012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

033 034

000

SAMPLE COMPLEXITY OF DATA-DRIVEN TUNING MODEL HYPERPARAMETERS IN NEURAL NETWORKS WITH PIECEWISE POLYNOMIAL DUAL FUNCTIONS

Anonymous authors

Paper under double-blind review

Abstract

Modern machine learning algorithms, especially deep learning-based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search-based approaches to automating this laborious and compute-intensive task, the fundamental learning-theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data-driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. This is unlike previous work in data-driven design, where one can typically explicitly model the algorithmic behavior as a function of the hyperparameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning-theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide the sample complexity bounds for concrete applications—tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.

- 1 INTE
- 036

1 INTRODUCTION

Developing deep neural networks that work best for a given application typically corresponds to a tedious selection of hyperparameters and architectures over extremely large search spaces. This process of adapting a deep learning algorithm or model to a new application domain takes up significant 040 engineering and research resources, and often involves unprincipled techniques with limited or no 041 theoretical guarantees on the effectiveness. While the success of pre-trained (foundation) models 042 have shown the usefulness of transferring effective parameters (weights) of learned deep models 043 across tasks (Devlin, 2018; Achiam et al., 2023), it is less clear how to leverage prior experience of 044 "good" hyperparameters to new tasks. In this work, we develop a principled framework for tuning continuous hyperparameters in deep networks by leveraging similar problem instances and obtain sample complexity guarantees for learning provably good hyperparameter values. 046

The vast majority of practitioners still use a naive "grid search" based approach which involves selecting a finite grid of (often continuous-valued) hyperparameters and selecting the one that performs
the best. A lot of recent literature has been devoted to automating and improving this hyperparameter
tuning process, prominent techniques include Bayesian optimization (Hutter et al., 2011; Bergstra
et al., 2011; Snoek et al., 2012; 2015) and random search based methods (Bergstra & Bengio, 2012;
Li et al., 2018). While these approaches work well in practice, they either lack a formal basis or
enjoy limited theoretical guarantees only under strong assumptions. For example, Bayesian optimization assumes that the performance of the deep network as a function of the hyperparameter can

be approximated as a noisy evaluation of an expensive function, typically making assumptions on
the form of this noise, and requires setting several hyperparameters and other design choices including the amount of noise, the acquisition function which determines the hyperparameter search space,
the type of kernel and its bandwidth parameter. Other techniques, including random search methods
and spectral approaches (Hazan et al., 2018) make fewer assumptions but only work for a discrete
and finite grid of hyperparameters.

060 We approach the problem of hyperparameter tuning in deep networks using the lens of data-driven 061 algorithm design, initially introduced in the context of theory of computing for algorithm configu-062 ration (Gupta & Roughgarden, 2016; Balcan, 2020). A key idea is to treat a parameterized family 063 of algorithms as the hypothesis space and input instances to the algorithm as the data, reducing 064 hyperparameter tuning to a learning problem. While the approach has been successfully applied to tune fundamental machine learning algorithms including clustering (Balcan et al., 2018b; 2019), 065 semi-supervised learning (Balcan & Sharma, 2021), low-rank approximation (Bartlett et al., 2022), 066 regularized linear regression (Balcan et al., 2022a; 2024a), decision tree learning (Balcan & Sharma, 067 2024), among others, our work is the only one to focus on analyzing deep network hyperparameter 068 tuning under this data-driven paradigm. A key technical challenge that we overcome is that varying 069 the hyperparameter even slightly can lead to a significantly different learned deep network (even for the same training set) with completely different parameters (weights) which is hard to characterize 071 directly. This is very different from a typical data-driven method where one is able to show closed 072 forms or precise structural properties for the variation of the learning algorithm's behavior as a func-073 tion of the hyperparameter (Balcan et al., 2021a). We elaborate further on our technical novelties in 074 Section 1.1. We note that our theoretical advances are potentially useful beyond deep networks, to 075 algorithms with a tunable hyperparameter and several learned parameters.

076 We instantiate our novel framework for hyperparameter tuning in deep networks in some funda-077 mental deep learning techniques with active research interest. Our first application is to tuning an 078 interpolation hyperparameter for the activation function used at each node of the neural network. 079 Different activation functions perform well on different datasets (Ramachandran et al., 2017; Liu 080 et al., 2019). We analyze the sample complexity of tuning the best combination from a pair of acti-081 vation functions by learning a real-valued hyperparameter that interpolates between them. We tune 082 the hyperparameter across multiple problem instances, an important setting for multi-task learning. 083 Our contribution is related to neural architecture search (NAS). NAS (Zoph & Le, 2017; Pham et al., 2018; Liu et al., 2018) automates the discovery and optimization of neural network architectures, 084 replacing human-led design with computational methods. Several techniques have been proposed 085 (Bergstra et al., 2013; Baker et al., 2017; White et al., 2021), but they lack principled theoretical guarantees (see additional related work in Appendix A), and multi-task learning is a known open re-087 search direction (Elsken et al., 2019). We also instantiate our framework for tuning the graph kernel 880 parameter in Graph Neural Networks (GNNs) (Kipf & Welling, 2017) designed for more effectively 089 deep learning with structured data. Hyperparameter tuning for graph kernels has been studied in the context of classical models (Balcan & Sharma, 2021; Sharma & Jones, 2023), in this work we pro-091 vide the first provable guarantees for tuning the graph hyperparameter for the more effective modern 092 approach of graph neural networks.

093

094

096

097

098

100

101

Our contributions. In this work, we provide an analysis for the learnability of parameterized algorithms involving both parameters and hyperparameters in the data-driven setting, which captures model hyperparameter tuning in deep networks with piecewise polynomial dual functions. A key ingredient of our approach is to show that the dual utility function $u_x^*(\alpha)$, measuring the performance of the deep network on a fixed dataset x and when the parameters are trained to optimality using hyperparameter α , admits a specific piecewise structure. We show that in many cases of interest, the dual utility function u_x^* is piecewise polynomial, and we bound the number of discontinuities and number of local maxima within each piece. Concretely,

102 103 104

• We introduce tools of independent interest, connecting the discontinuities and local maxima of a piecewise continuous function with its learning-theoretic complexity (Lemma 3.1, Lemma 3.2).

105

106 107 We demonstrate that when the function f_x(α, w) computed by a deep network is *piecewise constant* over at most N connected components in the space A × W of hyperparameter α and parameters w, the function u^{*}_x is also piecewise constant. This structure occurs in classification tasks

with a 0-1 loss objective. Using our proposed tools, we then establish an upper-bound for the pseudo-dimension of \mathcal{U} , which automatically translate to learning guarantee for \mathcal{U} (Theorem 4.2).

- We further prove that when the function f_x(α, w) exhibits a *piecewise polynomial* structure, under mild regularity assumptions, we can establish an upper bound for the number of discontinuities and local extrema of the dual utility function u^{*}_x. The core technical component is to use ideas from algebraic geometry to give an upper-bound for the number of local extrema of parameter w for each value of the hyperparameter α and use tools from differential geometry to identify the smooth 1-manifolds on which the local extrema (α, w) lie. We then use our proposed result (Lemma 3.2) to translate the structure of u^{*}_x to learning guarantee for U (Theorem 5.1).
- We examine data-driven algorithm configuration for deep networks, focusing on hyperparameter tuning in semi-supervised GCNs (Theorem 6.2) and activation function learning in NAS (Theorem 6.1). Analysis of their dual utility functions reveals piecewise structures that, under our framework, establish the learnability of hyperparameters for both classification and regression tasks.
- 121 122 123

108

110

111

112

113

114

115

116

117

118

119

1.1 TECHNICAL CHALLENGES AND INSIGHTS

124 To analyze the pseudo-dimension of the utility function class \mathcal{U} , by using our proposed results (The-125 orem 3.1), the key challenge is to establish the relevant piecewise structure of the dual utility function 126 class u_x^* . Different from typical problems studied in data-driven algorithm design, u_x^* in our case is 127 not an explicit function of the hyperparameter α , but defined implicitly via an optimization problem over the network weights w, i.e. $u_x^*(\alpha) = \max_{w \in \mathcal{W}} f_x(\alpha, w)$. In the case where $f_x(\alpha, w)$ is piece-128 wise constant, we can partition the hyperparameter space \mathcal{A} into multiple segments, over which the 129 set of connected components for any fixed value of the hyperparameter remains unchanged. Thus, 130 the behavior on a fixed instance as a function of the hyperparameter α is also piecewise constant and 131 pseudo-dimension bounds follow. It is worth noting that u_x^* cannot be viewed as a simple projection 132 of f_x onto the hyperparameter space \mathcal{A} , making it challenging to determine the relevant structural 133 properties of $u_{\boldsymbol{x}}^*$. 134

For the case $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ is piecewise polynomial, the structure is significantly more complicated 135 and we do not obtain a clean functional form for the dual utility function class $u^*_{\boldsymbol{x}}$. We first 136 simplify the problem to focus on individual pieces, and analyze the behavior of $u_{x,i}^*(\alpha) =$ 137 $\sup_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in R_{\boldsymbol{x},i}} f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w})$ in the region R_i where $f_{\boldsymbol{x}}(\alpha,\boldsymbol{w}) = f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w})$ is a polynomial. We 138 then employ ideas from algebraic geometry to give an upper-bound for the number of local extrema 139 w for each α and use tools from differential geometry to identify the *smooth 1-manifolds* on which 140 the local extrema (α, w) lie. We then decompose such manifolds into *monotonic-curves*, which have 141 the property that they intersect at most once with any fixed-hyperparameter hyperplane $\alpha = \alpha_0$. Us-142 ing these observations, we can finally partition \mathcal{A} into intervals, over which $u^*_{x,i}$ can be expressed as 143 a maximum of multiple continuous functions for each of which we have upper bounds on the num-144 ber of local extrema. Putting together, we are able to leverage a result from Balcan et al. (2021a) to 145 bound the pseudo-dimension. 146

147 **Paper positioning.** Our setting requires technical novelty compared to prior work in statistical 148 data-driven algorithm hyperparameter tuning (Balcan et al., 2017; 2020a;b; 2021b;a; 2022a; Bartlett 149 et al., 2022; Balcan & Sharma, 2024). As far as we concern, in most prior research (Balcan et al., 150 2017; 2020a; 2021a; 2020b; 2021b; Bartlett et al., 2022), the hyperparameter tuning process does not involve the parameter w meaning that given any fixed hyperparameter α , the behavior of the 151 algorithm is determined. In some other cases that involves parameter w, we can have a precise ana-152 lytical characterization of how the optimal parameter behaves for any fixed hyperparameter (Balcan 153 et al., 2022a), or at least a uniform approximate characterization (Balcan et al., 2024a). However, our 154 setting does not belong to those cases, and requires a novel proof approach to handle the challenging 155 case of hyperparameter tuning of neural networks (see Appendix B for a detailed discussion).

156 157

2 PRELIMINARIES

158 159

160 Setup. We introduce a novel data-driven hyperparameter tuning framework for algorithms with 161 trainable parameters. Our objective is to optimize a hyperparameter $\alpha \in \mathcal{A} = [\alpha_{\min}, \alpha_{\max}] \subset \mathbb{R}$ for an algorithm that also involves model parameters $w \in [w_{\min}, w_{\max}]^d \subset \mathbb{R}^d$. For a given problem instance $x \in \mathcal{X}$, we measure the model's performance as $f(x, w; \alpha)$, where w represents the model parameters and α the hyperparameter. We then define a utility function $u_{\alpha}(x)$ to quantify the algorithm's performance with hyperparameter α on problem instance $x: u_{\alpha}(x) = \max_{w \in \mathcal{W}} f(x, w; \alpha)$. This formulation can be interpreted as follows: for a given hyperparameter α and problem instance x, we determine the optimal model parameters w that maximize performance.

In the data-driven framework, we assume an underlying, application-specific problem distribution \mathcal{D} over \mathcal{X} . The best hyperparameter α^* for \mathcal{D} can be defined as $\alpha^* \in \arg \max_{\alpha} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[u_{\alpha}(\boldsymbol{x})]$. However, since the problem distribution \mathcal{D} is unknown, we instead use a set S of N problem instances at hand, $S = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$ drawn from \mathcal{D} . The hyperparameter $\hat{\alpha}_{\text{ERM}}$ is then chosen to maximize the empirical utility: $\hat{\alpha}_{\text{ERM}} \in \arg \max_{\alpha} \frac{1}{N} \sum_{i=1}^{N} u_{\alpha}(\boldsymbol{x}_i)$.

173 Main question. Our goal is to answer the learning-theoretic question: How good is the tuned 174 hyperparameter compared to the best hyperparameter, for algorithms with trainable parame-175 ters? Specifically, we aim to provide a high-probability guarantee for the difference between 176 the performance of $\hat{\alpha}_{\text{ERM}}$ and α^* , expressed as: $|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\hat{\alpha}_{\text{ERM}}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\alpha^*}(\boldsymbol{x})]|$. Let $\mathcal{U} = \{u_{\alpha} : \mathbb{R} \to [0, H] \mid \alpha \in \mathcal{A}\}$ be the utility function class. Classical theory suggests that the 177 learning-theoretic question at hand is equivalent to analyzing the pseudo-dimension (Pollard, 2012) 178 or Rademacher complexity (Wainwright, 2019) (see Appendix C for further background) of the 179 function class \mathcal{U} . However, this analysis poses significant challenges due to two primary factors: 180 (1) the intricate structure of the function class itself, where a small change in α can lead to large 181 changes in the utility function u_{α} , and (2) u_{α} is computed by solving an optimization problem 182 over the trainable parameters, and its explicit structure is unknown and hard to characterize. These 183 challenges make analyzing the learning-theoretic complexity of \mathcal{U} particularly challenging. 184

In this work, we demonstrate that when the function $f(x, w; \alpha)$ exhibits a certain degree of structure, we can establish an upper bound for the learning-theoretic complexity of the utility function class \mathcal{U} . Specifically, we examine two scenarios: (1) where $f(x, w; \alpha)$ possesses a piecewise constant structure (Section 4), and (2) where it exhibits a piecewise polynomial (or rational) structure (Section 5). These piecewise structures hold in hyperparameter tuning for popular deep learning algorithms (Section 6).

Remark 1. Note that our bounds on the learning-theoretic complexity of the dual utility function class implies bounded sample complexity for ERM, but the algorithmic question of actually implementing this ERM efficiently is left open for future research.

194 195 195 196 197 Methodology. The general approach to analyzing the complexity of the utility function class \mathcal{U} is 196 via analyzing its dual functions. Specifically, for each problem instance x, we define the dual utility function $u_x^* : \mathcal{A} \to [0, H]$ as follows:

$$u_{\boldsymbol{x}}^{*}(\alpha) := u_{\alpha}(\boldsymbol{x}) = \max_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{x}, \boldsymbol{w}; \alpha) = \max_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}).$$

199 Our key technical contribution is to demonstrate that when $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) := f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$ exhibits a 200 piecewise structure, $u_{\boldsymbol{x}}^*(\alpha)$ also admits favorable structural properties, which depend on the specific 201 structure of $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$. We present some useful results that allow us to derive the learning-theoretic 202 complexity of \mathcal{U} from the structural properties of $u_{\boldsymbol{x}}^*(\alpha)$ (Section 3).

203

Oscillations and its connection with pseudo-dimension. When the function class $\mathcal{U} = \{u_{\rho} : \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}\}$ is parameterized by a real-valued index ρ , Balcan et al. (2021a) propose a convenient way of bounding the pseudo-dimension of \mathcal{H} , via bounding the *oscillations* of the dual function $u_{\boldsymbol{x}}^*(\rho) := u_{\rho}(\boldsymbol{x})$ corresponding to any problem instance \boldsymbol{x} . We recall the notions of oscillation and its connection with the pseudo-dimension of the dual function class.

Definition 1 (Oscillations, Balcan et al. 2021a). A function $h : \mathbb{R} \to \mathbb{R}$ has at most *B* oscillations if for every $z \in \mathbb{R}$, the function $\rho \mapsto \mathbb{I}_{\{h(\rho) \ge z\}}$ is piecewise constant with at most *B* discontinuities.

An illustration of the notion of oscillations can be found in Figure 1. Using the idea of oscillations, one can analyze the pseudo-dimension of parameterized function classes by alternatively analyzing the oscillations of their dual functions, formalized as follows.

Theorem 2.1 (Balcan et al. 2021a). Let $\mathcal{U} = \{u_{\rho} : \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}\}$, of which each dual function $u_{x}^{*}(\rho)$ has at most *B* oscillations. Then $\operatorname{Pdim}(\mathcal{U}) = \mathcal{O}(\ln B)$.

223

224

225

226 227 228

229 230

231

232

235

253

254

260 261

Figure 1: The oscillation of a function $h : \mathbb{R} \to \mathbb{R}$ is defined as the maximum number of discontinuities in the function $\mathbb{I}_{\{h(\rho) \ge z\}}$, as the threshold z varies. When $z = z_1$, the function $\mathbb{I}_{\{h(\rho) \ge z\}}$ exhibits the highest number of discontinuities, which is four. Therefore, h has 4 oscillations.

3 OSCILLATIONS OF PIECEWISE CONTINUOUS FUNCTIONS

We first establish connection between the number of oscillations in a piecewise continuous function and its local extrema and discontinuities. It serves as a general tool to upper-bound the pseudodimension of function classes via analyzing the piecewise continuous structure their dual functions.

Lemma 3.1. Let $h : \mathbb{R} \to \mathbb{R}$ be a piecewise continuous function which has at most B_1 discontinuity points, and has at most B_2 local maxima. Then h has at most $\mathcal{O}(B_1 + B_2)$ oscillations.

Proof Sketch. The proof can be found in Appendix D. The idea is to bound the number of solutions of $h(\rho) = 0$, which determines the number of oscillations for h. We show that in each interval where h is continuous, we can bound the number of solutions of $h(\rho) = 0$ using the number of local maxima of h. Aggregating the number of solutions across all continuous intervals of h yields the desired result.

From Lemma 3.1 and Theorem 2.1, we have the following result which allows us to bound the pseudo-dimension of a function class \mathcal{H} via bounding the number of discontinuity and local extrema points of any function in its dual function class \mathcal{H}^* .

Corollary 3.2. Consider a real-valued function class $\mathcal{U} = \{u_{\rho} : \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}\}$, of which each dual function $u_{\boldsymbol{x}}^*(\rho)$ is piecewise continuous, with at most B_1 discontinuities and B_2 local maxima. Then $\text{Pdim}(\mathcal{H}) = \mathcal{O}(\ln(B_1 + B_2))$.

We now consider piecewise constant functions with finite discontinuities. Despite infinite local extrema making Lemma 3.1 inapplicable, the function's special structure allows bounding oscillations via its number of discontinuities.

Lemma 3.3. Consider a real-valued function class $\mathcal{U} = \{u_{\rho} : \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}\}$, of which each dual function $u_{\boldsymbol{x}}^*(\rho)$ is piecewise constant with at most *B* discontinuities. Then $\operatorname{Pdim}(\mathcal{U}) = \mathcal{O}(\ln B)$.

4 $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ is piecewise constant

We first examine the case where $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ exhibits a *piecewise constant* structure with N pieces. Specifically, we assume there exists a partition $\mathcal{P}_{\boldsymbol{x}} = \{R_{\boldsymbol{x},1}, \ldots, R_{\boldsymbol{x},N}\}$ of the domain $\mathcal{A} \times \mathcal{W}$ of $f_{\boldsymbol{x}}$, where each $R_{\boldsymbol{x},i}$ in $\mathcal{P}_{\boldsymbol{x}}$ is a connected set. Over the region $R_{\boldsymbol{x},i}$, the value of $f_{\boldsymbol{x}}$ is $f_{\boldsymbol{x},i}$ which is a constant value c_i for any $(\alpha, \boldsymbol{w}) \in R_{\boldsymbol{x},i}$. Consequently, we can reformulate $u_{\boldsymbol{x}}^*(\alpha)$ as follows:

$$u_{\boldsymbol{x}}^{*}(\alpha) = \sup_{\boldsymbol{w}\in\mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) = \max_{R_{\boldsymbol{x},i}} \sup_{\boldsymbol{w}:(\alpha, \boldsymbol{w})\in R_{\boldsymbol{x},i}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) = \max_{R_{\boldsymbol{x},i}:\exists \boldsymbol{w},(\alpha, \boldsymbol{w})\in R_{\boldsymbol{x},i}} c_{i}$$

This leads to Lemma 4.1, which asserts that $u_{\boldsymbol{x}}^*(\alpha)$ is a piecewise constant function and provides an upper bound for the number of discontinuities in $u_{\boldsymbol{x}}^*(\alpha)$.

Lemma 4.1. Assume that the piece functions $f_i(\alpha, w)$ is constant for all $i \in [N]$. Then $u_x^*(\alpha)$ has $\mathcal{O}(N)$ discontinuity points, partitioning \mathcal{A} into at most $\mathcal{O}(N)$ regions. In each region, $u_x^*(\alpha)$ is a constant function.

The proof idea is demonstrated in Figure 2, and the detailed proof can be found in Appendix D. By combining Lemma 4.1 and Lemma 3.3, we have the following result, which establishes learning guarantees for the utility function class \mathcal{U} when $f_x(\alpha, w)$ admits piecewise constant structure.

Figure 2: A demonstration of the proof idea for Lemma 4.1: We begin by partitioning the domain \mathcal{A} of the dual utility function $u_{\boldsymbol{x}}^*(\alpha)$ into intervals. This partitioning is formed using two key points for each connected component R in the partition $\mathcal{P}_{\boldsymbol{x}}$ of the domain $\mathcal{A} \times \mathcal{W}$ of $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$: $\alpha_{R, \inf} = \inf_{\alpha} \{ \alpha : \exists \boldsymbol{w}, (\alpha, \boldsymbol{w}) \in R \}$ and $\alpha_{R, \sup} = \sup_{\alpha} \{ \alpha : \exists \boldsymbol{w}, (\alpha, \boldsymbol{w}) \in R \}$. Given that \mathcal{P} contains N elements, the number of such points is $\mathcal{O}(N)$. We demonstrate that the dual utility functions $u_{\boldsymbol{x}}^*$ remain constant over each interval defined by these points.

Theorem 4.2. Consider the utility function class $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}$. Assume that $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ admits piecewise constant structure with N pieces over $\mathcal{A} \times \mathcal{W}$. Then for any distribution \mathcal{D} over \mathcal{X} , and any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of $S \sim \mathcal{D}$, we have

$$|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\hat{\alpha}_{\textit{ERM}}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\alpha^*}(\boldsymbol{x})]| = \mathcal{O}\left(\sqrt{\frac{\log(N/m)}{m}}\right)$$

Remark 2. The partition of $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ into connected components is defined by S boundary functions $h_i(\alpha, \boldsymbol{w})$, which are typically polynomials of degree Δ in d + 1 variables. For these cases, we can bound the number of connected components in $\mathbb{R}^d - \bigcup_{i=1}^S Z(h_i)$ using only Δ and d, which is key for applying Theorem 4.2. Further details are in Appendix E.2.

$f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ is piecewise polynomial

In this section, we examine the case where f_x(α, w) exhibits a piecewise polynomial structure. The domain A × W of f_x is divided into N connected components by M polynomials h_{x,1},..., h_{x,M} in α, w, each of degree at most Δ_b. The resulting partition P_x = {R_{x,1},..., R_{x,N}} consists of connected sets R_{x,i}, each formed by a connected component C_{x,i} and its adjacent boundaries. Within each R_{x,i}, f_x takes the form of a polynomial f_{x,i} in α and w of degree at most Δ_p. The dual utility function u^{*}_x(α) is defined as:

$$u_{\boldsymbol{x}}^*(\alpha) = \sup_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) = \max_{i \in [N]} \sup_{\boldsymbol{w}:(\alpha, \boldsymbol{w}) \in R_i} f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) = \max_{i \in [N]} u_{\boldsymbol{x},i}^*(\alpha),$$

where $u_{\boldsymbol{x},i}^*(\alpha) = \sup_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in R_{\boldsymbol{x},i}} f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w})$. We begin with the following regularity assumption on the piece and boundary functions $f_{\boldsymbol{x},j}$ and $h_{\boldsymbol{x},i}$.

Assumption 1. Assume that for any function $u_{\boldsymbol{x}}^*(\alpha)$, its pieces functions $f_{\boldsymbol{x}}^*$ and boundaries $h_{\boldsymbol{x},1},\ldots,h_{\boldsymbol{x},M}$: for any piece function $f_{\boldsymbol{x}},i$ and $S \leq d+1$ boundaries h_1,\ldots,h_S chosen from $\{h_{\boldsymbol{x},1},\ldots,h_{\boldsymbol{x},M}\}$, we have 0 is a regular value of $\overline{k}(\alpha,\boldsymbol{w},\boldsymbol{\lambda})$. Here $k = (k_1,\ldots,k_{d+S})$, $\overline{k} = (k_1,\ldots,k_{d+S},\det(J_{k,(\boldsymbol{w},\boldsymbol{\lambda})})), J_{k,(\boldsymbol{w},\boldsymbol{\lambda})}$ is the Jacobian of k w.r.t. \boldsymbol{w} and $\boldsymbol{\lambda}$, and k_1,\ldots,k_{d+S} defined as

$$\begin{cases} k_i(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = h_i(\alpha, \boldsymbol{w}), & i = 1, \dots, S, \\ k_{S+j}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = \frac{\partial f_{\boldsymbol{x},i}}{\partial w_j} + \sum_{i=1}^s \lambda_i \frac{\partial h_i}{\partial w_j}, & j = 1, \dots, d. \end{cases}$$

Intuitively, Assumption 1 states that the preimage $\overline{k}^{-1}(\mathbf{0})$, consistently exhibits regular structure (smooth manifolds). This assumption helps us in identifying potential locations of w^* that maximize $f_{x,i}(\alpha)$ for each fixed α , ensuring these locations have a regular structure. We note that this assumption is both common in constrained optimization theory and relatively mild. For a smooth

336

337

338

339

340

341

342

343

Figure 3: A simplified illustration for the proof idea of Theorem 5.1 where $w \in \mathbb{R}$. Here, our goal is to analyze the number of discontinuities and local maxima of $u_{x,i}^*(\alpha)$. The idea is to partition the hyperparameter space \mathcal{A} into intervals such that over each interval, the function $u_{x,i}^*(\alpha)$ is the pointwise maximum of $f_{x,i}(\alpha, w)$ along some fixed set of "monotonic curves" \mathcal{C} (curves that intersect $\alpha = \alpha_0$ at most once for any α_0). $u_{x,i}^*(\alpha)$ is continuous over such interval; this implies that the interval end points contain all discontinuities of $u_{x,i}^*(\alpha)$. In this example, over the interval (α_i, α_{i+1}) , we have $u_{x,i}^*(\alpha) = \max_{C_i} \{f_{x,i}(\alpha, w) : (\alpha, w) \in C_i\}$. Then, we can show that over such an interval, any local maximum of $u^{x,i}(\alpha)$ is a local extremum of $f_{x,i}(\alpha, w)$ along a monotonic curve $C \in \mathcal{C}$. Finally, we bound the number of points used for partitioning and local extrema using tools from algebraic and differential geometry.

344 345 346

347

348

349

mapping k, Sard's theorem (Theorem F.12) asserts that the set of values that are not regular values of \overline{k} has Lebesgue measure zero. This theoretical basis further suggests that the Assumption 1 is reasonable.

Under Assumption 1, we have the following result, which gives us learning-theoretic guarantees for tuning the hyperparameter α for the utility function class U.

Theorem 5.1. Consider the utility function class $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}$. Assume that $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ admits piecewise polynomial structure with the piece functions $f_{\boldsymbol{x},i}$ and boundaries $h_{\boldsymbol{x},i}$ satisfies Assumption 1. Then for any distribution \mathcal{D} over \mathcal{X} , for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of $S \sim \mathcal{D}^m$, we have

356 357

359

360

361 362

364 365

366

367

368 369

370

$$|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\hat{\alpha}_{ERM}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\alpha^*}(\boldsymbol{x})]| = \mathcal{O}\left(\sqrt{\frac{\log N + d\log(\Delta M) + \log(1/\delta)}{m}}\right)$$

Here, M and N are the number of boundaries and connected sets, $\Delta = \max{\{\delta_p, \delta_d\}}$ is the maximum degree of piece $f_{x,i}$ and boundaries $h_{x,i}$.

Proof Sketch. We defer the detailed proof to Appendix F.7. The proof is fairly involved and employs many novel ideas, we break it down into the following steps:

- 1. We first demonstrate that if the piece functions $f_{x,i}$ and boundaries $h_{x,i}$ satisfy a stronger assumption (Assumption 2), we can bound the pseudo-dimension of \mathcal{U} (Theorem F.19). The details of this step are presented in Appendix F.7.1, with a simplified illustration of the proof idea in Figure 3. The proof follows these steps:
 - (a) Using Lemma 3.2, we show that it suffices to bound the number of discontinuities and local maxima of u_{x}^* , which is equivalent to bounding those of $u_{x,i}^*$.
- (b) We first demonstrate that the domain \mathcal{A} can be partitioned into $\mathcal{O}\left(\left(2\Delta\right)^{d+1}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ intervals. For each interval I_t , there exists a set of subsets of boundaries $\mathbf{S}_{x,t}^1 \subset \mathbf{H}_{x,i}$ such that for any set of boundaries $\mathcal{S} \in \mathbf{S}_{x,t}^1$, the intersection of boundaries in \mathcal{S} contains a feasible point (α, w) for any α in that interval. The key idea of this step is using the α extreme points (Definition 5) of connected components of such intersection, which can be upper-bounded using Lemma F.10.

(c) We refine the partition of \mathcal{A} into $\mathcal{O}\left((2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ intervals. For each interval I_t , 378 379 380 there exists a set of subsets of boundaries $\mathbf{S}_{x,t}^2 \subset \mathbf{H}_{x,i}$ such that for any set of boundaries 381 $S \in \mathbf{S}^2_{\boldsymbol{x},t}$ and any α in such intervals, there exist \boldsymbol{w} and $\boldsymbol{\lambda}$ satisfying Lagrangian stationarity: 382 $\begin{cases} h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha}) = 0, j = 1, \dots, S\\ \frac{\partial f(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}} + \sum_{j=1}^{S} \lambda_{j} \frac{\partial h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}}, i = 1, \dots, d. \end{cases}$ 384 This defines a smooth 1-manifold \mathcal{M}^{S} in $\mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{S}$ from Assumption 2. The key idea 386 of this step is using Theorem F.7, and α -extreme points of connected components of $\mathcal{M}^{\mathcal{S}}$, 387 which again can be upper-bounded using Lemma F.10. (d) We further refine the partition of \mathcal{A} into $\mathcal{O}\left(M(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ intervals. For each interval L there exists 388 interval I_t , there exists a set of subsets of boundaries $\mathbf{S}^3_{x,t} \subset \mathbf{H}_{x,i}$ such that for any α 391 in that interval and any manifold $\mathcal{M}^{\mathcal{S}}$, there exists a *feasible* point $(\alpha, \boldsymbol{w}, \boldsymbol{\lambda})$ in $\mathcal{M}^{\mathcal{S}}$, i.e., 392 $(\alpha, w) \in \overline{R}_{x,i}$. The key idea of this step is upper-bounding the number of intersections 393 between $\mathcal{M}^{\mathcal{S}}$ with any other boundary $h' \notin \mathcal{S}$. (e) We show that each manifold $\mathcal{M}^{\mathcal{S}}$ can be partitioned into *monotonic curves* (Definition 12). We then partition \mathcal{A} one final time into $\mathcal{O}\left(\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1} + M(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ 396 397 intervals. Over each interval I_t , the function $u_{x,i}^*$ can be represented as the value of $f_{x,i}$ along a fixed set of monotonic curves (see Figure 3). Hence, $u_{x,i}^*$ is continuous over I_t . 399 Therefore, the points partitioning \mathcal{A} contain the discontinuities of $u_{x,i}^*$. The key idea of this 400 step is using our proposed definition and properties of monotonic curves (Proposition F.18), 401 and Bezout's theorem. 402 (f) We further demonstrate that in each interval I_t , any local maximum of $u_{x,i}^*(\alpha)$ is a local 403 maximum of $f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w})$ along a monotonic curve (Lemma F.14)). Again, we can control 404 the number of such points using Bezout's theorem. 405 (g) Finally, we put together all the potential discontinuities and local extrema of $u_{x,i}^*$. 406 Combining with Lemma 3.2 we have the upper-bound for $Pdim(\mathcal{U})$ (Theorem F.20). 407 2. We then demonstrate that for any function class \mathcal{U} whose dual functions u_x^* have piece functions 408 and boundaries satisfying Assumption 1, we can construct a new function class \mathcal{V} . The dual 409 functions v_x^* of \mathcal{V} have piece functions and boundaries that satisfy Assumption 2. Moreover, we 410 show that $||u_x^* - v_x^*||_{\infty}$ can be made arbitrarily small. The details of this construction and proof 411 are presented in Appendix F.7.2. 412 3. Finally, using the results from Step (1), we establish an upper bound on the pseudo-dimension 413 for the function class \mathcal{V} described in Step (2). Leveraging the approximation guarantee from 414 Step (2), we can then use the results for V to determine the learning-theoretic complexity of \mathcal{U} 415 by applying Lemma C.3 and Lemma C.4. Standard learning theory literature then allows us to 416 translate the learning-theoretic complexity of $\mathcal U$ into its learning guarantee. This final step is 417 detailed in Appendix F.7.3. 418 419 APPLICATIONS 6 420

421 We demonstrate the application of our results to two specific hyperparameter tuning problems in 422 deep learning. We note that the problem might be presented as analyzing a loss function class 423 $\mathcal{L} = \{\ell_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}$ instead of utility function class $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}$, 424 but our results still hold, just by defining $u_{\alpha}(x) = H - \ell_{\alpha}(x)$. First, we establish bounds on 425 the complexity of tuning the linear interpolation hyperparameter for activation functions, which 426 is motivated by DARTS (Liu et al., 2019). Additionally, we explore the tuning of graph kernel 427 parameters in Graph Neural Networks (GNNs).

428 429

430

6.1 DATA-DRIVEN TUNING FOR INTERPOLATION OF NEURAL ACTIVATION FUNCTIONS

Problem settings. We consider a feed-forward neural network f with L layers. Let W_i denote the number of parameters in the i^{th} layer, and $W = \sum_{i=1}^{L} W_i$ the total number of parameters. Besides,

we denote k_i the number of computational nodes in layer *i*, and let $k = \sum_{i=1}^{L} k_i$. At each node, we choose between two piecewise polynomial activation functions, o_1 and o_2 . For an activation function o(z), we call z_0 a *breakpoint* where *o* changes its behavior. For example, 0 is a breakpoint of the ReLU activation function. Liu et al. (2019) proposed a simple method for selecting activation functions: during training, they define a general activation function σ as a weighted combination of o_1 and o_2 . While their framework is more general, allowing for multiple activation functions and layerspecific activation, we analyze a simplified version. The combined activation function is given by:

$$\sigma(x) = \zeta o_1(x) + (1 - \zeta)o_2(x)$$

441 where $\zeta \in [0, 1]$ is the interpolation hyperparameter. This framework can express functions like the 442 parametric ReLU, $\sigma(z) = \max\{0, z\} + \alpha \min\{0, z\}$, which empirically outperforms the regular 443 ReLU (i.e., $\alpha = 0$) (He et al., 2015).

445 **Parametric regression.** In parametric regression, the final layer output is $g(\alpha, \boldsymbol{w}, \boldsymbol{x}) = \hat{y} \in \mathbb{R}^D$, 446 where $\boldsymbol{w} \in \mathcal{W} \subset \mathbb{R}^W$ is the parameter vector and α is the architecture hyperparameter. The 447 validation loss for a single example (x, y) is $||g(\alpha, \boldsymbol{w}, \boldsymbol{x}) - y||^2$, and for T examples, we define

$$\ell_{\alpha}((X,Y)) = \min_{\boldsymbol{w}\in\mathcal{W}} \frac{1}{T} \sum_{(x,y)\in(X,Y)} \|g(\alpha,\boldsymbol{w},x) - y\|^2 = \min_{\boldsymbol{w}\in\mathcal{W}} f((X,Y),\boldsymbol{w};\alpha)$$

With \mathcal{X} as the space of T-example validation sets, we define the loss function class $\mathcal{L}^{AF} = \{\ell_{\alpha} : \mathcal{X} \to \mathbb{R} \mid \alpha \in [\alpha_{\min}, \alpha_{\max}]\}$. We aim to provide a learning-theoretic guarantee for \mathcal{L}^{AF} .

Theorem 6.1. Let \mathcal{L}^{AF} denote loss function class defined above, with activation functions o_1, o_2 having maximum degree Δ and maximum breakpoints p. Given a problem instance $\mathbf{x} = (X, Y)$, the dual loss function is defined as $\ell^*_{\mathbf{x}}(\alpha) := \min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{x}, \mathbf{w}; \alpha) = \min_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{x}}(\alpha, \mathbf{w})$. Then, $f_{\mathbf{x}}(\alpha, \mathbf{w})$ admits piecewise polynomial structure with bounded pieces and boundaries. Further, if the piecewise structure of $f_{\mathbf{x}}(\alpha, \mathbf{w})$ satisfies Assumption 1, then for any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of problem instances $\mathbf{x} \sim \mathcal{D}^m$, where \mathcal{D} is some distribution over \mathcal{X} , we have

$$|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[\ell_{\hat{\alpha}_{ERM}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[\ell_{\alpha^*}(\boldsymbol{x})]| = \mathcal{O}\left(\sqrt{\frac{L^2W\log\Delta + LW\log(Tpk) + \log(1/\delta)}{m}}\right)$$

A full proof is located in Appendix G. Given a problem instance (X, Y), the key idea is to establish the piecewise polynomial structure for the function $f_{(X,Y)}(\alpha, w)$ as a function of both the parameters w and the architecture hyperparameter α , and then apply our main result Theorem 5.1. We establish this structure by extending the inductive argument due to Bartlett et al. (1998) which gives the piecewise polynomial structure of the neural network output as a function of the parameters w (i.e. when there are no hyperparameters) on any fixed collection of input examples. We also investigate the case where the network is used for classification task (see Appendix G.1.2).

471 6.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

We now demonstrate the applicability of our proposed results in a simple scenario: tuning the hyperparameter of a graph kernel. Here, we consider the classification case and defer the regression case to Appendix.

476

439 440

444

452

453

454

455

456

457

458

464

465

466

467

468

469

470

477 Partially labeled graph instance. Consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} and \mathcal{E} are sets of vertices **478** and edges, respectively. Let $n = |\mathcal{V}|$ be the number of vertices. Each vertex in the graph is associated **479** with a *d*-dimensional feature vector, and let $X \in \mathbb{R}^{n \times d}$ denote the matrix that contains all the **480** vertices (as feature vectors) in the graph. We also have a set of indices $\mathcal{Y}_L \subset [n]$ of labeled vertices, **481** where each vertex belongs to one of *C* categories and $L = |\mathcal{Y}_L|$ is the number of labeled vertices. **482** Let $y \in [F]^L$ be the vector representing the true labels of labeled vertices, where the coordinate y_l **483** of *y* corresponds to the label of vertex $l \in \mathcal{Y}_L$.

We want to build a model for classifying the remaining (unlabeled) vertices, which correspond to $\mathcal{Y}_U = [n] \setminus \mathcal{Y}_L$. A popular and effective approach for this is to train a graph convolutional network (GCN) Kipf & Welling (2017). Along with the vertex matrix X, we are also given the distance 486 487 488 matrix $\boldsymbol{\delta} = [\delta_{i,j}]_{(i,j) \in [n]^2}$ encoding the correlation between vertices in the graph. The adjacency matrix A is given by a polynomial kernel of degree Δ and hyperparameter $\alpha > 0$

$$A_{i,j} = (\delta(i,j) + \alpha)^{\Delta}.$$

490 Let $\tilde{A} = A + I_n$, where I_n is the identity matrix, and $\tilde{D} = [\tilde{D}_{i,j}]_{[n]^2}$ where $\tilde{D}_{i,j} = 0$ if $i \neq j$, and $\tilde{D}_{i,i} = \sum_{j=1}^n \tilde{A}_{i,j}$ for $i \in [n]$. We then denote a problem instance $x = (X, y, \delta, \mathcal{Y}_L)$ 492 and call \mathcal{X} the set of all problem instances.

494 **Network architecture.** We consider a simple two-layer GCN f (Kipf & Welling, 2017), which 495 takes the adjacency matrix A and vertex matrix X as inputs and outputs Z = f(X, A) of the form 496

$$Z = \hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)})W^{(1)},$$

498 where $\hat{A} = \tilde{D}^{-1}\tilde{A}$ is the row-normalized adjacency matrix, $W^{(0)} \in \mathbb{R}^{d \times d_0}$ is the weight matrix of 499 the first layer, and $W^{(1)} \in \mathbb{R}^{d_0 \times F}$ is the hidden-to-output weight matrix. Here, z_i is the i^{th} -row 500 of Z representing the score prediction of the model. The prediction \hat{y}_i for vertex $i \in \mathcal{Y}_U$ is then 501 computed from Z as $\hat{y}_i = \max z_i$ which is the maximum coordinate of vector z_i .

503 Objective function and the loss function class. We consider the 0-1 loss function corresponding 504 to hyperparameter α and network parameters $\boldsymbol{w} = (\boldsymbol{w}^{(0)}, \boldsymbol{w}^{(1)})$ for given problem instance \boldsymbol{x} , 505 $f(\boldsymbol{x}, \boldsymbol{w}; \alpha) = \frac{1}{|\mathcal{Y}_L|} \sum_{i \in \mathcal{Y}_L} \mathbb{I}_{\{\hat{y}_i \neq y_i\}}$. The dual loss function corresponding to hyperparameter α for 506 instance \boldsymbol{x} is given as $\ell_{\alpha}(\boldsymbol{x}) = \max_{\boldsymbol{w}} f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$, and the corresponding loss function class is 507 $\mathcal{L}^{\text{GCN}} = \{l_{\alpha} : \mathcal{X} \to [0, 1] \mid \alpha \in \mathcal{A}\}.$

To analyze the learning guarantee of \mathcal{L}^{GCN} , we first show that any dual loss function $\ell_x^*(\alpha) := \ell_\alpha(x) = \min_w f_x(\alpha, w)$, $f_x(\alpha, w)$ has a piecewise constant structure, where: The pieces are bounded by rational functions of α and w with bounded degree and positive denominators. We bound the number of connected components created by these functions and apply Theorem 4.2 to derive our result. The full proof is in Appendix G.2.1.

Theorem 6.2. Let \mathcal{L}^{GCN} denote the loss function class defined above. Given a problem instance \mathbf{x} , the dual loss function is defined as $\ell_{\mathbf{x}}^*(\alpha) := \min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{x}, \mathbf{w}; \alpha)) = \min_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{x}}(\alpha, \mathbf{w})$. Then $f_{\mathbf{x}}(\alpha, \mathbf{w})$ admits piecewise constant structure. Furthermore, for any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of problem instances $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_m) \sim \mathcal{D}^m$, where \mathcal{D} is some problem distribution over \mathcal{X} , we have

518 519 520

521

489

497

502

$$|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[\ell_{\hat{\alpha}_{ERM}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[\ell_{\alpha^*}(\boldsymbol{x})]| = \mathcal{O}\left(\sqrt{\frac{d_0(d+F)\log nF\Delta + \log(1/\delta)}{m}}\right)$$

Our results also bound the sample complexity for learning the GCN graph kernel hyperparameter α when minimizing squared loss in regression (Theorem G.5, Appendix G.2.2).

7 CONCLUSION AND FUTURE WORK

In this work, we establish the first principled approach to hyperparameter tuning in deep networks
 with provable guarantees, by employing the lens of data-driven algorithm design. We integrate sub tle concepts from algebraic and differential geometry with our proposed ideas, and establish the
 learning-theoretic complexity of hyperparameter tuning when the neural network loss is a piecewise
 constant or piecewise polynomial function of the parameters and the hyperparameter. We demon strate applications of our results in multiple contexts, including tuning graph kernels for graph con volutional networks and neural architecture search.

This work opens up several directions for future research. While we resolve several technical hurdles to handle the piecewise polynomial case, it would be useful to also study cases where the piecewise functions or boundaries involve logarithmic, exponential, or more generally, Pfaffian functions (Khovanski, 1991). We study the case of tuning a single hyperparameter, a natural next question is to
determine if our results can be extended to tuning multiple hyperparameters simultaneously. Finally,
while our work primarily focuses on providing learning-theoretic sample complexity guarantees,
developing computationally efficient methods for hyperparameter tuning in data-driven settings is another avenue for future research.

540 REFERENCES

547

556

558

566

572

579

580 581

582

583

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. *arXiv preprint arXiv:2303.08774*, 2023.

- ⁵⁴⁵ Nir Ailon, Bernard Chazelle, Kenneth L Clarkson, Ding Liu, Wolfgang Mulzer, and C Seshadhri.
 ⁵⁴⁶ Self-improving algorithms. *SIAM Journal on Computing*, 40(2):350–375, 2011.
- Nir Ailon, Omer Leibovitch, and Vineet Nair. Sparse linear networks with a fixed butterfly structure:
 theory and practice. In *Uncertainty in Artificial Intelligence*, pp. 1174–1184. PMLR, 2021.
- Martin Anthony and Peter Bartlett. *Neural network learning: Theoretical foundations*, volume 9. cambridge university press Cambridge, 1999.
- Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi tectures using reinforcement learning. In *International Conference on Learning Representations*, 2017.
 - Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden (ed.), *Beyond Worst Case Analysis of Algorithms*. Cambridge University Press, 2020.
- Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in Neural Information Processing Systems, 34:14782–14794, 2021.
- Maria-Florina Balcan and Dravyansh Sharma. Learning accurate and interpretable decision trees. *Uncertainty in Artificial Intelligence (UAI)*, 2024.
- Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
 mechanism design. *Advances in Neural Information Processing Systems*, 29, 2016.
- Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
 foundations of algorithm configuration for combinatorial partitioning problems. In *Conference on Learning Theory*, pp. 213–274. PMLR, 2017.
- Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In International conference on machine learning, pp. 344–353. PMLR, 2018a.
- 573 Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
 574 Lloyd's families. *Advances in Neural Information Processing Systems*, 31, 2018b.
- Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample complexity for multi-item profit maximization. In *Proceedings of the 2018 ACM Conference on Economics and Computation*, pp. 173–174, 2018c.
 - Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In *International Conference* on Learning Representations, 2019.
 - Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. In *International Conference* on Learning Representation, 2020a.
- Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Refined bounds for algorithm config uration: The knife-edge of dual class approximability. In *International Conference on Machine Learning*, pp. 580–590. PMLR, 2020b.
- Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? generalization guarantees for data-driven algorithm design. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, pp. 919–932, 2021a.
- Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample complex ity of tree search configuration: Cutting planes and beyond. *Advances in Neural Information Processing Systems*, 34:4015–4027, 2021b.

594 595 596	Maria-Florina Balcan, Misha Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning the ElasticNet across instances. <i>Advances in Neural Information Processing Systems</i> , 35:27769–27782, 2022a.
598 599 600	Maria-Florina Balcan, Anh Nguyen, and Dravyansh Sharma. New bounds for hyperparameter tuning of regression problems across instances. <i>Advances in Neural Information Processing Systems</i> , 36, 2024a.
601 602	Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Provable hyperparameter tuning for structured pfaffian settings, 2024b. URL https://arxiv.org/abs/2409.04367.
603 604 605 606	Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal- ysis of branch-and-cut and the learnability of gomory mixed integer cuts. <i>Advances in Neural</i> <i>Information Processing Systems</i> , 35:33890–33903, 2022b.
607 608	Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise polynomial networks. <i>Advances in neural information processing systems</i> , 11, 1998.
609 610	Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical linear algebra. In <i>Conference on Learning Theory</i> , pp. 2013–2040. PMLR, 2022.
612 613	Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. <i>Advances in neural information processing systems</i> , 30, 2017.
614 615 616	Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. <i>Journal of Machine Learning Research</i> , 20(63):1–17, 2019.
618 619	James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. <i>Journal of machine learning research</i> , 13(2), 2012.
620 621	James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. <i>Advances in neural information processing systems</i> , 24, 2011.
623 624 625	James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In <i>International conference on machine learning</i> , pp. 115–123. PMLR, 2013.
626 627	Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. In <i>Proceedings of the Eighteenth International Conference on Machine Learning</i> , pp. 19–26, 2001.
628 629	R Creighton Buck. Advanced calculus. Waveland Press, 2003.
630 631	Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i> , 2018.
632 633 634	Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search. In <i>International Conference on Learning Representations</i> , 2020.
635 636	Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient architecture search for cnns. In <i>Workshop on Meta-Learning at NIPS</i> , 2017.
637 638 639	Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.
640 641 642	Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In <i>International conference on machine learning</i> , pp. 1263–1272. PMLR, 2017.
643 644 645 646	Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection. In <i>Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science</i> , pp. 123–134, 2016.

647 Rishi Gupta and Tim Roughgarden. Data-driven algorithm design. *Communications of the ACM*, 63 (6):87–94, 2020.

665

666

667

673

674

678

684

688

689

- Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral approach. *ICLR*, 2018.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 human-level performance on imagenet classification. In *Proceedings of the IEEE international conference on computer vision*, pp. 1026–1034, 2015.
- Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In *Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5*, pp. 507–523. Springer, 2011.
- Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. Advances in Neural Information Processing Systems, 32, 2019.
- Marek Karpinski and Angus Macintyre. Polynomial bounds for vc dimension of sigmoidal and
 general pfaffian neural networks. *Journal of Computer and System Sciences*, 54(1):169–176,
 1997.
 - Mikhail Khodak, Edmond Chow, Maria Florina Balcan, and Ameet Talwalkar. Learning to relax: Setting solver parameters across a sequence of linear system instances. In *The Twelfth International Conference on Learning Representations*, 2024.
- Askold G Khovanski. *Fewnomials*, volume 88. American Mathematical Soc., 1991.
- Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.
 - Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Talwalkar. Geometry-aware gradient algorithms for neural architecture search. In *International Conference on Learning Representations*, 2021.
- Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning Research*, 18(185):1–52, 2018.
- Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in counts ketch. In *The Eleventh International Conference on Learning Representations*, 2023.
- ⁶⁸¹ Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
 ⁶⁸² Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In *Proceed-* ⁶⁸³ *ings of the European conference on computer vision (ECCV)*, pp. 19–34, 2018.
- Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In International Conference on Learning Representations, 2019. URL https://openreview. net/forum?id=S1eYHoC5FX.
 - Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid using graph neural networks. In *International Conference on Machine Learning*, pp. 6489–6499. PMLR, 2020.
- Wolfgang Maass. Neural nets with superlinear VC-dimension. *Neural Computation*, 6(5):877–884, 1994.
- Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian,
 Mahmoud Safari, Kaicheng Yu, and Frank Hutter. Nas-bench-suite: Nas evaluation is (now)
 surprisingly easy. In *International Conference on Learning Representations*, 2022.
- Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To wards automatically-tuned neural networks. In *Workshop on automatic machine learning*, pp. 58–65. PMLR, 2016.
- 701 Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792, 2017.

702 703 704	Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via parameters sharing. In <i>International conference on machine learning</i> , pp. 4095–4104. PMLR, 2018.
705 706	David Pollard. Convergence of stochastic processes. Springer Science & Business Media, 2012.
707 708 700	Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. <i>arXiv</i> preprint arXiv:1710.05941, 2017.
710 711	Joel W Robbin and Dietmar A Salamon. Introduction to differential geometry. Springer Nature, 2022.
712 713	R Tyrrell Rockafellar. Lagrange multipliers and optimality. SIAM review, 35(2):183–238, 1993.
714 715	R Tyrrell Rockafellar and Roger J-B Wets. <i>Variational analysis</i> , volume 317. Springer Science & Business Media, 2009.
716 717	Norbert Sauer. On the density of families of sets. <i>Journal of Combinatorial Theory, Series A</i> , 13(1): 145–147, 1972.
719 720	Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
721 722	Dravyansh Sharma and Maxwell Jones. Efficiently learning the graph for semi-supervised learning. In <i>Uncertainty in Artificial Intelligence</i> , pp. 1900–1910. PMLR, 2023.
723 724 725	Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. <i>Advances in neural information processing systems</i> , 25, 2012.
726 727 728 729	Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In <i>International conference on machine learning</i> , pp. 2171–2180. PMLR, 2015.
730 731 732	Petar Velic kovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In <i>International Conference on Learning Representations</i> , 2018.
733 734	Martin J Wainwright. <i>High-dimensional statistics: A non-asymptotic viewpoint</i> , volume 48. Cambridge university press, 2019.
735 736 737	Hugh E Warren. Lower bounds for approximation by nonlinear manifolds. <i>Transactions of the American Mathematical Society</i> , 133(1):167–178, 1968.
738 739 740	Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural architectures for neural architecture search. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 35, pp. 10293–10301, 2021.
741 742 743 744	Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional networks. In <i>International conference on machine learning</i> , pp. 6861–6871. PMLR, 2019.
745 746	Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. <i>Advances in neural information processing systems</i> , 16, 2003.
747 748	Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.
749 750 751	Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In <i>Proceedings of the 20th International conference on Machine learning (ICML)</i> , pp. 912–919, 2003.
752 753 754 755	Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In <i>International Conference on Learning Representations</i> , 2017. URL https://openreview.net/forum? id=r1Ue8Hcxg.

A ADDITIONAL RELATED WORK

757 758

Learning-theoretic complexity of deep nets. A related line of work studies the learning-theoretic complexity of deep networks, corresponding to selection of network parameters (weights) over a

room plexity of deep networks, corresponding to selection of network parameters (weights) over a single problem instance. Bounds on the VC dimension of neural networks have been shown for piecewise linear and polynomial activation functions (Maass, 1994; Bartlett et al., 1998) as well as the broader class of Pfaffian activation functions Karpinski & Macintyre (1997). Recent work includes near-tight bounds for the piecewise linear activation functions (Bartlett et al., 2019) and data-dependent margin bounds for neural networks (Bartlett et al., 2017).

765

Data-driven algorithm design. Data-driven algorithm design, also known as self-improved algo-766 rithms (Balcan, 2020; Ailon et al., 2011; Gupta & Roughgarden, 2020), is an emerging field that 767 adapts algorithms' internal components to specific problem instances, particularly in parameterized 768 algorithms with multiple performance-dictating hyperparameters. Unlike traditional worst-case or 769 average-case analysis, this approach assumes problem instances come from an application-specific 770 distribution. By leveraging available input problem instances, this approach seeks to maximize em-771 pirical utilities that measure algorithmic performance for those specific instances. This method has 772 demonstrated effectiveness across various domains, including low-rank approximation and dimen-773 sionality reduction (Li et al., 2023; Indyk et al., 2019; Ailon et al., 2021), accelerating linear system 774 solvers (Luz et al., 2020; Khodak et al., 2024), mechanism design (Balcan et al., 2016; 2018c), 775 sketching algorithms (Bartlett et al., 2022), branch-and-cut algorithms for (mixed) integer linear 776 programming (Balcan et al., 2021b), among others.

777

778 **Neural architecture search.** Neural architecture search (NAS) captures a significant part of the 779 engineering challenge in deploying deep networks for a given application. While neural networks successfully automate the tedious task of "feature engineering" associated with classical machine 780 learning techniques by automatically learning features from data, it requires a tedious search over 781 a large search space to come up with the best neural architecture for any new application domain. 782 Multiple different approaches with different search spaces have been proposed for effective NAS, 783 including searching over the discrete topology of connections between the neural network nodes, and 784 interpolation of activation functions. Due to intense recent interest in moving from hand-crafted to 785 automatically searched architectures, several practically successful approaches have been developed 786 including framing NAS as Bayesian optimization (Bergstra et al., 2013; Mendoza et al., 2016; White 787 et al., 2021), reinforcement learning (Zoph & Le, 2017; Baker et al., 2017), tree search (Negrinho 788 & Gordon, 2017; Elsken et al., 2017), gradient-based optimization (Liu et al., 2019), among others, 789 with progress measured over standard benchmarks (Dong & Yang, 2020; Mehta et al., 2022). Li et al. 790 (2021) introduce a geometry-aware mirror descent based approach to learn the network architecture and weights simultaneously, within a single problem instance, yielding a practical algorithm but 791 without provable guarantees. Our formulation is closely related to tuning the interpolation parameter 792 for activation parameter in NAS approach of DARTS Liu et al. (2019), which can be viewed as a 793 multi-hyperparameter generalization of our setup. We establish the first learning guarantees for the 794 simpler case of single hyperparameter tuning. Note that we are considering a simplified version of 795 DARTS Liu et al. (2019), where we consider a linear interpolation hyperparameter of activation in 796 each node, while DARTS uses a probabilistic interpolation instead. 797

797 798

Graph-based learning. While several classical (Blum & Chawla, 2001; Zhu et al., 2003; Zhou et al., 2003; Zhu, 2005) as well as neural models (Kipf & Welling, 2017; Velic kovic et al., 2018; Wu et al., 2019; Gilmer et al., 2017) have been proposed for graph-based learning, the underlying graph used to represent the data typically involves heuristically set graph parameters. The latter approach is usually more effective in practice, but comes without formal learning guarantees. Our work provides the first provable guarantees for tuning the graph kernel hyperparameter in graph neural networks.

805

A detailed comparison to Hyperband (Li et al., 2018). Hyperband is one of the most notable
 work in hyperparameter tuning. Specially, the paper provides a theoretical guarantees for the hyper parameter tuning process, but under strong assumptions. Here, we provide a detailed comparison
 between guarantees presented in Hyperband and our results, and explain how Hyperband and our
 work are not competing but complementing each others.

- 810 1. Hyperparameter configuration settings: Theoretical results (Theorem 1, Proposition 4) 811 in Hyperband assumes finitely many distinct arms and guarantees are with respect to the 812 best arm in that set. Even their infinite arm setting considers a distribution over the hyper-813 parameter space from which n arms are sampled. It is assumed that n is large enough to 814 sample a good arm with high probability without actually showing that this holds for any concrete hyperparameter loss landscape. It is not clear why this assumption will hold in 815 our cases. In sharp contrast, we seek optimality over the entire continuous hyperparame-816 ter hyperparameter range for concrete loss functions which satisfy a piecewise polynomial 817 dual structure. 818
 - 2. Guarantee settings: The notion of "sample complexity" in Hyperband is very different from ours. Intuitively, their goal is to find the best hyperparameter from learning curves over fewest training epochs, assuming the test loss converges to a fixed value for each hyperparameter after some epochs. By ruling out (successively halving) hyperparameters that are unlikely to be optimal early, they speed up the search process (by avoiding full training epochs for suboptimal hyperparameters). In contrast, we focus on model hyperparameters and assume the network can be trained to optimality for any value of the hyperparameter. We ignore the computational efficiency aspect and focus on the data (sample) efficiency aspect which is not captured in Hyperband analysis.
 - 3. Learning settings: Hyperband assumes the problem instance is fixed, and aims to accelerate the random search of hyperparameter configuration for that problem instance with constrained budgets (formulated as a pure-exploration non-stochastic infinite-armed bandit). In contrast, our results assume a problem distribution D (data-driven setting), and bounds the sample complexity of learning a good hyperparameter for the problem distribution D.
- 833 **Conclusion.** The Hyperband paper and our work do not compete but complement each other, as the two papers see the hyperparameter tuning problem from different perspectives and our results cannot be compared to theirs. 835

В ON THE CHALLENGE AND NOVELTY OF TECHNIQUES INTRODUCED IN THIS PAPER.

840 We note that the main and foremost contribution (Lemma 4.2, Theorem 5.1) in this paper is a new 841 technique for analyzing the model hyperparameter tuning in data-driven setting, where the dual util-842 ity function of both parameter and hyperparameter $f_{x}(\alpha, w)$ admits a specific piecewise polynomial 843 structure. In this section, we will make an in-depth comparison between our setting and settings in 844 prior works in data-driven algorithm hyperparameter tuning, and discuss why our setting is more 845 challenging and requires novel techniques to analyze.

847 Novel challenges. We note that our setting requires significant technical novelty relative to prior work in data-driven algorithm design. As far as we know, most prior works on statistical data-driven 848 algorithm design falls into two categories: 849

- 1. The hyperparameter tuning process does not involve the parameter w, meaning that given a hyperparameter α , the behavior of the algorithm is fixed. Some concrete examples include tuning hyperparameters of hierarchical clustering algorithms (Balcan et al., 2017; 2020a), branch and bound (B&B) algorithms for (mixed) integer linear programming (Balcan et al., 2018a; 2022b), and graph-based semi-supervised learning (Balcan & Sharma, 2021). The typical approach is to show that the utility function $u_{x}^{*}(\alpha)$ admits specific piecewise structure of α , typically piecewise polynomial and rational.
- 2. The hyperparameter tuning process involves the parameter w, for example in tuning regularization hyperparameters in linear regression. However, here the optimal parameter $w^*(\alpha)$ can either have a close analytical form in terms of the hyperparameter α (Balcan et al., 2022a), or can be easily approximated in terms of α with bounded error (Balcan et al., 2024b).
- 861 862

819

820

821

822

823

824

825

827

828

829

830

831

832

834

836 837

838

839

846

850

851

852

853

854

855

856

857

858

859

However, in our setting, the utility function $u_{\mathbf{x}}^*(\alpha)$ is defined via an optimization problem $u_{\mathbf{x}}^*(\alpha) =$ 863 $\max_{w} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$, where $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ admits a piecewise polynomial structure. This involves the paramteter w so it does not belong to the first case, and also it is not clear how to use the second approach either. This emphasizes that our problem and requires the development of novel techniques.

New techniques. Two general approaches are known from prior work to establish a generalization guarantee for \mathcal{U} .

- 1. The first approach is to establish Pseudo-dimension bound for \mathcal{U} via alternatively analyzing the Pseudo/VC-dimension of the piece and boundary function classes, derived when establishing the piecewise structure of $u_x^*(\alpha)$ (following the Theorem 3.3 (Balcan et al., 2021a)). We build on this ideas, however, in order to apply it we need significant innovation to analyze the structure of the function u_x^* in our case.
- The second approach is specialized to the case where the computation of u^{*}_x(α) can be described as the GJ algorithm (Bartlett et al., 2022), where we can do four basic operators (+, -, ×, ÷) and the conditional statements. However, it is obviously not applicable to our case as well due to the use of a max operation in the definition.

879 As mentioned above, we follow the first approach though we have to develop new techniques to 880 analyze our setting. Here, we choose to analyze $u_x^*(\alpha)$ via indirectly analyzing $f_x(\alpha, w)$, which 881 is some case shown to admit piecewise polynomial structure. To do that, we have to develop the 882 following things:

- 1. The connection between number of discontinuities and local maxima and generalization guarantee of \mathcal{U} .
- 2. The approach to upper-bound the number of discontinuities and local extrema of $u_x^*(\alpha)$. This is done via using ideas from differential/algebraic geometry, and constrained optimization. We note that even the tools from differential geometry are not readily available, but we have to identify and develop those tools (e.g. Monotonic curves and its properties, see Definition 12 and Lemma 18).

That corresponds to the main contribution of our papers (Lemma 4.2, Theorem 5.2). We then demonstrate the applicability of our results to two concrete problems in hyperparameter tuning in machine learning (Section 6).

The need for the ERM oracle. In our work, we assume the ERM oracle when defining the function $u_{\boldsymbol{x}}^*(\alpha) = \max_{\boldsymbol{w}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$. This is the important first step for a clean theoretical formulation, allowing $u_{\boldsymbol{x}}^*(\alpha)$ to have deterministic behavior given a hyperparameter α , and independent of the optimization technique.

C ADDITIONAL BACKGROUND ON LEARNING THEORY

Definition 2 (Shattering and pseudo-dimension, Pollard (2012)). Let \mathcal{U} be a real-valued function class, of which each function takes input in \mathcal{X} . Given a set of inputs $S = (\mathbf{x}_1, \ldots, \mathbf{x}_N) \subset \mathcal{X}$, we say that S is *pseudo-shattered* by \mathcal{H} if there exists a set of real-valued thresholds $r_1, \ldots, r_N \in \mathbb{R}$ such that

 $|\{(\operatorname{sign}(u(\boldsymbol{x}_1) - r_1), \dots, \operatorname{sign}(u(\boldsymbol{x}_N) - r_N)) \mid u \in \mathcal{U}\}| = 2^N.$

The pseudo-dimension of \mathcal{H} , denoted as $Pdim(\mathcal{U})$, is the maximum size N of a input set that \mathcal{H} can shatter.

Theorem C.1 (Pollard (2012)). *Given a real-valued function class* \mathcal{U} *whose range is* [0, H]*, and assume that* $Pdim(\mathcal{U})$ *is finite. Then, given any* $\delta \in (0, 1)$ *, and any distribution* \mathcal{D} *over the input space* \mathcal{X} *, with probability at least* $1 - \delta$ *over the drawn of* $S \sim \mathcal{D}^n$ *, we have*

$$\left|\frac{1}{n}\sum_{i=1}^{N}u(\boldsymbol{x}_{i}) - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u(\boldsymbol{x})]\right| \leq O\left(H\sqrt{\frac{1}{N}\left(\operatorname{Pdim}(\mathcal{U}) + \ln\frac{1}{\delta}\right)}\right)$$

Theorem C.2 (Pollard (2012)). *Given a real-valued function class* \mathcal{U} *whose range is* [0, H], *and assume that* Pdim(\mathcal{U}) *is finite. Then for any* $\epsilon > 0$ *and* $\delta \in (0, 1)$, *for any distribution* \mathcal{D} *and for any set* S *of* $m = O\left(\frac{H^2}{\epsilon^2}(\text{Pdim}(\mathcal{U}) + \log \frac{1}{\delta})\right)$ *samples drawn from* \mathcal{D} , *w.p. at least* $1 - \delta$, *we have*

$$L_S^m(f) - L_{\mathcal{D}}(f) | < \epsilon, \quad \text{for all } f \in \mathcal{F}$$

911 912 913

867

868

869

870

871

872

873

874

875

876

877

878

883

884

885

886

887

888

889

890

891

892

893 894

895

896

897

898 899

900 901

902

903

904

918 **Definition 3** (Rademacher complexity, Wainwright (2019)). Let \mathcal{F} be a real-valued function class mapping form \mathcal{X} to [0, 1]. For a set of inputs $S = \{x_1, x_m\}$, we define the *empirical Rademacher complexity* $\hat{\mathscr{R}}_S(\mathcal{F})$ as

$$\hat{\mathscr{R}}_{S}(\mathcal{F}) = \frac{1}{m} \mathbb{E}_{\epsilon_{1},...,\epsilon_{m} \sim \text{i.i.d unif } \pm 1} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{m} \epsilon_{i} f(\boldsymbol{x}_{i}) \right].$$

We then define the *Rademacher complexity* $\mathscr{R}_{\mathcal{D}^m}$, where \mathcal{D} is a distribution over \mathcal{X} , as

$$\mathscr{R}_{\mathcal{D}^m}(\mathcal{F}) = \mathbb{E}_{S \sim \mathcal{D}^m}[\hat{\mathscr{R}}_S(\mathcal{F})].$$

927 Furthermore, we define

$$\mathscr{R}_m(\mathcal{F}) = \sup_{S \in \mathcal{X}^m} \hat{\mathscr{R}}_S(\mathcal{F}).$$

The following lemma provides an useful result that allows us to relate the empirical Rademacher
 complexity of two function classes when the infinity norm between their corresponding dual utility
 functions is upper-bounded.

933 **Lemma C.3** (Balcan et al. (2020b)). Let $\mathcal{F} = \{f_r \mid r \in \mathcal{R}\}$ and $\mathcal{G} = \{g_r \mid r \in \mathcal{R}\}$ consist of 934 function mapping from \mathcal{X} to [0, 1]. For any $S \subseteq \mathcal{X}$, we have 935

$$\hat{\mathscr{R}}_{S}(\mathcal{F}) \leq \hat{\mathscr{G}}_{S}(\mathcal{G}) + \frac{1}{|S|} \sum_{\boldsymbol{x} \in S} \|f_{\boldsymbol{x}}^{*} - g_{\boldsymbol{x}}^{*}\|_{\infty}.$$

The following theorem establishes a connection between pseudo-dimension and Rademacher complexity.
 Description of the following theorem of the fo

Lemma C.4 (Shalev-Shwartz & Ben-David (2014)). Let \mathcal{F} is a bounded function class. Then $\mathscr{R}_m(\mathcal{F}) = \mathcal{O}\left(\sqrt{\frac{\operatorname{Pdim}(\mathcal{F})}{m}}\right)$. Here $\mathscr{R}_m(\mathcal{F}) = \sup_{S \in \mathcal{X}^m} \hat{\mathscr{R}}_S(\mathcal{F})$.

944 The following classical result demonstrates the connection between uniform convergence and learn-945 ability with an ERM learner.

Theorem C.5 (Shalev-Shwartz & Ben-David (2014)). *If* \mathcal{F} *has a uniform convergence guarantee with* $s(\epsilon, \delta)$ *samples then it is PAC learnable with ERM and* $s(\epsilon/2, \delta)$ *samples.*

948 949

922 923

926

928 929

936 937

941

942 943

949 *Proof.* For $S = \{x_1, ..., x_N\}$, let $L_S(f) = \frac{1}{n} \sum_{i=1}^n f(x_i)$, and $L_D(f) = \mathbb{E}_{x \sim D}[f(x)]$ for any 950 $f \in \mathcal{F}$. Since \mathcal{F} is uniform convergence with $s(\epsilon, \delta)$ samples, w.p. at least $1 - \delta$ for all $f \in \mathcal{F}$, we 951 have $|L_S(f) - L_D(f)| \leq \epsilon$ for any set S with the number of elements $m \geq s(\epsilon, \delta)$. Let $f_{ERM} \in$ 952 $\arg \min_{f \in \mathcal{F}} L_S(f)$ be the hypothesis outputted by the ERM learner, and $f^* \in \arg \min_{f \in \mathcal{F}} L_D(f)$ 953 be the best hypothesis. We have

$$L_{\mathcal{D}}(f_{ERM}) \le L_S(f_{ERM}) + \frac{\epsilon}{2} \le L_S(f^*) + \frac{\epsilon}{2} \le L_{\mathcal{D}}(h^*) + \epsilon$$

which concludes the proof.

956 957 958

959

962

954 955

D OMITTED PROOFS FOR SECTION 3

160 Lemma 3.1 (restated). Let h be a piecewise continuous function which has at most B_1 discontinuity **161** points, and has at most B_2 local maxima. Then h has at most $\mathcal{O}(B_1 + B_2)$ oscillations.

963 *Proof.* For any $z \in \mathbb{R}$, consider the function $g(\rho) = \mathbb{I}_{\{h(\rho) \ge z\}}$. By definition, any discontinuity 964 points of $g(\rho)$ is a root of the equation $h(\rho) = z$. Therefore, it suffices to give an upper-bound for 965 the number of roots that the equation $h(\rho) = z$ can have.

966 Let $\rho_1 < \rho_2 < \cdots < \rho_N < \rho_{N+1}$ be the discontinuity points of h, where $N \le B_1$ from assumption. 967 For convenience, let $\rho_0 = -\infty$ and $\rho_{N+1} = \infty$. For any $i = 1, \dots, N$, consider an interval 968 $I_i = (\rho_i, \rho_i + 1)$ over which the function h is continuous. Assume that there are E_i local maxima of 969 the function h in between the interval I_i , meaning that there are at most $2E_i + 1$ local extrema, we 970 now claim that there are at most $2E_i + 2$ roots of $h(\rho) = z$ in between I_i . We prove by contradiction: 971 assume that $\rho_1^* < \rho_2^* < \cdots < \rho_{2E_i+3}^*$ are $2E_i + 3$ roots of the equation $h(\rho) = z$, and there is no 974 other root in between. We have the following claim: • Claim 1: there is at least 1 local extrema in between (ρ_j^*, ρ_{j+1}^*) . Since *h* has finite number of local extrema, meaning that *h* cannot be constant over $[\rho_j^*, \rho_{j+1}^*]$. Therefore, there exists some $\rho' \in (\rho_j^*, \rho_{j+1}^*)$ such that $h(\rho') \neq z$, and note that $z = h(\rho_j^*) = h(\rho_{j+1}^*)$. Since *h* is continuous over $[\rho_j^*, \rho_{j+1}^*]$, from extreme value theorem (Theorem F.11), *h* (when restricted to $[\rho_j^*, \rho_{j+1}^*]$) reaches minima and maxima over $[\rho_j^*, \rho_{j+1}^*]$. However, since there exists ρ' such that $h(\rho') \neq z$, then *h* has to achieve minima or maxima in the interior (ρ_j^*, ρ_{j+1}^*) . That is also a local extrema of *h*.

980 981

982

988

989

990

991 992

993

994

995

996

997

• Claim 2: there are at least $2E_i + 2$ local extrema in between $(\rho_1^*, \rho_{E_i+2}^*)$. This claim follows directly from Claim 1.

Claim 2 leads to a contradiction. Therefore, there are at most $2E_i + 2$ roots in between the interval I_i . which implies there are $\sum_{i=0}^{N} 2E_i + 2N$ roots in the intervals I_i for i = 1, ..., N. Note that $\sum_{i=0}^{N} E_i \leq B_2, N \leq B_1$ by assumption, and each discontinuity points could also be a root of $h(\rho) = z$, we conclude that there are at most $\mathcal{O}(B_1 + B_2)$ roots of the equation $h(\rho) = z$, for any z.

Lemma Lemma 3.3 (restated). Consider a real-valued function class $\mathcal{U} = \{u_{\rho} : \mathcal{X} \to \mathbb{R} \mid \rho \in \mathbb{R}\}$, of which each dual function $u_{\boldsymbol{x}}^*(\rho)$ is piecewise constant with at most B discontinuities. Then $Pdim(\mathcal{U}) = \mathcal{O}(\ln B)$.

Proof. Consider a dual function $u_x^*(\rho)$ which is a piecewise constant function with at most B discontinuities. $\mathbb{I}_{\{u_x^*(\rho) \ge z\}}$ is piecewise continuous with at most B continuities for any threshold $z \in \mathbb{R}$. We will show that by contradiction, assume that there exists $z \in \mathbb{R}$ such that $\mathbb{I}_{\{u_x^*(\rho) \ge z\}}$ has N discontinuities, where $N \ge B + 1$. Since $u_x^*(\rho)$ is piecewise constant, any discontinuities of $\mathbb{I}_{\{u_x^*(\rho) \ge z\}}$ is also a discontinuity of $u_x^*(\rho)$, meaning that $u_x^*(\rho)$ has at least N discontinuities, which leads to a contradiction. Therefore, we conclude that $u_x^*(\rho)$ has at most B oscillations, and then $\mathrm{Pdim}(\mathcal{H}) = \mathcal{O}(\log(B))$ following Theorem 2.1.

1002

1011 1012

1013

1024

E ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION 4

1003 E.1 OMITTED PROOFS

In this section, we will present the detailed proof for Theorem 4.1.

Lemma 4.1 (restated). Assume that the piece functions $f_i(\alpha, w)$ is constant for all $i \in [N]$. Then $u_x^*(\alpha)$ has $\mathcal{O}(N)$ discontinuity points, partitioning \mathcal{A} into at most $\mathcal{O}(N)$ regions. In each region, $u_x^*(\alpha)$ is a constant function.

Proof. For each connected set $R_{x,i}$ corresponding to a piece function $f_{x,i}(\alpha, w) = c_i$, let

$$\alpha_{R_i,\inf} = \inf_{\alpha} \{ \alpha : \exists \boldsymbol{w}, (\alpha, \boldsymbol{w}) \in R_i \}, \quad \alpha_{R_i,\sup} = \sup_{\alpha} \{ \alpha : \exists \boldsymbol{w}, (\alpha, \boldsymbol{w}) \in R_i \}.$$

1014 There are N connected components, corresponding to $\mathcal{O}(N)$ such points. Reordering those points 1015 and removing duplicate points as $\alpha_{\min} = \alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_t = \alpha_{\max}$, where $t = \mathcal{O}(N)$ 1016 we claim that for any interval $I_i = (\alpha_i, \alpha_{i+1})$ where $i = 0, \ldots, t-1$, the function $g_x(\alpha)$ remains 1017 constant.

1018 Consider the any interval I_i . By the construction above of α_i , for any $\alpha \in I_i$, there exists a *fixed* set 1019 of regions $\mathbf{R}_{I_i} = \{R_{I_i,1}, \ldots, R_{I_i,n}\} \subseteq \mathcal{P}_{\boldsymbol{x}} = \{R_{\boldsymbol{x},1}, \ldots, R_{\boldsymbol{x},N}\}$, such that for any connected set 1020 $R \in \mathbf{R}_{I_i}$, there exists \boldsymbol{w} such that $(\alpha, \boldsymbol{w}) \in R$. Besides, for any $R \notin \mathbf{R}_{I_i}$, there does not exist \boldsymbol{w} 1021 such that $(\alpha, \boldsymbol{w}) \in R$. This implies that for any $\alpha \in I_i$, we can write $u_{\boldsymbol{x}}^*(\alpha)$ as

1022
1023
$$u_{\boldsymbol{x}}^*(\alpha) = \sup_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{W}) = \sup_{R \in \mathbf{R}_{I_i}} \sup_{\boldsymbol{w}: (\alpha, \boldsymbol{W}) \in R} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) = \max_{c \in C_{I_i}} c,$$

where $C_{I_i} = \{c_R \mid R \in \mathbf{R}_{I_i}\}$ contains the constant value that $f_{\boldsymbol{x}}(\alpha, \boldsymbol{W})$ takes over R. Since the set C_{I_i} is fixed, $u_{\boldsymbol{x}}^*(\alpha)$ remains constant over I_i .

Hence, we conclude that over any interval $I_i = (\alpha_i, \alpha_{i+1})$, for i = 1, ..., t-1, the function $u_x^*(\alpha)$ remains constant. Therefore, there are only the points α_i , for i = 0, ..., t-1, at which the function u_x^* is not continuous. Since $t = \mathcal{O}(N)$, we have the conclusion.

1030 Proof of Theorem 4.2. From Lemma 4.1, we know that any dual utility function u_x^* is piecewise 1031 constant and has at most $\mathcal{O}(N)$ discontinuities. Combining with Lemma 3.3, we conclude that 1032 Pdim $(\mathcal{U}) = \mathcal{O}(\log(N))$. Finally, standard learning theory result gives us the final guarantee. \Box

1034 E.2 Useful tools for bounding the number of connected components

Here, we will recall some useful tools for bounding the number of connected components created by a set of polynomial equations. It serves as an useful tool to apply our Theorem 4.1.

1038 Lemma E.1 (Warren (1968)). Let p_1, \ldots, p_m be real polynomials in n variables, each of degree at 1039 most d. The number of connected components of the set $\mathbb{R}^n - \bigcup_{i=1}^m Z(p_i)$ is $\mathcal{O}\left(\left(\frac{md}{n}\right)^n\right)$.

1041 1042

1033

1035

F ADDITIONAL RESULTS AND OMITTED PROOFS FOR SECTION 5

1043 1044 1045

1051

F.1 A SIMPLE CASE: HYPERPARAMETER TUNING WITH A SINGLE PARAMETER

We provide intuition for our novel proof techniques by first considering a simpler setting. We first consider the case where there is a single parameter and only one piece function. That is, we assume that N = 1 and M = 0. We first present a structural result for the dual function class \mathcal{U}^* , which establishes that any function u_x^* in \mathcal{U}^* is piecewise continuous with at most $O(\Delta_p^2)$ pieces. Furthermore, we show that there are at most $O(\Delta_p^3)$ oscillations in u_x^* which implies a bound on the pseudo-dimension of \mathcal{U}^* using results in Section 3.

Our proof approach is summarized as follows. We note that the supreme over $w \in \mathcal{W}$ in the 1052 definition of u_{π}^* can only be achieved at a domain boundary or along the derivative $h_x(\alpha, w) =$ 1053 $\frac{\partial f_x(\alpha, w)}{\alpha \dots} = 0$, which is an algebraic curve. We partition this algebraic curve into *monotonic arcs*, 1054 which intersect $\alpha = \alpha_0$ at most once for any α_0 . Intuitively, a point of discontinuity of u_x^* can only 1055 occur when the set of monotonic arcs corresponding to a fixed value of α changes as α is varied, 1056 which corresponds to α -extreme points of the monotonic arcs. We use Bezout's theorem to upper 1057 bound these extreme points of $h_x(\alpha, w) = 0$ to obtain an upper bound on the number of pieces 1058 of u_x^* . Next, we seek to upper bound the number of local extrema of u_x^* to bound its oscillating behavior within the continuous pieces. To this end, we need to examine the behavior of u_x^* along the algebraic curve $h_x(\alpha, w) = 0$ and use the Lagrange's multiplier theorem to express the locations of 1061 the extrema as intersections of algebraic varieties (in α , w and the Lagrange multiplier λ). Another application of Bezout's theorem gives us the deisred upper bound on the number of local extrema of 1062 $u_{\boldsymbol{x}}^*$.

Lemma F.1. Let $d_{\mathcal{W}} = d_{\mathcal{A}} = 1$ and N = 1, M = 0. Assume that $(\alpha, w) \in R = [\alpha_{\min}, \alpha_{\max}] \times [w_{\min}, w_{\max}]$. Then for any function $u_{\boldsymbol{x}}^* \in \mathcal{U}^*$, we have

- 106
- 1067 1068 1069

1070 1071 (a) The hyperparameter domain $\mathcal{A} = [\alpha_{\min}, \alpha_{\max}]$ can be partitioned into $\mathcal{O}(\Delta_p^2)$ intervals such that u_x^* is a continuous function over any interval in the partition.

(b) $u_{\boldsymbol{x}}^*$ has $\mathcal{O}(\Delta_p^2)$ local maxima for any \boldsymbol{x} .

1072 Proof. (a) Denote $h_x(\alpha, w) = \frac{\partial f_x(\alpha, w)}{\partial w}$. From assumption, $f_x(\alpha, w)$ is a polynomial of α and 1073 w, therefore it is differentiable everywhere in the compact domain $[\alpha_{\min}, \alpha_{\max}] \times [w_{\min}, w_{\max}]$. 1074 Consider any $\alpha_0 \in [\alpha_{\min}, \alpha_{\max}]$, we have $\{(\alpha, w) \mid \alpha = \alpha_0\} \cap [\alpha_{\min}, \alpha_{\max}]$ is an intersection of a 1075 hyperplane and a compact set, hence it is also compact. Therefore, from Fermat's interior extremum 1076 theorem (Lemma F.8), for any $\alpha_0, f_x(\alpha_0, w)$ attains the local maxima w either in w_{\min}, w_{\max} , or for 1077 $w \in (w_{\min}, w_{\max})$ such that $h_x(\alpha_0, w) = 0$. Note that from assumption, $f_x(\alpha, w)$ is a polynomial 1078 of degree at most Δ_p in α and w. This implies $h_x(\alpha, w)$ is a polynomial of degree at most $\Delta_p - 1$. 1079 Denote $C_x = V(h_x)$ the zero set of h_x in R. For any α_0, C_x intersects the line $\alpha = \alpha_0$ in at most

1079 Denote $C_x = V(h_x)$ the zero set of h_x in R. For any α_0 , C_x intersects the line $\alpha = \alpha_0$ in at most $\Delta_p - 1$ points by Bezout's theorem. This implies that, for any α , there are at most $\Delta_p + 1$ candidate

1098 (a) The piecewise structure of $u_x^*(\alpha)$ and piecewise 1099 polynomial surface of $f_x(\alpha, w)$ in sheer view.

(b) Removing the surface $f_x(\alpha, w)$ for better view of $u_x^*(\alpha)$, the boundaries, and the derivative curves.

1101 Figure 4: A demonstration of the proof idea for Theorem 5.1 in 2D ($w \in \mathbb{R}$). Here, the domain of $f_{\boldsymbol{x}}^*(\boldsymbol{\alpha}, \boldsymbol{w})$ is partitioned into four regions by two boundaries: a circle (blue line) and a parabola 1102 (green line). In each region i, the function $f_{x}(\alpha, w)$ is a polynomial $f_{x,i}(\alpha, w)$, of which the 1103 derivative curve $\frac{\partial f_{\boldsymbol{x},i}}{\partial \boldsymbol{w}} = 0$ is demonstrated by the black dot in the plane of $(\boldsymbol{\alpha}, \boldsymbol{w})$. The value of $u_{\boldsymbol{x}}^*(\boldsymbol{\alpha})$ is demonstrated in the red line, and the red dots in the plane $(\boldsymbol{\alpha}, \boldsymbol{w})$ corresponds to the 1104 1105 position where $f_x(\alpha, w) = u_x^*(\alpha)$. We can see that it occurs in either the derivative curves or in 1106 the boundary. Our goal is to leverage this property to control the number of discontinuities and local 1107 maxima of $u_x^*(\alpha)$, which can be converted to the generalization guarantee of the utility function 1108 class \mathcal{U} . 1109

1110

1100

We now have the following claims: (1) C is a piecewise constant function, and (2) any point of 1111 discontinuity of u_{π}^* must be a point of discontinuity of C. For (1), we will show that C is piecewise 1112 constant, with the piece boundaries contained in the set of α -extreme points¹ of C_x and the inter-1113 section points of C_x with boundary lines $\boldsymbol{w} = w_{\min}, w_{\max}$. Note that if C_x has any components 1114 consisting of axis-parallel straight lines $\alpha = \alpha_1$, we do not consider these components to have any 1115 α -extreme points, and the corresponding discontinuities (if any) are counted in the intersections of 1116 C_x with the boundary lines. Indeed, for any interval $I = (\alpha_1, \alpha_2) \subseteq \mathcal{A}$, if there is no α -extreme 1117 point of C_x in the interval, then the set of arcs $\mathcal{C}(\alpha)$ is fixed over I by Definition 12. Next, we will 1118 prove (2) via an equivalent statement: assume that C is continuous over an interval $I \subseteq A$, we want to prove that u_x^* is also continuous over I. Note that if C is continuous over I, then $u_x^*(\alpha)$ involves a 1119 maximum over a fixed set of α -monotonic arcs of C_x , and the straight lines $w = w_{\min}, w_{\max}$. Since 1120 f_x is continuous along these arcs, so is the maximum u_x^* . 1121

1122 The above claim implies that the number of discontinuity points of C_x upper-bounds the number 1123 of discontinuity points of $u_x^*(\alpha)$. Note that α -extreme points C_x satisfies the following equalities: 1124 $h_x = 0$ and $\frac{\partial h_x}{\partial w} = 0$. By Bezout's theorem and from assumption on the degree of the polynomial f_x , 1125 we conclude that there are at most $(\Delta_p - 1)(\Delta_p - 2) = \mathcal{O}(\Delta_p^2) \alpha$ -extreme points of C_x . Moreover, 1126 there are $\mathcal{O}(\Delta_p)$ intersection points between C_x and the boundary lines $w = w_{\min}, w_{\max}$. Thus, 1127 the total discontinuities of C, and therefore u_x^* , are $\mathcal{O}(\Delta_p^2)$.

(b) Consider any interval I over which the function $u_x^*(\alpha)$ is continuous. By Corollary F.5 and Proposition F.14, it suffices to bound the number of elements of the set of local maxima of f_x along the algebraic curve C_x and the straight lines $w = w_{\min}, w_{\max}$.

¹An α -extreme point of an algebraic curve C is a point $p = (\alpha, W)$ such that there is an open neighborhood N around p for which p has the smallest or largest α -coordinate among all points $p' \in N$ on the curve.

To bound the set of bound the number of elements of the set of local maxima of f_x along the algebraic curve C_x , consider the Lagrangian

$$\mathcal{L}(\alpha, w, \lambda) = f_x(\alpha, w) + \lambda h_x(\alpha, w).$$

From Lagrange's multiplier theorem, any local maxima of f_x along the algebraic curve C_x is also a critical point of \mathcal{L} , which satisfies the following equations

1141	$\partial \mathcal{L} = \partial f_x + \sqrt{\partial h_x} = \partial f_x + \sqrt{\partial^2 f_x}$
1142	$\frac{\partial \alpha}{\partial \alpha} = \frac{\partial \alpha}{\partial \alpha} + \lambda \frac{\partial \alpha}{\partial \alpha} = \frac{\partial \alpha}{\partial \alpha} + \lambda \frac{\partial \alpha}{\partial \alpha \partial w} = 0,$
1143	$\partial \mathcal{L} = \partial f_x + \sqrt{\partial h_x} = \partial f_x + \sqrt{\partial^2 f_x}$
1144	$\frac{\partial w}{\partial w} = \frac{\partial w}{\partial w} + \lambda \frac{\partial w}{\partial w} = \frac{\partial w}{\partial w} + \lambda \frac{\partial w^2}{\partial w^2} = 0,$
1145	$\partial \mathcal{L}$, ∂f_x ,
1146	$\frac{\partial \lambda}{\partial \lambda} = h_x = \frac{\partial \mu}{\partial w} = 0.$
1147	

Plugging $\frac{\partial f_x}{\partial w} = 0$ into the second equation above, we get that either $\lambda = 0$ or $\frac{\partial^2 f_x}{\partial w^2} = 0$. In the former case, the first equation implies $\frac{\partial f_x}{\partial \alpha} = 0$. Thus, we consider two cases for critical points of \mathcal{L} .

Case $\frac{\partial \mathbf{f}_x}{\partial \mathbf{w}} = \mathbf{0}, \frac{\partial^2 \mathbf{f}_x}{\partial \mathbf{w}^2} = \mathbf{0}$. This is essentially the α -extreme points computed above, and are at most $\mathcal{O}(\Delta_p^2)$.

Similarly, the equations $f_x(\alpha, w_{\min}) = 0$ and $f_x(\alpha, w_{\max}) = 0$ also have at most Δ_p solutions each. Therefore, we conclude that the number of local maxima of u_x^* can be upper-bounded by $\mathcal{O}(\Delta_p^2)$.

Theorem F.2. Pdim $(\mathcal{U}^*) = \mathcal{O}(\log \Delta_p)$.

Proof. From Theorem F.1, we conclude that u_x^* has at most $\mathcal{O}(\Delta_p^2)$ oscillations for any $u_x^* \in \mathcal{U}^*$. Therefore, from Theorem 3.3, we conclude that $\operatorname{Pdim}(\mathcal{U}^*) = \mathcal{O}(\log \Delta_p)$.

Challenges of generalizing the one-dimensional parameter, single region to high-dimensional **parameter, multiple regions.** Recall that in the simple setting above, we assume that $f_x(\alpha, w)$ is a polynomial in the whole domain $[\alpha_{\min}, \alpha_{\max}] \times [w_{\min}, w_{\max}]$. In this case, our approach is to characterize the manifold on which the optimal solution of $\max_{w:(\alpha,w)\in R} f_{\boldsymbol{x}}(\alpha,w)$ lies, as α varies. We then use algebraic geometry tools to upper bound the number of discontinuity points and local extrema of $u_{\boldsymbol{x}}^*(\alpha) = \max_{\boldsymbol{w}:(\alpha,w)\in R} f_{\boldsymbol{x}}(\alpha,w)$, leading to a bound on the pseudo-dimension of the utility function class \mathcal{U} by using our proposed tools in Section 3. However, to generalize this idea to high-dimensional parameters and multiple regions is a much more challenging due to the following issues: (1) handling the analysis of multiple pieces by accounting for polynomial boundary functions is tricky as the w^* maximizing $f_x(\alpha, w)$ can switch between pieces as α is varied, (2) characterizing the optimal solution $\max_{w:(\alpha,w)\in R} f_x(\alpha,w)$ is not trivial and typically requiring additional assumptions to ensure a general position property is achieved, and care needs to be taken to ensure that the assumptions are not too strong and complicated, (3) generalizing the monotonic curve notion to high-dimensions is not trivial and requires a much more complicated analysis invoking tools from differential geometry, and (4) controlling the number of discontinuities and local maxima of u_x^* over the high-dimensional monotonic curves requires more sophisticated techniques.

We now present preliminaries background and our supporting results for Lemma 5.

1188 F.2 GENERAL SUPPORTING RESULTS

1190 In this section, we recall some elementary results which are crucial in our analysis. The following 1191 lemma says that the point-wise maximum of continuous functions is also a continuous function.

Lemma F.3. Let $f_i : \mathcal{X} \to \mathbb{R}$, where $i \in [N]$ be a continuous function over \mathcal{X} , and let $f(x) = \max_{i \in [N]} \{f_i(x)\}$. Then we have f(x) is a continuous function over \mathcal{X} .

1195 Proof. In the case N = 2, we can rewrite f(x) as

$$f(x) = \frac{f_1(x) + f_2(x)}{2} + \frac{1}{2} |f_1(x) - f_2(x)|,$$

which is sum of continuous function. Hence, f(x) is continuous. Assume the claim holds for N = k, we then claim that it also holds for N = k + 1 by rewriting f(x) as

$$f(x) = \max\{\max_{i \in [k]} \{f_i(x)\}, f_{k+1}(x)\}\$$

Therefore, the claim is proven by induction.

The following results are helpful when we want to bound the number of local extrema of pointwise maximum of differentiable functions. In particular, we show that the local extrema of $f(x) = \max\{f_i(x)\}_{i=1}^n$ is the local extrema of one of the functions $f_i(x)$.

1208 Lemma F.4 (Rockafellar & Wets (2009)). Let X be a finite-dimensional real Euclidean space and **1209** $g_i : X \to \mathbb{R}$ for $i \in [N]$ be continuously differential functions on X. Define the function $g(x) = \max_{i \in [N]} \{g_i(x)\}$. Let \overline{x} be a point in the interior of X, and let $\mathcal{I}_{\overline{x}} = \{i \in [N] \mid g_i(\overline{x}) = g(\overline{x})\}$. Then, for any $d \in X$, the directional derivative of g along the direction d is $g'(\overline{x}; d) = \max_{i \in \mathcal{I}_{\overline{x}}} \langle \nabla g_i(\overline{x}), d \rangle$.

1213 1214 1215 1216 **Corollary F.5.** Let X be a finite-dimensional real Euclidean space and $g_i : X \to \mathbb{R}$ for $i \in [N]$ 1216 **b** differential functions on X with the local maxima on X is given by the set C_i . Then the function $g(\boldsymbol{x}) = \max_{i \in [N]} \{g_i(\boldsymbol{x})\}$ has its local maxima contained in the union $\bigcup_{i \in [N]} C_i$.

1217 *Proof.* Let \overline{x} be a point in the interior of X, and let $\mathcal{I}_{\overline{x}} = \{i \in [N] \mid g_i(\overline{x}) = g(\overline{x})\}$. Now suppose 1218 $\overline{x} \notin \bigcup_{i \in [N]} C_i$. If $\mathcal{I}_{\overline{x}}$ consists of a single function g_i , then \overline{x} is a local maximum if and only if it is 1219 local maximum of g_i . By Lemma F.4, if the derivative is non-zero for all g_i with $i \in \mathcal{I}_{\overline{x}}$, then g(x)1220 has a positive derivative in some direction. This implies that \overline{x} cannot be a local maximum in this 1221 case.

We then recall the wide-known Sauer-Shelah Lemma, which bounds the sum of finite combinatorial series under some conditions.

Lemma F.6 (Sauer-Shelah Lemma, Sauer (1972)). Let $1 \le k \le n$, where k and n are positive integers. Then

$$\sum_{j=0}^k \binom{n}{j} \le \left(\frac{en}{k}\right)^k.$$

We recall the Lagrangian multipliers theorem, which allows us to give a necessary condition for the extrema of a function over a constraint.

Theorem F.7 (Lagrangian multipliers, Rockafellar (1993)). Let $h : \mathbb{R}^d \to \mathbb{R}$, $f : \mathbb{R}^d \to \mathbb{R}^n$ be C^1 functions, $C \in \mathbb{R}^d$, and $M = \{f = C\} \subseteq \mathbb{R}^d$. Assume that for all $x_0 \in M$, rank $(J_{f,x}(x_0)) = n$. If h attains a constrained local extremum at a, subject to the constraint f = C, then there exists $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$abla h(a) = \sum_{i=1}^{n} \lambda_i \nabla f_i(a), \quad and \quad f(a) = C,$$

1237 1238 1239

1241

1227 1228

1197 1198

1201 1202

1240 where λ is the Lagrangian multiplier, and $a \in M$ is where h attains its extremum.

We then recall

1245

1272

1273

1279

Lemma F.8 (Fermat's interior extremum theorem). Let $f : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^n$ is an open set, be a function and suppose that $x_0 \in D$ is a point where f has a local extremum. If f is differentiable at x_0 , then $\nabla f(x_0) = \mathbf{0}$.

Corollary F.9. The local extrema of a function f on a domain D occur only at boundaries, nondifferentiable points, and stationary points.

Definition 4 (Connected components, Anthony & Bartlett (1999)). A connected components of a subset $S \subset \mathbb{R}^d$ is the maximal nonempty subset $A \subseteq S$ such that any two points of A are connected by a continuous curve lying in A.

1251 1252 **Definition 5.** Let $S \subset \mathcal{A} \times \mathcal{W}$ where $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{W} \subseteq \mathbb{R}^d$, and let A be a connected component 1253 of S. We define $\alpha_{A,inf} = \inf\{\alpha \mid \exists w, (\alpha, w) \in A\}$, and $\alpha_{A,sup} = \sup\{\alpha \mid \exists w, (\alpha, w) \in A\}$ the α -extreme points of A.

Lemma F.10 (Warren (1968)). Let p be a polynomial in n variables. If the degree of polynomial pis d, the number of connected components of Z(p) is at most $2d^n$.

1257 1258 1259 1260 Lemma F.11 (Extreme value theorem). Let $f : D \to \mathbb{R}$ be a continuous function, where D is a non-empty compact set, then f is bounded and there exists $p, q \in D$ such that $f(p) = \sup_{x \in D} f(x)$ and $f(q) = \inf_{x \in D} f(x)$.

1261 1262 F.3 BACKGROUND ON DIFFERENTIAL GEOMETRY

In this section, we will introduce some basic terminology of differential geometry, as well as key results that we use in our proofs.

Definition 6 (Topological manifold, Robbin & Salamon (2022)). A topological manifold is a topological space M such that each point $p \in M$ has an open neighborhood U which is homeomorphic to an open subset of a Euclidean space.

Definition 7 (Smooth map, Robbin & Salamon (2022)). Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open sets. A map $f: U \to V$ is called smooth iff it is infinitely differentiable, i.e. iff all its partial derivatives

$$\partial^{\alpha} f = \frac{\partial^{\alpha_1 + \dots + \alpha_n} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}, \quad \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n.$$

exists and continuous. Here \mathbb{N}_0 is the set of non-negative integers.

1276 Definition 8 (Regular value, Robbin & Salamon (2022)). Let $U \subset \mathbb{R}^l$ be an open set and let f: **1277** $U \to \mathbb{R}^l$ be a smooth map. A value $\epsilon \in \mathbb{R}^l$ is called a *regular value* of f iff for any $x_0 \in \mathcal{U}$, **1278** $J_{f,x}(x_0)$ has full rank. Here, $J_{f,x}(x_0)$ is the Jacobian of f w.r.t x and evaluated at x_0 .

The following theorem says that for any smooth map f, the set of regular value of f has Lebesgue measure zero.

Theorem F.12 (Sard's theorem, Robbin & Salamon (2022)). Let $f : \mathbb{R}^k \to \mathbb{R}^l$ is a smooth map. Then the set of non-regular value of f has Lebesgue measure zero in \mathbb{R}^l .

1285 1286 F.4 SUPPORTING LEMMAS

¹²⁸⁷ In this section, we will proof some useful tools that are crucial for our analysis.

Definition 9 (Open set). A subset S of smooth n-manifold M is called open if for any point $x \in S$, there exists a chart $(U, \phi) \in M$ such that $p \in U$ and $\phi(U \cap S)$ is an open set in \mathbb{R}^n .

Definition 10 (Neighborhood). Let M be a smooth n-manifold, and let x be a point in M. Then U is an (open) neighborhood of x in M if U is an open subset of M that contains x.

Proposition F.13. Let M be a smooth n-manifold, and let S be an open subset of M. Let x be a point in S, and assume that V be a neighborhood of x in S. Then x is also a neighborhood of x in M.

Proof. First, note that V is a neighbor of x in S, then V is an open set in the subspace topology S. Therefore, there exists an open set T in M such that $V = S \cap T$. However, note that both S and T are open set in M, which implies V is also an open set in M. And since V contains x, meaning that V is a neighborhood of x in M.

Proposition F.14. Let $C = \{C_1, \ldots, C_n\}$ be a set of α -monotonic curve (Definition 12) in the space $\mathcal{A} \times \mathcal{W}$ of α and \mathcal{W} such that for any $\alpha \in (\alpha_1, \alpha_2)$ and any $C \in C$, there is a point \mathcal{W} such that $(\alpha, \mathcal{W}) \in C$. Let $u^*(\alpha) = \max_{C \in C} \{f(\alpha, \mathcal{W}) : (\alpha, \mathcal{W}) \in C\}$, where $f(\alpha, \mathcal{W})$ is continuous function and bounded in the domain $\mathcal{A} \times \mathcal{W}$. Then $u^*(\alpha)$ is continuous over (α_1, α_2) , and for any local maxima α' of $u^*(\alpha)$, there exist a point (α', \mathcal{W}') that is local maxima of the function $f(\alpha, \mathcal{W})$ restricted on a monotonic curve $C \in C$.

1307 *Proof.* We recall the most important properties of monotonic curve C: for any $\alpha \in (\alpha_1, \alpha_2)$, there 1308 is exactly one point W such that $(\alpha, W) \in C$. Since $f(\alpha, W)$ is continuous in the domain $\mathcal{A} \times \mathcal{W}$, 1309 hence it is also continuous along the curve C for any $C \in C$. Therefore, $u^*(\alpha)$ is also continuous.

1310 Now, consider any monotonic curve $C \in C$ and let $u_C^*(\alpha) = f(\alpha, W)$ where $(\alpha, W) \in C$. From 1311 the property of C, consider the continuous invertible mapping $I_C : (\alpha_1, \alpha_2) \to C$, where $I_C(\alpha) =$ 1312 (α, W) for any $\alpha \in (\alpha_1, \alpha_2)$. Assume α' is a local extrema of $u_C^*(\alpha)$ in (α_1, α_2) , then there exists 1313 an open neighbor V of α' such that for any $\alpha \in V$, $u_C^*(\alpha) \leq u_C^*(\alpha')$. Now, $I_C(V)$ is an open set 1314 in C that contains (α', W') , hence it is an open neighbor of (α', W') . For any $(\alpha, W) \in I_C(V)$, 1315 we have $f(\alpha, W) = u_C^* \alpha \leq u_C^*(\alpha') = f(\alpha', W')$. This means that (α', W') is a local extrema of 1316 $f(\alpha, W)$ in C.

Finally, it suffices to give a proof for the case of 2 functions. let $u^*(\alpha) = \max\{u^*_{C_1}(\alpha), u^*_{C_2}(\alpha)\}$. We claim that any local maxima of $u^*(\alpha)$ would be a local maxima of either $u^*_{C_1}(\alpha)$ and $u^*_{C_2}(\alpha)$. Assume that α' is a local maxima of u^* , and there exists an open neighbor V of α' in (α_1, α_2) such that for any $\alpha \in V$, $u^*(\alpha) \leq u^*(\alpha')$. WLOG, assume that $u^*(\alpha') = u^*_{C_1}$, therefore $u^*_{c_1}(\alpha') = u^*(\alpha') \geq u^*(\alpha l p h a) = \max\{u^*_{C_1}(\alpha), u^*_{C_2}(\alpha)\} \geq u^*_{C_1}(\alpha)$ for any $\alpha \in V$. This means that α' is a local extrema of $u^*_{c_1}(\alpha)$ in (α_1, α_2) .

1324 F.5 MONOTONIC CURVES

Proposition F.15. Let $S \subset \mathbb{R}^n$ be a bounded set in \mathbb{R}^n , and $f : \overline{S} \to \mathbb{R}$ be a bounded function, where \overline{S} is closure of S. Then $\sup_S f$ exists and there is a point $x^* \in \overline{S}$ such that $f(x^*) = \sup_S f$.

1329 *Proof.* Since f is bounded over \overline{S} , then $\sup_S f$ exists and let $a = \sup_S f$. By definition, for any 1330 i > 0, there exists $x_i \in S$ such that $|f(x_i) - a| < \frac{1}{i}$. Hence, we constructed a sequence $\{x_i\}_{i=1}^{\infty}$ 1331 such that $\lim_{i\to\infty} f(x_i) = a$.

Now, since $S \subset \mathbb{R}^n$ is a bounded subset in \mathbb{R}^n , by Bolzano-Weierstrass theorem, there exists a subsequence $\{x'_i\}_{i=1}^n \subseteq \{x_i\}_{i=1}^\infty$ such that the subsequence $\{x'_i\}_{i=1}^n$ converges. In other words, there exists $x^* \in \mathbb{R}^n$ such that $\lim_{i\to\infty} x'_i = x^*$, and since $\{x'_i\}_{i=1}^n \subset S$, then by definition $x^* \in \overline{S}$. Hence, we conclude that there exists $x^* \in \overline{S}$ such that $\sup_S f = f(x^*)$.

Definition 11 (Adjacent boundaries). Consider the partition of \mathbb{R}^n by N boundaries $N(h_i)$ for $i = 1, \ldots, N$, where h_i is polynomial of z. Let C be any connected components of $\mathbb{R}^n - \bigcup_{i=1}^n N(h_i)$. Then we say that a boundary N(p) is adjacent to C if $\overline{C} \cap N(p) \neq \emptyset$.

1341 F.6 MONOTONIC CURVE AND ITS PROPERTY

We now present the definition of monotonic curve in high dimension, a key component in our analysis.

Definition 12 (*x*-Monotonic curve). Let

- 1346 $f : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ 1347 $(x, y) \mapsto (f_1(x, y), \dots, f_d(x, y))$
- 1349 be a vector valued function, where each function f_i is a polynomial of x and y for i = 1, ..., d. Assume that $\mathbf{0} \in \mathbb{R}^d$ is a regular value of f, meaning that the set $V_f = \{(x, y) \mid f_i(x, y), i = i\}$

1350 1,..., d} defines a smooth 1-manifold in $\mathbb{R} \times \mathbb{R}^d$. Let $V' \subset V_f$ be a connected components of V_f , and let $C \subset V'$ be an connected open set in V' which is diffeomorphic to (0, 1). The curve C is said to be *x*-monotonic if for any point $(a, b) \in C$, we have det $(J_{f,y}(a, b)) \neq 0$, where $J_{f,y}(a, b)$ is a Jacobian of f with respect to y evaluated at (a, b), defined as

$$J_{f,\boldsymbol{y}}(a,\boldsymbol{b}) = \left[\frac{\partial f_i}{\partial y_j}(a,\boldsymbol{b})\right]_{d \times d}$$

Informally, a key property of an x-monotonic curve C is that for any x_0 , there exists exactly one y such that $(x_0, y) \in C$. We will formalize this claim in Lemma F.18, but first, we will review some fundamental results necessary for the proof.

Theorem F.16 (Implicit function theorem, Buck (2003)). *Consider the multivariate vector-valued function* f

$$f: \mathbb{R}^{n+m} o \mathbb{R}^m$$

 $(\boldsymbol{x}, \boldsymbol{y}) \mapsto (f_1(\boldsymbol{x}, \boldsymbol{y}), \dots, f_m(\boldsymbol{x}, \boldsymbol{y})),$

and assume that f is continuously differentiable. Let f(a, b) = 0 for some $(a, b) \in \mathbb{R}^{n+m}$, and the Jacobian $[\partial f_i, \dots,]$

$$J_{f,\boldsymbol{y}} = \left[\frac{\partial f_i}{\partial y_j}(\boldsymbol{a}, \boldsymbol{b})\right]_{m \times m}$$

is invertible, then there exists a neighborhood $U \subset \mathbb{R}^n$ containing \mathbf{a} , there exists a neighborhood $V \subset \mathbb{R}^n$ containing \mathbf{a} , there exists a neighborhood $V \subset \mathbb{R}^n$ containing \mathbf{b} , such that there exists an unique function $g: U \to V$ such that $g(\mathbf{a}) = \mathbf{b}$ and $f(\mathbf{x}, g(\mathbf{x})) = 0$ for all $x \in U$. We can also say that for $(\mathbf{x}, \mathbf{y}) \in U \times V$, we have $\mathbf{y} = g(\mathbf{x})$. Moreover, g is continuously differentiable and, if we denote

$$J_{f, \boldsymbol{x}}(\boldsymbol{a}, \boldsymbol{b}) = \left[rac{\partial f_i}{\partial x_j}(\boldsymbol{a}, \boldsymbol{b})
ight]_{m imes n}$$

1376

then

1374 1375

1377 1378

1391 1392

1398 1399

1403

1363 1364

1368

$$\left[\frac{\partial g_i}{\partial x_j}(\boldsymbol{x})\right]_{m \times n} = -\left[J_{f,\boldsymbol{y}}(\boldsymbol{x},g(\boldsymbol{x}))\right]_{m \times m}^{-1} \cdot \left[J_{f,\boldsymbol{x}}(\boldsymbol{x},g(\boldsymbol{x}))\right]_{m \times n}.$$

Theorem F.17 (Vector-valued mean value theorem). Let $S \subseteq \mathbb{R}^n$ be open and let $f : S \to \mathbb{R}^m$ be differentiable on all of S. Let $x, y \in S$ be such that the line segment connecting these two points contained in S, i.e. $L(x, y) \subset S$, where $L(x, y) = \{tx + (1 - t)y \mid t \in [0, 1]\}$. Then for every $a \in \mathbb{R}^m$, there exists a point $z \in L(x, y)$ such that $\langle a, f(y) - f(x) \rangle = \langle a, J_{f,x}(z)^\top (y - x) \rangle$.

We now present a formal statement and proof for the key property of x-monotonic curves.

Lemma F.18. Let C be an curve defined as in Definition 12. Then for any x_0 , the hyperplane $x = x_0$ intersects with C at at most 1 points.

1388 1389 *Proof.* (of Proposition F.18) Since C is diffeomorphic to (0, 1), there exists a continuously differentiable function h, where

$$h:(0,1)\to C$$

$$t\mapsto (x, \boldsymbol{y}) = (h_0(t), h_1(t), \dots, h_d(t)) \in C,$$

with correspond inverse function $h^{-1}: C \to (0, 1)$ which is also continuously differentiable.

1395 We will prove the statement by contradiction. Assume that there exists (x_0, y_1) , $(x_0, y_2) \in C$ where 1396 $y_1 \neq y_2$. Then we have two corresponding values $t_1 = h^{-1}(x_0, y_1) \neq t_2 = h^{-1}(x_0, y_2)$. Using 1397 Theorem F.17 for the function h, for any $a \in \mathbb{R}^d$, there exists $z_a \in (0, 1)$ such that

$$\langle \boldsymbol{a}, (0, \Delta \boldsymbol{y}) \rangle = \langle \boldsymbol{a}, \Delta t J_{h,t}(z_a) \rangle$$

where $\Delta y = y_2 - y_1 \neq 0$, $\Delta t = t_2 - t_1 \neq 0$, and $J_{h,t}(z_a) = \left(\frac{\partial h_0}{\partial t}(z_a), \frac{\partial h_1}{\partial t}(z_a), \dots, \frac{\partial h_d}{\partial t}(z_a)\right)$.

1402 Choose
$$a = a_1 = (1, 0, \dots, 0)$$
, then from above, there exists $z_{a_1} \in (0, 1)$ such that $\frac{\partial h_0}{\partial t}$

0. Now, consider the point $(x_{a_1}, y_{a_1}) = h(z_{a_1})$. From the assumption, $det(J_{f,y}(x_{a_1}, y_{a_1})) \neq 0$

0. Therefore, from Theorem F.16, there exists neighborhoods $U \subset \mathbb{R}$ containing $x_{a_1}, V \subseteq \mathbb{R}^d$ containing y_{a_1} , such that there exists a continuously differentiable function $g: U \to \mathbb{R}^d$, such that for any $(x, y) \in U \times V$, we have y = g(x). Again, at the point (x_{a_1}, y_{a_1}) corresponding to $t = z_{a_1}$, we have

 $\left. \frac{\partial y_i}{\partial t} \right|_{t=z_{a_1}} = \frac{\partial g_i}{\partial x} \cdot \frac{\partial x}{\partial t} \Big|_{t=z_{a_1}} = 0.$

This means that at the point $t = z_{a_1}$, we have $\frac{\partial x}{\partial t}\Big|_{t=z_{a_1}} = \frac{\partial y_i}{\partial t}\Big|_{a_1} = 0.$

Note that since h is a diffeomorphism, we have $t = (h^{-1} \circ h)(t)$. From chain rule, we have 1 = $J_{h^{-1},h} \cdot J_{h,t}$. However, if we let $t = z_{a_1}$, then $J_{h,t}(a_1) = 0$, meaning that $J_{h^{-1},h} \cdot J_{h,t}(z_{a_1}) = 0$, leading to a contradiction.

From Definition 13 and Proposition F.18, for each x-monotonic curve C, we can define their x-end points, which are the maximum and minimum of x-coordinate that a point in C can have.

Definition 13 (x-End points of monotonic curve in high dimension). Let V is an monotonic curves as defined in Definition 12. Then we call $\sup\{x \mid \exists y, (x, y) \in V\}$ and $\inf\{x \mid \exists y, (x, y) \in V\}$ the x-end points of V.

F.7 MAIN PROOF FOR THEOREM 5.1

Notation. We denote $[n] = \{1, \ldots, n\}$. For a polynomial $p(\boldsymbol{x})$, denote $Z(p) = \{\boldsymbol{x} : p(\boldsymbol{x}) = 0\}$ the zero set of p. For a set $C \subset \mathbb{R}^d$, denote \overline{C} the closure of C, int(C) the interior of C, bd(C) = \overline{C} – int(C) the boundary of C.

F.7.1 A PROOF THAT REQUIRES STRONGER ASSUMPTION

We first give a proof for the case where the piece functions $f_{x,i}$ and boundaries $h_{x,i}$ satisfies a bit stronger assumption.

Assumption 2 (Regularity assumption). Assume that for any function $u_{\pi}^{*}(\alpha)$, we have the following regularity condition: for any piece function $f_{x,i}$ and $S \leq d+1$ boundary functions h_1, \ldots, h_S chosen from $\{h_{\boldsymbol{x},1},\ldots,h_{\boldsymbol{x},M}\}$, we have

> 1. For any $(\alpha, w) \in \overline{h}^{-1}(0)$, we have $\operatorname{rank}(J_{\overline{h},w}(\alpha, w)) = S$, where $\overline{h} =$ $(h_1(\alpha, \boldsymbol{w}), \ldots, h_S(\alpha, \boldsymbol{w})).$

2. For any $(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) \in k^{-1}(0)$, we have $\operatorname{rank}(J_{k,(\boldsymbol{w},\boldsymbol{\lambda})}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda})) = d + S$. Here

$$k(\lambda, \boldsymbol{w}, \boldsymbol{\lambda}) = (k_1(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}), \dots, k_{d+S}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda})),$$

and

$$\begin{cases} k_i(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = h_i(\alpha, \boldsymbol{w}), & i = 1, \dots, S, \\ k_{s+j}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = \frac{\partial f_{\boldsymbol{x},i}}{\partial w_j} + \sum_{i=1}^s \lambda_i \frac{\partial h_i}{\partial w_j}, & j = 1, \dots, d. \end{cases}$$

3. For any $(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) \in \overline{k}^{-1}(\mathbf{0})$, we have $\operatorname{rank}(J_{\overline{k}, (\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma})})(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = 2d + 2d$ 2S+1. Here

$$\overline{k}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = (\overline{k}_1(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}), \dots, \overline{k}_{2d+2S+1}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma})),$$

and

$$\begin{aligned} \mathbf{1451} \\ \mathbf{1452} \\ \mathbf{1452} \\ \mathbf{1452} \\ \mathbf{1453} \\ \mathbf{1453} \\ \mathbf{1454} \\ \mathbf{1455} \\ \mathbf{1455} \\ \mathbf{1456} \\ \mathbf{1456} \\ \mathbf{1457} \end{aligned} \qquad \begin{cases} \overline{k}_z = h_{x,i,z}^S, z = 1, \dots, S \\ \overline{k}_{S+z} = \sum_{t=1}^d \gamma_t \frac{\partial h_{x,i,z}^S}{\partial w_t}, z = 1, \dots, S \\ \overline{k}_{2S+z} = \frac{\partial f_{x,i}}{\partial w_z} + \sum_{j=1}^S \lambda_j \frac{\partial h_{x,i,j}^S}{\partial w_z}, z = 1 \dots, d \\ \overline{k}_{2S+d+z} = \frac{\partial f_{x,i}}{\partial w_z} + \sum_{j=1}^S \theta_j \frac{h_{x,i,j}^S}{\partial w_z} + \sum_{t=1}^d \gamma_t \left[\frac{\partial^2 f_{x,i}}{\partial w_t \partial w_z} + \sum_{j=1}^S \lambda_j \frac{\partial^2 h_{x,i,j}^S}{\partial w_t \partial w_z} \right], z = 1, \dots, d \\ \overline{k}_{2S+2d+1} = \frac{\partial f_{x,i}}{\partial \alpha} + \sum_{j=1}^S \theta_j \frac{h_{x,i,j}^S}{\partial \alpha} + \sum_{t=1}^d \gamma_t \left[\frac{\partial^2 f_{x,i}}{\partial w_t \partial \alpha} + \sum_{j=1}^S \lambda_j \frac{\partial^2 h_{x,i,j}^S}{\partial w_t \partial \alpha} \right]. \end{aligned}$$

Remark 3. We note that Assumption 2.3 implies Assumption 2.2, and Assumption 2.2 implies Assumption 2.1. For convenience, we present Assumption 2 with a different sub-assumption is for readability, and because each sub-assumption has its own geometric meaning in our analysis. In particular:

- Assumption 2.1 implies that the intersections of any $S \le d+1$ boundaries are regular: they are either empty, or are a smooth (d+1-S)-manifold in \mathbb{R}^{d+1} .
- Assumption 2.2 refers to the regularity of the derivative curves.
- Assumption 2.3 implies that the number of local extrema of the piece function along any derivative curve is finite.

Theorem F.19. Assume that Assumption 2 holds, then for any problem instance $x \in \mathcal{X}$, the dual utility function u_x^* satisfies the followings:

(a) The hyperparameter domain A can be partitioned into at most

$$\mathcal{O}\left(N\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1} + NM(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$$

intervals such that $u^*_{x}(\alpha)$ is a continuous function over any interval in the partition, where N and M are the upper-bound for the number of pieces and boundary functions, and $\Delta = \max{\{\Delta_p, \Delta_b\}}$ is the maximum degree of piece $f_{\boldsymbol{x},i}$ and boundary $h_{\boldsymbol{x},i}$ polynomials.

(b)
$$u_{\boldsymbol{x}}^*(\alpha)$$
 has $\mathcal{O}\left(N\Delta^{4d+3}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ local maxima for any problem instance \boldsymbol{x} overall all such intervals.

Proof. (a) First, note that we can rewrite $u_{\boldsymbol{x},i}^*(\alpha)$ as

$$u^*_{\boldsymbol{x},i}(\alpha) = \max_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in\overline{R}_{\boldsymbol{x},i}} f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w})$$

Since $R_{\boldsymbol{x},i}$ is connected, let

$$\alpha_{\boldsymbol{x},i,\inf} = \inf\{\alpha \mid \exists \boldsymbol{w} : (\alpha, \boldsymbol{w}) \in R_{\boldsymbol{x},i}\}, \alpha_{\boldsymbol{x},i,\sup} = \sup\{\alpha \mid \exists \boldsymbol{w} : (\alpha, \boldsymbol{w}) \in R_{\boldsymbol{x},i}\}$$

be the α -extreme points of $\overline{R}_{\boldsymbol{x},i}$ (Definition 5). Then, for any $\alpha \in (\alpha_{\boldsymbol{x},i,\inf}, \alpha_{\boldsymbol{x},i,\sup})$, there exists \boldsymbol{w} such that $(\alpha, \boldsymbol{w}) \in R_{\boldsymbol{x},i}$.

Let $\mathbf{H}_{x,i}$ be the set of adjacent boundaries of $R_{x,i}$. By assumption, we have $|\mathbf{H}_{x,i}| \leq M$. For any subset $S = \{h_{S,1}, \dots, h_{S,S}\} \subset \mathbf{H}_{\mathbf{x},i}$, where |S| = S, consider the set of (α, w) defined by

$$h_{\mathcal{S},i}(\alpha, \boldsymbol{w}) = 0, \quad i = 1, \dots, S.$$

$$\tag{1}$$

If S > d + 1, from Assumption 2, the set of (α, w) above is empty. Consider $S \le d + 1$, from Assumption 2, the above defines a smooth d + 1 - S manifolds in \mathbb{R}^{d+1} . Note that, the set of above is exactly the set of (α, w) defined by

1502
1503
1504
$$\sum_{i=1}^{S} h_{\mathcal{S},i}(\alpha, w)^2 = 0.$$

Therefore, from Lemma F.10, the number of connected components of such manifolds is at most $2(2\Delta)^{d+1}$. Each connected components correspond to 2 α -extreme points, meaning that there are at most $4(2\Delta)^{d+1} \alpha$ -extreme points for all the connected components of the smooth manifolds defined by Equation 1. Taking all possible subset of boundaries of at most d + 1 elements, we have total of at most $\mathcal{N} \alpha$ -extreme points, where

1510
1511
$$\mathcal{N} \le (2\Delta)^{d+1} \sum_{S=0}^{d+1} \binom{M}{S} \le (2\Delta)^{d+1} \left(\frac{eM}{d+1}\right)^{d+1}.$$

¹⁵¹² Here, the final inequality is from Lemma F.6.

Now, let A_1 be the set of such α -extreme points after reordering. For each interval $I_t = (\alpha_t, \alpha_{t+1})$ 1514 of consecutive points A_1 , the set $\mathbf{S}_t^1 \subset 2^{\mathbf{H}_{x,t}}$ of sets of boundaries is fixed. here, the set \mathbf{S}_t consists 1515 of all set of boundary $S = \{h_{S,1}, \dots, h_{S,S}\}$ such that for any $\alpha \in (\alpha_t, \alpha_{t+1})$, there exists w such 1516 that $h_{\mathcal{S},i}(\alpha, \boldsymbol{w}) = 0$ for any $i = 1, \ldots, S$. Here, note that (α, \boldsymbol{w}) is not necessarily in $\overline{R}_{\boldsymbol{x},i}$, i.e. it 1517 might be infeasible. Now, for any fixed $\alpha \in I_t$, assume that w_{α} is a maxima of $f_{x,i}$ in $\overline{R}_{x,i}$ (which 1518 exists due to the compactness of $R_{x,i}$, meaning that (α, w_{α}) is also a local extrema in $R_{x,i}$. This 1519 implies there exists a set of boundaries $\mathcal{S} \in \mathbf{S}_t$ and $\boldsymbol{\lambda}$ such that $(\alpha, \boldsymbol{w}_{\alpha})$ satisfies the following due 1520 to Theorem F.7 1521

$$\begin{cases} h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha}) = 0, j = 1, \dots, S\\ \frac{\partial f(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}} + \sum_{j=1}^{S} \lambda_{j} \frac{\partial h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}}, i = 1, \dots, d, \end{cases}$$

1524 which defines a smooth 1-dimensional manifold \mathcal{M}^{S} in \mathbb{R}^{d+S+1} by Assumption 2. Again, from 1525 Lemma F.10, the number of connected components of \mathcal{M}_{S} is at most $2(2\Delta)^{d+S+1}$, corresponding 1526 to at most $4(2\Delta)^{d+S+1} \alpha$ -extreme points. Taking all possible subsets S of at most d+1 elements 1527 of $\mathbf{H}_{x,i}$, we have at most $\mathcal{O}\left((2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ such α -extreme points.

1529 1530 Let \mathcal{A}_2 be the set contains all the points α in \mathcal{A}_1 and the α -extreme points above and reordering them. Then in any interval $I_t = (\alpha_t, \alpha_{t+1})$ of consecutive points \mathcal{A}_2 , the set \mathbf{S}_t^2 is fixed. Here, the set \mathbf{S}_t consists of all sets of boundary \mathcal{S} such that for any $\alpha \in (\alpha_t, \alpha_{t+1})$, there exists w_α and λ such that $(\alpha, w_\alpha, \lambda)$ satisfies

$$\begin{cases} h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha}) = 0, j = 1, \dots, S\\ \frac{\partial f(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}} + \sum_{j=1}^{S} \lambda_{j} \frac{\partial h_{\mathcal{S},j}(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}}, i = 1, \dots, d \end{cases}$$

1536 1537 Note that the points $(\alpha, w_{\alpha}, \lambda)$ might not be in the feasible region $\overline{R}_{x,i}$. For each S, the points 1538 (α, w, λ) in which \mathcal{M}^{S} can enter or exit the feasible region $\overline{R}_{x,i}$ satisfies equation

of which the number of solution is finite due to Assumption 2. The number of such points is $2(2\Delta)^{d+S+1}$ for each $S \subset \mathbf{H}_{x,i}$, $|S| \leq d+1$ and each $h' \in \mathbf{H}_{x,i} - S$, meaning that there are at most $2M(2\Delta)^{d+S+1}$ such points for each S. Taking all possible sets S, we have at most $\mathcal{O}\left(M(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$.

, d.

1548 Let \mathcal{A}_3 be the set contains all the points in \mathcal{A}_2 and the α points above and reordering them. Then 1549 for any interval $I_t = (\alpha_t, \alpha_{t+1})$, the set \mathbf{S}_t^3 is fixed. Here, the set \mathbf{S}_t^3 consists of all sets of boundary 1550 \mathcal{S} such that for any $\alpha \in (\alpha_t, \alpha_{t+1})$ fixed, there exists w_{α} and λ such that $(\alpha, w_{\alpha}, \lambda)$ satisfies

1552
1553
1554
$$\begin{cases}
h(\alpha, \boldsymbol{w}_{\alpha}) = 0, h \in S \\
\frac{\partial f(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}} + \sum_{h \in S} \lambda_{h} \frac{\partial h(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_{i}}, i = 1, \dots, d_{n} \\
(\alpha, \boldsymbol{w}) \in \overline{R}_{\boldsymbol{x}, i}.
\end{cases}$$

Finally, we further break the smooth 1-manifold $\mathcal{M}^{\mathcal{S}}$ defined as above into monotonic curves (Definition 12), which we show to have attract property (Proposition F.18): for each monotonic curve Cand an α_0 , there is at most 1 point in C such that the coordinate $\alpha = \alpha_0$. For the smooth 1-manifold $\mathcal{M}^{\mathcal{S}}$, from Definition 12, the points that break $\mathcal{M}^{\mathcal{S}}$ into monotonic curves satisfies

1559
1560
1561
1562

$$\begin{cases} k_i(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = h_{\mathcal{S},i}(\alpha, \boldsymbol{w}_{\alpha}) = 0, i = 1, \dots, S \\ k_{S+j}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) = \frac{\partial f(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_i} + \sum_{i=1}^{S} \lambda_i \frac{\partial h_{\mathcal{S},i}(\alpha, \boldsymbol{w}_{\alpha})}{\partial w_i}, i = 1, \dots, d, \\ \det(J_{1, (\alpha, \boldsymbol{\lambda})}) = 0 \end{cases}$$

$$(\det(J_{k,(\boldsymbol{w},\boldsymbol{\lambda})}) = 0.$$

1534 1535

Here, $k = (k_1, \ldots, k_{S+d}) : \mathbb{R}^{d+S+1} \to \mathbb{R}^{d+S+1}$, and $J_{k,(\boldsymbol{w},\boldsymbol{\lambda})}$ is the Jacobian of function k with respect to $\boldsymbol{w}, \boldsymbol{\lambda}$. Note that $J_{k,(\boldsymbol{w},\boldsymbol{\lambda})}$ is a polynomial in $\alpha, \boldsymbol{w}, \boldsymbol{\lambda}$ of degree at most Δ^{d+S} . From Assumption 2 and Bezout's theorem, for each possible choice of S, there are at most Δ^{2d+2S} such points

($\alpha, \boldsymbol{w}, \boldsymbol{\lambda}$) satisfies the above. Taking all possible sets S, we have at most $\mathcal{O}\left(\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ such points.

1569 1570 In summary, there are a set of α points \mathcal{A}_4 of at most 1571 $\mathcal{O}\left(\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1} + M(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$ points such such that for any interval 1572 $I_t = (\alpha_t, \alpha_{t+1})$ of consecutive points (α_t, α_{t+1}) in \mathcal{A}_4 , there exists a set \mathcal{C}_t of monotonic curves such that for any $\alpha \in (\alpha_t, \alpha_{t+1})$, we have

$$u_{\boldsymbol{x},i}^{*}(\alpha) = \max_{C \in \mathcal{C}} \{ f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) \mid \exists \boldsymbol{\lambda}, (\alpha, \boldsymbol{w}, \boldsymbol{\lambda}) \in C \}$$

In other words, the value of $u_{\boldsymbol{x},i}^*(\alpha)$ for $\alpha \in I_t$ is the point-wise maximum of value of functions $f_{\boldsymbol{x},i}$ along the set of monotonic curves C. From Theorem F.14, we have $u_{\boldsymbol{x},i}^*(\alpha)$ is continuous over I_t . Therefore, we conclude that the number of discontinuities of $u_{\boldsymbol{x},i}^*(\alpha)$ is at most $\mathcal{O}\left(\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1} + M(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$.

Finally, recall that

1575

1585

1587

and combining with Theorem F.3, we conclude that the number of discontinuity points of $u_{\boldsymbol{x}}^*(\alpha)$ is at most $\mathcal{O}\left(N\Delta^{4d+2}\left(\frac{eM}{d+1}\right)^{d+1} + NM(2\Delta)^{2d+2}\left(\frac{eM}{d+1}\right)^{d+1}\right)$.

 $u_{\boldsymbol{x}}^*(\alpha) = \max_{i \in [N]} u_{\boldsymbol{x},i}(\alpha),$

Combining Theorem F.19 and 3.2, we have the following result.

Theorem F.20. Let $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0,1] \mid \alpha \in \mathcal{A}\}$, where $\mathcal{A} = [\alpha_{\min}, \alpha_{\max}] \subset \mathbb{R}$. Assume that any dual utility function u_{x}^{*} admits piecewise polynomial structures that satisfies Assumption 2. Then we have $\operatorname{Pdim}(\mathcal{U}) = \mathcal{O}(\log N + d \log(\Delta M))$. Here, M and N are the number of boundaries and functions, and Δ is the maximum degree of boundaries and piece functions.

1594 1595 F.7.2 Relaxing Assumption 2 to Assumption 1

In this section, we show how we can give a relaxation from Assumption 2 to our main Assumption 1597 I. In particular, we show that for any dual utility function u_x^* that satisfies Assumption 1, we can 1598 construct a function v_x^* such that: (1) The piecewise structure of v_x^* satisfies Assumption 2, and (2) 1599 $||u_x^* - v_x^*||$ can be *arbitrarily* small. This means that, for a utility function class \mathcal{U} , we can construct 1600 a new function class \mathcal{V} of which each dual function v_x^* satisfies Assumption 2. We then can establish 1601 pseudo-dimension upper-bound for \mathcal{V} using Theorem F.19, and then recover learning guarantee for 1602 \mathcal{U} using Lemma C.4.

First, we recall a useful result regarding sets of regular polynomials. This result states that given a set of regular polynomials and a new polynomial, we can modify the new polynomial by an arbitrarily small amount such that adding it to the set preserves the regularity of the entire set.

Lemma F.21 (Warren (1968)). Let $p(x), q_1(x), \ldots, q_m(x)$ be polynomials. Assume that **0** is a regular value of $q = (q_1, \ldots, q_m)$, then for all but finitely many number of real numbers α , we have **0** is also a regular value for $\overline{q} = (q_1, \ldots, q_m, p - \alpha)$.

1610 We now present the main claim in this section, which says that for any function $u_{\boldsymbol{x}}^*(\alpha)$ that satisfies 1611 Assumption 1, we can construct a function $v_{\boldsymbol{x}}^*(\alpha)$ that satisfies Assumption 2 and that $||u_{\boldsymbol{x}}^* - v_{\boldsymbol{x}}^*||_{\infty}$ 1612 can be arbitrarily small.

1613 1614 **Lemma F.22.** Let u_x^* be a dual utility function of a utility function class U. Assume that the piecewise polynomial structures of u_x^* satisfies Assumption 1, then we can construct the function v_x^* such that v_x^* has piece-wise polynomial structures that satisfies Assumption 2, and $||u_x^* - v_x^*||_{\infty}$ can be arbitrarily small.

1617

1618 *Proof.* Consider the functions \overline{k} 1619

 $\overline{k}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = (\overline{k}_1(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}), \dots, \overline{k}_{2d+2s+1}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma})),$

1620 and 1621 $\overline{k}_{z}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = h_{x,i,z}^{\mathcal{S}}(\alpha, \boldsymbol{w}), z = 1, \dots, S$ $\overline{k}_{S+z}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = \sum_{t=1}^{d} \gamma_t \frac{\partial h_{x,i,z}^{S}(\alpha, \boldsymbol{w})}{\partial w_t}, z = 1, \dots, S$ $\overline{k}_{2S+z}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = \frac{\partial f_{x,i}(\alpha, \boldsymbol{w})}{\partial w_z} + \sum_{j=1}^{S} \lambda_j \frac{\partial h_{x,i,j}^{S}(\alpha, \boldsymbol{w})}{\partial w_z}, z = 1, \dots, d$ $\overline{k}_{2S+d+z}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = \frac{\partial f_{x,i}(\alpha, \boldsymbol{w})}{\partial w_z} + \sum_{j=1}^{S} \lambda_j \frac{\partial h_{x,i,j}^{S}(\alpha, \boldsymbol{w})}{\partial w_z}, z = 1, \dots, d$ 1622 1623 1624 1625 1626 $\begin{bmatrix} \sum_{i=1}^{d} \gamma_t \left[\frac{\partial^2 f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w})}{\partial w_t \partial w_z} + \sum_{j=1}^{S} \lambda_j \frac{\partial^2 h_{\boldsymbol{x},i,j}^S(\alpha,\boldsymbol{w})}{\partial w_t \partial w_z} \right] = 0, z = 1, \dots, d \\ \overline{k}_{2S+2d+1}(\alpha, \boldsymbol{w}, \boldsymbol{\lambda}, \boldsymbol{\theta}, \boldsymbol{\gamma}) = \frac{\partial f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w})}{\partial \alpha} + \sum_{j=1}^{S} \theta_j \frac{h_{\boldsymbol{x},i,j}^S(\alpha, \boldsymbol{w})}{\partial \alpha} + \sum_{t=1}^{d} \gamma_t \left[\frac{\partial^2 f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w})}{\partial w_t \partial \alpha} + \sum_{j=1}^{S} \lambda_j \frac{\partial^2 h_{\boldsymbol{x},i,j}^S(\alpha, \boldsymbol{w})}{\partial w_t \partial \alpha} \right].$ 1627 1628 1629 1630 1631 Since $u_{\mathbf{x}}^*$ satisfies Assumption 2.2, then **0** is a regular value of $(\overline{k}_1, \ldots, \overline{k}_{2S})$. From Lemma F.21, there exists finitely number of real-valued τ such that **0** is not a regular value of 1633 $(\overline{k}_1,\ldots,\overline{k}_{2S},\overline{k}_{2S+1}-\tau)$. Let $\tau^*\neq 0$ be the such τ such that $|\tau^*|$ is the smallest. Then for any $0 < \tau < |\tau^*|$, we have **0** is a regular value of $(\overline{k}_1, \ldots, \overline{k}_{2S}, \overline{k}_{2S+1} - \tau)$. Keep doing so for the 1635 all (finite number) polynomials $\hat{k}_{2S+1}, \ldots, \hat{k}_{2S+2d+1}$, we claim that there exists a $\tau^* \neq 0$, such that for any $0 < \tau < |\tau^*|$, we have **0** is a regular value of $(\hat{k}_1, \dots, \hat{k}_{2S}, \hat{k}_{2S+1} - \tau, \dots, \hat{k}_{2S+2d+1} - \tau)$. 1637 We then construct the function v_x^* as follow. 1639 • The set of boundary functions is the same as $u_x^* : \{h_{x,1}, \ldots, h_{x,M}\}$. 1640 - In each region $R_{{\bm x},i},$ the piece function $f_{{\bm x},i}'(\alpha,{\bm w})$ of $v_{{\bm x}}^*$ is defined as: 1641 1642 $f'_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) = f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) + \tau \alpha + \tau \sum_{i=1}^{u} w_{z},$ 1643 1644 1645 for some $0 < \tau < |\tau^*|$. Then 1646 1647 • v_x^* satisfies Assumption 2. 1648 • In any region $R_{\boldsymbol{x},i}$, we have 1650 $|f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) - f'_{\boldsymbol{x},i}(\alpha, \boldsymbol{w})| = \left|\tau\alpha + \tau \sum_{i=1}^{d} w_{z}\right| \leq \tau C,$ 1651 1652 1654 where $C = (d+1) \max\{|\alpha_{\min}, \alpha_{\max}, w_{\min}, w_{\max}|\}$. This implies 1655 $\sup_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in R_{\boldsymbol{x},i}} f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w}) - 2\tau C \leq \sup_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in R_{\boldsymbol{x},i}} f'_{\boldsymbol{x},i}(\alpha,\boldsymbol{w}) \leq \sup_{\boldsymbol{w}:(\alpha,\boldsymbol{w})\in R_{\boldsymbol{x},i}} f_{\boldsymbol{x},i}(\alpha,\boldsymbol{w}) + 2\tau C,$ 1656 1657 or $u_{\boldsymbol{x},i}^*(\alpha) - 2\tau C \leq v_{\boldsymbol{x},i}^*(\alpha) \leq u_{\boldsymbol{x},i}^*(\alpha) + 2\tau C \Rightarrow \|u_{\boldsymbol{x},i}^* - v_{\boldsymbol{x},i}^*(\alpha)\|_{\infty} \leq 2\tau C.$ 1658 1659 Then we conclude that $||u_x^* - v_x^*(\alpha)||_{\infty} \leq 2\tau C$, and since τ can be arbitrarily small, we have the conclusion. \square 1661 **Recover the guarantee under Assumption 1** F.7.3 1663 We now give the formal proof for the Theorem 5.1. 1664 Theorem 5.1 (restated). Consider the utility function class $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}.$ 1665 Assume that the dual utility function $u_{\boldsymbol{x}}^*(\alpha) = \sup_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$, and $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ admits piecewise constant polynomial structure with the piece functions $f_{x,i}$ and boundaries $h_{x,i}$ satisfies Assumption 1. Then for any distribution \mathcal{D} over \mathcal{X} , for any $\delta \in (0,1)$, with probability at least $1 - \delta$ over the 1668 draw of $S \sim \mathcal{D}^m$, we have 1669 $|\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\hat{\alpha}}(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[u_{\alpha^*}(\boldsymbol{x})]| \leq \mathcal{O}\left(\sqrt{\frac{\log N + d\log(\Delta M) + \log(1/\delta)}{m}}\right).$ 1671 1672

1673 Here, M and N are the number of boundaries and connected sets, $\Delta = \max{\{\delta_p, \delta_d\}}$ is the maximum degree of piece $f_{x,i}$ and boundaries $h_{x,i}$.

1674 *Proof.* Let $\mathcal{U} = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in \mathcal{A}\}$ be a function class of which each dual utility 1675 u_x^* satisfies Assumption 1. From Lemma F.7.2, there exists a function class $\mathcal{V} = \{v_\alpha : \mathcal{X} \rightarrow v_\alpha\}$ 1676 $[0, H] \mid \alpha \in \mathcal{A}\}$ such that for any problem instance x, we have $\|u_x^* - v_x^*\|_{\infty}$ can be arbitrarily small, and any v_x^* satisfies Assumption 2. From Theorem F.19, we have $\operatorname{Pdim}(\mathcal{V}) = \mathcal{O}(\log N + \log N)$ 1677 $d\log(\Delta M)$). From Lemma C.4, we have $\mathscr{R}_m(\mathcal{V}) = \mathcal{O}\left(\frac{\operatorname{Pdim}(\mathcal{V})}{m}\right)$. From Lemma C.3, we have 1678 1679 $\hat{\mathscr{R}}_{S}(\mathcal{U}) = \mathcal{O}\left(\sqrt{\frac{\log N + d\log(\Delta M)}{m}}\right)$, where $S \in \mathcal{X}^{m}$. Finally, standard learning theory result give 1681 us the final claim. 1682

1683 1684

1685

G ADDITIONAL DETAILS FOR SECTION 6

G.1 TUNING THE INTERPOLATION PARAMETER FOR ACTIVATION FUNCTIONS

1688 G.1.1 REGRESSION CASE

We now provide a formal proof for Theorem 6.1, which analyzes the generalization guarantee for selecting the interpolation hyperparameter of activation functions in neural architecture search.

Theorem 6.1 (restated). Let \mathcal{L}^{AF} denote loss function class defined above, with activation functions o_1, o_2 having maximum degree Δ and maximum breakpoints p. Given a problem instance (X, Y), the dual loss function is defined as $\ell^*_{(X,Y)}(\alpha) := \min_{w \in \mathcal{W}} f((X,Y), w; \alpha) =$ $\min_{w \in \mathcal{W}} f_{(X,Y)}(\alpha, w)$, and $f_{(X,Y)}(\alpha, w)$ admits piecewise polynomial structure with bounded pieces and boundaries. Assume that the piecewise structure of $f_{(X,Y)}(\alpha, w)$ satisfies Assumption 1, then for any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of problem instances $S \sim \mathcal{D}^m$, where \mathcal{D} is some distribution over \mathcal{X} , we have

1699

$$\left|\mathbb{E}_{(X,Y)\sim\mathcal{D}}[\ell_{\hat{\alpha}}((X,Y))] - \mathbb{E}_{(X,Y)\sim\mathcal{D}}[\ell_{\alpha^*}((X,Y))]\right| = \mathcal{O}\left(\sqrt{\frac{L^2W\log\Delta + LW\log(Tpk) + \log(1/\delta)}{m}}\right)$$

1702

1712

1703 1704 Proof. Let x_1, \ldots, x_T denote the fixed (unlabeled) validation examples from the *fixed* validation 1704 dataset (X, Y). We will show a bound N on a partition of the combined parameter-hyperparameter 1705 space $\mathcal{W} \times \mathbb{R}$, such that within each piece the function $f_{(X,Y)}(\alpha, w)$ is given by a fixed bounded-1706 degree polynomial function in α, w on the given fixed dataset (X, Y), where the boundaries of the 1707 partition are induced by at most M distinct polynomial threshold functions. This structure allows us 1708 to use our result Theorem 5.1 to establish learning guarantee for the function class \mathcal{L}^{AF} .

The proof proceeds by an induction on the number of network layers L. For a single layer L = 1, the neural network prediction at node $j \in [k_1]$ is given by

$$\hat{y}_{ij} = \alpha o_1(\boldsymbol{w}_j x_i) + (1 - \alpha) o_2(\boldsymbol{w}_j x_i)$$

1713 1714 for $i \in [T]$. $\mathcal{W} \times \mathbb{R}$ can be partitioned by $2Tk_1p$ affine boundary functions of the form $w_jx_i - t_k$, 1715 where t_k is a breakpoint of o_1 or o_2 , such that \hat{y}_{ij} is a fixed polynomial of degree at most l + 11716 in α , w in any piece of the partition \mathcal{P}_1 induced by the boundary functions. By Warren's theorem 1717 (Lemma F.10), we have $|\mathcal{P}_1| \leq 2 \left(\frac{4eTk_1p}{W_1}\right)^{W_1}$.

1718 Now suppose the neural network function computed at any node in layer $L \leq r$ for some $r \geq 1$ is 1719 given by a piecewise polynomial function of α , \boldsymbol{w} with at most $|\mathcal{P}_r| \leq \prod_{q=1}^r 2\left(\frac{4eTk_q p(\Delta+1)^q}{W_q}\right)^W$ 1720 1721 pieces, and at most $2Tp\sum_{q=1}^{r}k_q$ polynomial boundary functions with degree at most $(\Delta + 1)^r$. 1722 Let $j' \in [k_{r+1}]$ be a node in layer r+1. The node prediction is given by $\hat{y}_{ij'} = \alpha o_1(\boldsymbol{w}_{j'}\hat{y}_i) + \boldsymbol{w}_{j'}$ 1723 $(1 - \alpha)o_2(\boldsymbol{w}_{j'}\hat{y}_i)$, where \hat{y}_i denotes the incoming prediction to node j' for input x_i . By inductive 1724 hypothesis, there are at most $2Tk_{r+1}p$ polynomials of degree at most $(\Delta+1)^r+1$ such that in each 1725 piece of the refinement of \mathcal{P}_r induced by these polynomial boundaries, $\hat{y}_{ij'}$ is a fixed polynomial with degree at most $(\Delta + 1)^{r+1}$. By Warren's theorem, the number of pieces in this refinement is at most $|\mathcal{P}_{r+1}| \leq \prod_{q=1}^{r+1} 2\left(\frac{4eTk_q p(\Delta+1)^q}{W_q}\right)^{W_q}$. 1726 1727

Thus $f_{(X,Y)}(\alpha, \boldsymbol{w})$ is piecewise polynomial with at most $2Tp \sum_{q=1}^{L} k_q = 2mpk$ polynomial boundary functions with degree at most $(\Delta + 1)^{2L}$, and number of pieces at most $|\mathcal{P}_L| \leq \Pi_{q=1}^{L} 2\left(\frac{4eTk_qp(\Delta+1)^q}{W_q}\right)^{W_q}$. Assume that the piecewise polynomial structure of $f_{(X,Y)}(\alpha, \boldsymbol{w})$ satisfies Assumption 1, then applying Theorem 5.1 and standard learning learning theory result gives us the final claim.

1734 1735

G.1.2 BINARY CLASSIFICATION CASE

1737 In the binary classification setting, the output of the final layer corresponds to the prediction 1738 $g(\alpha, \boldsymbol{w}, x) = \hat{y} \in \mathbb{R}$, where $\boldsymbol{w} \in \mathcal{W} \subset \mathbb{R}^W$ is the vector of parameters (network weights), and α is 1739 the architecture hyperparameter. The 0-1 validation loss on a single validation example $\boldsymbol{x} = (X, Y)$ 1740 is given by $\mathbb{I}_{\{g(\alpha, \boldsymbol{w}, x) \neq y\}}$, and on a set of T validation examples as

1741 1742

1743

$$\ell^c_{\alpha}(\boldsymbol{x}) = \min_{\boldsymbol{w}\in\mathcal{W}} \frac{1}{T} \sum_{(x,y)\in(X,Y)} \mathbb{I}_{\{g(\alpha,\boldsymbol{w},x)\neq y\}} = \min_{\boldsymbol{w}\in\mathcal{W}} f(\boldsymbol{x},\boldsymbol{w},\alpha).$$

For a fixed validation dataset $\boldsymbol{x} = (X, Y)$, the dual class loss function is given by $\mathcal{L}_c^{AF} = \{\ell_\alpha^c : \mathcal{X} \to [0,1] \mid \alpha \in \mathcal{A}\}.$

Theorem G.1. Let \mathcal{L}_c^{AF} denote loss function class defined above, with activation functions o_1, o_2 having maximum degree Δ and maximum breakpoints p. Given a problem instance $\mathbf{x} = (X, Y)$, the dual loss function is defined as $\ell_{\mathbf{x}}^*(\alpha) := \min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{x}, \mathbf{w}; \alpha) = \min_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{x}}(\alpha, \mathbf{w})$. Then, $f_{\mathbf{x}}(\alpha, \mathbf{w})$ admits piecewise constant structure. For any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of problem instances $S \sim \mathcal{D}^m$, where \mathcal{D} is some distribution over \mathcal{X} , we have

1752

$$\begin{aligned} \| \mathbb{E}_{(X,Y)\sim\mathcal{D}}[\ell_{\hat{\alpha}}((X,Y))] - \mathbb{E}_{(X,Y)\sim\mathcal{D}}[\ell_{\alpha^*}((X,Y))] | &= \mathcal{O}\left(\sqrt{\frac{L^2W\log\Delta + LW\log Tpk + \log(1/\delta)}{m}}\right) \end{aligned}$$

1755

1781

1756 Proof. As in the proof of Theorem 6.1, the loss function \mathcal{L}_c can be shown to be piecewise con-1757 stant as a function of α , w, with at most $|\mathcal{P}_L| \leq \prod_{q=1}^L 2\left(\frac{4eTk_q p(\Delta+1)^q}{W_q}\right)^{W_q}$ pieces. We can apply 1759 Theorem 4.2 to obtain the desired learning guarantee for \mathcal{L}_c^{AF} .

1761 G.2 DATA-DRIVEN HYPERPARAMETER TUNING FOR GRAPH POLYNOMIAL KERNELS

1763 G.2.1 THE CLASSIFICATION CASE

We use the following result due to Warren (1968) to establish the piecewise constant structure of the dual loss function for GCNs.

Theorem G.2 (Warren 1968). Suppose $N \ge n$. Consider N polynomials p_1, \ldots, p_N in n variables of degree at most Δ . Then the number of connected components of $\mathbb{R}^n \setminus \bigcup_{i=1}^N \{ z \in \mathbb{R}^n \mid p_i(z) = 0 \}$ is $\mathcal{O}\left(\frac{N\Delta}{n}\right)^n$.

1771 To prove Theorem 6.2, we first show that given any problem instance x, the function $f(x, w; \alpha) = f_x(\alpha, w)$ is a piecewise constant function, where the boundaries are rational threshold functions of α and w. We then proceed to bound the number of rational functions and their maximum degrees, which can be used to give an upper-bound for the number of connected components, using G.2. 1776 After giving an upper-bound for the number of connected components, we then use Theorem 4.2 to recover learning guarantee for \mathcal{U}

1777 1778 Lemma G.3. Given a problem instance $\boldsymbol{x} = (X, y, \boldsymbol{\delta}, \mathcal{Y}_L)$ that contains the vertices representation 1779 X, the label of labeled vertices, the indices of labeled vertices \mathcal{Y}_L , and the distance matrix $\boldsymbol{\delta}$, 1780 consider the function

$$f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) := f(\boldsymbol{x}, \boldsymbol{w}; \alpha) = \frac{1}{|\mathcal{Y}_L|} \sum_{i \in \mathcal{Y}_L} \mathbb{I}_{\{\hat{y}_i \neq y_i\}}$$

which measures the 0-1 loss corresponding to the GCN parameter w, polynomial kernel parameter α , and labeled vertices on problem instance x. Then we can partition the space of w and α into

$$\mathcal{O}\left(\left(\frac{(nF^2)(2\Delta+6)}{1+dd_0+d_0F}\right)^{1+dd_0+d_0F}(\Delta+1)^{nd_0}\right)$$

connected components, in each of which the function $f(x, w; \alpha)$ is a constant function.

1790 Proof. First, recall that $Z = \text{GCN}(X, A) = \hat{A}\text{ReLU}(\hat{A}XW^{(0)})W^{(1)}$, where $\hat{A} = \tilde{D}^{-1}\tilde{A}$ is the 1791 row-normalized adjacent matrix, and the matrices $\tilde{A} = [\tilde{A}_{i,j}] = A + I_n$ and $\tilde{D} = [\tilde{D}_{i,j}]$ are 1792 calculated as 1793 $A_{i,j} = (\delta_{i,j} + \alpha)^{\Delta}$,

1785 1786 1787

1789

1795

1796

1799

1801

1804

1806

1808

1810 1811 1812

1814

1815

1816

1818

1819

1820

1821

1824 1825

1831

 $\tilde{D}_{i,j} = 0$ if $i \neq j$, and $\tilde{D}_{i,i} = \sum_{j=1}^{n} \tilde{A}_{i,j}$ for $i \in [n]$.

Here, recall that $\delta = [\delta_{i,j}]$ is the distance matrix. We first proceed to analyze the output Z step by step as follow:

- Consider the matrix $T^{(1)} = XW^{(0)}$ of size $n \times d_0$. It is clear that each element of $T^{(1)}$ is a polynomial of $W^{(0)}$ of degree at most 1.
- Consider the matrix $T^{(2)} = \hat{A}T^{(1)}$ of size $n \times d_0$. We can see that each element of matrix \hat{A} is a rational function of α of degree at most Δ . Moreover, by definition, the the denominator of each rational functions are strictly positive. Therefore, each element of matrix $T^{(2)}$ is a rational function of $W^{(0)}$ and α of degree at most $\Delta + 1$.
 - Consider the matrix $T^{(3)} = \text{ReLU}(T^{(2)})$ of size $n \times d_0$. By definition, we have

$$T_{i,j}^{(3)} = \begin{cases} T_{i,j}^{(2)}, & \text{if } T_{i,j}^{(2)} \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

This implies that there are $n \times d_0$ boundary functions of the form $\mathbb{I}_{T_{i,j}^{(2)} \ge 0}$ where $T_{i,j}^{(2)}$ is a rational function of $W^{(0)}$ and α of degree at most $\Delta + 1$ with strictly positive denominators. From Theorem G.2, the number of connected components given by those $n \times d_0$ boundaries are $\mathcal{O}\left((\Delta + 1)^{nd_0}\right)$. In each connected components, the form of $T^{(3)}$ is fixed, in the sense that each element of $T^{(3)}$ is a rational functions in $W^{(0)}$ and α of degree at most $\Delta + 1$.

• Consider the matrix $T^{(4)} = T^{(3)}W^{(1)}$. In connected components defined above, it is clear that each element of $T^{(4)}$ is either 0 or a rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 2$.

• Finally, consider $Z = \hat{A}T^{(4)}$. In each connected components defined above, we can see that each element of Z is either 0 or a rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 3$.

In summary, we proved above that the space of w, α can be partitioned into $\mathcal{O}((\Delta+1)^{nd_0})$ connected components, over each of which the output Z = GCN(X, A) is a matrix with each element is rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 3$. Now in each connected component C, each corresponding to a fixed form of Z, we will analyze the behavior of $f(x, w; \alpha)$, where

$$f(\boldsymbol{x}, \boldsymbol{w}; lpha) = rac{1}{|\mathcal{Y}_L|} \sum_{i \in \mathcal{Y}_L} \mathbb{I}_{\hat{y}_i
eq y_i}$$

1833 Here $\hat{y}_i = \arg \max_{j \in 1,...,F} Z_{i,j}$, assuming that we break tie arbitrarily but consistently. For any $F \ge j > k \ge 1$, consider the boundary function $\mathbb{I}_{Z_{i,j} \ge Z_{i,k}}$, where $Z_{i,j}$ and $Z_{i,k}$ are rational functions in α and w of degree at most $\Delta + 3$, and have strictly positive denominators. This means that the boundary function $\mathbb{I}_{Z_{i,j} \ge Z_{i,k}}$ can also equivalently rewritten as $\mathbb{I}_{\tilde{Z}_{i,j}>0}$, where $\tilde{Z}_{i,j}$ is a polynomial

1836 in α and \boldsymbol{w} of degree at most $2\Delta + 6$. There are $\mathcal{O}(nF^2)$ such boundary functions, partitioning 1837 the connected component C into at most $\mathcal{O}\left(\left(\frac{(nF^2)(2\Delta+6)}{1+dd_0+d_0F}\right)^{1+dd_0+d_0F}\right)$ connected components. In 1838 each connected components, \hat{y}_i is fixed for all $i \in \{1, \dots, n\}$, meaning that $f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$ is a constant 1840 function.

In 1841 conclusion, we can partition the space of \boldsymbol{w} and into $\mathcal{O}\left(\left(\frac{(nF^2)(2\Delta+6)}{1+dd_0+d_0F}\right)^{1+dd_0+d_0F} \times (\Delta+1)^{nd_0}\right) \text{ connected components, in each of which the } C \left(\frac{(nF^2)(2\Delta+6)}{1+dd_0+d_0F}\right)^{1+dd_0+d_0F} \times (\Delta+1)^{nd_0}$ 1843 function $f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$ is a constant function.

1844

1845 1846 We now ready to give a proof for Theorem 6.2.

Theorem 6.2 (restated). Let \mathcal{L}^{GCN} denote the loss function class defined above. Given a problem instance \boldsymbol{x} , the dual loss function is defined as $\ell_{\boldsymbol{x}}^*(\alpha) := \min_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{x}, \boldsymbol{w}; \alpha)) = \min_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$. Then $f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ admits piecewise constant structure. Furthermore, for any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of problem instances $S = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_m) \sim \mathcal{D}^m$, we have

$$|\mathbb{E}_{S\sim\mathcal{D}}[\ell_{\hat{\alpha}_{\mathsf{ERM}}}(S)] - \mathbb{E}_{S\sim\mathcal{D}}[\ell_{\alpha^*}(S)]| = \mathcal{O}\left(\sqrt{\frac{d_0(d+F)\log nF\Delta + \log(1/\delta)}{m}}\right).$$

18

1851 1852

Proof. Given a problem instance \boldsymbol{x} , from Lemma G.3, we can partition the space of \boldsymbol{w} and α into **O** (($\frac{(nF^2)(2\Delta+6)}{1+dd_0+d_0F}$)^{1+dd_0+d_0F}(Δ + 1)^{nd_0}) connected components, over each of which the function $f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$ remains constant. Combining with Theorem 4.2, we have the final claim

G.2.2 THE REGRESSION CASE

The case is a bit more tricky, since our piece function now is not a polynomial, but instead a rational function of α and w. Therefore, we need stronger assumption (Assumption 2) to have Theorem G.5. 1863

Graph instance and associated representations. Consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} and \mathcal{E} are sets of vertices and edges, respectively. Let $n = |\mathcal{V}|$ be the number of vertices. Each vertex in the graph is associated with a feature vector of *d*-dimension, and let $X \in \mathbb{R}^{n \times d}$ is the matrix that contains all the vertices representation in the graph. We also have a set of indices $\mathcal{Y}_L \subset [n]$ of labeled vertices, where each vertex belongs to one of *C* categories and $L = |\mathcal{Y}_L|$ is the number of labeled vertices. Let $y \in [-R, R]^L$ be the vector representing the true labels of labeled vertices, where the coordinate y_l of *Y* corresponds to the label vector of vertice $l \in \mathcal{Y}_L$.

1871 **Label prediction.** We want to build a model for classifying the other unlabelled vertices, which 1872 belongs to the index set $\mathcal{Y}_U = [n] \setminus \mathcal{Y}_L$. To do that, we train a graph convolutional network (GCN) 1873 Kipf & Welling (2017) using semi-supervised learning. Along with the vertices representation ma-1874 trix X, we are also given the distance matrix $\boldsymbol{\delta} = [\delta_{i,j}]_{(i,j) \in [n]^2}$ encoding the correlation between 1875 vertices in the graph. Using the distance matrix D, we then calculate the following matrices A, \tilde{A}, \tilde{D} 1876 which serve as the inputs for the GCN. The matrix $A = [A_{i,j}]_{(i,j) \in [n]^2}$ is the adjacent matrix which 1877 is calculated using distance matrix δ and the polynomial kernel of degree Δ and hyperparameter 1878 $\alpha > 0$

$$A_{i,j} = (\delta(i,j) + \alpha)^{\Delta}.$$

We then let $\tilde{A} = A + I_n$, where I_n is the identity matrix, and $\tilde{D} = [\tilde{D}_{i,j}]_{[n]^2}$ of which each element is calculated as

$$\tilde{D}_{i,j} = 0 \text{ if } i \neq j, \text{ and } \tilde{D}_{i,i} = \sum_{j=1}^{n} \tilde{A}_{i,j} \text{ for } i \in [n].$$

1885

1879 1880

> Network architecture. We consider a simple two-layer graph convolutional network (GCN) fKipf & Welling (2017), which takes the adjacent matrix A and vertices representation matrix X as inputs and output Z = f(X, A) of the form

$$Z = \operatorname{GCN}(X, A) = \hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)})W^{(1)}$$

where $\hat{A} = \tilde{D}^{-1}\tilde{A}$, $W^{(0)} \in \mathbb{R}^{d \times d_0}$ is the weight matrix of the first layer, and $W^{(1)} \in \mathbb{R}^{d_0 \times 1}$ is the hidden-to-output weight matrix. Here, z_i is the i^{th} element of Z representing the prediction of the model for vertice i.

Objective function and the loss function class. We consider mean squared loss function corresponding to hyperparameter α and networks parameter $w = (w^{(0)}, w^{(1)})$ when operating the problem instance x as follow

$$f(\boldsymbol{x}, \boldsymbol{w}; \alpha) = rac{1}{|\mathcal{Y}_L|} \sum_{i \in \mathcal{Y}_L} (z_i - y_i)^2.$$

1900 We then define the loss function corresponding to hyperparameter α when operating on the problem 1901 instance x as

$$\ell_{\alpha}(\boldsymbol{x}) = \min f(\boldsymbol{x}, \boldsymbol{w}; \alpha)$$

We then define the loss function class for this problem as follow

$$\mathcal{L}_r^{\text{GCN}} = \{\ell_\alpha : \mathcal{X} \to [0, R^2] \mid \alpha \in \mathcal{A}\},\$$

and our goal is to analyze the pseudo-dimension of the function class $\mathcal{L}_r^{\text{GCN}}$.

Lemma G.4. Given a problem instance $\mathbf{x} = (X, y, \boldsymbol{\delta}, \mathcal{Y}_L)$ that contains the graph \mathcal{G} , its vertices representation X, the indices of labeled vertices \mathcal{Y}_L , and the distance matrix $\boldsymbol{\delta}$, consider the function

$$f_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) := f(\boldsymbol{x}, \boldsymbol{w}; \alpha) = \frac{1}{|\mathcal{Y}_L|} \sum_{i \in \mathcal{Y}_L} (z_i - y_i)^2$$

which measures the mean squared loss corresponding to the GCN parameter w, polynomial kernel parameter α , and labeled vertices on problem instance x. Then we can partition the space of w and α into $\mathcal{O}((\Delta + 1)^{nd_0})$ connected components, in each of which the function $f(x, w; \alpha)$ is a rational function in α and w of degree at most $2(\Delta + 3)$.

1917 1918 *Proof.* First, recall that $Z = \text{GCN}(X, A) = \hat{A}\text{ReLU}(\hat{A}XW^{(0)})W^{(1)}$, where $\hat{A} = \tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}$ 1919 is the row-normalized adjacent matrix, and the matrices $\tilde{A} = [\tilde{A}_{i,j}] = A + I_n$ and $\tilde{D} = [\tilde{D}_{i,j}]$ are calculated as

$$A_{i,j} = (\delta_{i,j} + \alpha)^{\Delta},$$

 $\tilde{D}_{i,j} = 0 \text{ if } i \neq j, \text{ and } \tilde{D}_{i,i} = \sum_{j=1}^{n} \tilde{A}_{i,j} \text{ for } i \in [n].$

Here, recall that $\delta = [\delta_{i,j}]$ is the distance matrix. We first proceed to analyze the output Z step by step as follow:

- Consider the matrix $T^{(1)} = XW^{(0)}$ of size $n \times d_0$. It is clear that each element of $T^{(1)}$ is a polynomial of $W^{(0)}$ of degree at most 1.
- Consider the matrix T⁽²⁾ = ÂT⁽¹⁾ of size n×d₀. We can see that each element of matrix is a rational function of α of degree at most Δ. Moreover, by definition, the the denominator of each rational functions are strictly positive. Therefore, each element of matrix T⁽²⁾ is a rational function of W⁽⁰⁾ and α of degree at most Δ + 1.
- Consider the matrix $T^{(3)} = \text{ReLU}(T^{(2)})$ of size $n \times d_0$. By definition, we have

$$T_{i,j}^{(3)} = \begin{cases} T_{i,j}^{(2)}, & \text{if } T_{i,j}^{(2)} \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

This implies that there are $n \times d_0$ boundary functions of the form $\mathbb{I}_{T_{i,j}^{(2)} \ge 0}$ where $T_{i,j}^{(2)}$ is a rational function of $W^{(0)}$ and α of degree at most $\Delta + 1$ with strictly positive denominators. From Theorem G.2, the number of connected components given by those $n \times d_0$ boundaries are $\mathcal{O}\left((\Delta + 1)^{nd_0}\right)$. In each connected components, the form of $T^{(3)}$ is fixed, in the sense that each element of $T^{(3)}$ is a rational functions in $W^{(0)}$ and α of degree at most $\Delta + 1$.

1922 1923 1924

1927

1928

1929

1930 1931

1932

1933 1934

1935

1938 1939

1941

1942

1943

1921

1897 1898 1899

1902

1905

1944

1945

1946

1947

1948

1949

1950 1951

1984

1985

1986

1987 1988

1989

1992

1993

1996 1997 • Consider the matrix $T^{(4)} = T^{(3)}W^{(1)}$. In connected components defined above, it is clear that each element of $T^{(4)}$ is either 0 or a rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 2$.

• Finally, consider $Z = \hat{A}T^{(4)}$. In each connected components defined above, we can see that each element of Z is either 0 or a rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 3$.

In summary, we proved that the space of w, α can be partitioned into $\mathcal{O}((\Delta + 1)^{nd_0})$ connected components, over each of which the output Z = GCN(X, A) is a matrix with each element is a rational function in $W^{(0)}, W^{(1)}$, and α of degree at most $\Delta + 3$. It means that in each piece, the loss function would be a rational function of degree at most $2(\Delta + 3)$, as claimed.

Theorem G.5. Consider the loss function class \mathcal{L}_r^{GCN} defined above. For a problem instance x, the dual loss function $\ell_x^*(\alpha) := \min_{w \in \mathcal{W}} f_x(\alpha, w)$, where $f_x(\alpha, w)$ admits piecewise polynomial structure (Lemma G.4). If we assume the piecewise polynomial structure satisfies Assumption 2, then for any $\delta \in (0, 1)$, w.p. at least $1 - \delta$ over the draw of m problem instances $S \sim \mathcal{D}^m$, where \mathcal{D} is some problem distribution over \mathcal{X} , we have

$$|\mathbb{E}_{S \sim \mathcal{D}}[\ell_{\hat{\alpha}_{ERM}}(S)] - \mathbb{E}_{S \sim \mathcal{D}}[\ell_{\alpha^*}(S)]| = \mathcal{O}\left(\sqrt{\frac{nd_0 \log \Delta + d \log(\Delta F) + \log(1/\delta)}{m}}\right)$$

H A DISCUSSION ON HOW TO CAPTURE THE LOCAL FLATNESS PROPERTIES OF BLA BLA

1969 1970 Our definition of dual utility function $u_x^*(\alpha) = \max_{w \in W} f_x(\alpha, w)$ implicitly assumes an ERM oracle. As discussed in Appendix B, this ERM oracle assumption makes the function $u_x^*(\alpha)$ welldefined and simplifies the analysis. However, one may argue that assuming the ERM oracle will make the behavior of tuned hyperparameters much different, compared to when using common optimization in deep learning. The difference potentially stems from the fact that the global optimum found by ERM oracle might have a sharp curvature, compared to the local optima found by other optimization algorithms, which tend to have flat local curvature due to their implicit biases.

1976 1977 In this section, we consider the following simplified scenario where the ERM oracle also finds the near-optimum that is locally flat, and explain how our framework could potentially be useful in this case. Instead of defining $u_x^*(\alpha) = \max_{w \in \mathcal{W}} f_x(\alpha, w)$, we define $u_x^*(\alpha) = \max_{w \in \mathcal{W}} f'_x(\alpha, w)$, where the surrogate function $f'_x(\alpha, w)$ is defined as follows.

Definition 14 (Surrogate function construction). Assume that $f_x(\alpha, w)$ admits piecewise polynomial structure, meaning that:

- 1. The domain $\mathcal{A} \times \mathcal{W}$ of f_x is divided into N connected components by M polynomials $h_{x,1}, \ldots, h_{x,M}$ in α, w , each of degree at most Δ_b . The resulting partition $\mathcal{P}_x = \{R_{x,1}, \ldots, R_{x,N}\}$ consists of connected sets $R_{x,i}$, each formed by a connected component $C_{x,i}$ and its adjacent boundaries.
- 2. Within each $R_{x,i}$, f_x takes the form of a polynomial $f_{x,i}$ in α and w of degree at most Δ_p .

Defining the function surrogate $f'_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ as follow:

- 1. The domain $\mathcal{A} \times \mathcal{W}$ of $f'_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ is partitioned into N connected components by M polynomials $h_{\boldsymbol{x},1}, \ldots, h_{\boldsymbol{x},M}$ in α, \boldsymbol{w} similar to $f_{\boldsymbol{x}}$. This results in a similar partition $\mathcal{P}_{\boldsymbol{x}} = \{R_{\boldsymbol{x},1}, \ldots, R_{\boldsymbol{x},N}\}.$
- 2. In each region $R_{x,i}$, f'_x is defined as

$$f'_{\boldsymbol{x}}(\alpha, \boldsymbol{w}) = f'_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) = f_{\boldsymbol{x},i}(\alpha, \boldsymbol{w}) - \eta \|\nabla^2_{\boldsymbol{w},\boldsymbol{w}} f_{\boldsymbol{x}}(\alpha, \boldsymbol{w})\|_F^2$$

1998 1999 2000	for some fixed $\eta > 0$. We can see that $\ \nabla^2_{\boldsymbol{w},\boldsymbol{w}} f_{\boldsymbol{x}}(\alpha,\boldsymbol{w})\ _F^2$ is a polynomial of α, \boldsymbol{w} of degree at most $2\Delta_p$. Therefore, $f'_{\boldsymbol{x}}(\alpha,\boldsymbol{w})$ is also a polynomial of degree at most $2\Delta_p$ in
2000	the region $R_{x,i}$.
2002	From the above construction, we can see that $f'(\alpha, w)$ also admits piecewise polynomial structure.
2003	where the input domain partition \mathcal{P}_{x} is the same as $f_{x}(\alpha, w)$. In each region $R_{x,i}$, the function
2004	$f'_{\boldsymbol{x}}(\alpha, \boldsymbol{w})$ is also a polynomial in α, \boldsymbol{w} of degree at most $2\Delta_p$. Therefore, our framework is still
2005	applicable in this case. Moreover, construction above naturally introduces an extra hyperparameter
2006	η , which is the magnitude of curvature regularization. This makes the analysis more challenging,
2007	but for simplicity, we here assume that η is fixed and good enough for balancing the effect of regu-
2008	larization.
2009	We can see that by defining $u_{\boldsymbol{x}}^*(\alpha) = \max_{\boldsymbol{w} \in \mathcal{W}} f_{\boldsymbol{x}}'(\alpha, \boldsymbol{w})$, we can somehow capture the generaliza-
2010	tion behavior of tuned hyperparameter α , when the solution w^* of $\max_{w \in \mathcal{W}} f'_x(\alpha, w)$ is: (1) near
2011	optimal w.r.t $\max_{w \in \mathcal{W}} f_x(\alpha, w)$, and (2) locally flat.
2012	However, the example above is an oversimplified scenario. To truly understand the behavior of data
2013	driven hyperparameter tuning without ERM oracle, we need a better analysis to capture the behavior
2014	of $u^*(\alpha)$ in such a scenario. This analysis should consider the joint interaction between the model
2015	data, and the optimization algorithm, and remains an interesting direction for future work.
2016	
2017	
2018	
2019	
2020	
2021	
2022	
2023	
2024	
2025	
2026	
2027	
2028	
2029	
2030	
2031	
2032	
2033	
2034	
2034	
2036	
2030	
2037	
2030	
2035	
2040	
2041	
2042	
2043	
2044	
2040	
2040	
2047	
2040	
2049	
2000	
2001	