Madry et al., 2017) process. Given
total PGD steps Ka, for each iteration t ∈ [1,Ka] the noise
is iteratively updated via:

δut+1 =
∏

∥δ∥p≤ρu

(δut − αu · sign (P (gk, k)t , y)) . (6)

By purposefully reducing the range of perturbation, this
approach enables the noise to cover specific feature regions

Table 1. Clean test accuracy (%) of RN-18 trained on datasets
across various modalities protected by different methods. The
symbol ↓ in the following context indicates a decrease in accuracy
compared to the clean test accuracy.

Dataset Clean AdvT EM SP SALM(K = 10)
PathMNIST 90.7 8.4(↓82.3) 13.5(↓77.2) 12.2(↓78.5) 11.8(↓78.9)

ChestMNIST 94.7 38.8(↓55.9) 78.7(↓16.0) 63.5(↓31.2) 27.6(↓67.1)
DermaMNIST 73.5 38.7(↓34.8) 17.1(↓56.4) 11.5(↓62.0) 8.7(↓64.8)
OCTMNIST 74.3 21.4(↓52.9) 25.0(↓49.3) 22.7(↓51.5) 21.2(↓53.1)

PneumoniaMNIST 85.4 66.9(↓18.5) 65.8(↓19.6) 70.1(↓15.3) 63.9(↓21.5)
RetinaMNIST 52.4 39.5(↓12.9) 13.0(↓39.4) 8.3(↓44.1) 12.2(↓40.2)
BreastMNIST 86.3 44.9(↓41.4) 46.2(↓40.1) 50.0(↓36.3) 53.2(↓33.1)
BloodMNIST 95.8 19.6(↓76.2) 30.5(↓65.3) 30.5(↓65.3) 7.1(↓88.7)
TissueMNIST 67.6 19.7(↓47.9) 17.4(↓50.2) 7.3(↓60.3) 21.4(↓46.2)

OrganAMNIST 93.5 81.0(↓12.5) 78.1(↓15.4) 86.1(↓7.4) 69.0(↓24.5)
OrganCMNIST 90.0 70.3(↓19.7) 72.2(↓17.8) 74.8(↓15.2) 64.6(↓25.4)
OrganSMNIST 78.2 51.7(↓26.5) 50.1(↓28.1) 53.0(↓25.2) 46.8(↓31.4)
PathMNIST224 90.9 70.8(↓21.9) 32.5(↓60.2) 29.1(↓63.6) 27.5(↓67.3)

ChestMNIST224 92.7 31.6(↓61.1) 64.4(↓28.3) 50.1(↓42.6) 25.4(↓67.3)

rather than dispersing throughout the entire color space.
This ensures that the noise does not expend effort in sparse
regions unnecessarily, leading to better performance and ef-
ficiency. The overall framework and procedure are depicted
in Figure 1 and Appendix B.

4. Experiments and Results
We selected more than 14 datasets from Medmnist (Yang
et al., 2021) and Medmnist-v2 (Yang et al., 2023) and con-
ducted extensive experiments on various models following
(Huang et al., 2021). We compare SALM with three base-
lines, including AdvT (Fowl et al., 2021), EM (Huang et al.,
2021), SP (Yu et al., 2022). For more experimental details,
please refer to Appendix C. More experiments, analysis,
and the case study can be found in Appendix D and E.

Effectiveness Analysis. We initially selected PathMNIST
for comparison between our method and the conceptually
similar error-minimizing and error-maximizing noise. The
results in Figure 2 show that from the onset of training, both
our method and the error-minimizing noise provide effec-
tive protection, with our method demonstrating superior
performance. Conversely, the efficacy of error-maximizing
noise gradually diminished throughout the training. To fur-
ther evaluate the performance of our method, we directly
transferred several conventional image protection methods
to medical and compared them with our approach. The re-
sults in Table 1 confirm that our method is not only broadly
applicable to different modalities of medical datasets but
also outperforms the previous SoTA methods.

Different Architectures Selection. Before releasing
datasets, we cannot foresee the specific training model
unauthorized users might adopt. Hence, ensuring that the
protected data remains effective across various models is
crucial. While protectors can only select a single source
model for noise generation, unauthorized users are free to
choose any model, seemingly placing the protectors at a
disadvantage place. However, in reality, the choice of model
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Figure 2. The learning curves of ResNet-18
trained on different protected data.

Figure 3. The selected categories protect
effectiveness under different models.
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Figure 4. The effect of K on clean test accu-
racy(%) for the four datasets.

Table 2. Clean test accuracy (%) of DNNs trained on the clean
training sets (Dc) or their unlearnable ones (Du) made by different
K value.

K Model PathMNIST DermaMNIST OctMNIST ChestMNIST224

Dc Du Dc Du Dc Du Dc Du

K = 10

VGG-11 91.7 19.2 73.9 10.9 78.2 21.4 91.7 27.3
RN-18 90.7 11.8 73.5 8.7 74.3 21.2 92.7 25.4
RN-50 94.6 21.9 74.6 9.8 74.3 19.0 94.7 25.4

DN-121 96.4 14.8 75.3 14.5 75.6 13.3 95.1 21.2

K = 30

VGG-11 90.8 18.3 74.4 11.8 75.5 15.1 92.1 31.4
RN-18 92.9 14.1 73.5 4.0 74.4 12.2 94.6 24.0
RN-50 94.2 17.4 74.4 9.3 77.0 14.3 94.8 30.7

DN-121 94.2 19.7 77.2 11.8 74.9 30.0 94.5 29.9

by unauthorized users does not impact the efficacy of our
method. The results in Table 2 demonstrate that the SALM
with the source model ResNet-18 (He et al., 2016) is effec-
tive across various models. The results in Figure 3 show the
randomly extracted subset still has excellent performance
under different models. Furthermore, the protection perfor-
mance is not necessarily best when unauthorized trained on
ResNet-18. This indicates that our method is not limited
by the source model and the target model, enabling more
effective application in real-world scenarios and facilitating
the open-sourcing of high-quality datasets. What’s more,
the protective effect when K is 30 is not significantly better
than when it is 10. This prompts us to delve deeper into the
impact of the choice of K-value.

Different K Selection. In this section, we delve deeper into
our approach to unveil the nuances of our method’s depen-
dency on the choice of K value. K values were selected
within a range from 0 to 90 in increments of ten. We also
tried K = 5 to test the limitation of SALM. When K is
set to 0, it implies that the model is trained on clean data.
The results in Figure 4 show when K is set at 5 or higher,
the noise proves to be generally effective. Consequently,
in subsequent sections, unless specifically emphasized, we
opt for K = 10 for our experiments. This underscores the
effectiveness of limiting the perturbation search space and
also demonstrates that the existing methods are not optimal
in the medical domain. What’s more, it highlights the high

Table 3. Clean test accuracy (%) of RN-18 trained on datasets
protected by different methods after three common low-pass filters.

Dataset Filter Clean AdvT EM SP SALM

PathMNIST
Mean 91.3 17.9(↓73.4) 16.4(↓74.9) 17.1(↓74.2) 15.6(↓75.7)

Median 90.8 22.4(↓68.4) 7.2(↓83.6) 12.7(↓78.1) 19.3(↓71.5)
Gaussian 92.1 35.5(↓56.6) 11.0(↓81.1) 18.0(↓74.1) 17.7(↓74.4)

DermaMNIST
Mean 73.8 45.8(↓28.0) 31.9(↓41.9) 23.9(↓49.9) 21.5(↓52.3)

Median 75.1 62.6(↓12.5) 34.6(↓40.5) 19.9(↓55.2) 17.8(↓57.3)
Gaussian 74.7 40.1(↓34.6) 33.1(↓41.6) 25.8(↓48.9) 40.6(↓34.1)

OctMNIST
Mean 77.7 25.7(↓52.0) 28.3(↓49.4) 23.8(↓53.9) 29.6(↓48.1)

Median 79.6 23.5(↓56.1) 25.7(↓53.9) 23.6(↓56.0) 22.6(↓57.0)
Gaussian 77.7 22.9(↓54.8) 26.1(↓51.6) 23.1(↓54.6) 29.2(↓48.5)

ChestMNIST224

Mean 91.4 37.7(↓53.7) 72.5(↓18.9) 58.2(↓33.2) 27.0(↓64.4)
Median 90.9 38.2(↓52.7) 62.7(↓28.2) 50.9(↓40.0) 28.4(↓62.5)

Gaussian 91.1 45.1(↓46.0) 70.8(↓20.3) 51.4(↓39.7) 29.8(↓61.3)

efficiency of our approach to medical data, which can enable
the accelerated release of datasets.

Resistance to Low-pass Filters. Constrained by limita-
tions in the quality of medical imaging, the acquired images
often exhibit noise. Consequently, researchers commonly
employ low-pass filters for pre-processing due to their sim-
plicity and efficiency. Therefore, verifying the resilience of
our method to such filtering is of paramount importance. We
chose three low-pass filters: Mean, Median, and Gaussian,
each with a 3×3 window size. The results in Table 3 show
that our method retains its effectiveness post-filtering, and
the sensibility is lower than other methods, affirming its
applicability within actual medical workflows.

5. Conclusion
This work introduces the SALM method, a novel approach
dedicated to generating Unlearnable Examples specifically
designed for medical datasets. Extensive observation has
revealed that medical datasets are inherently sparse, a char-
acteristic not effectively utilized by existing methods for gen-
erating Unlearnable Examples. Consequently, the SALM
method is designed to selectively perturb only a specific
subset of critical pixels. Extensive experimental results
demonstrate that the SALM method effectively protects
medical images from unauthorized training. Simultaneously,
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it ensures stability and effectiveness throughout common
medical image processing workflows (e.g., filtering and
cropping). Additionally, the processed images retain their
visual usability, not impeding clinical diagnosis by physi-
cians. Furthermore, we demonstrate that SALM has strong,
flexible applicability in practical application scenarios.

References
Akinyele, J. A., Pagano, M. W., Green, M. D., Lehmann,

C. U., Peterson, Z. N., and Rubin, A. D. Securing elec-
tronic medical records using attribute-based encryption
on mobile devices. In Proceedings of the 1st ACM work-
shop on Security and privacy in smartphones and mobile
devices, pp. 75–86, 2011.

Alberdi, A., Aztiria, A., and Basarab, A. On the early
diagnosis of alzheimer’s disease from multimodal signals:
A survey. Artificial intelligence in medicine, 71:1–29,
2016.

Alpert, S. A. Protecting medical privacy: challenges in the
age of genetic information. Journal of Social Issues, 59
(2):301–322, 2003.

Baowaly, M. K., Lin, C.-C., Liu, C.-L., and Chen, K.-T.
Synthesizing electronic health records using improved
generative adversarial networks. Journal of the American
Medical Informatics Association, 26(3):228–241, 2019.

Barrows Jr, R. C. and Clayton, P. D. Privacy, confidentiality,
and electronic medical records. Journal of the American
medical informatics association, 3(2):139–148, 1996.

Biggio, B., Nelson, B., and Laskov, P. Poisoning at-
tacks against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

Bilic, P., Christ, P., Li, H. B., Vorontsov, E., Ben-Cohen, A.,
Kaissis, G., Szeskin, A., Jacobs, C., Mamani, G. E. H.,
Chartrand, G., et al. The liver tumor segmentation bench-
mark (lits). Medical Image Analysis, 84:102680, 2023.

Chen, H., Zhang, Y., Chen, Y., Zhang, J., Zhang, W., Sun,
H., Lv, Y., Liao, P., Zhou, J., and Wang, G. Learn:
Learned experts’ assessment-based reconstruction net-
work for sparse-data ct. IEEE transactions on medical
imaging, 37(6):1333–1347, 2018.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T.
Network-based classification of breast cancer metastasis.
Molecular systems biology, 3(1):140, 2007.

Davoudi, N., Deán-Ben, X. L., and Razansky, D. Deep learn-
ing optoacoustic tomography with sparse data. Nature
Machine Intelligence, 1(10):453–460, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Edwards, B. Artist finds private medical record photos in
popular ai training data set, 2022.

Fang, L., Li, S., McNabb, R. P., Nie, Q., Kuo, A. N., Toth,
C. A., Izatt, J. A., and Farsiu, S. Fast acquisition and
reconstruction of optical coherence tomography images
via sparse representation. IEEE transactions on medical
imaging, 32(11):2034–2049, 2013.

Forghani, R., Savadjiev, P., Chatterjee, A., Muthukrishnan,
N., Reinhold, C., and Forghani, B. Radiomics and ar-
tificial intelligence for biomarker and prediction model
development in oncology. Computational and structural
biotechnology journal, 17:995, 2019.

Fowl, L., Goldblum, M., Chiang, P.-y., Geiping, J., Czaja,
W., and Goldstein, T. Adversarial examples make strong
poisons. Advances in Neural Information Processing
Systems, 34:30339–30351, 2021.

Fu, S., He, F., Liu, Y., Shen, L., and Tao, D. Robust un-
learnable examples: Protecting data against adversarial
learning. arXiv preprint arXiv:2203.14533, 2022.

Gong, T., Huang, H., Li, P., Zhang, K., and Jiang, H. A
medical healthcare system for privacy protection based on
iot. In 2015 Seventh International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), pp.
217–222. IEEE, 2015.

Gostin, L. O. Public health law: power, duty, restraint,
volume 3. Univ of California Press, 2000.

Gunraj, H., Wang, L., and Wong, A. Covidnet-ct: A tailored
deep convolutional neural network design for detection
of covid-19 cases from chest ct images. Frontiers in
medicine, 7:608525, 2020.

Guo, J., Li, Y., Wang, L., Xia, S.-T., Huang, H., Liu, C., and
Li, B. Domain watermark: Effective and harmless dataset
copyright protection is closed at hand. arXiv preprint
arXiv:2310.14942, 2023.

He, H., Zha, K., and Katabi, D. Indiscriminate poison-
ing attacks on unsupervised contrastive learning. arXiv
preprint arXiv:2202.11202, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

6



Medical Unlearnable Examples

conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heurix, J. and Neubauer, T. Privacy-preserving storage
and access of medical data through pseudonymization
and encryption. In Trust, Privacy and Security in Dig-
ital Business: 8th International Conference, TrustBus
2011, Toulouse, France, August 29-September 2, 2011.
Proceedings 8, pp. 186–197. Springer, 2011.

Hill, K. and Krolik, A. How photos of your kids are power-
ing surveillance technology. The New York Times, 2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Huang, H., Ma, X., Erfani, S. M., Bailey, J., and Wang,
Y. Unlearnable examples: Making personal data unex-
ploitable. arXiv preprint arXiv:2101.04898, 2021.

Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher,
A., Reiman, E., and Ye, J. Learning brain connectivity of
alzheimer’s disease from neuroimaging data. Advances
in Neural Information Processing Systems, 22, 2009.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpan-
skaya, K., et al. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, pp. 590–597, 2019.

Ji, Z., Ma, P., and Wang, S. Unlearnable examples: Protect-
ing open-source software from unauthorized neural code
learning. In SEKE, pp. 525–530, 2022.

Johnson, A. E., Pollard, T. J., Greenbaum, N. R., Lun-
gren, M. P., Deng, C.-y., Peng, Y., Lu, Z., Mark, R. G.,
Berkowitz, S. J., and Horng, S. Mimic-cxr-jpg, a large
publicly available database of labeled chest radiographs.
arXiv preprint arXiv:1901.07042, 2019.

Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Her-
pel, E., Weis, C.-A., Gaiser, T., Marx, A., Valous, N. A.,
Ferber, D., et al. Predicting survival from colorectal can-
cer histology slides using deep learning: A retrospective
multicenter study. PLoS medicine, 16(1):e1002730, 2019.

Kayaalp, M. Patient privacy in the era of big data. Balkan
medical journal, 35(1):8–17, 2018.

Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado,
G., and King, D. Key challenges for delivering clinical
impact with artificial intelligence. BMC medicine, 17:
1–9, 2019.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C.,
Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu,
X., Yan, F., et al. Identifying medical diagnoses and
treatable diseases by image-based deep learning. cell,
172(5):1122–1131, 2018.

Koh, H. C., Tan, G., et al. Data mining applications in health-
care. Journal of healthcare information management, 19
(2):65, 2011.

Li, C.-T., Lee, C.-C., and Weng, C.-Y. A secure cloud-
assisted wireless body area network in mobile emergency
medical care system. Journal of medical systems, 40:
1–15, 2016.

Li, Z., Yu, N., Salem, A., Backes, M., Fritz, M., and Zhang,
Y. {UnGANable}: Defending against {GAN-based}
face manipulation. In 32nd USENIX Security Symposium
(USENIX Security 23), pp. 7213–7230, 2023.

Liu, C.-H., Chung, Y.-F., Chen, T.-S., and Wang, S.-D.
The enhancement of security in healthcare information
systems. Journal of medical systems, 36:1673–1688,
2012.

Liu, F. and Li, T. A clustering k-anonymity privacy-
preserving method for wearable iot devices. Security
and Communication Networks, 2018:1–8, 2018.

Liu, Y., Ma, X., Bailey, J., and Lu, F. Reflection backdoor:
A natural backdoor attack on deep neural networks. In
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part X 16, pp. 182–199. Springer, 2020.

Liu, Y., Fan, C., Chen, X., Zhou, P., and Sun, L. Graph-
cloak: Safeguarding task-specific knowledge within
graph-structured data from unauthorized exploitation.
arXiv preprint arXiv:2310.07100, 2023a.

Liu, Y., Fan, C., Dai, Y., Chen, X., Zhou, P., and Sun, L.
Toward robust imperceptible perturbation against unau-
thorized text-to-image diffusion-based synthesis. arXiv
preprint arXiv:2311.13127, 2023b.

Liu, Y., Fan, C., Zhou, P., and Sun, L. Unlearnable graph:
Protecting graphs from unauthorized exploitation. arXiv
preprint arXiv:2303.02568, 2023c.

Liu, Y., Ye, H., Zhang, K., and Sun, L. Securing biomedi-
cal images from unauthorized training with anti-learning
perturbation. arXiv preprint arXiv:2303.02559, 2023d.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

7



Medical Unlearnable Examples
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A. More Related Work
Medical Data Protection. As information technology advances, digital technologies are increasingly integrated into
medicine, affecting both clinical treatment and scientific research (Senbekov et al., 2020; Rajpurkar et al., 2017; Johnson
et al., 2019; Irvin et al., 2019; Pedrosa et al., 2019; Bilic et al., 2023; Rasmy et al., 2021; Zhang et al., 2022; Kelly
et al., 2019). However, these developments also present significant risks and challenges regarding patient privacy, medical
information breaches occur frequently around the world (Alpert, 2003; Kayaalp, 2018; Price & Cohen, 2019; Murdoch,
2021). Inadequate data protection can lead to substantial harm through the leakage of personal information, such as the
disclosure of sensitive health conditions like HIV, potentially leading to social isolation and psychological disorders (Gostin,
2000). Furthermore, incidents of data breaches may also reduce patients’ trust in medical research institutions, making
them reluctant to share their data (Koh et al., 2011; Trinidad et al., 2020). Earlier studies focused on robust physical
protection measures, like using encrypted storage devices (Heurix & Neubauer, 2011; Akinyele et al., 2011; Sun et al., 2020),
establishing firewalls (Barrows Jr & Clayton, 1996; Liu et al., 2012), and secure communication transmission modes (Gong
et al., 2015; Li et al., 2016), to safeguard data. Liu & Li (2018) introduced a clustering method based on K-anonymity
algorithm as the building block of privacy-preserving for medical devices’ data. However, as collaboration among various
research institutions intensifies and open-source data sharing on the internet becomes more crucial, these methods become
less applicable. Baowaly et al. (2019); Yoon et al. (2020) attempted to use generated data to reduce granularity and thus
protect privacy, but this method involves a significant trade-off between information loss and protection efficacy. However,
our method remains robust under various conditions during the construction process of real-world datasets and effectively
balances high data usability with consistent protection.

B. SALM Algorithm

Algorithm 1 Training SALM generator and generating noise.
Input: Training data set T , Training steps M , PGD parameters αu and ρu, transformation distribution T , the sampling
number J for gradient approximation.
Initialization: source model parameter θ, δu.
// Following Eq. (3)
for i in 1, · · · ,M do

Sample minibatch (x, y) ∼ T , sample transformation tj ∼ T

Calculate gk ← 1
J

∑J
j=1

∂
∂δu ℓ(f

′
θ(tj(x+ δu)), y)

Determine k-th percentile value g0(k) in gk
for each element gij in gk do

if gij ≥ g0(k) then
Set Mij = 1

else
Set Mij = 0

end if
end for
Apply local mask: P(gk, k) = M ⊙ gk // Following Eq. (5)
Update δu ←

∏
∥δ∥≤ρu

(δu − αu · sign(P(gk, k)))
Update source model parameter θ based on minibatch (t(x+ δu), y)

end for
Output: SALM noise generator f ′

θ, SALM noise δu

C. Experiments Setup
Datasets. Our research involved extensive experiments on MedMNIST (Yang et al., 2021), which is a comprehensive
collection of standardized biomedical images spanning 12 distinct datasets. MedMNIST includes the major modalities
in medical imaging. This dataset showcases diverse data scales and a range of tasks. Furthermore, to more effectively
assess our method’s performance on large, real-world datasets, we also do experiments on the 224x224 datasets from
MedMNIST-v2 (Yang et al., 2023).
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Table 4. More results of RN-18 trained on 224 version datasets protected by different methods. The symbol ↓ in the following context
indicates a decrease in accuracy compared to the clean test accuracy.

Dataset Clean AdvT EM SP SALM(K = 10)
DermaMNIST224 74.8 19.2(↓55.6) 11.4(↓63.4) 10.0(↓64.8) 9.3(↓65.5)
OCTMNIST224 76.2 32.3(↓43.9) 14.6(↓61.6) 20.6(↓55.6) 25.8(↓50.4)

PneumoniaMNIST224 84.1 66.7(↓17.4) 67.2(↓16.9) 61.6(↓22.5) 57.4(↓26.7)
RetinaMNIST224 51.0 27.6(↓23.4) 21.1(↓29.9) 10.5(↓40.5) 9.1(↓41.9)
BreastMNIST224 80.1 35.1(↓45.0) 40.0(↓40.1) 40.2(↓39.9) 37.8(↓42.3)
BloodMNIST224 96.0 16.3(↓80.3) 16.6(↓79.4) 7.0(↓89.0) 6.3(↓89.7)
TissueMNIST224 68.4 18.5(↓49.9) 23.6(↓44.8) 16.7(↓51.7) 19.1(↓49.3)

OrganAMNIST224 95.2 85.8(↓9.4) 83.5(↓11.7) 85.3(↓9.9) 82.1(↓13.1)
OrganCMNIST224 91.6 82.3(↓9.3) 69.7(↓21.9) 72.2(↓19.4) 69.3(↓22.3)
OrganSMNIST224 77.8 47.8(↓30.0) 44.6(↓33.2) 65.2(↓12.6) 42.1(↓35.7)

Table 5. Test accuracy (%) of RN-18 trained on different kinds of data of
PathMNIST.

Method Dc Cropped(Dc) Du Cropped(Du) Gap

TAP 91.2 81.9 26.5 12.7 4.5 ↓
EM 90.6 82.2 17.2 4.7 4.1 ↓
SP 90.9 81.6 21.3 12.3 0.2 ↑

SALM 90.9 82.5 14.9 5.3 1.2↑

Table 6. Image similarity scores of different methods.

Method SSIM aHash pHash dHash NMI

TAP 94.6 75.1 88.8 77.2 42.7
EM 92.7 77.7 89.1 77.4 42.9
SP 99.9 95.4 99.9 99.3 99.9

SALM 94.4 77.9 89.4 77.2 44.7

Model and Implementation Details. We selected the following well-known models to evaluate our method against
benchmark approaches: VGG-11 (Simonyan & Zisserman, 2014), ResNet-18/50 (He et al., 2016) and DenseNet-121 (Huang
et al., 2017). For the SALM generator, we select RN-18 as the source model to generate noise. We set the perturbation noise
ρu = 8/255 as default. We choose an SGD optimizer for both noise generation and training. Both of their weight decay are
set to 5e-4, and momentum is set to 0.9. The initial learning rate is set to 0.1 with a decay rate of 0.1.

Baselines. Since there’s no previous method specifically designed for medical data, we compare our Sparsity-Aware Local
Masking (SALM) with the existing SoTA methods in the general image domain. The baseline methods are as following:
Target Adversarial Poisoning (TAP) (Fowl et al., 2021), Error-Minimizing noise (EM) (Huang et al., 2021), Synthesized
Perturbation (SP) (Yu et al., 2022). None of these three methods impose restrictions on the range of pixels to be perturbed.
TAP and EM both target the training loss and craft noise using the gradient information to trigger maximum error or trick
models to overfit. SC, on the other hand, imposes hand-crafted linear-separable noise into the data, thereby leading the
model to learn only simple noise-label correlation.

D. More Experiments
D.1. Resistance to Cropping.

As we consistently highlighted, medical data exhibits greater sparsity compared to conventional data. For instance, when
processing microscopic images, physicians or researchers typically reduce the proportion of the background through
cropping and magnifying details to facilitate analysis. In this section, we further validate the effectiveness of our SALM
after cropping. We calculate the difference in test accuracy on the protected data before and after cropping. To minimize
the impact of cropping itself on performance, we add the difference in test accuracy on the clean data before and after
cropping, which we denote as the Gap value. The results in Table 5 show after cropping, the performance gap of TAP and
EM significantly narrows. This finding confirms that color space disturbances by these methods are random. If perturbations
are concentrated in non-feature areas like transparent slides, cropping might result in a loss of protection. Conversely, SALM
focuses on pixels that significantly contribute to the model, which ensures that removing the background does not impact the
regions with more protective noise and thus preserves the protection.
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Figure 5. The protected framework in the case of the class-combined dataset. The noise generated for the corresponding obtained class
from data combined with other support classes still retains its protective effect.

D.2. Similarity Compare.

Although previous studies (Liu et al., 2023d; Huang et al., 2021; Fu et al., 2022; Fowl et al., 2021; Yu et al., 2022) have
demonstrated that perturbation radii as small as 8 or even 16 do not affect human visual perception, considering the sensitivity
of medical images, we still assessed the similarity. Specifically, we utilized the Structural Similarity Index Measure (SSIM),
which assesses luminance, contrast, and structure, along with various Hash methods focusing on low-frequency information.
The results in Table 6 reveal that SYN has the highest scores. This is likely due to its structure, consisting of square regions
of differing colors with minimal distinctions within these areas. However, compared with other methods, despite being
based on feature perturbations, our method does not substantially affect images. This underscores our approach’s ability to
effectively preserve image utility.

E. Case Study
E.1. Case 1: Class-wise Combined Dataset

We initially conducted a study on the scenario of the class-wise combination. To better explain the experimental setting,
we introduce the concept of “support classes,” which is utilized to augment the existing single-class data. We selected
two kinds of support classes: medical classes and general classes. The framework is shown in Figure 5. First, we chose
melanoma from the DermaMNIST as a protected target and selected all classes within the PathMNIST as support classes for
our experiments. The melanoma data was combined with PathMNIST to create a ten-class dataset while only preserving the
SALM noise generated for the melanoma. Subsequently, to broaden the selection range of support classes, we also selected
some general image classes (e.g., airplanes) as support classes.

Following the generation of class-specific noise, we utilized the same experimental settings as in previous tests. Using
PathMNIST for support classes, the generated noise resulted in a clean test accuracy of 9.9%. Noise generated with general
image classes from ImageNet (Deng et al., 2009) as support classes led to an accuracy of 8.1%. The choice of either type of
support class does not affect the noise performance. This demonstrates the flexible applicability of our method.

E.2. Case 2: Sample-wise Combined Dataset

In addition to the scenarios mentioned above, researchers may only be responsible for a portion of the data within the whole
dataset. They extensively collect various classes of data and annotate them, then merge them into a complete dataset based
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Table 7. Effectiveness under different unlearnable percentages on PathMNIST with RN-18 model: lower clean accuracy indicates better
effectiveness. Du +Dc: a mix of unlearnable and clean data; Dc: only the clean proportion of data. Percentage of unlearnable examples:

Du
Dc+Du

.

K
Value

Percentage of unlearnable examples

0% 20% 40% 60% 80% 100%Du +Dc Dc Du +Dc Dc Du +Dc Dc Du +Dc Dc

K = 10 91.2 90.8 91.0 90.0 89.2 89.9 87.2 88.3 89.2 11.8
K = 30 90.9 91.3 91.2 90.2 90.0 89.3 90.1 89.2 87.4 18.7
K = 50 91.5 89.7 90.9 89.2 90.3 88.5 89.3 86.9 88.7 10.3
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Figure 6. Left: The learning curve trained on RN-18 on three different datasets. Right: The t-SNE results of the whole mixed data.

on the labels. This spurred our investigation into the effectiveness of randomly selecting a subset of samples for perturbation.
Specifically, we applied SALM to a selected percentage of the training data, leaving the remainder untouched and clean. We
trained models on this mixed dataset of unlearnable and clean training data, Du + Dc. For comparison, models are also
trained on a completely clean dataset, denoted as Dc.

The results in Table 7 show a rapid decrease in effectiveness when less than 100% of the data is selected for SALM
application, whatever the K is. Surprisingly, applying SALM to as much as 80% of the data results in a negligible effect.
Previous studies have shown that both error-minimizing noise and error-maximizing noise have similar limitations in
DNNs (Huang et al., 2021; Shan et al., 2020).

To further illustrate this phenomenon, we take 80% as an example and plot the learning curves of ResNet-18 in the following
scenarios: 1) Models trained on 20% clean data; 2) Models trained on 80% data processed by SALM; 3) Models trained on
a mixture of these two types of data. The results are shown in Figure 6 left. It is observed that data processed by SALM at
80% remains unlearnable for the model, yet the mere 20% of clean data enables the model to achieve excellent performance.
The superior performance trained on mixed data arises solely from the clean data contained within. Furthermore, the
visualization results in Figure 6 reveal that the clean data remains mixed in 2D space, whereas the data processed by SALM
is almost linearly separable, indicating its unlearnability. Therefore, in the case of sample-wise combined datasets, our
method also demonstrates outstanding performance and robust scalability. Overall, our method provides a way for every
collaborating entity within large datasets to protect their interests and ensure each data donor’s contribution will not be
misused.
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Figure 7. Some visualization results of the origin image and the corresponding noise and protected image.
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