
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAMPLE COMPLEXITY OF DATA-DRIVEN TUNING
MODEL HYPERPARAMETERS IN NEURAL NETWORKS
WITH PIECEWISE POLYNOMIAL DUAL FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern machine learning algorithms, especially deep learning-based techniques,
typically involve careful hyperparameter tuning to achieve the best performance.
Despite the surge of intense interest in practical techniques like Bayesian opti-
mization and random search-based approaches to automating this laborious and
compute-intensive task, the fundamental learning-theoretic complexity of tuning
hyperparameters for deep neural networks is poorly understood. Inspired by this
glaring gap, we initiate the formal study of hyperparameter tuning complexity in
deep learning through a recently introduced data-driven setting. We assume that
we have a series of deep learning tasks, and we have to tune hyperparameters to do
well on average over the distribution of tasks. A major difficulty is that the utility
function as a function of the hyperparameter is very volatile and furthermore, it
is given implicitly by an optimization problem over the model parameters. This
is unlike previous work in data-driven design, where one can typically explicitly
model the algorithmic behavior as a function of the hyperparameters. To tackle
this challenge, we introduce a new technique to characterize the discontinuities
and oscillations of the utility function on any fixed problem instance as we vary the
hyperparameter; our analysis relies on subtle concepts including tools from differ-
ential/algebraic geometry and constrained optimization. This can be used to show
that the learning-theoretic complexity of the corresponding family of utility func-
tions is bounded. We instantiate our results and provide the sample complexity
bounds for concrete applications—tuning a hyperparameter that interpolates neu-
ral activation functions and setting the kernel parameter in graph neural networks.

1 INTRODUCTION

Developing deep neural networks that work best for a given application typically corresponds to a
tedious selection of hyperparameters and architectures over extremely large search spaces. This pro-
cess of adapting a deep learning algorithm or model to a new application domain takes up significant
engineering and research resources, and often involves unprincipled techniques with limited or no
theoretical guarantees on the effectiveness. While the success of pre-trained (foundation) models
have shown the usefulness of transferring effective parameters (weights) of learned deep models
across tasks (Devlin, 2018; Achiam et al., 2023), it is less clear how to leverage prior experience of
“good” hyperparameters to new tasks. In this work, we develop a principled framework for tuning
continuous hyperparameters in deep networks by leveraging similar problem instances and obtain
sample complexity guarantees for learning provably good hyperparameter values.

The vast majority of practitioners still use a naive “grid search” based approach which involves se-
lecting a finite grid of (often continuous-valued) hyperparameters and selecting the one that performs
the best. A lot of recent literature has been devoted to automating and improving this hyperparameter
tuning process, prominent techniques include Bayesian optimization (Hutter et al., 2011; Bergstra
et al., 2011; Snoek et al., 2012; 2015) and random search based methods (Bergstra & Bengio, 2012;
Li et al., 2018). While these approaches work well in practice, they either lack a formal basis or
enjoy limited theoretical guarantees only under strong assumptions. For example, Bayesian opti-
mization assumes that the performance of the deep network as a function of the hyperparameter can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

be approximated as a noisy evaluation of an expensive function, typically making assumptions on
the form of this noise, and requires setting several hyperparameters and other design choices includ-
ing the amount of noise, the acquisition function which determines the hyperparameter search space,
the type of kernel and its bandwidth parameter. Other techniques, including random search methods
and spectral approaches (Hazan et al., 2018) make fewer assumptions but only work for a discrete
and finite grid of hyperparameters.

We approach the problem of hyperparameter tuning in deep networks using the lens of data-driven
algorithm design, initially introduced in the context of theory of computing for algorithm configu-
ration (Gupta & Roughgarden, 2016; Balcan, 2020). A key idea is to treat a parameterized family
of algorithms as the hypothesis space and input instances to the algorithm as the data, reducing
hyperparameter tuning to a learning problem. While the approach has been successfully applied
to tune fundamental machine learning algorithms including clustering (Balcan et al., 2018b; 2019),
semi-supervised learning (Balcan & Sharma, 2021), low-rank approximation (Bartlett et al., 2022),
regularized linear regression (Balcan et al., 2022a; 2024a), decision tree learning (Balcan & Sharma,
2024), among others, our work is the only one to focus on analyzing deep network hyperparameter
tuning under this data-driven paradigm. A key technical challenge that we overcome is that varying
the hyperparameter even slightly can lead to a significantly different learned deep network (even for
the same training set) with completely different parameters (weights) which is hard to characterize
directly. This is very different from a typical data-driven method where one is able to show closed
forms or precise structural properties for the variation of the learning algorithm’s behavior as a func-
tion of the hyperparameter (Balcan et al., 2021a). We elaborate further on our technical novelties in
Section 1.1. We note that our theoretical advances are potentially useful beyond deep networks, to
algorithms with a tunable hyperparameter and several learned parameters.

We instantiate our novel framework for hyperparameter tuning in deep networks in some funda-
mental deep learning techniques with active research interest. Our first application is to tuning an
interpolation hyperparameter for the activation function used at each node of the neural network.
Different activation functions perform well on different datasets (Ramachandran et al., 2017; Liu
et al., 2019). We analyze the sample complexity of tuning the best combination from a pair of acti-
vation functions by learning a real-valued hyperparameter that interpolates between them. We tune
the hyperparameter across multiple problem instances, an important setting for multi-task learning.
Our contribution is related to neural architecture search (NAS). NAS (Zoph & Le, 2017; Pham et al.,
2018; Liu et al., 2018) automates the discovery and optimization of neural network architectures,
replacing human-led design with computational methods. Several techniques have been proposed
(Bergstra et al., 2013; Baker et al., 2017; White et al., 2021), but they lack principled theoretical
guarantees (see additional related work in Appendix A), and multi-task learning is a known open re-
search direction (Elsken et al., 2019). We also instantiate our framework for tuning the graph kernel
parameter in Graph Neural Networks (GNNs) (Kipf & Welling, 2017) designed for more effectively
deep learning with structured data. Hyperparameter tuning for graph kernels has been studied in the
context of classical models (Balcan & Sharma, 2021; Sharma & Jones, 2023), in this work we pro-
vide the first provable guarantees for tuning the graph hyperparameter for the more effective modern
approach of graph neural networks.

Our contributions. In this work, we provide an analysis for the learnability of parameterized
algorithms involving both parameters and hyperparameters in the data-driven setting, which captures
model hyperparameter tuning in deep networks with piecewise polynomial dual functions. A key
ingredient of our approach is to show that the dual utility function u∗

x(α), measuring the performance
of the deep network on a fixed dataset x and when the parameters are trained to optimality using
hyperparameter α, admits a specific piecewise structure. We show that in many cases of interest, the
dual utility function u∗

x is piecewise polynomial, and we bound the number of discontinuities and
number of local maxima within each piece. Concretely,

• We introduce tools of independent interest, connecting the discontinuities and local maxima of a
piecewise continuous function with its learning-theoretic complexity (Lemma 3.1, Lemma 3.2).

• We demonstrate that when the function fx(α,w) computed by a deep network is piecewise con-
stant over at most N connected components in the space A×W of hyperparameter α and param-
eters w, the function u∗

x is also piecewise constant. This structure occurs in classification tasks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with a 0-1 loss objective. Using our proposed tools, we then establish an upper-bound for the
pseudo-dimension of U , which automatically translate to learning guarantee for U (Theorem 4.2).

• We further prove that when the function fx(α,w) exhibits a piecewise polynomial structure, under
mild regularity assumptions, we can establish an upper bound for the number of discontinuities
and local extrema of the dual utility function u∗

x. The core technical component is to use ideas
from algebraic geometry to give an upper-bound for the number of local extrema of parameter
w for each value of the hyperparameter α and use tools from differential geometry to identify
the smooth 1-manifolds on which the local extrema (α,w) lie. We then use our proposed result
(Lemma 3.2) to translate the structure of u∗

x to learning guarantee for U (Theorem 5.1).

• We examine data-driven algorithm configuration for deep networks, focusing on hyperparameter
tuning in semi-supervised GCNs (Theorem 6.2) and activation function learning in NAS (Theorem
6.1). Analysis of their dual utility functions reveals piecewise structures that, under our frame-
work, establish the learnability of hyperparameters for both classification and regression tasks.

1.1 TECHNICAL CHALLENGES AND INSIGHTS

To analyze the pseudo-dimension of the utility function class U , by using our proposed results (The-
orem 3.1), the key challenge is to establish the relevant piecewise structure of the dual utility function
class u∗

x. Different from typical problems studied in data-driven algorithm design, u∗
x in our case is

not an explicit function of the hyperparameter α, but defined implicitly via an optimization problem
over the network weights w, i.e. u∗

x(α) = maxw∈W fx(α,w). In the case where fx(α,w) is piece-
wise constant, we can partition the hyperparameter space A into multiple segments, over which the
set of connected components for any fixed value of the hyperparameter remains unchanged. Thus,
the behavior on a fixed instance as a function of the hyperparameter α is also piecewise constant and
pseudo-dimension bounds follow. It is worth noting that u∗

x cannot be viewed as a simple projection
of fx onto the hyperparameter space A, making it challenging to determine the relevant structural
properties of u∗

x.

For the case fx(α,w) is piecewise polynomial, the structure is significantly more complicated
and we do not obtain a clean functional form for the dual utility function class u∗

x. We first
simplify the problem to focus on individual pieces, and analyze the behavior of u∗

x,i(α) =
supw:(α,w)∈Rx,i

fx,i(α,w) in the region Ri where fx(α,w) = fx,i(α,w) is a polynomial. We
then employ ideas from algebraic geometry to give an upper-bound for the number of local extrema
w for each α and use tools from differential geometry to identify the smooth 1-manifolds on which
the local extrema (α,w) lie. We then decompose such manifolds into monotonic-curves, which have
the property that they intersect at most once with any fixed-hyperparameter hyperplane α = α0. Us-
ing these observations, we can finally partition A into intervals, over which u∗

x,i can be expressed as
a maximum of multiple continuous functions for each of which we have upper bounds on the num-
ber of local extrema. Putting together, we are able to leverage a result from Balcan et al. (2021a) to
bound the pseudo-dimension.

Paper positioning. Our setting requires technical novelty compared to prior work in statistical
data-driven algorithm hyperparameter tuning (Balcan et al., 2017; 2020a;b; 2021b;a; 2022a; Bartlett
et al., 2022; Balcan & Sharma, 2024). As far as we concern, in most prior research (Balcan et al.,
2017; 2020a; 2021a; 2020b; 2021b; Bartlett et al., 2022), the hyperparameter tuning process does
not involve the parameter w meaning that given any fixed hyperparameter α, the behavior of the
algorithm is determined. In some other cases that involves parameter w, we can have a precise ana-
lytical characterization of how the optimal parameter behaves for any fixed hyperparameter (Balcan
et al., 2022a), or at least a uniform approximate characterization (Balcan et al., 2024a). However, our
setting does not belong to those cases, and requires a novel proof approach to handle the challenging
case of hyperparameter tuning of neural networks (see Appendix B for a detailed discussion).

2 PRELIMINARIES

Setup. We introduce a novel data-driven hyperparameter tuning framework for algorithms with
trainable parameters. Our objective is to optimize a hyperparameter α ∈ A = [αmin, αmax] ⊂ R for
an algorithm that also involves model parameters w ∈ [wmin, wmax]

d ⊂ Rd. For a given problem

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

instance x ∈ X , we measure the model’s performance as f(x,w;α), where w represents the model
parameters and α the hyperparameter. We then define a utility function uα(x) to quantify the algo-
rithm’s performance with hyperparameter α on problem instance x: uα(x) = maxw∈W f(x,w;α).
This formulation can be interpreted as follows: for a given hyperparameter α and problem instance
x, we determine the optimal model parameters w that maximize performance.

In the data-driven framework, we assume an underlying, application-specific problem distribution D
over X . The best hyperparameter α∗ for D can be defined as α∗ ∈ argmaxα Ex∼D[uα(x)]. How-
ever, since the problem distribution D is unknown, we instead use a set S of N problem instances
at hand, S = {x1, . . . ,xN} drawn from D. The hyperparameter α̂ERM is then chosen to maximize
the empirical utility: α̂ERM ∈ argmaxα

1
N

∑N
i=1 uα(xi).

Main question. Our goal is to answer the learning-theoretic question: How good is the tuned
hyperparameter compared to the best hyperparameter, for algorithms with trainable parame-
ters? Specifically, we aim to provide a high-probability guarantee for the difference between
the performance of α̂ERM and α∗, expressed as: |Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| . Let
U = {uα : R → [0, H] | α ∈ A} be the utility function class. Classical theory suggests that the
learning-theoretic question at hand is equivalent to analyzing the pseudo-dimension (Pollard, 2012)
or Rademacher complexity (Wainwright, 2019) (see Appendix C for further background) of the
function class U . However, this analysis poses significant challenges due to two primary factors:
(1) the intricate structure of the function class itself, where a small change in α can lead to large
changes in the utility function uα, and (2) uα is computed by solving an optimization problem
over the trainable parameters, and its explicit structure is unknown and hard to characterize. These
challenges make analyzing the learning-theoretic complexity of U particularly challenging.

In this work, we demonstrate that when the function f(x,w;α) exhibits a certain degree of
structure, we can establish an upper bound for the learning-theoretic complexity of the utility
function class U . Specifically, we examine two scenarios: (1) where f(x,w;α) possesses a
piecewise constant structure (Section 4), and (2) where it exhibits a piecewise polynomial (or
rational) structure (Section 5). These piecewise structures hold in hyperparameter tuning for
popular deep learning algorithms (Section 6).
Remark 1. Note that our bounds on the learning-theoretic complexity of the dual utility function
class implies bounded sample complexity for ERM, but the algorithmic question of actually imple-
menting this ERM efficiently is left open for future research.

Methodology. The general approach to analyzing the complexity of the utility function class U is
via analyzing its dual functions. Specifically, for each problem instance x, we define the dual utility
function u∗

x : A → [0, H] as follows:

u∗
x(α) := uα(x) = max

w∈W
f(x,w;α) = max

w∈W
fx(α,w).

Our key technical contribution is to demonstrate that when fx(α,w) := f(x,w;α) exhibits a
piecewise structure, u∗

x(α) also admits favorable structural properties, which depend on the specific
structure of fx(α,w). We present some useful results that allow us to derive the learning-theoretic
complexity of U from the structural properties of u∗

x(α) (Section 3).

Oscillations and its connection with pseudo-dimension. When the function class U = {uρ :
X → R | ρ ∈ R} is parameterized by a real-valued index ρ, Balcan et al. (2021a) propose a conve-
nient way of bounding the pseudo-dimension of H, via bounding the oscillations of the dual function
u∗
x(ρ) := uρ(x) corresponding to any problem instance x. We recall the notions of oscillation and

its connection with the pseudo-dimension of the dual function class.
Definition 1 (Oscillations, Balcan et al. 2021a). A function h : R → R has at most B oscillations
if for every z ∈ R, the function ρ 7→ I{h(ρ)≥z} is piecewise constant with at most B discontinuities.

An illustration of the notion of oscillations can be found in Figure 1. Using the idea of oscillations,
one can analyze the pseudo-dimension of parameterized function classes by alternatively analyzing
the oscillations of their dual functions, formalized as follows.
Theorem 2.1 (Balcan et al. 2021a). Let U = {uρ : X → R | ρ ∈ R}, of which each dual function
u∗
x(ρ) has at most B oscillations. Then Pdim(U) = O(lnB).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: The oscillation of a function h : R → R is defined as the maximum number of discon-
tinuities in the function I{h(ρ)≥z}, as the threshold z varies. When z = z1, the function I{h(ρ)≥z}
exhibits the highest number of discontinuities, which is four. Therefore, h has 4 oscillations.

3 OSCILLATIONS OF PIECEWISE CONTINUOUS FUNCTIONS

We first establish connection between the number of oscillations in a piecewise continuous function
and its local extrema and discontinuities. It serves as a general tool to upper-bound the pseudo-
dimension of function classes via analyzing the piecewise continuous structure their dual functions.
Lemma 3.1. Let h : R → R be a piecewise continuous function which has at most B1 discontinuity
points, and has at most B2 local maxima. Then h has at most O(B1 +B2) oscillations.

Proof Sketch. The proof can be found in Appendix D. The idea is to bound the number of solutions
of h(ρ) = 0, which determines the number of oscillations for h. We show that in each interval
where h is continuous, we can bound the number of solutions of h(ρ) = 0 using the number of local
maxima of h. Aggregating the number of solutions across all continuous intervals of h yields the
desired result.

From Lemma 3.1 and Theorem 2.1, we have the following result which allows us to bound the
pseudo-dimension of a function class H via bounding the number of discontinuity and local extrema
points of any function in its dual function class H∗.
Corollary 3.2. Consider a real-valued function class U = {uρ : X → R | ρ ∈ R}, of which each
dual function u∗

x(ρ) is piecewise continuous, with at most B1 discontinuities and B2 local maxima.
Then Pdim(H) = O(ln(B1 +B2)).

We now consider piecewise constant functions with finite discontinuities. Despite infinite local ex-
trema making Lemma 3.1 inapplicable, the function’s special structure allows bounding oscillations
via its number of discontinuities.
Lemma 3.3. Consider a real-valued function class U = {uρ : X → R | ρ ∈ R}, of which each dual
function u∗

x(ρ) is piecewise constant with at most B discontinuities. Then Pdim(U) = O(lnB).

4 fx(α,w) IS PIECEWISE CONSTANT

We first examine the case where fx(α,w) exhibits a piecewise constant structure with N pieces.
Specifically, we assume there exists a partition Px = {Rx,1, . . . , Rx,N} of the domain A ×W of
fx, where each Rx,i in Px is a connected set. Over the region Rx,i, the value of fx is fx,i which is
a constant value ci for any (α,w) ∈ Rx,i. Consequently, we can reformulate u∗

x(α) as follows:

u∗
x(α) = sup

w∈W
fx(α,w) = max

Rx,i

sup
w:(α,w)∈Rx,i

fx(α,w) = max
Rx,i:∃w,(α,w)∈Rx,i

ci.

This leads to Lemma 4.1, which asserts that u∗
x(α) is a piecewise constant function and provides an

upper bound for the number of discontinuities in u∗
x(α).

Lemma 4.1. Assume that the piece functions fi(α,w) is constant for all i ∈ [N]. Then u∗
x(α) has

O(N) discontinuity points, partitioning A into at most O(N) regions. In each region, u∗
x(α) is a

constant function.

The proof idea is demonstrated in Figure 2, and the detailed proof can be found in Appendix D.
By combining Lemma 4.1 and Lemma 3.3, we have the following result, which establishes learning
guarantees for the utility function class U when fx(α,w) admits piecewise constant structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: A demonstration of the proof idea for Lemma 4.1: We begin by partitioning the domain
A of the dual utility function u∗

x(α) into intervals. This partitioning is formed using two key points
for each connected component R in the partition Px of the domain A ×W of fx(α,w): αR,inf =
infα{α : ∃w, (α,w) ∈ R} and αR,sup = supα{α : ∃w, (α,w) ∈ R}. Given that P contains N
elements, the number of such points is O(N). We demonstrate that the dual utility functions u∗

x
remain constant over each interval defined by these points.

Theorem 4.2. Consider the utility function class U = {uα : X → [0, H] | α ∈ A}. Assume that
fx(α,w) admits piecewise constant structure with N pieces over A×W . Then for any distribution
D over X , and any δ ∈ (0, 1), with probability at least 1− δ over the draw of S ∼ D, we have

|Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| = O

(√
log(N/δ)

m

)
.

Remark 2. The partition of fx(α,w) into connected components is defined by S boundary func-
tions hi(α,w), which are typically polynomials of degree ∆ in d+ 1 variables. For these cases, we
can bound the number of connected components in Rd − ∪S

i=1Z(hi) using only ∆ and d, which is
key for applying Theorem 4.2. Further details are in Appendix E.2.

5 fx(α,w) IS PIECEWISE POLYNOMIAL

In this section, we examine the case where fx(α,w) exhibits a piecewise polynomial structure. The
domain A×W of fx is divided into N connected components by M polynomials hx,1, . . . , hx,M

in α,w, each of degree at most ∆b. The resulting partition Px = {Rx,1, . . . , Rx,N} consists
of connected sets Rx,i, each formed by a connected component Cx,i and its adjacent boundaries.
Within each Rx,i, fx takes the form of a polynomial fx,i in α and w of degree at most ∆p. The
dual utility function u∗

x(α) is defined as:

u∗
x(α) = sup

w∈W
fx(α,w) = max

i∈[N]
sup

w:(α,w)∈Ri

fx,i(α,w) = max
i∈[N]

u∗
x,i(α),

where u∗
x,i(α) = supw:(α,w)∈Rx,i

fx,i(α,w). We begin with the following regularity assumption
on the piece and boundary functions fx,j and hx,i.
Assumption 1. Assume that for any function u∗

x(α), its pieces functions f∗
x and boundaries

hx,1, . . . , hx,M : for any piece function fx, i and S ≤ d + 1 boundaries h1, . . . , hS chosen
from {hx,1, . . . , hx,M}, we have 0 is a regular value of k(α,w,λ). Here k = (k1, . . . , kd+S),
k = (k1, . . . , kd+S ,det(Jk,(w,λ))), Jk,(w,λ) is the Jacobian of k w.r.t. w and λ, and k1, . . . , kd+S

defined as {
ki(α,w,λ) = hi(α,w), i = 1, . . . , S,

kS+j(α,w,λ) =
∂fx,i

∂wj
+
∑s

i=1 λi
∂hi

∂wj
, j = 1, . . . , d.

Intuitively, Assumption 1 states that the preimage k
−1

(0), consistently exhibits regular structure
(smooth manifolds). This assumption helps us in identifying potential locations of w∗ that maxi-
mize fx,i(α) for each fixed α, ensuring these locations have a regular structure. We note that this
assumption is both common in constrained optimization theory and relatively mild. For a smooth

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: A simplified illustration for the proof idea of Theorem 5.1 where w ∈ R. Here, our goal
is to analyze the number of discontinuities and local maxima of u∗

x,i(α). The idea is to partition the
hyperparameter space A into intervals such that over each interval, the function u∗

x,i(α) is the point-
wise maximum of fx,i(α,w) along some fixed set of “monotonic curves” C (curves that intersect
α = α0 at most once for any α0). u∗

x,i(α) is continuous over such interval; this implies that
the interval end points contain all discontinuities of u∗

x,i(α). In this example, over the interval
(αi, αi+1), we have u∗

x,i(α) = maxCi{fx,i(α,w) : (α,w) ∈ Ci}. Then, we can show that over
such an interval, any local maximum of ux,i(α) is a local extremum of fx,i(α,w) along a monotonic
curve C ∈ C. Finally, we bound the number of points used for partitioning and local extrema using
tools from algebraic and differential geometry.

mapping k, Sard’s theorem (Theorem F.12) asserts that the set of values that are not regular values
of k has Lebesgue measure zero. This theoretical basis further suggests that the Assumption 1 is
reasonable.

Under Assumption 1, we have the following result, which gives us learning-theoretic guarantees for
tuning the hyperparameter α for the utility function class U .

Theorem 5.1. Consider the utility function class U = {uα : X → [0, H] | α ∈ A}. Assume that
fx(α,w) admits piecewise polynomial structure with the piece functions fx,i and boundaries hx,i

satisfies Assumption 1. Then for any distribution D over X , for any δ ∈ (0, 1), with probability at
least 1− δ over the draw of S ∼ Dm, we have

|Ex∼D[uα̂ERM(x)]− Ex∼D[uα∗(x)]| = O

(√
logN + d log(∆M) + log(1/δ)

m

)
.

Here, M and N are the number of boundaries and connected sets, ∆ = max{δp, δd} is the maxi-
mum degree of piece fx,i and boundaries hx,i.

Proof Sketch. We defer the detailed proof to Appendix F.7. The proof is fairly involved and employs
many novel ideas, we break it down into the following steps:

1. We first demonstrate that if the piece functions fx,i and boundaries hx,i satisfy a stronger as-
sumption (Assumption 2), we can bound the pseudo-dimension of U (Theorem F.19). The de-
tails of this step are presented in Appendix F.7.1, with a simplified illustration of the proof idea
in Figure 3. The proof follows these steps:

(a) Using Lemma 3.2, we show that it suffices to bound the number of discontinuities and local
maxima of u∗

x, which is equivalent to bounding those of u∗
x,i.

(b) We first demonstrate that the domain A can be partitioned into O
(
(2∆)d+1

(
eM
d+1

)d+1
)

intervals. For each interval It, there exists a set of subsets of boundaries S1
x,t ⊂ Hx,i

such that for any set of boundaries S ∈ S1
x,t, the intersection of boundaries in S contains

a feasible point (α,w) for any α in that interval. The key idea of this step is using the α-
extreme points (Definition 5) of connected components of such intersection, which can be
upper-bounded using Lemma F.10.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(c) We refine the partition of A into O
(
(2∆)2d+2

(
eM
d+1

)d+1
)

intervals. For each interval It,

there exists a set of subsets of boundaries S2
x,t ⊂ Hx,i such that for any set of boundaries

S ∈ S2
x,t and any α in such intervals, there exist w and λ satisfying Lagrangian stationarity:{

hS,j(α,wα) = 0, j = 1, . . . , S
∂f(α,wα)

∂wi
+
∑S

j=1 λj
∂hS,j(α,wα)

∂wi
, i = 1, . . . , d.

This defines a smooth 1-manifold MS in R × Rd × RS from Assumption 2. The key idea
of this step is using Theorem F.7, and α-extreme points of connected components of MS ,
which again can be upper-bounded using Lemma F.10.

(d) We further refine the partition of A into O
(
M(2∆)2d+2

(
eM
d+1

)d+1
)

intervals. For each

interval It, there exists a set of subsets of boundaries S3
x,t ⊂ Hx,i such that for any α

in that interval and any manifold MS , there exists a feasible point (α,w,λ) in MS , i.e.,
(α,w) ∈ Rx,i. The key idea of this step is upper-bounding the number of intersections
between MS with any other boundary h′ ̸∈ S.

(e) We show that each manifold MS can be partitioned into monotonic curves (Definition 12).

We then partition A one final time into O
(
∆4d+2

(
eM
d+1

)d+1

+M(2∆)2d+2
(

eM
d+1

)d+1
)

intervals. Over each interval It, the function u∗
x,i can be represented as the value of fx,i

along a fixed set of monotonic curves (see Figure 3). Hence, u∗
x,i is continuous over It.

Therefore, the points partitioning A contain the discontinuities of u∗
x,i. The key idea of this

step is using our proposed definition and properties of monotonic curves (Proposition F.18),
and Bezout’s theorem.

(f) We further demonstrate that in each interval It, any local maximum of u∗
x,i(α) is a local

maximum of fx,i(α,w) along a monotonic curve (Lemma F.14)). Again, we can control
the number of such points using Bezout’s theorem.

(g) Finally, we put together all the potential discontinuities and local extrema of u∗
x,i.

Combining with Lemma 3.2 we have the upper-bound for Pdim(U) (Theorem F.20).

2. We then demonstrate that for any function class U whose dual functions u∗
x have piece functions

and boundaries satisfying Assumption 1, we can construct a new function class V . The dual
functions v∗x of V have piece functions and boundaries that satisfy Assumption 2. Moreover, we
show that ∥u∗

x − v∗x∥∞ can be made arbitrarily small. The details of this construction and proof
are presented in Appendix F.7.2.

3. Finally, using the results from Step (1), we establish an upper bound on the pseudo-dimension
for the function class V described in Step (2). Leveraging the approximation guarantee from
Step (2), we can then use the results for V to determine the learning-theoretic complexity of U
by applying Lemma C.3 and Lemma C.4. Standard learning theory literature then allows us to
translate the learning-theoretic complexity of U into its learning guarantee. This final step is
detailed in Appendix F.7.3.

6 APPLICATIONS

We demonstrate the application of our results to two specific hyperparameter tuning problems in
deep learning. We note that the problem might be presented as analyzing a loss function class
L = {ℓα : X → [0, H] | α ∈ A} instead of utility function class U = {uα : X → [0, H] | α ∈ A},
but our results still hold, just by defining uα(x) = H − ℓα(x). First, we establish bounds on
the complexity of tuning the linear interpolation hyperparameter for activation functions, which
is motivated by DARTS (Liu et al., 2019). Additionally, we explore the tuning of graph kernel
parameters in Graph Neural Networks (GNNs).

6.1 DATA-DRIVEN TUNING FOR INTERPOLATION OF NEURAL ACTIVATION FUNCTIONS

Problem settings. We consider a feed-forward neural network f with L layers. Let Wi denote the
number of parameters in the ith layer, and W =

∑L
i=1 Wi the total number of parameters. Besides,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

we denote ki the number of computational nodes in layer i, and let k =
∑L

i=1 ki. At each node, we
choose between two piecewise polynomial activation functions, o1 and o2. For an activation func-
tion o(z), we call z0 a breakpoint where o changes its behavior. For example, 0 is a breakpoint of the
ReLU activation function. Liu et al. (2019) proposed a simple method for selecting activation func-
tions: during training, they define a general activation function σ as a weighted combination of o1
and o2. While their framework is more general, allowing for multiple activation functions and layer-
specific activation, we analyze a simplified version. The combined activation function is given by:

σ(x) = ζo1(x) + (1− ζ)o2(x),

where ζ ∈ [0, 1] is the interpolation hyperparameter. This framework can express functions like the
parametric ReLU, σ(z) = max{0, z} + αmin{0, z}, which empirically outperforms the regular
ReLU (i.e., α = 0) (He et al., 2015).

Parametric regression. In parametric regression, the final layer output is g(α,w,x) = ŷ ∈ RD,
where w ∈ W ⊂ RW is the parameter vector and α is the architecture hyperparameter. The
validation loss for a single example (x, y) is ∥g(α,w, x)− y∥2, and for T examples, we define

ℓα((X,Y)) = min
w∈W

1

T

∑
(x,y)∈(X,Y)

∥g(α,w, x)− y∥2 = min
w∈W

f((X,Y),w;α).

With X as the space of T -example validation sets, we define the loss function class LAF = {ℓα :
X → R | α ∈ [αmin, αmax]}. We aim to provide a learning-theoretic guarantee for LAF.

Theorem 6.1. Let LAF denote loss function class defined above, with activation functions o1, o2
having maximum degree ∆ and maximum breakpoints p. Given a problem instance x = (X,Y),
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x,w;α) = minw∈W fx(α,w). Then,
fx(α,w) admits piecewise polynomial structure with bounded pieces and boundaries. Further, if
the piecewise structure of fx(α,w) satisfies Assumption 1, then for any δ ∈ (0, 1), w.p. at least
1− δ over the draw of problem instances x ∼ Dm, where D is some distribution over X , we have

|Ex∼D[ℓα̂ERM(x)]− Ex∼D[ℓα∗(x)]| = O

(√
L2W log∆ + LW log(Tpk) + log(1/δ)

m

)
.

A full proof is located in Appendix G. Given a problem instance (X,Y), the key idea is to establish
the piecewise polynomial structure for the function f(X,Y)(α,w) as a function of both the param-
eters w and the architecture hyperparameter α, and then apply our main result Theorem 5.1. We
establish this structure by extending the inductive argument due to Bartlett et al. (1998) which gives
the piecewise polynomial structure of the neural network output as a function of the parameters
w (i.e. when there are no hyperparameters) on any fixed collection of input examples. We also
investigate the case where the network is used for classification task (see Appendix G.1.2).

6.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

We now demonstrate the applicability of our proposed results in a simple scenario: tuning the hy-
perparameter of a graph kernel. Here, we consider the classification case and defer the regression
case to Appendix.

Partially labeled graph instance. Consider a graph G = (V, E), where V and E are sets of vertices
and edges, respectively. Let n = |V| be the number of vertices. Each vertex in the graph is associated
with a d-dimensional feature vector, and let X ∈ Rn×d denote the matrix that contains all the
vertices (as feature vectors) in the graph. We also have a set of indices YL ⊂ [n] of labeled vertices,
where each vertex belongs to one of C categories and L = |YL| is the number of labeled vertices.
Let y ∈ [F]L be the vector representing the true labels of labeled vertices, where the coordinate yl
of y corresponds to the label of vertex l ∈ YL.

We want to build a model for classifying the remaining (unlabeled) vertices, which correspond to
YU = [n] \ YL. A popular and effective approach for this is to train a graph convolutional network
(GCN) Kipf & Welling (2017). Along with the vertex matrix X , we are also given the distance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

matrix δ = [δi,j](i,j)∈[n]2 encoding the correlation between vertices in the graph. The adjacency
matrix A is given by a polynomial kernel of degree ∆ and hyperparameter α > 0

Ai,j = (δ(i, j) + α)∆.

Let Ã = A + In, where In is the identity matrix, and D̃ = [D̃i,j][n]2 where D̃i,j =

0 if i ̸= j, and D̃i,i =
∑n

j=1 Ãi,j for i ∈ [n]. We then denote a problem instance x = (X, y, δ,YL)
and call X the set of all problem instances.

Network architecture. We consider a simple two-layer GCN f (Kipf & Welling, 2017), which
takes the adjacency matrix A and vertex matrix X as inputs and outputs Z = f(X,A) of the form

Z = ÂReLU(ÂXW (0))W (1),

where Â = D̃−1Ã is the row-normalized adjacency matrix, W (0) ∈ Rd×d0 is the weight matrix of
the first layer, and W (1) ∈ Rd0×F is the hidden-to-output weight matrix. Here, zi is the ith-row
of Z representing the score prediction of the model. The prediction ŷi for vertex i ∈ YU is then
computed from Z as ŷi = max zi which is the maximum coordinate of vector zi.

Objective function and the loss function class. We consider the 0-1 loss function corresponding
to hyperparameter α and network parameters w = (w(0),w(1)) for given problem instance x,
f(x,w;α) = 1

|YL|
∑

i∈YL
I{ŷi ̸=yi}. The dual loss function corresponding to hyperparameter α for

instance x is given as ℓα(x) = maxw f(x,w;α), and the corresponding loss function class is
LGCN = {lα : X → [0, 1] | α ∈ A}.
To analyze the learning guarantee of LGCN, we first show that any dual loss function ℓ∗x(α) :=
ℓα(x) = minw fx(α,w), fx(α,w) has a piecewise constant structure, where: The pieces are
bounded by rational functions of α and w with bounded degree and positive denominators. We
bound the number of connected components created by these functions and apply Theorem 4.2 to
derive our result. The full proof is in Appendix G.2.1.
Theorem 6.2. Let LGCN denote the loss function class defined above. Given a problem instance x,
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x,w;α)) = minw∈W fx(α,w). Then
fx(α,w) admits piecewise constant structure. Furthermore, for any δ ∈ (0, 1), w.p. at least 1 − δ
over the draw of problem instances x = (x1, . . . ,xm) ∼ Dm, where D is some problem distribution
over X , we have

|Ex∼D[ℓα̂ERM(x)]− Ex∼D[ℓα∗(x)]| = O

(√
d0(d+ F) log nF∆+ log(1/δ)

m

)
.

Our results also bound the sample complexity for learning the GCN graph kernel hyperparameter α
when minimizing squared loss in regression (Theorem G.5, Appendix G.2.2).

7 CONCLUSION AND FUTURE WORK

In this work, we establish the first principled approach to hyperparameter tuning in deep networks
with provable guarantees, by employing the lens of data-driven algorithm design. We integrate sub-
tle concepts from algebraic and differential geometry with our proposed ideas, and establish the
learning-theoretic complexity of hyperparameter tuning when the neural network loss is a piecewise
constant or piecewise polynomial function of the parameters and the hyperparameter. We demon-
strate applications of our results in multiple contexts, including tuning graph kernels for graph con-
volutional networks and neural architecture search.

This work opens up several directions for future research. While we resolve several technical hur-
dles to handle the piecewise polynomial case, it would be useful to also study cases where the piece-
wise functions or boundaries involve logarithmic, exponential, or more generally, Pfaffian functions
(Khovanski, 1991). We study the case of tuning a single hyperparameter, a natural next question is to
determine if our results can be extended to tuning multiple hyperparameters simultaneously. Finally,
while our work primarily focuses on providing learning-theoretic sample complexity guarantees,
developing computationally efficient methods for hyperparameter tuning in data-driven settings is
another avenue for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Nir Ailon, Bernard Chazelle, Kenneth L Clarkson, Ding Liu, Wolfgang Mulzer, and C Seshadhri.
Self-improving algorithms. SIAM Journal on Computing, 40(2):350–375, 2011.

Nir Ailon, Omer Leibovitch, and Vineet Nair. Sparse linear networks with a fixed butterfly structure:
theory and practice. In Uncertainty in Artificial Intelligence, pp. 1174–1184. PMLR, 2021.

Martin Anthony and Peter Bartlett. Neural network learning: Theoretical foundations, volume 9.
cambridge university press Cambridge, 1999.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations,
2017.

Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden (ed.), Beyond Worst
Case Analysis of Algorithms. Cambridge University Press, 2020.

Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in
Neural Information Processing Systems, 34:14782–14794, 2021.

Maria-Florina Balcan and Dravyansh Sharma. Learning accurate and interpretable decision trees.
Uncertainty in Artificial Intelligence (UAI), 2024.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
mechanism design. Advances in Neural Information Processing Systems, 29, 2016.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In Conference
on Learning Theory, pp. 213–274. PMLR, 2017.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pp. 344–353. PMLR, 2018a.

Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
Lloyd’s families. Advances in Neural Information Processing Systems, 31, 2018b.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample complex-
ity for multi-item profit maximization. In Proceedings of the 2018 ACM Conference on Economics
and Computation, pp. 173–174, 2018c.

Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In International Conference
on Learning Representations, 2019.

Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In International Conference
on Learning Representation, 2020a.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Refined bounds for algorithm config-
uration: The knife-edge of dual class approximability. In International Conference on Machine
Learning, pp. 580–590. PMLR, 2020b.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization guar-
antees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, pp. 919–932, 2021a.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample complex-
ity of tree search configuration: Cutting planes and beyond. Advances in Neural Information
Processing Systems, 34:4015–4027, 2021b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maria-Florina Balcan, Misha Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning
the ElasticNet across instances. Advances in Neural Information Processing Systems, 35:27769–
27782, 2022a.

Maria-Florina Balcan, Anh Nguyen, and Dravyansh Sharma. New bounds for hyperparameter tuning
of regression problems across instances. Advances in Neural Information Processing Systems, 36,
2024a.

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Provable hyperparameter tuning
for structured pfaffian settings, 2024b. URL https://arxiv.org/abs/2409.04367.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal-
ysis of branch-and-cut and the learnability of gomory mixed integer cuts. Advances in Neural
Information Processing Systems, 35:33890–33903, 2022b.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. Advances in neural information processing systems, 11, 1998.

Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical linear
algebra. In Conference on Learning Theory, pp. 2013–2040. PMLR, 2022.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pp. 115–123. PMLR, 2013.

Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. In
Proceedings of the Eighteenth International Conference on Machine Learning, pp. 19–26, 2001.

R Creighton Buck. Advanced calculus. Waveland Press, 2003.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2020.

Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient architecture search for
cnns. In Workshop on Meta-Learning at NIPS, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp.
123–134, 2016.

Rishi Gupta and Tim Roughgarden. Data-driven algorithm design. Communications of the ACM, 63
(6):87–94, 2020.

12

https://arxiv.org/abs/2409.04367

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral approach.
ICLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523. Springer,
2011.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. Advances in
Neural Information Processing Systems, 32, 2019.

Marek Karpinski and Angus Macintyre. Polynomial bounds for vc dimension of sigmoidal and
general pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169–176,
1997.

Mikhail Khodak, Edmond Chow, Maria Florina Balcan, and Ameet Talwalkar. Learning to relax:
Setting solver parameters across a sequence of linear system instances. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Askold G Khovanski. Fewnomials, volume 88. American Mathematical Soc., 1991.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Talwalkar. Geometry-aware gradient algorithms
for neural architecture search. In International Conference on Learning Representations, 2021.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in counts-
ketch. In The Eleventh International Conference on Learning Representations, 2023.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid
using graph neural networks. In International Conference on Machine Learning, pp. 6489–6499.
PMLR, 2020.

Wolfgang Maass. Neural nets with superlinear VC-dimension. Neural Computation, 6(5):877–884,
1994.

Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian,
Mahmoud Safari, Kaicheng Yu, and Frank Hutter. Nas-bench-suite: Nas evaluation is (now)
surprisingly easy. In International Conference on Learning Representations, 2022.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In Workshop on automatic machine learning, pp.
58–65. PMLR, 2016.

Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep
architectures. arXiv preprint arXiv:1704.08792, 2017.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

David Pollard. Convergence of stochastic processes. Springer Science & Business Media, 2012.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Joel W Robbin and Dietmar A Salamon. Introduction to differential geometry. Springer Nature,
2022.

R Tyrrell Rockafellar. Lagrange multipliers and optimality. SIAM review, 35(2):183–238, 1993.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):
145–147, 1972.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Dravyansh Sharma and Maxwell Jones. Efficiently learning the graph for semi-supervised learning.
In Uncertainty in Artificial Intelligence, pp. 1900–1910. PMLR, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International conference on machine learning, pp. 2171–2180. PMLR, 2015.

Petar Velic kovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Hugh E Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
American Mathematical Society, 133(1):167–178, 1968.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 10293–10301, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML), pp. 912–919, 2003.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

14

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Learning-theoretic complexity of deep nets. A related line of work studies the learning-theoretic
complexity of deep networks, corresponding to selection of network parameters (weights) over a
single problem instance. Bounds on the VC dimension of neural networks have been shown for
piecewise linear and polynomial activation functions (Maass, 1994; Bartlett et al., 1998) as well
as the broader class of Pfaffian activation functions Karpinski & Macintyre (1997). Recent work
includes near-tight bounds for the piecewise linear activation functions (Bartlett et al., 2019) and
data-dependent margin bounds for neural networks (Bartlett et al., 2017).

Data-driven algorithm design. Data-driven algorithm design, also known as self-improved algo-
rithms (Balcan, 2020; Ailon et al., 2011; Gupta & Roughgarden, 2020), is an emerging field that
adapts algorithms’ internal components to specific problem instances, particularly in parameterized
algorithms with multiple performance-dictating hyperparameters. Unlike traditional worst-case or
average-case analysis, this approach assumes problem instances come from an application-specific
distribution. By leveraging available input problem instances, this approach seeks to maximize em-
pirical utilities that measure algorithmic performance for those specific instances. This method has
demonstrated effectiveness across various domains, including low-rank approximation and dimen-
sionality reduction (Li et al., 2023; Indyk et al., 2019; Ailon et al., 2021), accelerating linear system
solvers (Luz et al., 2020; Khodak et al., 2024), mechanism design (Balcan et al., 2016; 2018c),
sketching algorithms (Bartlett et al., 2022), branch-and-cut algorithms for (mixed) integer linear
programming (Balcan et al., 2021b), among others.

Neural architecture search. Neural architecture search (NAS) captures a significant part of the
engineering challenge in deploying deep networks for a given application. While neural networks
successfully automate the tedious task of “feature engineering” associated with classical machine
learning techniques by automatically learning features from data, it requires a tedious search over
a large search space to come up with the best neural architecture for any new application domain.
Multiple different approaches with different search spaces have been proposed for effective NAS,
including searching over the discrete topology of connections between the neural network nodes, and
interpolation of activation functions. Due to intense recent interest in moving from hand-crafted to
automatically searched architectures, several practically successful approaches have been developed
including framing NAS as Bayesian optimization (Bergstra et al., 2013; Mendoza et al., 2016; White
et al., 2021), reinforcement learning (Zoph & Le, 2017; Baker et al., 2017), tree search (Negrinho
& Gordon, 2017; Elsken et al., 2017), gradient-based optimization (Liu et al., 2019), among others,
with progress measured over standard benchmarks (Dong & Yang, 2020; Mehta et al., 2022). Li et al.
(2021) introduce a geometry-aware mirror descent based approach to learn the network architecture
and weights simultaneously, within a single problem instance, yielding a practical algorithm but
without provable guarantees. Our formulation is closely related to tuning the interpolation parameter
for activation parameter in NAS approach of DARTS Liu et al. (2019), which can be viewed as a
multi-hyperparameter generalization of our setup. We establish the first learning guarantees for the
simpler case of single hyperparameter tuning. Note that we are considering a simplified version of
DARTS Liu et al. (2019), where we consider a linear interpolation hyperparameter of activation in
each node, while DARTS uses a probabilistic interpolation instead.

Graph-based learning. While several classical (Blum & Chawla, 2001; Zhu et al., 2003; Zhou
et al., 2003; Zhu, 2005) as well as neural models (Kipf & Welling, 2017; Velic kovic et al., 2018;
Wu et al., 2019; Gilmer et al., 2017) have been proposed for graph-based learning, the underlying
graph used to represent the data typically involves heuristically set graph parameters. The latter
approach is usually more effective in practice, but comes without formal learning guarantees. Our
work provides the first provable guarantees for tuning the graph kernel hyperparameter in graph
neural networks.

A detailed comparison to Hyperband (Li et al., 2018). Hyperband is one of the most notable
work in hyperparameter tuning. Specially, the paper provides a theoretical guarantees for the hyper-
parameter tuning process, but under strong assumptions. Here, we provide a detailed comparison
between guarantees presented in Hyperband and our results, and explain how Hyperband and our
work are not competing but complementing each others.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. Hyperparameter configuration settings: Theoretical results (Theorem 1, Proposition 4)
in Hyperband assumes finitely many distinct arms and guarantees are with respect to the
best arm in that set. Even their infinite arm setting considers a distribution over the hyper-
parameter space from which n arms are sampled. It is assumed that n is large enough to
sample a good arm with high probability without actually showing that this holds for any
concrete hyperparameter loss landscape. It is not clear why this assumption will hold in
our cases. In sharp contrast, we seek optimality over the entire continuous hyperparame-
ter hyperparameter range for concrete loss functions which satisfy a piecewise polynomial
dual structure.

2. Guarantee settings: The notion of “sample complexity” in Hyperband is very different
from ours. Intuitively, their goal is to find the best hyperparameter from learning curves
over fewest training epochs, assuming the test loss converges to a fixed value for each hy-
perparameter after some epochs. By ruling out (successively halving) hyperparameters that
are unlikely to be optimal early, they speed up the search process (by avoiding full training
epochs for suboptimal hyperparameters). In contrast, we focus on model hyperparameters
and assume the network can be trained to optimality for any value of the hyperparameter.
We ignore the computational efficiency aspect and focus on the data (sample) efficiency
aspect which is not captured in Hyperband analysis.

3. Learning settings: Hyperband assumes the problem instance is fixed, and aims to acceler-
ate the random search of hyperparameter configuration for that problem instance with con-
strained budgets (formulated as a pure-exploration non-stochastic infinite-armed bandit).
In contrast, our results assume a problem distribution D (data-driven setting), and bounds
the sample complexity of learning a good hyperparameter for the problem distribution D.

Conclusion. The Hyperband paper and our work do not compete but complement each other, as
the two papers see the hyperparameter tuning problem from different perspectives and our results
cannot be compared to theirs.

B ON THE CHALLENGE AND NOVELTY OF TECHNIQUES INTRODUCED IN
THIS PAPER.

We note that the main and foremost contribution (Lemma 4.2, Theorem 5.1) in this paper is a new
technique for analyzing the model hyperparameter tuning in data-driven setting, where the dual util-
ity function of both parameter and hyperparameter fx(α,w) admits a specific piecewise polynomial
structure. In this section, we will make an in-depth comparison between our setting and settings in
prior works in data-driven algorithm hyperparameter tuning, and discuss why our setting is more
challenging and requires novel techniques to analyze.

Novel challenges. We note that our setting requires significant technical novelty relative to prior
work in data-driven algorithm design. As far as we know, most prior works on statistical data-driven
algorithm design falls into two categories:

1. The hyperparameter tuning process does not involve the parameter w, meaning that given a
hyperparameter α, the behavior of the algorithm is fixed. Some concrete examples include
tuning hyperparameters of hierarchical clustering algorithms (Balcan et al., 2017; 2020a),
branch and bound (B&B) algorithms for (mixed) integer linear programming (Balcan et al.,
2018a; 2022b), and graph-based semi-supervised learning (Balcan & Sharma, 2021). The
typical approach is to show that the utility function u∗

x(α) admits specific piecewise struc-
ture of α, typically piecewise polynomial and rational.

2. The hyperparameter tuning process involves the parameter w, for example in tuning reg-
ularization hyperparameters in linear regression. However, here the optimal parameter
w∗(α) can either have a close analytical form in terms of the hyperparameter α (Bal-
can et al., 2022a), or can be easily approximated in terms of α with bounded error (Balcan
et al., 2024b).

However, in our setting, the utility function u∗
x(α) is defined via an optimization problem u∗

x(α) =
maxw fx(α,w), where fx(α,w) admits a piecewise polynomial structure. This involves the param-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

eter w so it does not belong to the first case, and also it is not clear how to use the second approach
either. This emphasizes that our problem and requires the development of novel techniques.

New techniques. Two general approaches are known from prior work to establish a generalization
guarantee for U .

1. The first approach is to establish Pseudo-dimension bound for U via alternatively analyz-
ing the Pseudo/VC-dimension of the piece and boundary function classes, derived when
establishing the piecewise structure of u∗

x(α) (following the Theorem 3.3 (Balcan et al.,
2021a)). We build on this ideas, however, in order to apply it we need significant innova-
tion to analyze the structure of the function u∗

x in our case.
2. The second approach is specialized to the case where the computation of u∗

x(α) can be
described as the GJ algorithm (Bartlett et al., 2022), where we can do four basic operators
(+,−,×,÷) and the conditional statements. However, it is obviously not applicable to our
case as well due to the use of a max operation in the definition.

As mentioned above, we follow the first approach though we have to develop new techniques to
analyze our setting. Here, we choose to analyze u∗

x(α) via indirectly analyzing fx(α,w), which
is some case shown to admit piecewise polynomial structure. To do that, we have to develop the
following things:

1. The connection between number of discontinuities and local maxima and generalization
guarantee of U .

2. The approach to upper-bound the number of discontinuities and local extrema of u∗
x(α).

This is done via using ideas from differential/algebraic geometry, and constrained opti-
mization. We note that even the tools from differential geometry are not readily available,
but we have to identify and develop those tools (e.g. Monotonic curves and its properties,
see Definition 12 and Lemma 18).

That corresponds to the main contribution of our papers (Lemma 4.2, Theorem 5.2). We then demon-
strate the applicability of our results to two concrete problems in hyperparameter tuning in machine
learning (Section 6).

The need for the ERM oracle. In our work, we assume the ERM oracle when defining the func-
tion u∗

x(α) = maxw fx(α,w). This is the important first step for a clean theoretical formulation,
allowing u∗

x(α) to have deterministic behavior given a hyperparameter α, and independent of the
optimization technique.

C ADDITIONAL BACKGROUND ON LEARNING THEORY

Definition 2 (Shattering and pseudo-dimension, Pollard (2012)). Let U be a real-valued function
class, of which each function takes input in X . Given a set of inputs S = (x1, . . . ,xN) ⊂ X , we
say that S is pseudo-shattered by H if there exists a set of real-valued thresholds r1, . . . , rN ∈ R
such that

|{(sign(u(x1)− r1), . . . , sign(u(xN)− rN)) | u ∈ U}| = 2N .
The pseudo-dimension of H, denoted as Pdim(U), is the maximum size N of a input set that H can
shatter.
Theorem C.1 (Pollard (2012)). Given a real-valued function class U whose range is [0, H], and
assume that Pdim(U) is finite. Then, given any δ ∈ (0, 1), and any distribution D over the input
space X , with probability at least 1− δ over the drawn of S ∼ Dn, we have∣∣∣∣∣ 1n

N∑
i=1

u(xi)− Ex∼D[u(x)]

∣∣∣∣∣ ≤ O

(
H

√
1

N

(
Pdim(U) + ln

1

δ

))
.

Theorem C.2 (Pollard (2012)). Given a real-valued function class U whose range is [0, H], and
assume that Pdim(U) is finite. Then for any ϵ > 0 and δ ∈ (0, 1), for any distribution D and for any

set S of m = O
(

H2

ϵ2 (Pdim(U) + log 1
δ)
)

samples drawn from D, w.p. at least 1− δ, we have

|Lm
S (f)− LD(f)| < ϵ, for all f ∈ F .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Definition 3 (Rademacher complexity, Wainwright (2019)). Let F be a real-valued function class
mapping form X to [0, 1]. For a set of inputs S = {x1,xm}, we define the empirical Rademacher
complexity R̂S(F) as

R̂S(F) =
1

m
Eϵ1,...,ϵm∼i.i.d unif ±1

[
sup
f∈F

m∑
i=1

ϵif(xi)

]
.

We then define the Rademacher complexity RDm , where D is a distribution over X , as

RDm(F) = ES∼Dm [R̂S(F)].

Furthermore, we define
Rm(F) = sup

S∈Xm

R̂S(F).

The following lemma provides an useful result that allows us to relate the empirical Rademacher
complexity of two function classes when the infinity norm between their corresponding dual utility
functions is upper-bounded.
Lemma C.3 (Balcan et al. (2020b)). Let F = {fr | r ∈ R} and G = {gr | r ∈ R} consist of
function mapping from X to [0, 1]. For any S ⊆ X , we have

R̂S(F) ≤ ĜS(G) +
1

|S|
∑
x∈S

∥f∗
x − g∗x∥∞.

The following theorem establishes a connection between pseudo-dimension and Rademacher com-
plexity.
Lemma C.4 (Shalev-Shwartz & Ben-David (2014)). Let F is a bounded function class. Then

Rm(F) = O
(√

Pdim(F)
m

)
. Here Rm(F) = supS∈Xm R̂S(F).

The following classical result demonstrates the connection between uniform convergence and learn-
ability with an ERM learner.
Theorem C.5 (Shalev-Shwartz & Ben-David (2014)). If F has a uniform convergence guarantee
with s(ϵ, δ) samples then it is PAC learnable with ERM and s(ϵ/2, δ) samples.

Proof. For S = {x1, . . . ,xN}, let LS(f) = 1
n

∑n
i=1 f(xi), and LD(f) = Ex∼D[f(x)] for any

f ∈ F . Since F is uniform convergence with s(ϵ, δ) samples, w.p. at least 1− δ for all f ∈ F , we
have |LS(f) − LD(f)| ≤ ϵ for any set S with the number of elements m ≥ s(ϵ, δ). Let fERM ∈
argminf∈F LS(f) be the hypothesis outputted by the ERM learner, and f∗ ∈ argminf∈F LD(f)
be the best hypothesis. We have

LD(fERM) ≤ LS(fERM) +
ϵ

2
≤ LS(f

∗) +
ϵ

2
≤ LD(h

∗) + ϵ,

which concludes the proof.

D OMITTED PROOFS FOR SECTION 3

Lemma 3.1 (restated). Let h be a piecewise continuous function which has at most B1 discontinuity
points, and has at most B2 local maxima. Then h has at most O(B1 +B2) oscillations.

Proof. For any z ∈ R, consider the function g(ρ) = I{h(ρ)≥z}. By definition, any discontinuity
points of g(ρ) is a root of the equation h(ρ) = z. Therefore, it suffices to give an upper-bound for
the number of roots that the equation h(ρ) = z can have.

Let ρ1 < ρ2 < · · · < ρN < ρN+1 be the discontinuity points of h, where N ≤ B1 from assumption.
For convenience, let ρ0 = −∞ and ρN+1 = ∞. For any i = 1, . . . , N , consider an interval
Ii = (ρi, ρi+1) over which the function h is continuous. Assume that there are Ei local maxima of
the function h in between the interval Ii, meaning that there are at most 2Ei + 1 local extrema, we
now claim that there are at most 2Ei+2 roots of h(ρ) = z in between Ii. We prove by contradiction:
assume that ρ∗1 < ρ∗2 < · · · < ρ∗2Ei+3 are 2Ei + 3 roots of the equation h(ρ) = z, and there is no
other root in between. We have the following claim:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Claim 1: there is at least 1 local extrema in between (ρ∗j , ρ
∗
j+1). Since h has finite number

of local extrema, meaning that h cannot be constant over [ρ∗j , ρ
∗
j+1]. Therefore, there exists

some ρ′ ∈ (ρ∗j , ρ
∗
j+1) such that h(ρ′) ̸= z, and note that z = h(ρ∗j) = h(ρ∗j+1). Since h is

continuous over [ρ∗j , ρ
∗
j+1], from extreme value theorem (Theorem F.11), h (when restricted

to [ρ∗j , ρ
∗
j+1]) reaches minima and maxima over [ρ∗j , ρ

∗
j+1]. However, since there exists ρ′

such that h(ρ′) ̸= z, then h has to achieve minima or maxima in the interior (ρ∗j , ρ
∗
j+1).

That is also a local extrema of h.

• Claim 2: there are at least 2Ei+2 local extrema in between (ρ∗1, ρ
∗
Ei+2). This claim follows

directly from Claim 1.

Claim 2 leads to a contradiction. Therefore, there are at most 2Ei + 2 roots in between the interval
Ii. which implies there are

∑N
i=0 2Ei + 2N roots in the intervals Ii for i = 1, . . . , N . Note that∑N

i=0 Ei ≤ B2, N ≤ B1 by assumption, and each discontinuity points could also be a root of
h(ρ) = z, we conclude that there are at most O(B1 + B2) roots of the equation h(ρ) = z, for any
z.

Lemma Lemma 3.3 (restated). Consider a real-valued function class U = {uρ : X → R | ρ ∈ R},
of which each dual function u∗

x(ρ) is piecewise constant with at most B discontinuities. Then
Pdim(U) = O(lnB).

Proof. Consider a dual function u∗
x(ρ) which is a piecewise constant function with at most B

discontinuities. I{u∗
x(ρ)≥z} is piecewise continuous with at most B continuities for any threshold

z ∈ R. We will show that by contradiction, assume that there exists z ∈ R such that I{u∗
x(ρ)≥z}

has N discontinuities, where N ≥ B + 1. Since u∗
x(ρ) is piecewise constant, any discontinuities

of I{u∗
x(ρ)≥z} is also a discontinuity of u∗

x(ρ), meaning that u∗
x(ρ) has at least N discontinuities,

which leads to a contradiction. Therefore, we conclude that u∗
x(ρ) has at most B oscillations, and

then Pdim(H) = O(log(B)) following Theorem 2.1.

E ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION 4

E.1 OMITTED PROOFS

In this section, we will present the detailed proof for Theorem 4.1.
Lemma 4.1 (restated). Assume that the piece functions fi(α,w) is constant for all i ∈ [N]. Then
u∗
x(α) has O(N) discontinuity points, partitioning A into at most O(N) regions. In each region,

u∗
x(α) is a constant function.

Proof. For each connected set Rx,i corresponding to a piece function fx,i(α,w) = ci, let

αRi,inf = inf
α
{α : ∃w, (α,w) ∈ Ri}, αRi,sup = sup

α
{α : ∃w, (α,w) ∈ Ri}.

There are N connected components, corresponding to O(N) such points. Reordering those points
and removing duplicate points as αmin = α0 < α1 < α2 < · · · < αt = αmax, where t = O(N)
we claim that for any interval Ii = (αi, αi+1) where i = 0, . . . , t − 1, the function gx(α) remains
constant.

Consider the any interval Ii. By the construction above of αi, for any α ∈ Ii, there exists a fixed set
of regions RIi = {RIi,1, . . . , RIi,n} ⊆ Px = {Rx,1, . . . , Rx,N}, such that for any connected set
R ∈ RIi , there exists w such that (α,w) ∈ R. Besides, for any R ̸∈ RIi , there does not exist w
such that (α,w) ∈ R. This implies that for any α ∈ Ii, we can write u∗

x(α) as

u∗
x(α) = sup

w∈W
fx(α,W) = sup

R∈RIi

sup
w:(α,W)∈R

fx(α,w) = max
c∈CIi

c,

where CIi = {cR | R ∈ RIi} contains the constant value that fx(α,W) takes over R. Since the
set CIi is fixed, u∗

x(α) remains constant over Ii.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hence, we conclude that over any interval Ii = (αi, αi+1), for i = 1, . . . , t− 1, the function u∗
x(α)

remains constant. Therefore, there are only the points αi, for i = 0, . . . , t− 1, at which the function
u∗
x is not continuous. Since t = O(N), we have the conclusion.

Proof of Theorem 4.2. From Lemma 4.1, we know that any dual utility function u∗
x is piecewise

constant and has at most O(N) discontinuities. Combining with Lemma 3.3, we conclude that
Pdim(U) = O(log(N)). Finally, standard learning theory result gives us the final guarantee.

E.2 USEFUL TOOLS FOR BOUNDING THE NUMBER OF CONNECTED COMPONENTS

Here, we will recall some useful tools for bounding the number of connected components created
by a set of polynomial equations. It serves as an useful tool to apply our Theorem 4.1.

Lemma E.1 (Warren (1968)). Let p1, . . . , pm be real polynomials in n variables, each of degree at
most d. The number of connected components of the set Rn − ∪m

i=1Z(pi) is O
((

md
n

)n)
.

F ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION 5

F.1 A SIMPLE CASE: HYPERPARAMETER TUNING WITH A SINGLE PARAMETER

We provide intuition for our novel proof techniques by first considering a simpler setting. We first
consider the case where there is a single parameter and only one piece function. That is, we assume
that N = 1 and M = 0. We first present a structural result for the dual function class U∗, which
establishes that any function u∗

x in U∗ is piecewise continuous with at most O(∆2
p) pieces. Fur-

thermore, we show that there are at most O(∆3
p) oscillations in u∗

x which implies a bound on the
pseudo-dimension of U∗ using results in Section 3.

Our proof approach is summarized as follows. We note that the supreme over w ∈ W in the
definition of u∗

x can only be achieved at a domain boundary or along the derivative hx(α,w) =
∂fx(α,w)

∂w = 0, which is an algebraic curve. We partition this algebraic curve into monotonic arcs,
which intersect α = α0 at most once for any α0. Intuitively, a point of discontinuity of u∗

x can only
occur when the set of monotonic arcs corresponding to a fixed value of α changes as α is varied,
which corresponds to α-extreme points of the monotonic arcs. We use Bezout’s theorem to upper
bound these extreme points of hx(α,w) = 0 to obtain an upper bound on the number of pieces
of u∗

x. Next, we seek to upper bound the number of local extrema of u∗
x to bound its oscillating

behavior within the continuous pieces. To this end, we need to examine the behavior of u∗
x along the

algebraic curve hx(α,w) = 0 and use the Lagrange’s multiplier theorem to express the locations of
the extrema as intersections of algebraic varieties (in α,w and the Lagrange multiplier λ). Another
application of Bezout’s theorem gives us the deisred upper bound on the number of local extrema of
u∗
x.

Lemma F.1. Let dW = dA = 1 and N = 1,M = 0. Assume that (α,w) ∈ R = [αmin, αmax] ×
[wmin, wmax]. Then for any function u∗

x ∈ U∗, we have

(a) The hyperparameter domain A = [αmin, αmax] can be partitioned into O(∆2
p) intervals

such that u∗
x is a continuous function over any interval in the partition.

(b) u∗
x has O(∆2

p) local maxima for any x.

Proof. (a) Denote hx(α,w) = ∂fx(α,w)
∂w . From assumption, fx(α,w) is a polynomial of α and

w, therefore it is differentiable everywhere in the compact domain [αmin, αmax] × [wmin, wmax].
Consider any α0 ∈ [αmin, αmax], we have {(α,w) | α = α0} ∩ [αmin, αmax] is an intersection of a
hyperplane and a compact set, hence it is also compact. Therefore, from Fermat’s interior extremum
theorem (Lemma F.8), for any α0, fx(α0, w) attains the local maxima w either in wmin, wmax, or for
w ∈ (wmin, wmax) such that hx(α0, w) = 0. Note that from assumption, fx(α,w) is a polynomial
of degree at most ∆p in α and w. This implies hx(α,w) is a polynomial of degree at most ∆p − 1.

Denote Cx = V (hx) the zero set of hx in R. For any α0, Cx intersects the line α = α0 in at most
∆p− 1 points by Bezout’s theorem. This implies that, for any α, there are at most ∆p+1 candidate

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

values of w which can possibly maximize fx(α,w), which can be either wmin, wmax, or on some
point in Cx. We then define the candidate arc set C : A → Mα(Cx) as the function that maps
α0 ∈ A to the set of all maximal α-monotonic arcs of Cx (12, informally arcs that intersect any line
α = α0 at most once) that intersect with α = α0. By the argument above, we have |C(α)| ≤ ∆p+1
for any α.

(a) The piecewise structure of u∗
x(α) and piecewise

polynomial surface of fx(α,w) in sheer view.
(b) Removing the surface fx(α,w) for better view
of u∗

x(α), the boundaries, and the derivative curves.

Figure 4: A demonstration of the proof idea for Theorem 5.1 in 2D (w ∈ R). Here, the domain
of f∗

x(α,w) is partitioned into four regions by two boundaries: a circle (blue line) and a parabola
(green line). In each region i, the function fx(α,w) is a polynomial fx,i(α,w), of which the
derivative curve ∂fx,i

∂w = 0 is demonstrated by the black dot in the plane of (α,w). The value
of u∗

x(α) is demonstrated in the red line, and the red dots in the plane (α,w) corresponds to the
position where fx(α,w) = u∗

x(α). We can see that it occurs in either the derivative curves or in
the boundary. Our goal is to leverage this property to control the number of discontinuities and local
maxima of u∗

x(α), which can be converted to the generalization guarantee of the utility function
class U .

We now have the following claims: (1) C is a piecewise constant function, and (2) any point of
discontinuity of u∗

x must be a point of discontinuity of C. For (1), we will show that C is piecewise
constant, with the piece boundaries contained in the set of α-extreme points1 of Cx and the inter-
section points of Cx with boundary lines w = wmin, wmax. Note that if Cx has any components
consisting of axis-parallel straight lines α = α1, we do not consider these components to have any
α-extreme points, and the corresponding discontinuities (if any) are counted in the intersections of
Cx with the boundary lines. Indeed, for any interval I = (α1, α2) ⊆ A, if there is no α-extreme
point of Cx in the interval, then the set of arcs C(α) is fixed over I by Definition 12. Next, we will
prove (2) via an equivalent statement: assume that C is continuous over an interval I ⊆ A, we want
to prove that u∗

x is also continuous over I . Note that if C is continuous over I , then u∗
x(α) involves a

maximum over a fixed set of α-monotonic arcs of Cx, and the straight lines w = wmin, wmax. Since
fx is continuous along these arcs, so is the maximum u∗

x.

The above claim implies that the number of discontinuity points of Cx upper-bounds the number
of discontinuity points of u∗

x(α). Note that α-extreme points Cx satisfies the following equalities:
hx = 0 and ∂hx

∂w = 0. By Bezout’s theorem and from assumption on the degree of the polynomial fx,
we conclude that there are at most (∆p − 1)(∆p − 2) = O(∆2

p) α-extreme points of Cx. Moreover,
there are O(∆p) intersection points between Cx and the boundary lines w = wmin, wmax. Thus,
the total discontinuities of C, and therefore u∗

x, are O(∆2
p).

(b) Consider any interval I over which the function u∗
x(α) is continuous. By Corollary F.5 and

Proposition F.14, it suffices to bound the number of elements of the set of local maxima of fx along
the algebraic curve Cx and the straight lines w = wmin, wmax.

1An α-extreme point of an algebraic curve C is a point p = (α,W) such that there is an open neighborhood
N around p for which p has the smallest or largest α-coordinate among all points p′ ∈ N on the curve.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

To bound the set of bound the number of elements of the set of local maxima of fx along the
algebraic curve Cx, consider the Lagrangian

L(α,w, λ) = fx(α,w) + λhx(α,w).

From Lagrange’s multiplier theorem, any local maxima of fx along the algebraic curve Cx is also a
critical point of L, which satisfies the following equations

∂L
∂α

=
∂fx
∂α

+ λ
∂hx

∂α
=

∂fx
∂α

+ λ
∂2fx
∂α∂w

= 0,

∂L
∂w

=
∂fx
∂w

+ λ
∂hx

∂w
=

∂fx
∂w

+ λ
∂2fx
∂w2

= 0,

∂L
∂λ

= hx =
∂fx
∂w

= 0.

Plugging ∂fx
∂w = 0 into the second equation above, we get that either λ = 0 or ∂2fx

∂w2 = 0. In the
former case, the first equation implies ∂fx

∂α = 0. Thus, we consider two cases for critical points of
L.

Case ∂fx
∂w = 0, ∂fx

∂α = 0. By Bezout’s theorem these algebraic curves intersect in at most ∆2
p

points, unless the polynomials ∂fx
∂w , ∂fx

∂α have a common factor. In this case, we can write
∂fx
∂w = g(α,w)g1(α,w) and ∂fx

∂α = g(α,w)g2(α,w) where g = gcd
(

∂fx
∂w , ∂fx

∂α

)
and g1, g2 have no

common factors. Now for any point on g(α,w) = 0, we have both ∂fx
∂w = 0, ∂fx

∂α = 0 and therefore
fx is constant along the curve (and therefore has no local maxima). By Bezout’s theorem, g1, g2
intersect in at most deg(g1)deg(g2) ≤ ∆2

p points. Thus, the number of local maxima of u∗
x that

correspond to this case is O(∆2
p).

Case ∂fx
∂w = 0, ∂2fx

∂w2 = 0. This is essentially the α-extreme points computed above, and are at most
O(∆2

p).

Similarly, the equations fx(α,wmin) = 0 and fx(α,wmax) = 0 also have at most ∆p solutions
each. Therefore, we conclude that the number of local maxima of u∗

x can be upper-bounded by
O(∆2

p).

Theorem F.2. Pdim(U∗) = O(log∆p).

Proof. From Theorem F.1, we conclude that u∗
x has at most O(∆2

p) oscillations for any u∗
x ∈ U∗.

Therefore, from Theorem 3.3, we conclude that Pdim(U∗) = O(log∆p).

Challenges of generalizing the one-dimensional parameter, single region to high-dimensional
parameter, multiple regions. Recall that in the simple setting above, we assume that fx(α,w)
is a polynomial in the whole domain [αmin, αmax] × [wmin, wmax]. In this case, our approach is
to characterize the manifold on which the optimal solution of maxw:(α,w)∈R fx(α,w) lies, as α
varies. We then use algebraic geometry tools to upper bound the number of discontinuity points and
local extrema of u∗

x(α) = maxw:(α,w)∈R fx(α,w), leading to a bound on the pseudo-dimension
of the utility function class U by using our proposed tools in Section 3. However, to generalize
this idea to high-dimensional parameters and multiple regions is a much more challenging due to
the following issues: (1) handling the analysis of multiple pieces by accounting for polynomial
boundary functions is tricky as the w∗ maximizing fx(α,w) can switch between pieces as α is
varied, (2) characterizing the optimal solution maxw:(α,w)∈R fx(α,w) is not trivial and typically
requiring additional assumptions to ensure a general position property is achieved, and care needs
to be taken to ensure that the assumptions are not too strong and complicated, (3) generalizing the
monotonic curve notion to high-dimensions is not trivial and requires a much more complicated
analysis invoking tools from differential geometry, and (4) controlling the number of discontinuities
and local maxima of u∗

x over the high-dimensional monotonic curves requires more sophisticated
techniques.

We now present preliminaries background and our supporting results for Lemma 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F.2 GENERAL SUPPORTING RESULTS

In this section, we recall some elementary results which are crucial in our analysis. The following
lemma says that the point-wise maximum of continuous functions is also a continuous function.

Lemma F.3. Let fi : X → R, where i ∈ [N] be a continuous function over X , and let f(x) =
maxi∈[N]{fi(x)}. Then we have f(x) is a continuous function over X .

Proof. In the case N = 2, we can rewrite f(x) as

f(x) =
f1(x) + f2(x)

2
+

1

2
|f1(x)− f2(x)| ,

which is sum of continuous function. Hence, f(x) is continous. Assume the claim holds for N = k,
we then claim that it also holds for N = k + 1 by rewriting f(x) as

f(x) = max{max
i∈[k]

{fi(x)}, fk+1(x)}.

Therefore, the claim is proven by induction.

The following results are helpful when we want to bound the number of local extrema of point-
wise maximum of differentiable functions. In particular, we show that the local extrema of f(x) =
max{fi(x)}ni=1 is the local extrema of one of the functions fi(x).

Lemma F.4 (Rockafellar & Wets (2009)). Let X be a finite-dimensional real Euclidean space and
gi : X → R for i ∈ [N] be continuously differential functions on X . Define the function g(x) =
maxi∈[N]{gi(x)}. Let x be a point in the interior of X , and let Ix = {i ∈ [N] | gi(x) =
g(x)}. Then, for any d ∈ X , the directional derivative of g along the direction d is g′(x; d) =
maxi∈Ix

⟨∇gi(x), d⟩.
Corollary F.5. Let X be a finite-dimensional real Euclidean space and gi : X → R for i ∈ [N]
be differential functions on X with the local maxima on X is given by the set Ci. Then the function
g(x) = maxi∈[N]{gi(x)} has its local maxima contained in the union ∪i∈[N]Ci.

Proof. Let x be a point in the interior of X , and let Ix = {i ∈ [N] | gi(x) = g(x)}. Now suppose
x ̸∈ ∪i∈[N]Ci. If Ix consists of a single function gi, then x is a local maximum if and only if it is
local maximum of gi. By Lemma F.4, if the derivative is non-zero for all gi with i ∈ Ix, then g(x)
has a positive derivative in some direction. This implies that x cannot be a local maximum in this
case.

We then recall the wide-known Sauer-Shelah Lemma, which bounds the sum of finite combinatorial
series under some conditions.

Lemma F.6 (Sauer-Shelah Lemma, Sauer (1972)). Let 1 ≤ k ≤ n, where k and n are positive
integers. Then

k∑
j=0

(
n

j

)
≤
(en
k

)k
.

We recall the Lagrangian multipliers theorem, which allows us to give a necessary condition for the
extrema of a function over a constraint.

Theorem F.7 (Lagrangian multipliers, Rockafellar (1993)). Let h : Rd → R, f : Rd → Rn be C1

functions, C ∈ Rd, and M = {f = C} ⊆ Rd. Assume that for all x0 ∈ M , rank(Jf,x(x0)) = n.
If h attains a constrained local extremum at a, subject to the constraint f = C, then there exists
λ1, . . . , λn ∈ R such that

∇h(a) =

n∑
i=1

λi∇fi(a), and f(a) = C,

where λ is the Lagrangian multiplier, and a ∈ M is where h attains its extremum.

We then recall

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma F.8 (Fermat’s interior extremum theorem). Let f : D → R, where D ⊆ Rn is an open set,
be a function and suppose that x0 ∈ D is a point where f has a local extremum. If f is differentiable
at x0, then ∇f(x0) = 0.

Corollary F.9. The local extrema of a function f on a domain D occur only at boundaries, non-
differentiable points, and stationary points.

Definition 4 (Connected components, Anthony & Bartlett (1999)). A connected components of a
subset S ⊂ Rd is the maximal nonempty subset A ⊆ S such that any two points of A are connected
by a continuous curve lying in A.

Definition 5. Let S ⊂ A ×W where A ⊂ R and W ⊆ Rd, and let A be a connected component
of S. We define αA,inf = inf{α | ∃w, (α,w) ∈ A}, and αA,sup = sup{α | ∃w, (α,w) ∈ A} the
α-extreme points of A.

Lemma F.10 (Warren (1968)). Let p be a polynomial in n variables. If the degree of polynomial p
is d, the number of connected components of Z(p) is at most 2dn.

Lemma F.11 (Extreme value theorem). Let f : D → R be a continuous function, where D is a
non-empty compact set, then f is bounded and there exists p, q ∈ D such that f(p) = supx∈D f(x)
and f(q) = infx∈D f(x).

F.3 BACKGROUND ON DIFFERENTIAL GEOMETRY

In this section, we will introduce some basic terminology of differential geometry, as well as key
results that we use in our proofs.

Definition 6 (Topological manifold, Robbin & Salamon (2022)). A topological manifold is a topo-
logical space M such that each point p ∈ M has an open neighborhood U which is homeomorphic
to an open subset of a Euclidean space.

Definition 7 (Smooth map, Robbin & Salamon (2022)). Let U ⊂ Rn and V ⊂ Rm be open sets. A
map f : U → V is called smooth iff it is infinitely differentiable, i.e. iff all its partial derivatives

∂αf =
∂α1+···+αnf

∂xα1
1 . . . ∂xαn

n
, α = (α1, . . . , αn) ∈ Nn

0 .

exists and continuous. Here N0 is the set of non-negative integers.

Definition 8 (Regular value, Robbin & Salamon (2022)). Let U ⊂ Rl be an open set and let f :
U → Rl be a smooth map. A value ϵ ∈ Rl is called a regular value of f iff for any x0 ∈ U ,
Jf,x(x0) has full rank. Here, Jf,x(x0)) is the Jacobian of f w.r.t x and evaluated at x0.

The following theorem says that for any smooth map f , the set of regular value of f has Lebesgue
measure zero.

Theorem F.12 (Sard’s theorem, Robbin & Salamon (2022)). Let f : Rk → Rl is a smooth map.
Then the set of non-regular value of f has Lebesgue measure zero in Rl.

F.4 SUPPORTING LEMMAS

In this section, we will proof some useful tools that are crucial for our analysis.

Definition 9 (Open set). A subset S of smooth n-manifold M is called open if for any point x ∈ S,
there exists a chart (U, ϕ) ∈ M such that p ∈ U and ϕ(U ∩ S) is an open set in Rn.

Definition 10 (Neighborhood). Let M be a smooth n-manifold, and let x be a point in M . Then U
is an (open) neighborhood of x in M if U is an open subset of M that contains x.

Proposition F.13. Let M be a smooth n-manifold, and let S be an open subset of M . Let x be a
point in S, and assume that V be a neighborhood of x in S. Then x is also a neighborhood of x in
M .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. First, note that V is a neighbor of x in S, then V is an open set in the subspace topology S.
Therefore, there exists an open set T in M such that V = S ∩ T . However, note that both S and T
are open set in M , which implies V is also an open set in M . And since V contains x, meaning that
V is a neighborhood of x in M .

Proposition F.14. Let C = {C1, . . . , Cn} be a set of α-monotonic curve (Definition 12) in the space
A ×W of α and W such that for any α ∈ (α1, α2) and any C ∈ C, there is a point W such that
(α,W) ∈ C. Let u∗(α) = maxC∈C{f(α,W) : (α,W) ∈ C}, where f(α,W) is continuous
function and bounded in the domain A×W . Then u∗(α) is continuous over (α1, α2), and for any
local maxima α′ of u∗(α), there exist a point (α′,W ′) that is local maxima of the function f(α,W)
restricted on a monotonic curve C ∈ C.

Proof. We recall the most important properties of monotonic curve C: for any α ∈ (α1, α2), there
is exactly one point W such that (α,W) ∈ C. Since f(α,W) is continuous in the domain A×W ,
hence it is also continuous along the curve C for any C ∈ C. Therefore, u∗(α) is also continuous.

Now, consider any monotonic curve C ∈ C and let u∗
C(α) = f(α,W) where (α,W) ∈ C. From

the property of C, consider the continuous invertible mapping IC : (α1, α2) → C, where IC(α) =
(α,W) for any α ∈ (α1, α2). Assume α′ is a local extrema of u∗

C(α) in (α1, α2), then there exists
an open neighbor V of α′ such that for any α ∈ V , u∗

C(α) ≤ u∗
C(α

′). Now, IC(V) is an open set
in C that contains (α′,W ′), hence it is an open neighbor of (α′,W ′). For any (α,W) ∈ IC(V),
we have f(α,W) = u∗

Cα ≤ u∗
C(α

′) = f(α′,W ′). This means that (α′,W ′) is a local extrema of
f(α,W) in C.

Finally, it suffices to give a proof for the case of 2 functions. let u∗(α) = max{u∗
C1

(α), u∗
C2

(α)}.
We claim that any local maxima of u∗(α) would be a local maxima of either u∗

C1
(α) and u∗

C2
(α).

Assume that α′ is a local maxima of u∗, and there exists an open neighbor V of α′ in (α1, α2) such
that for any α ∈ V , u∗(α) ≤ u∗(α′). WLOG, assume that u∗(α′) = u∗

C1
, therefore u∗

c1(α
′) =

u∗(α′) ≥ u∗(alpha) = max{u∗
C1

(α), u∗
C2

(α)} ≥ u∗
C1

(α) for any α ∈ V . This means that α′ is a
local extrema of u∗

c1(α) in (α1, α2).

F.5 MONOTONIC CURVES

Proposition F.15. Let S ⊂ Rn be a bounded set in Rn, and f : S → R be a bounded function,
where S is closure of S. Then supS f exists and there is a point x∗ ∈ S such that f(x∗) = supS f .

Proof. Since f is bounded over S, then supS f exists and let a = supS f . By definition, for any
i > 0, there exists xi ∈ S such that |f(xi)− a| < 1

i . Hence, we constructed a sequence {xi}∞i=1
such that limi→∞ f(xi) = a.

Now, since S ⊂ Rn is a bounded subset in Rn, by Bolzano-Weierstrass theorem, there exists a
subsequence {x′

i}ni=1 ⊆ {xi}∞i=1 such that the subsequence {x′
i}ni=1 converges. In other words,

there exists x∗ ∈ Rn such that limi→∞ x′
i = x∗, and since {x′

i}ni=1 ⊂ S, then by definition x∗ ∈ S.
Hence, we conclude that there exists x∗ ∈ S such that supS f = f(x∗).

Definition 11 (Adjacent boundaries). Consider the partition of Rn by N boundaries N(hi) for i =
1, . . . , N , where hi is polynomial of z. Let C be any connected components of Rn − ∪n

i=1N(hi).
Then we say that a boundary N(p) is adjacent to C if C ∩N(p) ̸= ∅.

F.6 MONOTONIC CURVE AND ITS PROPERTY

We now present the definition of monotonic curve in high dimension, a key component in our anal-
ysis.

Definition 12 (x-Monotonic curve). Let

f :R× Rd → Rd

(x,y) 7→ (f1(x,y), . . . , fd(x,y))

be a vector valued function, where each function fi is a polynomial of x and y for i = 1, . . . , d.
Assume that 0 ∈ Rd is a regular value of f , meaning that the set Vf = {(x,y) | fi(x,y), i =

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1, . . . , d} defines a smooth 1-manifold in R× Rd. Let V ′ ⊂ Vf be a connected components of Vf ,
and let C ⊂ V ′ be an connected open set in V ′ which is diffeomorphic to (0, 1). The curve C is
said to be x-monotonic if for any point (a, b) ∈ C, we have det(Jf,y(a, b)) ̸= 0, where Jf,y(a, b)
is a Jacobian of f with respect to y evaluated at (a, b), defined as

Jf,y(a, b) =

[
∂fi
∂yj

(a, b)

]
d×d

.

Informally, a key property of an x-monotonic curve C is that for any x0, there exists exactly one y
such that (x0,y) ∈ C. We will formalize this claim in Lemma F.18, but first, we will review some
fundamental results necessary for the proof.

Theorem F.16 (Implicit function theorem, Buck (2003)). Consider the multivariate vector-valued
function f

f : Rn+m → Rm

(x,y) 7→ (f1(x,y), . . . , fm(x,y)),

and assume that f is continuously differentiable. Let f(a, b) = 0 for some (a, b) ∈ Rn+m, and the
Jacobian

Jf,y =

[
∂fi
∂yj

(a, b)

]
m×m

is invertible, then there exists a neighborhood U ⊂ Rn containing a, there exists a neighborhood
V ⊂ Rm containing b, such that there exists an unique function g : U → V such that g(a) = b
and f(x, g(x)) = 0 for all x ∈ U . We can also say that for (x,y) ∈ U × V , we have y = g(x).
Moreover, g is continuously differentiable and, if we denote

Jf,x(a, b) =

[
∂fi
∂xj

(a, b)

]
m×n

then [
∂gi
∂xj

(x)

]
m×n

= − [Jf,y(x, g(x))]
−1
m×m · [Jf,x(x, g(x))]m×n.

Theorem F.17 (Vector-valued mean value theorem). Let S ⊆ Rn be open and let f : S → Rm be
differentiable on all of S. Let x,y ∈ S be such that the line segment connecting these two points
contained in S, i.e. L(x,y) ⊂ S, where L(x,y) = {tx + (1 − t)y | t ∈ [0, 1]}. Then for every
a ∈ Rm, there exists a point z ∈ L(x,y) such that ⟨a, f(y)− f(x)⟩ =

〈
a, Jf,x(z)

⊤(y − x)
〉
.

We now present a formal statement and proof for the key property of x-monotonic curves.

Lemma F.18. Let C be an curve defined as in Definition 12. Then for any x0, the hyperplane
x = x0 intersects with C at at most 1 points.

Proof. (of Proposition F.18) Since C is diffeomorphic to (0, 1), there exists a continuously differen-
tiable function h, where

h : (0, 1) → C

t 7→ (x,y) = (h0(t), h1(t), . . . , hd(t)) ∈ C,

with correspond inverse function h−1 : C → (0, 1) which is also continuously differentiable.

We will prove the statement by contradiction. Assume that there exists (x0,y1), (x0,y2) ∈ C where
y1 ̸= y2. Then we have two corresponding values t1 = h−1(x0,y1) ̸= t2 = h−1(x0,y2). Using
Theorem F.17 for the function h, for any a ∈ Rd, there exists za ∈ (0, 1) such that

⟨a, (0,∆y)⟩ = ⟨a,∆tJh,t(za)⟩ ,

where ∆y = y2 − y1 ̸= 0, ∆t = t2 − t1 ̸= 0, and Jh,t(za) = (∂h0

∂t (za),
∂h1

∂t (za), . . . ,
∂hd

∂t (za)).

Choose a = a1 = (1, 0, . . . , 0), then from above, there exists za1
∈ (0, 1) such that ∂h0

∂t

∣∣∣∣
t=za1

=

0. Now, consider the point (xa1 ,ya1) = h(za1). From the assumption, det(Jf,y(xa1 ,ya1)) ̸=

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0. Therefore, from Theorem F.16, there exists neighborhoods U ⊂ R containing xa1
, V ⊆ Rd

containing ya1
, such that there exists a continuously differentiable function g : U → Rd, such that

for any (x,y) ∈ U×V , we have y = g(x). Again, at the point (xa1
,ya1

) corresponding to t = za1
,

we have
∂yi
∂t

∣∣∣∣
t=za1

=
∂gi
∂x

· ∂x
∂t

∣∣∣∣
t=za1

= 0.

This means that at the point t = za1 , we have ∂x
∂t

∣∣∣∣
t=za1

= ∂yi

∂t

∣∣∣∣
a1

= 0.

Note that since h is a diffeomorphism, we have t = (h−1 ◦ h)(t). From chain rule, we have 1 =
Jh−1,h · Jh,t. However, if we let t = za1 , then Jh,t(a1) = 0, meaning that Jh−1,h · Jh,t(za1) = 0,
leading to a contradiction.

From Definition 13 and Proposition F.18, for each x-monotonic curve C, we can define their x-end
points, which are the maximum and minimum of x-coordinate that a point in C can have.

Definition 13 (x-End points of monotonic curve in high dimension). Let V is an monotonic curves
as defined in Definition 12. Then we call sup{x | ∃y, (x,y) ∈ V } and inf{x | ∃y, (x,y) ∈ V } the
x-end points of V .

F.7 MAIN PROOF FOR THEOREM 5.1

Notation. We denote [n] = {1, . . . , n}. For a polynomial p(x), denote Z(p) = {x : p(x) = 0}
the zero set of p. For a set C ⊂ Rd, denote C the closure of C, int(C) the interior of C, bd(C) =
C − int(C) the boundary of C.

F.7.1 A PROOF THAT REQUIRES STRONGER ASSUMPTION

We first give a proof for the case where the piece functions fx,i and boundaries hx,i satisfies a bit
stronger assumption.

Assumption 2 (Regularity assumption). Assume that for any function u∗
x(α), we have the following

regularity condition: for any piece function fx,i and S ≤ d + 1 boundary functions h1, . . . , hS

chosen from {hx,1, . . . , hx,M}, we have

1. For any (α,w) ∈ h
−1

(0), we have rank(Jh,w(α,w)) = S, where h =

(h1(α,w), . . . , hS(α,w)).

2. For any (α,w,λ) ∈ k−1(0), we have rank(Jk,(w,λ)(α,w,λ)) = d+ S. Here

k(λ,w,λ) = (k1(α,w,λ), . . . , kd+S(α,w,λ)),

and {
ki(α,w,λ) = hi(α,w), i = 1, . . . , S,

ks+j(α,w,λ) =
∂fx,i

∂wj
+
∑s

i=1 λi
∂hi

∂wj
, j = 1, . . . , d.

3. For any (α,w,λ,θ,γ) ∈ k
−1

(0), we have rank(Jk,(α,w,λ,θ,γ))(α,w,λ,θ,γ) = 2d +

2S + 1. Here

k(α,w,λ,θ,γ) = (k1(α,w,λ,θ,γ), . . . , k2d+2S+1(α,w,λ,θ,γ)),

and

kz = hS
x,i,z, z = 1, . . . , S

kS+z =
∑d

t=1 γt
∂hS

x,i,z

∂wt
, z = 1, . . . , S

k2S+z =
∂fx,i

∂wz
+
∑S

j=1 λj
∂hS

x,i,j

∂wz
, z = 1 . . . , d

k2S+d+z =
∂fx,i

∂wz
+
∑S

j=1 θj
hS
x,i,j

∂wz
+
∑d

t=1 γt

[
∂2fx,i

∂wt∂wz
+
∑S

j=1 λj
∂2hS

x,i,j

∂wt∂wz

]
, z = 1, . . . , d

k2S+2d+1 =
∂fx,i

∂α +
∑S

j=1 θj
hS
x,i,j

∂α +
∑d

t=1 γt

[
∂2fx,i

∂wt∂α
+
∑S

j=1 λj
∂2hS

x,i,j

∂wt∂α

]
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Remark 3. We note that Assumption 2.3 implies Assumption 2.2, and Assumption 2.2 implies
Assumption 2.1. For convenience, we present Assumption 2 with a different sub-assumption is for
readability, and because each sub-assumption has its own geometric meaning in our analysis. In
particular:

• Assumption 2.1 implies that the intersections of any S ≤ d+1 boundaries are regular: they
are either empty, or are a smooth (d+ 1− S)-manifold in Rd+1.

• Assumption 2.2 refers to the regularity of the derivative curves.

• Assumption 2.3 implies that the number of local extrema of the piece function along any
derivative curve is finite.

Theorem F.19. Assume that Assumption 2 holds, then for any problem instance x ∈ X , the dual
utility function u∗

x satisfies the followings:

(a) The hyperparameter domain A can be partitioned into at most

O

(
N∆4d+2

(
eM

d+ 1

)d+1

+NM(2∆)2d+2

(
eM

d+ 1

)d+1
)

intervals such that u∗
x(α) is a continuous function over any interval in the partition, where

N and M are the upper-bound for the number of pieces and boundary functions, and
∆ = max{∆p,∆b} is the maximum degree of piece fx,i and boundary hx,i polynomials.

(b) u∗
x(α) has O

(
N∆4d+3

(
eM
d+1

)d+1
)

local maxima for any problem instance x overall all

such intervals.

Proof. (a) First, note that we can rewrite u∗
x,i(α) as

u∗
x,i(α) = max

w:(α,w)∈Rx,i

fx,i(α,w).

Since Rx,i is connected, let

αx,i,inf = inf{α | ∃w : (α,w) ∈ Rx,i}, αx,i,sup = sup{α | ∃w : (α,w) ∈ Rx,i}

be the α-extreme points of Rx,i (Definition 5). Then, for any α ∈ (αx,i,inf , αx,i,sup), there exists w
such that (α,w) ∈ Rx,i.

Let Hx,i be the set of adjacent boundaries of Rx,i. By assumption, we have |Hx,i| ≤ M . For any
subset S = {hS,1, . . . , hS,S} ⊂ Hx,i, where |S| = S, consider the set of (α,w) defined by

hS,i(α,w) = 0, i = 1, . . . , S. (1)

If S > d + 1, from Assumption 2, the set of (α,w) above is empty. Consider S ≤ d + 1, from
Assumption 2, the above defines a smooth d+1− S manifolds in Rd+1. Note that, the set of above
is exactly the set of (α,w) defined by

S∑
i=1

hS,i(α,w)2 = 0.

Therefore, from Lemma F.10, the number of connected components of such manifolds is at most
2(2∆)d+1. Each connected components correspond to 2 α-extreme points, meaning that there are at
most 4(2∆)d+1 α-extreme points for all the connected components of the smooth manifolds defined
by Equation 1. Taking all possible subset of boundaries of at most d+ 1 elements, we have total of
at most N α-extreme points, where

N ≤ (2∆)d+1
d+1∑
S=0

(
M

S

)
≤ (2∆)d+1

(
eM

d+ 1

)d+1

.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Here, the final inequality is from Lemma F.6.

Now, let A1 be the set of such α-extreme points after reordering. For each interval It = (αt, αt+1)
of consecutive points A1, the set S1

t ⊂ 2Hx,i of sets of boundaries is fixed. here, the set St consists
of all set of boundary S = {hS,1, . . . , hS,S} such that for any α ∈ (αt, αt+1), there exists w such
that hS,i(α,w) = 0 for any i = 1, . . . , S. Here, note that (α,w) is not necessarily in Rx,i, i.e. it
might be infeasible. Now, for any fixed α ∈ It, assume that wα is a maxima of fx,i in Rx,i (which
exists due to the compactness of Rx,i), meaning that (α,wα) is also a local extrema in Rx,i. This
implies there exists a set of boundaries S ∈ St and λ such that (α,wα) satisfies the following due
to Theorem F.7 {

hS,j(α,wα) = 0, j = 1, . . . , S
∂f(α,wα)

∂wi
+
∑S

j=1 λj
∂hS,j(α,wα)

∂wi
, i = 1, . . . , d,

which defines a smooth 1-dimensional manifold MS in Rd+S+1 by Assumption 2. Again, from
Lemma F.10, the number of connected components of MS is at most 2(2∆)d+S+1, corresponding
to at most 4(2∆)d+S+1 α-extreme points. Taking all possible subsets S of at most d + 1 elements

of Hx,i, we have at most O
(
(2∆)2d+2

(
eM
d+1

)d+1
)

such α-extreme points.

Let A2 be the set contains all the points α in A1 and the α-extreme points above and reordering
them. Then in any interval It = (αt, αt+1) of consecutive points A2, the set S2

t is fixed. Here, the
set St consists of all sets of boundary S such that for any α ∈ (αt, αt+1), there exists wα and λ
such that (α,wα,λ) satisfies{

hS,j(α,wα) = 0, j = 1, . . . , S
∂f(α,wα)

∂wi
+
∑S

j=1 λj
∂hS,j(α,wα)

∂wi
, i = 1, . . . , d.

Note that the points (α,wα,λ) might not be in the feasible region Rx,i. For each S, the points
(α,w,λ) in which MS can enter or exit the feasible region Rx,i satisfies equation

hS,i(α,w) = 0, i = 1, . . . , S,

h′(α,w) = 0, for some h′ ∈ Hx,i − S
∂f(α,w)

∂wi
+
∑S

j=1 λj
∂hS,j(α,wα)

∂wi
, i = 1, . . . , d.

of which the number of solution is finite due to Assumption 2. The number of such points is
2(2∆)d+S+1 for each S ⊂ Hx,i, |S| ≤ d + 1 and each h′ ∈ Hx,i − S , meaning that there
are at most 2M(2∆)d+S+1 such points for each S. Taking all possible sets S, we have at most

O
(
M(2∆)2d+2

(
eM
d+1

)d+1
)

.

Let A3 be the set contains all the points in A2 and the α points above and reordering them. Then
for any interval It = (αt, αt+1), the set S3

t is fixed. Here, the set S3
t consists of all sets of boundary

S such that for any α ∈ (αt, αt+1) fixed, there exists wα and λ such that (α,wα,λ) satisfies
h(α,wα) = 0, h ∈ S
∂f(α,wα)

∂wi
+
∑

h∈S λh
∂h(α,wα)

∂wi
, i = 1, . . . , d,

(α,w) ∈ Rx,i.

Finally, we further break the smooth 1-manifold MS defined as above into monotonic curves (Def-
inition 12), which we show to have attract property (Proposition F.18): for each monotonic curve C
and an α0, there is at most 1 point in C such that the coordinate α = α0. For the smooth 1-manifold
MS , from Definition 12, the points that break MS into monotonic curves satisfies

ki(α,w,λ) = hS,i(α,wα) = 0, i = 1, . . . , S

kS+j(α,w,λ) = ∂f(α,wα)
∂wi

+
∑S

i=1 λi
∂hS,i(α,wα)

∂wi
, i = 1, . . . , d,

det(Jk,(w,λ)) = 0.

Here, k = (k1, . . . , kS+d) : Rd+S+1 → Rd+S+1, and Jk,(w,λ) is the Jacobian of function k with re-
spect to w,λ. Note that Jk,(w,λ) is a polynomial in α,w,λ of degree at most ∆d+S . From Assump-
tion 2 and Bezout’s theorem, for each possible choice of S, there are at most ∆2d+2S such points

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(α,w,λ) satisfies the above. Taking all possible sets S, we have at most O
(
∆4d+2

(
eM
d+1

)d+1
)

such points.

In summary, there are a set of α points A4 of at most

O
(
∆4d+2

(
eM
d+1

)d+1

+M(2∆)2d+2
(

eM
d+1

)d+1
)

points such such that for any interval

It = (αt, αt+1) of consecutive points (αt, αt+1) in A4, there exists a set Ct of monotonic
curves such that for any α ∈ (αt, αt+1), we have

u∗
x,i(α) = max

C∈C
{fx,i(α,w) | ∃λ, (α,w,λ) ∈ C}.

In other words, the value of u∗
x,i(α) for α ∈ It is the point-wise maximum of value of func-

tions fx,i along the set of monotonic curves C. From Theorem F.14, we have u∗
x,i(α) is con-

tinuous over It. Therefore, we conclude that the number of discontinuities of u∗
x,i(α) is at most

O
(
∆4d+2

(
eM
d+1

)d+1

+M(2∆)2d+2
(

eM
d+1

)d+1
)

.

Finally, recall that
u∗
x(α) = max

i∈[N]
ux,i(α),

and combining with Theorem F.3, we conclude that the number of discontinuity points of u∗
x(α) is

at most O
(
N∆4d+2

(
eM
d+1

)d+1

+NM(2∆)2d+2
(

eM
d+1

)d+1
)

.

Combining Theorem F.19 and 3.2, we have the following result.

Theorem F.20. Let U = {uα : X → [0, 1] | α ∈ A}, where A = [αmin, αmax] ⊂ R. Assume
that any dual utility function u∗

x admits piecewise polynomial structures that satisfies Assumption 2.
Then we have Pdim(U) = O(logN + d log(∆M)). Here, M and N are the number of boundaries
and functions, and ∆ is the maximum degree of boundaries and piece functions.

F.7.2 RELAXING ASSUMPTION 2 TO ASSUMPTION 1

In this section, we show how we can give a relaxation from Assumption 2 to our main Assumption
1. In particular, we show that for any dual utility function u∗

x that satisfies Assumption 1, we can
construct a function v∗x such that: (1) The piecewise structure of v∗x satisfies Assumption 2, and (2)
∥u∗

x − v∗x∥ can be arbitrarily small. This means that, for a utility function class U , we can construct
a new function class V of which each dual function v∗x satisfies Assumption 2. We then can establish
pseudo-dimension upper-bound for V using Theorem F.19, and then recover learning guarantee for
U using Lemma C.4.

First, we recall a useful result regarding sets of regular polynomials. This result states that given a set
of regular polynomials and a new polynomial, we can modify the new polynomial by an arbitrarily
small amount such that adding it to the set preserves the regularity of the entire set.

Lemma F.21 (Warren (1968)). Let p(x), q1(x), . . . , qm(x) be polynomials. Assume that 0 is a
regular value of q = (q1, . . . , qm), then for all but finitely many number of real numbers α, we have
0 is also a regular value for q = (q1, . . . , qm, p− α).

We now present the main claim in this section, which says that for any function u∗
x(α) that satisfies

Assumption 1, we can construct a function v∗x(α) that satisfies Assumption 2 and that ∥u∗
x − v∗x∥∞

can be arbitrarily small.

Lemma F.22. Let u∗
x be a dual utility function of a utility function class U . Assume that the piece-

wise polynomial structures of u∗
x satisfies Assumption 1, then we can construct the function v∗x such

that v∗x has piece-wise polynomial structures that satisfies Assumption 2, and ∥u∗
x − v∗x∥∞ can be

arbitrarily small.

Proof. Consider the functions k

k(α,w,λ,θ,γ) = (k1(α,w,λ,θ,γ), . . . , k2d+2s+1(α,w,λ,θ,γ)),

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

and

kz(α,w,λ,θ,γ) = hS
x,i,z(α,w), z = 1, . . . , S

kS+z(α,w,λ,θ,γ) =
∑d

t=1 γt
∂hS

x,i,z(α,w)

∂wt
, z = 1, . . . , S

k2S+z(α,w,λ,θ,γ) =
∂fx,i(α,w)

∂wz
+
∑S

j=1 λj
∂hS

x,i,j(α,w)

∂wz
, z = 1 . . . , d

k2S+d+z(α,w,λ,θ,γ) =
∂fx,i(α,w)

∂wz
+
∑S

j=1 θj
hS
x,i,j(α,w)

∂wz

+
∑d

t=1 γt

[
∂2fx,i(α,w)

∂wt∂wz
+
∑S

j=1 λj
∂2hS

x,i,j(α,w)

∂wt∂wz

]
= 0, z = 1, . . . , d

k2S+2d+1(α,w,λ,θ,γ) =
∂fx,i(α,w)

∂α +
∑S

j=1 θj
hS
x,i,j(α,w)

∂α +
∑d

t=1 γt

[
∂2fx,i(α,w)

∂wt∂α
+
∑S

j=1 λj
∂2hS

x,i,j(α,w)

∂wt∂α

]
.

Since u∗
x satisfies Assumption 2.2, then 0 is a regular value of (k1, . . . , k2S). From Lemma

F.21, there exists finitely number of real-valued τ such that 0 is not a regular value of
(k1, . . . , k2S , k2S+1 − τ). Let τ∗ ̸= 0 be the such τ such that |τ∗| is the smallest. Then for
any 0 < τ < |τ∗|, we have 0 is a regular value of (k1, . . . , k2S , k2S+1 − τ). Keep doing so for the
all (finite number) polynomials k̂2S+1, . . . , k̂2S+2d+1, we claim that there exists a τ∗ ̸= 0, such that
for any 0 < τ < |τ∗|, we have 0 is a regular value of (k̂1, . . . , k̂2S , k̂2S+1 − τ, . . . , k̂2S+2d+1 − τ).
We then construct the function v∗x as follow.

• The set of boundary functions is the same as u∗
x : {hx,1, . . . , hx,M}.

• In each region Rx,i, the piece function f ′
x,i(α,w) of v∗x is defined as:

f ′
x,i(α,w) = fx,i(α,w) + τα+ τ

d∑
z=1

wz,

for some 0 < τ < |τ∗|. Then

• v∗x satisfies Assumption 2.

• In any region Rx,i, we have

|fx,i(α,w)− f ′
x,i(α,w)| =

∣∣∣∣∣τα+ τ

d∑
z=1

wz

∣∣∣∣∣ ≤ τC,

where C = (d+ 1)max{|αmin, αmax, wmin, wmax|}. This implies

sup
w:(α,w)∈Rx,i

fx,i(α,w)− 2τC ≤ sup
w:(α,w)∈Rx,i

f ′
x,i(α,w) ≤ sup

w:(α,w)∈Rx,i

fx,i(α,w) + 2τC,

or
u∗
x,i(α)− 2τC ≤ v∗x,i(α) ≤ u∗

x,i(α) + 2τC ⇒ ∥u∗
x,i − v∗x,i(α)∥∞ ≤ 2τC.

Then we conclude that ∥u∗
x − v∗x(α)∥∞ ≤ 2τC, and since τ can be arbitrarily small, we have the

conclusion.

F.7.3 RECOVER THE GUARANTEE UNDER ASSUMPTION 1

We now give the formal proof for the Theorem 5.1.
Theorem 5.1 (restated). Consider the utility function class U = {uα : X → [0, H] | α ∈ A}.
Assume that the dual utility function u∗

x(α) = supw∈W fx(α,w), and fx(α,w) admits piecewise
constant polynomial structure with the piece functions fx,i and boundaries hx,i satisfies Assumption
1. Then for any distribution D over X , for any δ ∈ (0, 1), with probability at least 1 − δ over the
draw of S ∼ Dm, we have

|Ex∼D[uα̂(x)]− Ex∼D[uα∗(x)]| ≤ O

(√
logN + d log(∆M) + log(1/δ)

m

)
.

Here, M and N are the number of boundaries and connected sets, ∆ = max{δp, δd} is the maximum
degree of piece fx,i and boundaries hx,i.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof. Let U = {uα : X → [0, H] | α ∈ A} be a function class of which each dual utility
u∗
x satisfies Assumption 1. From Lemma F.7.2, there exists a function class V = {vα : X →

[0, H] | α ∈ A} such that for any problem instance x, we have ∥u∗
x − v∗x∥∞ can be arbitrarily

small, and any v∗x satisfies Assumption 2. From Theorem F.19, we have Pdim(V) = O(logN +

d log(∆M)). From Lemma C.4, we have Rm(V) = O
(

Pdim(V)
m

)
. From Lemma C.3, we have

R̂S(U) = O
(√

logN+d log(∆M)
m

)
, where S ∈ Xm. Finally, standard learning theory result give

us the final claim.

G ADDITIONAL DETAILS FOR SECTION 6

G.1 TUNING THE INTERPOLATION PARAMETER FOR ACTIVATION FUNCTIONS

G.1.1 REGRESSION CASE

We now provide a formal proof for Theorem 6.1, which analyzes the generalization guarantee for
selecting the interpolation hyperparameter of activation functions in neural architecture search.

Theorem 6.1 (restated). Let LAF denote loss function class defined above, with activation
functions o1, o2 having maximum degree ∆ and maximum breakpoints p. Given a problem in-
stance (X,Y), the dual loss function is defined as ℓ∗(X,Y)(α) := minw∈W f((X,Y),w;α) =

minw∈W f(X,Y)(α,w), and f(X,Y)(α,w) admits piecewise polynomial structure with bounded
pieces and boundaries. Assume that the piecewise structure of f(X,Y)(α,w) satisfies Assumption 1,
then for any δ ∈ (0, 1), w.p. at least 1− δ over the draw of problem instances S ∼ Dm, where D is
some distribution over X , we have

∣∣E(X,Y)∼D[ℓα̂((X,Y))]− E(X,Y)∼D[ℓα∗((X,Y))]
∣∣ = O

(√
L2W log∆ + LW log(Tpk) + log(1/δ)

m

)
.

Proof. Let x1, . . . , xT denote the fixed (unlabeled) validation examples from the fixed validation
dataset (X,Y). We will show a bound N on a partition of the combined parameter-hyperparameter
space W × R, such that within each piece the function f(X,Y)(α,w) is given by a fixed bounded-
degree polynomial function in α,w on the given fixed dataset (X,Y), where the boundaries of the
partition are induced by at most M distinct polynomial threshold functions. This structure allows us
to use our result Theorem 5.1 to establish learning guarantee for the function class LAF.

The proof proceeds by an induction on the number of network layers L. For a single layer L = 1,
the neural network prediction at node j ∈ [k1] is given by

ŷij = αo1(wjxi) + (1− α)o2(wjxi),

for i ∈ [T]. W × R can be partitioned by 2Tk1p affine boundary functions of the form wjxi − tk,
where tk is a breakpoint of o1 or o2, such that ŷij is a fixed polynomial of degree at most l + 1
in α,w in any piece of the partition P1 induced by the boundary functions. By Warren’s theorem

(Lemma F.10), we have |P1| ≤ 2
(

4eTk1p
W1

)W1

.

Now suppose the neural network function computed at any node in layer L ≤ r for some r ≥ 1 is

given by a piecewise polynomial function of α,w with at most |Pr| ≤
∏r

q=1 2
(

4eTkqp(∆+1)q

Wq

)Wq

pieces, and at most 2Tp
∑r

q=1 kq polynomial boundary functions with degree at most (∆ + 1)r.
Let j′ ∈ [kr+1] be a node in layer r + 1. The node prediction is given by ŷij′ = αo1(wj′ ŷi) +
(1 − α)o2(wj′ ŷi), where ŷi denotes the incoming prediction to node j′ for input xi. By inductive
hypothesis, there are at most 2Tkr+1p polynomials of degree at most (∆+1)r +1 such that in each
piece of the refinement of Pr induced by these polynomial boundaries, ŷij′ is a fixed polynomial
with degree at most (∆+ 1)r+1. By Warren’s theorem, the number of pieces in this refinement is at

most |Pr+1| ≤
∏r+1

q=1 2
(

4eTkqp(∆+1)q

Wq

)Wq

.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Thus f(X,Y)(α,w) is piecewise polynomial with at most 2Tp
∑L

q=1 kq = 2mpk polynomial
boundary functions with degree at most (∆ + 1)2L, and number of pieces at most |PL| ≤

ΠL
q=12

(
4eTkqp(∆+1)q

Wq

)Wq

. Assume that the piecewise polynomial structure of f(X,Y)(α,w) satis-
fies Assumption 1, then applying Theorem 5.1 and standard learning learning theory result gives us
the final claim.

G.1.2 BINARY CLASSIFICATION CASE

In the binary classification setting, the output of the final layer corresponds to the prediction
g(α,w, x) = ŷ ∈ R, where w ∈ W ⊂ RW is the vector of parameters (network weights), and α is
the architecture hyperparameter. The 0-1 validation loss on a single validation example x = (X,Y)
is given by I{g(α,w,x)̸=y}, and on a set of T validation examples as

ℓcα(x) = min
w∈W

1

T

∑
(x,y)∈(X,Y)

I{g(α,w,x) ̸=y} = min
w∈W

f(x,w, α).

For a fixed validation dataset x = (X,Y), the dual class loss function is given by LAF
c = {ℓcα :

X → [0, 1] | α ∈ A}.

Theorem G.1. Let LAF
c denote loss function class defined above, with activation functions o1, o2

having maximum degree ∆ and maximum breakpoints p. Given a problem instance x = (X,Y),
the dual loss function is defined as ℓ∗x(α) := minw∈W f(x,w;α) = minw∈W fx(α,w). Then,
fx(α,w) admits piecewise constant structure. For any δ ∈ (0, 1), w.p. at least 1− δ over the draw
of problem instances S ∼ Dm, where D is some distribution over X , we have

∣∣E(X,Y)∼D[ℓα̂((X,Y))]− E(X,Y)∼D[ℓα∗((X,Y))]
∣∣ = O

(√
L2W log∆ + LW log Tpk + log(1/δ)

m

)
.

Proof. As in the proof of Theorem 6.1, the loss function Lc can be shown to be piecewise con-

stant as a function of α,w, with at most |PL| ≤ ΠL
q=12

(
4eTkqp(∆+1)q

Wq

)Wq

pieces. We can apply

Theorem 4.2 to obtain the desired learning guarantee for LAF
c .

G.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

G.2.1 THE CLASSIFICATION CASE

We use the following result due to Warren (1968) to establish the piecewise constant structure of the
dual loss function for GCNs.

Theorem G.2 (Warren 1968). Suppose N ≥ n. Consider N polynomials p1, . . . , pN in n variables
of degree at most ∆. Then the number of connected components of Rn \∪N

i=1{z ∈ Rn | pi(z) = 0}
is O

(
N∆
n

)n
.

To prove Theorem 6.2, we first show that given any problem instance x, the function f(x,w;α) =
fx(α,w) is a piecewise constant function, where the boundaries are rational threshold functions of
α and w. We then proceed to bound the number of rational functions and their maximum degrees,
which can be used to give an upper-bound for the number of connected components, using G.2.
After giving an upper-bound for the number of connected components, we then use Theorem 4.2 to
recover learning guarantee for U

Lemma G.3. Given a problem instance x = (X, y, δ,YL) that contains the vertices representation
X , the label of labeled vertices, the indices of labeled vertices YL, and the distance matrix δ,
consider the function

fx(α,w) := f(x,w;α) =
1

|YL|
∑
i∈YL

I{ŷi ̸=yi}

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

which measures the 0-1 loss corresponding to the GCN parameter w, polynomial kernel parameter
α, and labeled vertices on problem instance x. Then we can partition the space of w and α into

O

((
(nF 2)(2∆ + 6)

1 + dd0 + d0F

)1+dd0+d0F

(∆ + 1)nd0

)
connected components, in each of which the function f(x,w;α) is a constant function.

Proof. First, recall that Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1), where Â = D̃−1Ã is the
row-normalized adjacent matrix, and the matrices Ã = [Ãi,j] = A + In and D̃ = [D̃i,j] are
calculated as

Ai,j = (δi,j + α)∆,

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Here, recall that δ = [δi,j] is the distance matrix. We first proceed to analyze the output Z step by
step as follow:

• Consider the matrix T (1) = XW (0) of size n× d0. It is clear that each element of T (1) is
a polynomial of W (0) of degree at most 1.

• Consider the matrix T (2) = ÂT (1) of size n×d0. We can see that each element of matrix Â
is a rational function of α of degree at most ∆. Moreover, by definition, the the denominator
of each rational functions are strictly positive. Therefore, each element of matrix T (2) is a
rational function of W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (3) = ReLU(T (2)) of size n× d0. By definition, we have

T
(3)
i,j =

{
T

(2)
i,j , if T (2)

i,j ≥ 0

0, otherwise.

This implies that there are n × d0 boundary functions of the form I
T

(2)
i,j ≥0

where T
(2)
i,j is a

rational function of W (0) and α of degree at most ∆+1 with strictly positive denominators.
From Theorem G.2, the number of connected components given by those n×d0 boundaries
are O

(
(∆ + 1)nd0

)
. In each connected components, the form of T (3) is fixed, in the sense

that each element of T (3) is a rational functions in W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (4) = T (3)W (1). In connected components defined above, it is clear
that each element of T (4) is either 0 or a rational function in W (0),W (1), and α of degree
at most ∆+ 2.

• Finally, consider Z = ÂT (4). In each connected components defined above, we can see
that each element of Z is either 0 or a rational function in W (0),W (1), and α of degree at
most ∆+ 3.

In summary, we proved above that the space of w, α can be partitioned into O((∆+1)nd0) connected
components, over each of which the output Z = GCN(X,A) is a matrix with each element is
rational function in W (0, W (1), and α of degree at most ∆+ 3. Now in each connected component
C, each corresponding to a fixed form of Z, we will analyze the behavior of f(x,w;α), where

f(x,w;α) =
1

|YL|
∑
i∈YL

Iŷi ̸=yi
.

Here ŷi = argmaxj∈1,...,F Zi,j , assuming that we break tie arbitrarily but consistently. For any F ≥
j > k ≥ 1, consider the boundary function IZi,j≥Zi,k

, where Zi,j and Zi,k are rational functions
in α and w of degree at most ∆ + 3, and have strictly positive denominators. This means that the
boundary function IZi,j≥Zi,k

can also equivalently rewritten as IZ̃i,j≥0, where Z̃i,j is a polynomial

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

in α and w of degree at most 2∆ + 6. There are O(nF 2) such boundary functions, partitioning
the connected component C into at most O (((nF 2)(2∆+6)

1+dd0+d0F

)
1+dd0+d0F

)
connected components. In

each connected components, ŷi is fixed for all i ∈ {1, . . . , n}, meaning that f(x,w;α) is a constant
function.

In conclusion, we can partition the space of w and α into
O (((nF 2)(2∆+6)

1+dd0+d0F

)
1+dd0+d0F × (∆ + 1)nd0

)
connected components, in each of which the

function f(x,w;α) is a constant function.

We now ready to give a proof for Theorem 6.2.

Theorem 6.2 (restated). Let LGCN denote the loss function class defined above. Given a problem in-
stance x, the dual loss function is defined as ℓ∗x(α) := minw∈W f(x,w;α)) = minw∈W fx(α,w).
Then fx(α,w) admits piecewise constant structure. Furthermore, for any δ ∈ (0, 1), w.p. at least
1− δ over the draw of problem instances S = (x1, . . . ,xm) ∼ Dm, we have

|ES∼D[ℓα̂ERM(S)]− ES∼D[ℓα∗(S)]| = O

(√
d0(d+ F) log nF∆+ log(1/δ)

m

)
.

Proof. Given a problem instance x, from Lemma G.3, we can partition the space of w and α into
O (((nF 2)(2∆+6)

1+dd0+d0F

)
1+dd0+d0F (∆ + 1)nd0

)
connected components, over each of which the function

f(x,w;α) remains constant. Combining with Theorem 4.2, we have the final claim

G.2.2 THE REGRESSION CASE

The case is a bit more tricky, since our piece function now is not a polynomial, but instead a rational
function of α and w. Therefore, we need stronger assumption (Assumption 2) to have Theorem G.5.

Graph instance and associated representations. Consider a graph G = (V, E), where V and E
are sets of vertices and edges, respectively. Let n = |V| be the number of vertices. Each vertex
in the graph is associated with a feature vector of d-dimension, and let X ∈ Rn×d is the matrix
that contains all the vertices representation in the graph. We also have a set of indices YL ⊂ [n]
of labeled vertices, where each vertex belongs to one of C categories and L = |YL| is the number
of labeled vertices. Let y ∈ [−R,R]L be the vector representing the true labels of labeled vertices,
where the coordinate yl of Y corresponds to the label vector of vertice l ∈ YL.

Label prediction. We want to build a model for classifying the other unlabelled vertices, which
belongs to the index set YU = [n] \ YL. To do that, we train a graph convolutional network (GCN)
Kipf & Welling (2017) using semi-supervised learning. Along with the vertices representation ma-
trix X , we are also given the distance matrix δ = [δi,j](i,j)∈[n]2 encoding the correlation between
vertices in the graph. Using the distance matrix D, we then calculate the following matrices A, Ã, D̃
which serve as the inputs for the GCN. The matrix A = [Ai,j](i,j)∈[n]2 is the adjacent matrix which
is calculated using distance matrix δ and the polynomial kernel of degree ∆ and hyperparameter
α > 0

Ai,j = (δ(i, j) + α)∆.

We then let Ã = A+ In, where In ia the identity matrix, and D̃ = [D̃i,j][n]2 of which each element
is calculated as

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Network architecture. We consider a simple two-layer graph convolutional network (GCN) f
Kipf & Welling (2017), which takes the adjacent matrix A and vertices representation matrix X as
inputs and output Z = f(X,A) of the form

Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1),

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where Â = D̃−1Ã, W (0) ∈ Rd×d0 is the weight matrix of the first layer, and W (1) ∈ Rd0×1 is the
hidden-to-output weight matrix. Here, zi is the ith element of Z representing the prediction of the
model for vertice i.

Objective function and the loss function class. We consider mean squared loss function cor-
responding to hyperparameter α and networks parameter w = (w(0),w(1)) when operating the
problem instance x as follow

f(x,w;α) =
1

|YL|
∑
i∈YL

(zi − yi)
2.

We then define the loss function corresponding to hyperparameter α when operating on the problem
instance x as

ℓα(x) = min
w

f(x,w;α).

We then define the loss function class for this problem as follow

LGCN
r = {ℓα : X → [0, R2] | α ∈ A},

and our goal is to analyze the pseudo-dimension of the function class LGCN
r .

Lemma G.4. Given a problem instance x = (X, y, δ,YL) that contains the graph G, its vertices
representation X , the indices of labeled vertices YL, and the distance matrix δ, consider the function

fx(α,w) := f(x,w;α) =
1

|YL|
∑
i∈YL

(zi − yi)
2.

which measures the mean squared loss corresponding to the GCN parameter w, polynomial kernel
parameter α, and labeled vertices on problem instance x. Then we can partition the space of w and
α into O((∆+1)nd0) connected components, in each of which the function f(x,w;α) is a rational
function in α and w of degree at most 2(∆ + 3).

Proof. First, recall that Z = GCN(X,A) = ÂReLU(ÂXW (0))W (1), where Â = D̃−1/2ÃD̃−1/2

is the row-normalized adjacent matrix, and the matrices Ã = [Ãi,j] = A + In and D̃ = [D̃i,j] are
calculated as

Ai,j = (δi,j + α)∆,

D̃i,j = 0 if i ̸= j, and D̃i,i =

n∑
j=1

Ãi,j for i ∈ [n].

Here, recall that δ = [δi,j] is the distance matrix. We first proceed to analyze the output Z step by
step as follow:

• Consider the matrix T (1) = XW (0) of size n× d0. It is clear that each element of T (1) is
a polynomial of W (0) of degree at most 1.

• Consider the matrix T (2) = ÂT (1) of size n×d0. We can see that each element of matrix Â
is a rational function of α of degree at most ∆. Moreover, by definition, the the denominator
of each rational functions are strictly positive. Therefore, each element of matrix T (2) is a
rational function of W (0) and α of degree at most ∆+ 1.

• Consider the matrix T (3) = ReLU(T (2)) of size n× d0. By definition, we have

T
(3)
i,j =

{
T

(2)
i,j , if T (2)

i,j ≥ 0

0, otherwise.

This implies that there are n × d0 boundary functions of the form I
T

(2)
i,j ≥0

where T
(2)
i,j is a

rational function of W (0) and α of degree at most ∆+1 with strictly positive denominators.
From Theorem G.2, the number of connected components given by those n×d0 boundaries
are O

(
(∆ + 1)nd0

)
. In each connected components, the form of T (3) is fixed, in the sense

that each element of T (3) is a rational functions in W (0) and α of degree at most ∆+ 1.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

• Consider the matrix T (4) = T (3)W (1). In connected components defined above, it is clear
that each element of T (4) is either 0 or a rational function in W (0),W (1), and α of degree
at most ∆+ 2.

• Finally, consider Z = ÂT (4). In each connected components defined above, we can see
that each element of Z is either 0 or a rational function in W (0),W (1), and α of degree at
most ∆+ 3.

In summary, we proved that the space of w, α can be partitioned into O((∆ + 1)nd0) connected
components, over each of which the output Z = GCN(X,A) is a matrix with each element is a
rational function in W (0),W (1), and α of degree at most ∆+3. It means that in each piece, the loss
function would be a rational function of degree at most 2(∆ + 3), as claimed.

Theorem G.5. Consider the loss function class LGCN
r defined above. For a problem instance x,

the dual loss function ℓ∗x(α) := minw∈W fx(α,w), where fx(α,w) admits piecewise polynomial
structure (Lemma G.4). If we assume the piecewise polynomial structure satisfies Assumption 2,
then for any δ ∈ (0, 1), w.p. at least 1− δ over the draw of m problem instances S ∼ Dm, where D
is some problem distribution over X , we have

|ES∼D[ℓα̂ERM(S)]− ES∼D[ℓα∗(S)]| = O

(√
nd0 log∆ + d log(∆F) + log(1/δ)

m

)
.

H A DISCUSSION ON HOW TO CAPTURE THE LOCAL FLATNESS PROPERTIES
OF BLA BLA

Our definition of dual utility function u∗
x(α) = maxw∈W fx(α,w) implicitly assumes an ERM

oracle. As discussed in Appendix B, this ERM oracle assumption makes the function u∗
x(α) well-

defined and simplifies the analysis. However, one may argue that assuming the ERM oracle will
make the behavior of tuned hyperparameters much different, compared to when using common
optimization in deep learning. The difference potentially stems from the fact that the global optimum
found by ERM oracle might have a sharp curvature, compared to the local optima found by other
optimization algorithms, which tend to have flat local curvature due to their implicit biases.

In this section, we consider the following simplified scenario where the ERM oracle also finds the
near-optimum that is locally flat, and explain how our framework could potentially be useful in this
case. Instead of defining u∗

x(α) = maxw∈W fx(α,w), we define u∗
x(α) = maxw∈W f ′

x(α,w),
where the surrogate function f ′

x(α,w) is defined as follows.

Definition 14 (Surrogate function construction). Assume that fx(α,w) admits piecewise polyno-
mial structure, meaning that:

1. The domain A × W of fx is divided into N connected components by M polynomi-
als hx,1, . . . , hx,M in α,w, each of degree at most ∆b. The resulting partition Px =
{Rx,1, . . . , Rx,N} consists of connected sets Rx,i, each formed by a connected compo-
nent Cx,i and its adjacent boundaries.

2. Within each Rx,i, fx takes the form of a polynomial fx,i in α and w of degree at most ∆p.

Defining the function surrogate f ′
x(α,w) as follow:

1. The domain A × W of f ′
x(α,w) is partitioned into N connected components by M

polynomials hx,1, . . . , hx,M in α,w similar to fx. This results in a similar partition
Px = {Rx,1, . . . , Rx,N}.

2. In each region Rx,i, f ′
x is defined as

f ′
x(α,w) = f ′

x,i(α,w) = fx,i(α,w)− η∥∇2
w,wfx(α,w)∥2F ,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

for some fixed η > 0. We can see that ∥∇2
w,wfx(α,w)∥2F is a polynomial of α,w of

degree at most 2∆p. Therefore, f ′
x(α,w) is also a polynomial of degree at most 2∆p in

the region Rx,i.

From the above construction, we can see that f ′
x(α,w) also admits piecewise polynomial structure,

where the input domain partition Px is the same as fx(α,w). In each region Rx,i, the function
f ′
x(α,w) is also a polynomial in α,w of degree at most 2∆p. Therefore, our framework is still

applicable in this case. Moreover, construction above naturally introduces an extra hyperparameter
η, which is the magnitude of curvature regularization. This makes the analysis more challenging,
but for simplicity, we here assume that η is fixed and good enough for balancing the effect of regu-
larization.

We can see that by defining u∗
x(α) = maxw∈W f ′

x(α,w), we can somehow capture the generaliza-
tion behavior of tuned hyperparameter α, when the solution w∗ of maxw∈W f ′

x(α,w) is: (1) near
optimal w.r.t maxw∈W fx(α,w), and (2) locally flat.

However, the example above is an oversimplified scenario. To truly understand the behavior of data-
driven hyperparameter tuning without ERM oracle, we need a better analysis to capture the behavior
of u∗

x(α) in such a scenario. This analysis should consider the joint interaction between the model,
data, and the optimization algorithm, and remains an interesting direction for future work.

38

	Introduction
	Technical challenges and insights

	Preliminaries
	Oscillations of piecewise continuous functions
	Lg is piecewise constant
	Lg is piecewise polynomial
	Applications
	Data-driven tuning for interpolation of neural activation functions
	Data-driven hyperparameter tuning for graph polynomial kernels

	Conclusion and future work
	Additional related work
	On the challenge and novelty of techniques introduced in this paper.
	Additional background on learning theory
	Omitted proofs for Section 3
	Additional results and omitted proofs for Section 4
	Omitted proofs
	Useful tools for bounding the number of connected components

	Additional results and omitted proofs for Section 5
	A simple case: hyperparameter tuning with a single parameter
	General supporting results
	Background on differential geometry
	Supporting lemmas
	Monotonic curves
	Monotonic curve and its property
	Main proof for Theorem 5.1
	A proof that requires stronger assumption
	Relaxing Assumption 2 to Assumption 1
	Recover the guarantee under Assumption 1

	Additional details for Section 6
	Tuning the interpolation parameter for activation functions
	Regression case
	Binary classification case

	Data-driven hyperparameter tuning for graph polynomial kernels
	The classification case
	The regression case

	A discussion on how to capture the local flatness properties of bla bla

