
Published as a conference paper at COLM 2025

Boosting LLM Reasoning via Spontaneous Self-Correction

Xutong Zhao1,2, Tengyu Xu1, Xuewei Wang1, Zhengxing Chen1, Di Jin1, Liang Tan1,
Yen-Ting Lin1, Zishun Yu1, Zhuokai Zhao1, Yun He1, Sinong Wang1, Han Fang1,
Sarath Chandar2, Chen Zhu1

1MetaAI, 2Mila - Quebec AI Institute & Polytechnique Montréal
{xutong.zhao@mila.quebec, zhuchen.eric@gmail.com}

Abstract

While large language models (LLMs) have demonstrated remarkable
success on a broad range of tasks, math reasoning remains a challenging
one. One of the approaches for improving math reasoning is self-correction,
which designs self-improving loops to let the model correct its own
mistakes. However, existing self-correction approaches treat corrections
as standalone post-generation refinements, relying on extra prompt and
system designs to elicit self-corrections, instead of performing real-time,
spontaneous self-corrections in a single pass. To address this, we propose
SPOC, a spontaneous self-correction approach that enables LLMs to generate
interleaved solutions and verifications in a single inference pass, with
generation dynamically terminated based on verification outcomes, thereby
effectively scaling inference time compute. SPOC considers a multi-agent
perspective by assigning dual roles – solution proposer and verifier – to
the same model. We adopt a simple yet effective approach to generate
synthetic data for fine-tuning, enabling the model to develop capabilities
for self-verification and multi-agent collaboration. We further improve its
solution proposal and verification accuracy through online reinforcement
learning. Experiments on mathematical reasoning benchmarks show that
SPOC significantly improves performance. Notably, SPOC boosts the
accuracy of Llama-3.1-8B and 70B Instruct models, achieving absolute
gains of 8.8% and 11.6% on MATH500, 10.0% and 20.0% on AMC23, and
3.3% and 6.7% on AIME24, respectively.

1 Introduction

Large Language Models (LLMs) have showcased promising results across a broad spectrum
of text generation tasks. Among the various domains of LLM applications, mathematical
reasoning remains particularly challenging due to its symbolic and structured nature (Shao
et al., 2024; Chen et al., 2024). Recent advances in self-correction (Shinn et al., 2023; Madaan
et al., 2023) have emerged as a promising paradigm towards self-improvement through
iterative critique and refinement of model’s own responses.

However, the effectiveness and practicality of existing self-correction approaches remain un-
clear. Naive prompting methods may lead to minimal improvement or performance degra-
dation without access to external feedback (Huang et al., 2023; Qu et al., 2024). Finetuning-
based methods seek to address such issues by post-training the LLM on refinement data
collected from oracles (Saunders et al., 2022; Qu et al., 2024) or the learner model itself (Ku-
mar et al., 2024). Nonetheless, these approaches typically rely on a specific prompt after
each model response to trigger self-reflection or correction (Figures 1a and 1b), necessitating
additional system design to inject these prompts during inference. In other words, existing
approaches lack the ability to spontaneously and adaptively self reflect and correct, resulting
in ineffective test-time compute scaling and inflexible deployment in practice.

To address these challenges, we introduce SPOC, a spontaneous self-correction approach
that enables LLMs to spontaneously generate interleaved solutions and verifications in
a single inference pass. SPOC employs an open-loop inference paradigm, which triggers

1

Published as a conference paper at COLM 2025

Question

Solution 1

Revise request 1

Solution 2

Revise request 2

Solution 3

Closed-loop
Correction

Revise request 3

Solution 4

(a)

Question

Solution 1

Reflection request 1

Reflection: No

Revise request

Solution 2

Closed-loop
Verification/Correction

Reflection request 2

Reflection: Yes

(b)

Question

Solution 1

Reflection: No

Solution 2

Open-loop
Verification/Correction

Reflection: Yes

(c)

Figure 1: Multi-turn generation formalisms. (a) & (b) Sample closed-loop paradigms that require extra
system designs and prompting to trigger and terminate correction; (c) Sample open-loop paradigm
that spontaneously adapts generations.

self-correction only when the self-verification identifies errors, and iteratively revises the
solution until it passes self-verification, without requiring any external interventions during
response generation. It dynamically elicits and terminates generations on-the-fly using
solely the model’s inherent capabilities, thereby effectively scaling inference time compute.
We consider a multi-agent formalism that models the alternating solutions and verifications
as the interaction between a solution proposer and a verifier, and adopt a self-play training
strategy by assigning dual roles to the same model. We adopt a simple yet effective ap-
proach to generate synthetic data from the initial model for supervised fine-tuning (Welleck
et al., 2022), enabling the model to adhere to the multi-turn generation style, meanwhile
developing capabilities for self-verification and inter-agent collaboration without distilling
from a stronger teacher. We further boost the model’s accuracy in its solution proposal
and verification via online reinforcement learning, using the correctness of solutions and
verifications as the reward.

Our main contributions are threefold:

• We demonstrate that generating self-verification and correction trajectories from the
initial model’s correct and incorrect outputs effectively bootstraps its spontaneous
self-verification and correction behavior. We call out the importance of data balanc-
ing in achieving high verification accuracy in this stage, which in turn benefits the
subsequent RL phase.

• We propose the message-wise online RL framework for SPOC, and present the
formulation of RAFT (Dong et al., 2023) and RLOO (Ahmadian et al., 2024) as the
RL stage of SPOC for enhancing self-verification and correction accuracies. Our
results show that RLOO, augmented with process rewards for each solution or
verification step, yields stronger results.

• We achieve significant improvements on math reasoning tasks across model sizes
and task difficulties using our pipeline without distilling from stronger mod-
els. SPOC boosts the pass@1 accuracy of Llama-3.1-8B and 70B Instruct mod-
els—improving performance by 8.8% and 11.6% on MATH500, by 10.0% and 20.0%
on AMC23, and by 3.3% and 6.7% on AIME24.

2

Published as a conference paper at COLM 2025

2 Related work

Self-correction. Given that high-quality external feedback is often unavailable across vari-
ous realistic circumstances, it is beneficial to enable an LLM to correct its initial responses
based on solely on its inherent capabilities. Prior works on such intrinsic self-correction
(Huang et al., 2023) or self-refinement can be categorized into two groups based on the prob-
lem settings and correction mechanisms: prompting and finetuning. Recent works (Huang
et al., 2023; Qu et al., 2024) show that prior prompting methods lead to minimal improve-
ment or degrading performance without strong assumptions on problem settings. For
instance, Shinn et al. (2023) rely on oracle labels which are often unavailable in real-world
applications; Madaan et al. (2023) use less informative prompts for initial responses, re-
sulting in overestimation of correction performance. Finetuning methods seek to improve
correction performance via finetuning the LLM on refinement data, collected from human
annotators (Saunders et al., 2022), stronger models (Qu et al., 2024), or the learner model
itself (Kumar et al., 2024). However, these works lack the mechanisms that correct errors
while generating solutions in a single inference pass (Ye et al., 2024). Our work is akin to
concurrent works on self-correction (Ma et al., 2025; Xiong et al., 2025). Differently, Xiong
et al. (2023) re-attempts a solution within the verification instead of evaluating the previous
one; moreover, they only apply RAFT in their learning framework, while we also conduct
experiments on RLOO. Ma et al. (2025) uses the more complex GRPO as their RL algorithm,
while we show that better performance can be achieved in the same setting (Llama 3.1 8B)
by using simpler RL algorithms like RAFT for SPOC.

Multi-agent frameworks. By introducing multiple roles into problem-solving, multi-agent
formalisms serve as a different perspective to address complex reasoning tasks. Auto-
Gen (Wu et al., 2023) and debate-based frameworks (Du et al., 2023; Liang et al., 2023) solve
math problems through customized inter-agent conversations. Despite increased test-time
computation, these works lack post-training for different agent roles, which may result
in suboptimal performance or distribution shifts at inference time (Xiang et al., 2025). While
other works train separate models to perform correction (Motwani et al., 2024; Havrilla
et al., 2024; Akyürek et al., 2023; Paul et al., 2023), models do not perform spontaneous
corrections during solution generations; instead, they require extra system designs to
trigger and stop corrections at deployment. In contrast, our method enables dynamic
inference-time scaling by improving the model’s own inherent deliberation capabilities.

3 Method

In this section, we first introduce the multi-turn formalism, in which the agent performs
interleaved solution and verification turns. We then discuss how we finetune the agent
to ensure it consistently adheres to the multi-turn response style. We finally describe our
online reinforcement learning scheme which further boosts the final accuracy of the policy.
Figure 2 illustrates the two stages, fine-tuning and online RL, of SPOC.

3.1 Multi-turn formalism

Problem setup. Let D ≡ X ×Y = {(xi, y∗i)}N
i=1 be a dataset of N math problems, where

each pair (x, y∗) contains a question xi and the corresponding solution y∗i with ground-truth
final answer. An LLM agent is defined by the policy πθ(·|x), parameterized by θ, that
generates the solution y to solve the given problem x.

Alternated-turn generation. Suppose given a question x, the LLM generates a trajectory
consisting of L interleaved solutions and verifications τ = (y1, v1, . . . , yL, vL), where a
solution yl indicating the model’s l-th complete solution attempt that reaches a final answer,
and a verification vl indicating the l-th self-verification validating correctness of the solution
yl . For clarity, message or turn refers to each single solution yl or verification vl , and
response or generation τ refers to the entire trajectory until the end. For brevity, we denote

3

Published as a conference paper at COLM 2025

Figure 2: SPOC training overview. Left: PairSFT for initializing multi-turn generation. Right: Online
RL for policy optimization.

previous l turns by: τl = (y1:l , v1:l) and τvf
l = (y1:l , v1:l−1). The timestep t ∈N0 indicates a

single decoding step where the LLM outputs one token from its policy distribution.

Multi-agent formulation. We model the reasoning task as an extensive-form game
(EFG) (Osborne, 1994; Shoham & Leyton-Brown, 2008), which generalizes the Markov De-
cision Process (MDP) (Sutton, 2018) to a turn-taking interaction between solution proposer
and verifier. At each turn, the proposer outputs a solution to the given math problem, and
the verifier assesses its correctness. In this context, the EFG is a tuple ⟨N ,A,S , T , r, I , γ⟩,
where N = {1, . . . , n} is the set of n = 2 players (i.e. the proposer and verifier), A is a finite
set of actions (i.e. the LLM’s token space), S is a finite set of states (i.e. each state is a question
and a sequence of reasoning/verification steps in context), T ⊂ S is a subset of terminal
states (i.e. complete response trajectories τ = (y1, v1, . . . , yL, vL)), r : T ×N0 → ∆n

r ⊂ Rn is
the reward function assigning each player a scalar utility at terminal states (i.e. ∆r = {0, 1}
characterizes binary outcome feedback), I : S → N is a player identity function identifing
which player acts at s (i.e. I(τl) = 1 and I(τvf

l) = 2), and γ ∈ [0, 1] is the discount factor.

Unlike the general definition of EFGs, we do not distinguish between histories and states
due to the deterministic dynamics and perfect-information nature in mathematical reasoning
(i.e. τl+1 = τl ∪ {yl+1, vl+1}). We denote the proposer’s and the verifier’s action spaces
as Asl ⊂ A and Avf ⊂ A, representing the set of solution and verification messages,
respectively. We define a per-step reward function for a transition as r(s, a) representing
a vector of reward to both agents. The return for player i ∈ N is defined as Gt,i =

∑∞
k=0 γkri(st+k, at+k). The corresponding state-action value function under policy π is

Qπi (s, a) = Eπ [Gt,i|st = s, at = a].

To improve reasoning capabilities by learning from both solution and verification ex-
periences, we adopt the commonly-used self-play strategy with parameter sharing (Al-
brecht et al., 2024), where the proposer policy πsl : S → ∆(Asl) and the verifier policy
πvf : S → ∆(Avf) share the same set of parameters θ. The policy πθ outputs alternated
solution and verification messages depending on the context1.

Policy optimization. We optimize the policy πθ by maximizing the KL-regularized learn-
ing objective

J(θ) = Es∼ρ,a∼π [Qπ(s, a)]− η ·Es∼ρ[KL(πθ |πθ0)] (1)

where ρ indicates the discounted state distribution, η > 0 is the KL-regularization coefficient,
and πθ0 is the reference policy parameterized by the initial parameters θ0. This objective has

1Different from the classic self-play in zero-sum games (e.g., AlphaZero (Silver et al., 2017)), ours
involves non-symmetrical roles in the sense that two policies are different conditioned on the context.

4

Published as a conference paper at COLM 2025

sl
vf C I

C 1, 1 1, 0
I 0, 1 0, 0

(a) Corr

sl
vf C I

C 1, 0 1, 0
I 0, 0 0, 0

(b) Last

sl
vf C I

C 1, 1 1, 1
I 0, 0 0, 0

(c) All

Figure 3: Reward configurations for policy optimization, where sl, vf, C, I indicate solution, verifica-
tion, correct, and incorrect, respectively. For Last and All, SPOC optimizes correct solutions (first row
in each table) only when the last solution is correct.

a close-form solution for the optimal policy π∗(a|s) = 1
Z(s)πθ0(a|s) exp(1

η Q(s, a)), where

Z(s) = Ea∼πθ0
(·|s)[exp(1

η Q(s, a))]. Given our multi-agent formulation, this objective intro-
duces an individual objective for each role, namely

Jsl(θ) = E[Qsl
π(s, a)]− ηsl ·E[KL(πsl

θ (·|s)|π
sl
θ0
(·|s))] (2)

Jvf(θ) = E[Qvf
π (s, a)]− ηvf ·E[KL(πvf

θ (·|s)|πvf
θ0
(·|s))] (3)

Due to shared parameters across both roles, we jointly optimize both objectives using
common generated trajectory experiences. Hence the optimal proposer and verifier poli-
cies satisfy πsl∗(a|s) ∝ πsl

θ0
(a|s) exp(1

η Qsl(s, a)) and πvf∗(a|s) ∝ πvf
θ0
(a|s) exp(1

η Qvf(s, a)),
respectively, implying the optimal shared policy increases the probability of outputting
high-rewarding solutions/verifications. Note that the optimal policy for the unregular-
ized learning objective (η = 0) results in the maximizer of the action-value function:
π∗(·|s) = arg maxπ∈∆(A) Ea∼π [Qπ(s, a)] , also yielding high probablity of generating high-
rewarding messages.

Reward setting. To obtain a reward signal for each token in each message, we evaluate
the outcome correctness of each message. In particular, we assume access to a rule-based
checker for the final answer in the solution, and provide a binary outcome reward denoted
by rsl(y, y∗) ∈ {0, 1}, where rsl(y, y∗) = 1 when the model answer matches the ground-
truth answer. Similarly, we parse the Yes/No conclusion in each verification, and denote
the reward function by rvf(v, v∗) ∈ {0, 1}, with v∗ = rsl(y, y∗) indicating the ground-truth
verification. Figure 3a shows the joint reward setting, denoted by Corr hereafter. To
obtain maximal returns against each other role, our reward setting admits one unique Nash
equilibrium (Shoham & Leyton-Brown, 2008) with the joint policy (i.e. the shared policy π)
generating both correct solutions and correct verifications.

3.2 Enabling multi-turn generation

Since off-the-shelf LLMs do not adhere to the response style of interleaved solution and
verification turns by default, before conducting RL optimization, we first perform an initial
finetuning with multi-turn data to enable such behaviour. To collect such data, we imple-
ment a variant of Pair-SFT (Kumar et al., 2024; Welleck et al., 2022) to construct synthetic
correction responses.

In particular, we rollout the base policy πθ0 to collect single-turn responses for each question
xi ∈ X , denoted by {yk

i }K
k=1 ∼ πθ0(·|xi). For each response, we record its binary correctness

using the solution reward function rk
i = rsl(yk

i , y∗i). We obtain the verification message
of one single-turn response by pairing it with a correct sampled response. To generate
verification of one response, either correct or incorrect, we prompt the same base model
πθ0 to identify the potential error, briefly explain it, and output a final binary conclusion
indicating correctness of the given solution. The entire verification message is denoted as
vi ∼ πθ0(·|xi, yi, y∗i), where y∗i indicates the correct sample. We denote this synthetic multi-
turn correction dataset as the Pair-SFT dataset Dpair = {(xi, y−i , v−i , y∗i)} ∪ {(xi, y+i , v+i)},
where the +/− superscripts indicates correctness of the corresponding solution turn. We

5

Published as a conference paper at COLM 2025

perform SFT finetuning on the base model, with tokens in incorrect messages masked
out, and denote the finetuned model by πθsft

. In practice, we observe that reweighting the
subsets {(xi, y−i , v−i , y∗i)} and {(xi, y+i , v+i)} to approximately the same scale leads to a πθsft
with higher verification accuracy and more stable RL training afterwards. The complete
training data collection procedure is detailed in Algorithm 2.

When generating the verification messages, we adapt the generative critic method (Zhang
et al., 2024; Zheng et al., 2024) that prompts the model to respond with rationales before
judging solution correctness, except that our variant concisely explains the error rather than
performing a chain-of-thought (COT) analysis. Obtaining a strong COT verifier requires
explicit training and it is out of scope of this work. Prompt templates for data construction
are detailed in Appendix E.

Algorithm 1 SPOC Message-wise Online Reinforcement Learning

1: Inputs: Question-answer dataset D = X ×Y = {(xj, y∗j)}N
j=1, policy model πθ parame-

terized by θ, number of questions N, number of steps T, number of rollouts per question
K, batch size B, rule-based solution correctness reward function rsl(y, y∗) ∈ {0, 1},
verification correctness reward function rvf(v, v∗) ∈ {0, 1}

2: for i = 1, . . . , T do
3: Sample a batch Di ⊂ D of size B
4: Sample K trajectories for each xj ∈ Xi: {τk

j }K
k=1 ∼ πθ(·|xj), where τk

j = (yj,k
1:Lk

, vj,k
1:Lk

)

5: Label binary rewards: rsl
j,k,l = rsl(yj,k

l , y∗j), rvf
j,k,l = rvf(vj,k

l , v∗j,k,l), where v∗j,k,l = rsl
j,k,l

6: Update policy with any policy optimization algorithm (e.g. Algorithm 3, Algorithm 4)
7: end for
8: return πθ

3.3 Online reinforcement learning

With the multi-turn problem formulated and the agent adhering to the multi-turn responses
style, we conduct online reinforcement learning to improve the policy performance. The
overall message-level RL training procedure is described in Algorithm 1. While SPOC is
compatible with any policy optimization method, we apply RAFT (Dong et al., 2023) unless
otherwise specified. The RAFT policy optimization algorithm is presented in Algorithm 3.

Besides the RAFT policy optimizer, we also implement an RLOO (Ahmadian et al., 2024)
variant, which replaces the leave-one-out procedure with subtraction of the mean reward
across all messages, followed by division by the standard deviation. We refer to this
approach as RLOO for brevity. Unlike the best-of-N (BoN) response selection strategy in
RAFT, RLOO optimizes the policy using all generated responses, enjoying better sample
efficiency. The RLOO policy optimization is detailed in Algorithm 4.

4 Experiments

In this section we present empirical experiments on math reasoning benchmarks. We first
overview the tasks we conduct experiments on. We then describe the experimental setup
and evaluation protocols. Finally we discuss the results and provide ablation studies.

4.1 Experimental setup

Tasks. We perform experiments on established math reasoning benchmarks. To enable
rule-based answer checking, all problems in selected benchmarks require a verifiable final
output. We evaluate models on benchmarks: (1) MATH500 (Lightman et al., 2023), a curated
dataset of 500 problems selected from the full MATH (Hendrycks et al., 2021) evaluation set;
(2) AMC23 (AI-MO, 2023), a dataset of 40 challenging competition questions; (3) AIME24
(AI-MO, 2024), a dataset of 30 more difficult competition problems.

6

Published as a conference paper at COLM 2025

Approach MATH500 AMC23 AIME24

Llama-3.1-8B-Instruct (Dubey et al., 2024) 52.2 22.5 3.3
SFT 53.6 32.5 3.3
RAFT 55.2 27.5 6.7
PairSFT 53.8 22.5 10.0
Self-Refine (w/o oracle) 39.4 20.0 3.3
Self-Refine (w/ oracle) 57.0 35.0 3.3
S2R-BI∗ (Ma et al., 2025) 49.6 20.0 10.0
S2R-PRL∗ 53.6 25.0 6.7
S2R-ORL∗ 55.0 32.5 6.7
SPOC 61.0 32.5 6.7

Llama-3.1-70B-Instruct (Dubey et al., 2024) 65.8 32.5 16.7
SFT 70.4 45.0 13.3
RAFT 74.2 52.5 20.0
PairSFT 74.8 47.5 23.3
Self-Refine (w/o oracle) 54.2 42.5 13.3
Self-Refine (w/ oracle) 72.2 47.5 26.7
SPOC 77.4 52.5 23.3

Llama-3.3-70B-Instruct (AI, 2024) 75.6 57.5 26.7
SFT 73.6 55.0 23.3
RAFT 76.6 62.5 20.0
PairSFT 75.0 62.5 23.3
Self-Refine (w/o oracle) 75.4 60.0 33.3
Self-Refine (w/ oracle) 76.2 65.0 26.7
SPOC 77.8 70.0 23.3

DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025) 62.6 62.5 26.7
SFT 76.8 65.0 30.0
RAFT 74.2 62.5 6.7
PairSFT 73.2 77.5 16.7
Self-Refine (w/o oracle) 67.4 75.0 10.0
Self-Refine (w/ oracle) 71.2 65.0 40.0
SPOC 77.6 70.0 23.3
SPOC-RLOO 87.2 87.5 50.0

DeepSeek-R1-Distill-Llama-70B (Guo et al., 2025) 82.8 72.5 60.0
SFT 90.6 80.0 40.0
RAFT 87.4 85.0 50.0
PairSFT 92.6 95.0 63.3
Self-Refine (w/o oracle) 86.2 80.0 30.0
Self-Refine (w/ oracle) 88.6 72.5 30.0
SPOC 89.6 85.0 53.3
SPOC-RLOO 94.6 92.5 76.7

Gemini-1.5-Flash (4-shot)∗ (Team et al., 2024) 54.9 - -
SCoRe∗ (Kumar et al., 2024) 64.4 - -

Llama-3-8B-Instruct (4-shot)∗ (Meta, 2024) 30.0 - -
Self-rewarding IFT∗ (Xiong et al., 2025) 27.9 - -
Self-rewarding-IFT + Gold RM∗ 33.9 - -

DeepSeek-R1-Distill-Llama-8B-R1tok-avg@4† 88.9 92.5 48.3
DeepSeek-R1-Distill-Llama-8B-R1tok† 82.2 87.5 36.7
DeepSeek-R1-Distill-Llama-8B∗ 89.1 - 50.4
DeepSeek-R1-Distill-Llama-70B-R1tok-avg@4† 94.3 94.4 65.9
DeepSeek-R1-Distill-Llama-70B-R1tok† 91.2 80.0 56.7
DeepSeek-R1-Distill-Llama-70B∗ 94.5 - 70.0
Qwen2.5-Math-7B-Instruct† (Yang et al., 2024) 82.8 62.5 16.7
Qwen2.5-Math-72B-Instruct† 84.8 72.5 26.7
O1∗ 94.8 - 74.4
GPT-4o∗ 60.3 - 9.3
Claude 3.5 Sonnet∗ 78.0 - 16.0

Table 1: Main evaluation results. Bold and underlined performance scores indicate the best learning
and best prompting (if any) results under each initial model, respectively. Blue means ours, and
green means other RL based approaches. Baselines marked with ∗ are reported by the original works,

while those marked with † are obtained by evaluating the open-source models on Huggingface using
greedy decoding (unless stated otherwise). "R1tok" indicates the model is evaluated using the R1
modified tokenizer and chat configs. "avg@4" indicates the model is evaluated using sampling, with
the temperature of 0.6, the top-p value of 0.95, and 4 responses generated per question to compute the
mean pass@1 (Guo et al., 2025).

7

Published as a conference paper at COLM 2025

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 52.2 80.2 59.0 61.0 2.0 8/29 18/79
Llama-3.1-70B-Instruct 65.8 80.0 77.0 77.4 0.4 3/10 5/8
Llama-3.3-70B-Instruct 75.6 81.8 77.8 77.8 0.0 1/4 1/20

Table 2: Performance across first two solution turns on MATH500. ∆c→i and ∆i→c indicate nc→i
nc→c+nc→i

and ni→c
ni→i+ni→c

over turns, respectively.

Evaluation protocol. Our primary evaluation metric is the final answer accuracy. We addi-
tionally report cross-solution correction accuracy serving as a complementary evaluation.

For all experiments, we finetune Llama-3-Instruct models (Dubey et al., 2024) (3.1-8B & 70B,
3.3-70B, DeepSeek-R1-Distill-Llama 8B & 70B) as the base models. We conduct training
using the NuminaMath dataset (LI et al., 2024), which consists of training sets from various
data sources, covering a wide range of mathematical topics and difficulty levels. We exclude
the Orca-Math dataset (Mitra et al., 2024) and synthetic data subset since their correctness
are not human-validated despite their large scale.

For evaluations, we report the pass@1 accuracy of the final answer. We use greedy decoding
and zero-shot COT prompting unless otherwise specified. As mentioned in previous
sections, we do not utilize additional external instructions to prompt the finetuned model to
attempt another solution trial; instead the model spontaneously performs self-verification
to determine whether another attempt is needed. Our prompt templates for evaluation
are included in Appendix E.

Implementation details. All models are prompted with the original Llama tokenizer
and chat configs (Dubey et al., 2024) unless otherwise specified. All models except the
DeepSeek-R1-Distill-Llama based ones are evaluated using the maximum generation length
of 6, 144 tokens, while the DeepSeek-R1-Distill-Llama based models are evaluated using the
maximum generation length of 32, 768 tokens, as per Guo et al. (2025). To support training
with multi-message responses, we utilize different special termination tokens for each model
message. In particular, in each model response each message starts with assistant header
tokens, indicating the source of message is the model. Besides, every assitant message
except the last ends with an <|eom_id|> termination token, representing the end of one
message. The last assistant message ends with an <|eot_id|> token, which concludes the
entire model response. We implement RAFT (Dong et al., 2023) under the CGPO (Xu et al.,
2024) framework, which allows for filtering out prompts whose all corresponding sampled
responses contain no correct solutions or verifications.

4.2 Results

Table 1 presents the comprehensive evaluation results, showing the comparisons across
different initial models and parameter scales. In general, SPOC consistently outperforms
the base models on all initialization models across all benchmark tasks. Notably, SPOC en-
hances the accuracy of Llama3.1 8B and 70B, reaching gains of 8.8% and 11.6% on MATH500,
10.0% and 20.0% on AMC23, and 3.3% and 6.7% on AIME24, respectively. This result
highlights the effectiveness of SPOC across different parameter scales and task difficulties.

SPOC also achieves consistent enhancement when fine-tuned with strong initial models.
Despite marginal improvement on Llama3.3-70B model, SPOC obtains significant overall
outperformance compared to the baselines after finetuning the DeepSeek-R1-Distill-Llama
models. Respectively on MATH500/AMC23/AIME24, SPOC reaches 77.6%/70.0%/23.3%
with the 8B model, and 89.9%/85.0%/53.3% with the 70B model. Furthermore, SPOC
achieves more drastic performance improvement using the RLOO policy optimizer, obtain-
ing 87.2%/87.5%/50.0% with the 8B model, and 94.6%/92.5%/76.7% with the 70B model. It
is important to note that the gap between our evaluation of DeepSeek-R1-Distill-Llama base
models for post-training and their corresponding R1tok results is attributed to different
tokenizers and chat configurations.

8

Published as a conference paper at COLM 2025

Table 2 shows performance across the first two solution turns on MATH500. Overall, SPOC
achieves consistent improvement on the second solution turns over the first. With the
smaller Llama3.1-8B model, SPOC shows more inclination to generate a second solution
turn, resulting in a more significant improvement margin. With larger 70B models that
achieve higher final accuracy, on the other hand, SPOC tends to get the first solution message
correct in the first place, resulting in an already strong turn1 performance and a marginal
∆(t1, t2). Such behaviour is well aligned with our expected Nash equilibrium admitted by
the Corr reward setting, where policy optimization encourages the joint policy to generate
both correct solutions and correct verifications in the first place. The complete per-turn
performance analysis and diagnostics of verifier reliability are presented in Appendix C.

Table 3 shows the performance of applying multiple iterations of PairSFT-RL training proce-
dure. Results indicate that the second iteration still leads to overall consistent improvement
over all models. Although the overall improvement is mainly marginal, the second iteration
shows a larger gain in challenging competition benchmarks. For instance, with Llama3.1-
70B, iter2 improves over iter1 by 10% and 6.7% on AMC23 and AIME24, respectively.

Approach MATH500 AMC23 AIME24

Llama-3.1-8B-Instruct 52.2 22.5 3.3
PairSFT (iter1) 53.8 22.5 10.0
SPOC (iter1) 61.0 32.5 6.7
PairSFT (iter2) 60.8 35.0 6.7
SPOC (iter2) 62.0 32.5 10.0

Llama-3.1-70B-Instruct 65.8 32.5 16.7
PairSFT (iter1) 74.8 47.5 23.3
SPOC (iter1) 77.4 52.5 23.3
PairSFT (iter2) 76.4 67.5 20.0
SPOC (iter2) 77.6 62.5 30.0

Llama-3.3-70B-Instruct 75.6 57.5 26.7
PairSFT (iter1) 75.0 62.5 23.3
SPOC (iter1) 77.8 70.0 23.3
PairSFT (iter2) 79.6 72.5 26.7
SPOC (iter2) 79.8 70.0 30.0

Table 3: Iterative training performance. The second iteration still yields overall consistent
improvement across all models.

4.3 Ablations

Model MATH500 AMC23 AIME24

Base 52.2 22.5 3.3
SPOC-Corr 61.0 32.5 6.7
SPOC-Last 59.8 27.5 10.0
SPOC-All 58.4 35.0 6.7

Table 4: Ablation experiments under different re-
ward settings. Experiments are conducted on the
Llama-3.1-8B-Instruct model.

We conduct ablation experiments on differ-
ent reward configurations, as overviewed
in Figure 3. We present comparisons with
the default Corr reward setting in Table 4,
using Llama-3.1-8B-Instruct as the base
model. Compared to Corr, the ablation
variants Last and All do not yield a unique
Nash equilibrium; instead, they promote
generating correct solutions regardless of
the correctness of verifications. Results
show that both variants still improve
performance over the baseline; however, they both underperform Corr on two out of
three tasks. Last and All obtains only one more correct answer than Corr in AIME24 and
AMC23, respectively, while the performance discrepancy on MATH500 dominates the
overall gap. The ablation highlights the importance of jointly optimizing the correctness
of both solutions and verifications.

9

Published as a conference paper at COLM 2025

5 Conclusions

In this work, we tackle the mathematical reasoning challenge for Large Language Models by
promoting intrinsic self-corrections. We propose SPOC, a novel approach that enables spon-
taneous, real-time solution proposal and verification within a single inference pass. SPOC
frames the reasoning process as a multi-agent collaboration, where the model assumes both
the roles of a solution proposer and verifier. SPOC dynamically elicits and terminates reason-
ing generations based on verification results, which flexibly and efficiently scales inference-
time compute while improving accuracy. SPOC leverages synthetic data for fine-tuning
and further enhances performance via online reinforcement learning, without requiring hu-
man or oracle input. Comprehensive empirical evaluations on challenging math reasoning
benchmarks showcase SPOC’s efficacy, yielding substantial performance improvement.

Our results highlight the potential of spontaneous self-correction as an effective strategy
for advancing LLM reasoning capabilities. To address the prohibitive length of long CoTs
(Marjanović et al., 2025), future work could explore extending SPOC to partial solutions in
long reasoning chains, using step-level process rewards to guide RL training and enable
dynamic revisions when errors are detected until reaching the final answer. It would also
be interesting to adopt SPOC to broader reasoning domains beyond mathematics, further
enhancing its applicability.

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier

Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style
optimization for learning from human feedback in llms. arXiv preprint arXiv:2402.14740,
2024.

Meta AI. Llama-3.3-70b-instruct. https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct, 2024.

AI-MO. American mathematics contest. https://huggingface.co/datasets/AI-MO/
aimo-validation-amc, 2023.

AI-MO. American invitational mathematics examination. https://huggingface.co/
datasets/AI-MO/aimo-validation-aime, 2024.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry
Wijaya, and Niket Tandon. Rl4f: Generating natural language feedback with reinforcement
learning for repairing model outputs. arXiv preprint arXiv:2305.08844, 2023.

Stefano V Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-agent reinforcement
learning: Foundations and modern approaches. MIT Press, 2024.

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi Zhang, Xiang Li, Bhiksha Raj, and
Huaxiu Yao. Autoprm: Automating procedural supervision for multi-step reasoning via
controllable question decomposition. arXiv preprint arXiv:2402.11452, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe
Diao, Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for
generative foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first
International Conference on Machine Learning, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime

Published as a conference paper at COLM 2025

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to
improve llm reasoning via global and local refinements. arXiv preprint arXiv:2402.10963,
2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798, 2023.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to
self-correct via reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Nu-
minamath. [https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang,
Shuming Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language
models through multi-agent debate. arXiv preprint arXiv:2305.19118, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv
preprint arXiv:2305.20050, 2023.

Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu, Jiaqi Chen, Bang Zhang, Xin Zhou,
Nan Du, and Jia Li. S 2 r: Teaching llms to self-verify and self-correct via reinforcement
learning. arXiv preprint arXiv:2502.12853, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative
refinement with self-feedback. Advances in Neural Information Processing Systems, 36:
46534–46594, 2023.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad
BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han
Lù, et al. Deepseek-r1 thoughtology: Let’s think about llm reasoning. arXiv preprint
arXiv:2504.07128, 2025.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI,
2(5):6, 2024.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math:
Unlocking the potential of slms in grade school math. arXiv preprint arXiv:2402.14830,
2024.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev,
Philip HS Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt:
Improving reasoning with multi-agent llm training. arXiv preprint arXiv:2412.01928, 2024.

Martin J Osborne. A course in game theory. MIT Press, 1994.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert
West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations.
arXiv preprint arXiv:2304.01904, 2023.

11

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Published as a conference paper at COLM 2025

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection:
Teaching language model agents how to self-improve. arXiv preprint arXiv:2407.18219,
2024.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward,
and Jan Leike. Self-critiquing models for assisting human evaluators. arXiv preprint
arXiv:2206.05802, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural
Information Processing Systems, 36:8634–8652, 2023.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530,
2024.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi,
and Yejin Choi. Generating sequences by learning to self-correct. arXiv preprint
arXiv:2211.00053, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang,
Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applica-
tions via multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden,
Duy Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2
reasoning in llms: Learning how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative preference learning from human feedback: Bridging theory and practice
for rlhf under kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-
rewarding correction for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025.

Tengyu Xu, Eryk Helenowski, Karthik Abinav Sankararaman, Di Jin, Kaiyan Peng, Eric
Han, Shaoliang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou, et al. The perfect blend:
Redefining rlhf with mixture of judges. arXiv preprint arXiv:2409.20370, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward
mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models:
Part 2.2, how to learn from mistakes on grade-school math problems. arXiv preprint
arXiv:2408.16293, 2024.

12

Published as a conference paper at COLM 2025

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han,
Debing Zhang, and Le Sun. Critic-cot: Boosting the reasoning abilities of large language
model via chain-of-thoughts critic. arXiv preprint arXiv:2408.16326, 2024.

13

Published as a conference paper at COLM 2025

A Algorithms

Algorithm 2 Pair-SFT Data Construction

1: Inputs: Question-answer dataset D = X ×Y = {(xi, y∗i)}N
i=1, policy model π0, number

of questions N, number of single-turn rollouts per question K, rule-based solution
correctness reward function rsl(y, y∗) ∈ {0, 1}, single-turn sampling set Drjs ← {},
multi-turn correction set Dpair ← {}, verification message validator f vf(v) ∈ {0, 1}

2: for i = 1, . . . , N do
3: // Solution rollout
4: Sample K solutions for each question xi ∈ X : {yk

i }K
k=1 ∼ π0(·|xi)

5: Label binary reward for each solution yk
i : rk

i = rsl(yk
i , y∗i)

6: Append to rejection sampling set: Drjs ← Drjs ∪ {(xi, yk
i , rk

i)}
7: // Obtain verifications
8: Choose the best/worst-of-N samples: k+ = arg maxk rk

i , k− = arg mink rk
i

9: if rk+
i = 0 or rk−

i = 1 then
10: continue // All correct or all incorrect solutions
11: else
12: y∗i ← yk+

i , c_flag← false, i_flag← false
13: for k = 1, . . . , K do
14: if rk

i = 0 then
15: v−i ∼ π0(·|xi, yk

i , y∗i)
16: if f vf(v−i) = 1 then
17: i_flag← 1
18: Dpair ← Dpair ∪ {(xi, yk

i , v−i , y∗i)}
19: end if
20: else if rk

i = 1 and k ̸= k+ then
21: v+i ∼ π0(·|xi, yk

i , y∗i)
22: if f vf(v+i) = 1 then
23: c_flag← 1
24: Dpair ← Dpair ∪ {(xi, yk

i , v+i)}
25: end if
26: end if
27: if c_flag = 1 and i_flag = 1 then
28: break
29: end if
30: end for
31: end if
32: end for
33: return Dpair

14

Published as a conference paper at COLM 2025

Algorithm 3 RAFT Message-wise Policy Optimization

1: Inputs: Question-answer batchDi = Xi ×Yi = {(xj, y∗j)}B
j=1, batch size B, policy model

πθ , number of rollouts per question K, generated trajectory {τk
j }K

k=1, solution correctness

rewards {rsl
j,k,l}k∈[K],l∈[Lk]

, verification correctness rewards {rvf
j,k,l}k∈[K],l∈[Lk]

2: Choose the best-of-N trajectory for each question xj based on last solution message:
k+ = arg maxk rsl

j,k,Lk
3: // Apply constraint
4: Filter out questions with no correct final solution or no correct verification, i.e. learning

batch is
Dlearn =

{
xj, τk+

j , {rsl
j,k+ ,l}l∈[Lk]

, {rvf
j,k+ ,l}l∈[Lk]

∣∣ rsl
j,k+ ,Lk

= 1 ∨ rvf
j,k+ ,l = 1

}
j∈[B]

5: Perform one gradient update on θ with Equations (2) and (3) using Dlearn

Algorithm 4 RLOO Message-wise Policy Optimization

1: Inputs: Question-answer batchDi = Xi ×Yi = {(xj, y∗j)}B
j=1, batch size B, policy model

πθ , number of rollouts per question K, generated trajectory {τk
j }K

k=1, solution correctness

rewards {rsl
j,k,l}k∈[K],l∈[Lk]

, verification correctness rewards {rvf
j,k,l}k∈[K],l∈[Lk]

2: // Message-wise advantage
3: for l = 1, . . . , maxk Lk; r = rsl, rvf do
4: µj,l =

1
K ∑k∈[K] rj,k,l

5: σj,l =
(

1
K ∑k∈[K] |rj,k,l − µj,l |2

) 1
2

6: Aj,k,l =
rj,k,l−µj,l

σj,l

7: end for
8: Learning batch contains all K samples for each question:

Dlearn =
{

xj, τk
j , {Asl

j,k,l}l∈[Lk]
, {Avf

j,k,l}l∈[Lk]

}
j∈[B],k∈[K]

9: Perform one gradient update on θ with Equations (2) and (3) using Dlearn

15

Published as a conference paper at COLM 2025

B Experimental setup details

Tasks. We evaluate model on test sets as follows:

• MATH500 (Lightman et al., 2023). A dataset of 500 problems selected from the full
MATH (Hendrycks et al., 2021) evaluation set. This test set spans five difficulty
levels and seven subjects, which promotes a comprehensive evaluation of reasoning
capabilities.

• AMC23. A dataset of 40 problems from the American Mathematics Contest 12
(AMC12) 2023 (AI-MO, 2023). This test set consists of challenging competition
questions intending to evaluate the model’s capability to solve complex reasoning
problems.

• AIME24. A dataset of 30 problems from the American Invitational Mathematics
Examination (AIME) 2024 (AI-MO, 2024). This test set contains difficult questions,
with few at AMC level and others drastically more difficult in comparison, aim to
access the model’s abiblity to perform more intricate math reasoning.

Implementation details. We use the AdamW optimizer with β1 = 0.9, β2 = 0.95, weight
decay = 0.1, and a constant learning rate 1.0× 10−6. We conduct all training runs on 32
NVIDIA H100 GPUs. We set the global batch size to 2048, and train for 256 steps.

C Extra results

C.1 Verifier reliability

We provide detailed diagnostics for verifier reliability in Table 5. Each confusion matrix
corresponds to a base model and task pair, with the rows and columns indicating the actual
and predicted solution correctness, respectively - i.e., diagonal cells represent the true
positive (TP) and true negative (TN) rates while the off-diagonal cells represent the false
positive (FP) and false negative (FN) rates. We observe the following phenomena:

• On easier tasks, the proposer has higher solution accuracy, and the verifier tends to
show higher TP&FP and lower TN&FN.

• Stronger models that reach higher solution accuracy also have higher TP&FP.

• The small model’s high verification accuracy attributes largely to its higher TN.

Base Model MATH500 AMC2023 AIME2024

Llama-3.1-8B-Instruct 90.2 (266/295) 9.8 (29/295) 81.9 (9/11) 18.2 (2/11) 0 (0/1) 100 (1/1)
34.1 (70/205) 65.9 (135/205) 24.1 (7/29) 75.9 (22/29) 0 (0/29) 100 (29/29)

Llama-3.1-70B-Instruct 100 (385/385) 0 (0/385) 100 (21/21) 0 (0/21) 85.7 (6/7) 14.3 (1/7)
87.0 (100/115) 13.0 (15/115) 84.2 (16/19) 15.8 (3/19) 82.6 (19/23) 17.4 (4/23)

Llama-3.3-70B-Instruct 99.0 (385/389) 1.0 (4/389) 93.1 (27/29) 6.9 (2/29) 100 (7/7) 0 (0/7)
78.4 (87/111) 21.6 (24/111) 72.7 (8/11) 27.3 (3/11) 82.6 (19/23) 17.4 (4/23)

Table 5: Diagnostics for verifier reliability at the first turn across MATH500, AMC2023, and
AIME2024 benchmarks.

C.2 Per-turn performance analysis

We provide the per-turn performance statistics for AIME24 and AMC23 in Table 6 and
Table 7, respectively. The results are consistent with MATH500 analysis in Table 2. SPOC
generally improves or maintains performance on the second solution turns. The smaller
model has lower final accuracy yet larger turn-wise improvements, while larger models
tend to achieve correct solutions sooner at turn1. Moreover, turn-wise corrections occurs
less in these two challenging competition benchmarks, as they contain significantly fewer

16

Published as a conference paper at COLM 2025

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 3.3 29/30 1/30 2/30 1/30 0/1 1/7
Llama-3.1-70B-Instruct 16.7 10/30 7/30 7/30 0/30 0/1 0/1
Llama-3.3-70B-Instruct 26.7 11/30 7/30 7/30 0/30 0 0/1

Table 6: Performance across first two solution turns on AIME2024. ∆c→i and ∆i→c indicate nc→i
nc→c+nc→i

and ni→c
ni→i+ni→c

over turns, respectively.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 22.5 31/40 27.5 32.5 5.0 0/2 2/11
Llama-3.1-70B-Instruct 32.5 24/40 21/40 21/40 0 0 0
Llama-3.3-70B-Instruct 57.5 30/40 29/40 28/40 -2.5 1/2 0/2

Table 7: Performance across first two solution turns on AMC2023. ∆c→i and ∆i→c indicate nc→i
nc→c+nc→i

and ni→c
ni→i+ni→c

over turns, respectively.

questions than MATH500. We will include both tables in the appendix of our revised
manuscript.

Table 2 presents our per-turn performance analysis over turn1 → 2, where the majority
of self-correction occurs. In practice, all finetuned models perform multiple rounds of
self-reflection. We hereby present the complete results, where the Table 8 shows the turn
2 → 3 performance of all models, and Table 9 shows the all-turn performance of the 8B
model (as the other stopped reflection earlier). Results suggest that the 8B model reaches
a maximum of 6 turns while the 70B models reach a maximum of 3 turns across all 500
evaluation questions. This observation aligns with our discussion in Section 4.2, where
stronger models tend to achieve correct solutions sooner. We also observe that the amount
of questions requiring additional solutions drops over turns, aligning with the looping until
verified correctness behavior. Overall, SPOC achieves improvement over turns.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t2 Acc.@t2 Acc.@t3 ∆(t2, t3) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 52.2 19/22 61.0 61.2 0.2 0/3 1/18
Llama-3.1-70B-Instruct 65.8 0 77.4 77.4 0 - -
Llama-3.3-70B-Instruct 75.6 4/24 77.8 77.8 0 - -

Table 8: Performance across solution turns 2 → 3 on MATH500. ∆c→i and ∆i→c indicate nc→i
nc→c+nc→i

and ni→c
ni→i+ni→c

over turns, respectively.

Turn l Verif.Acc.@tl Acc.@tl Acc.@tl+1 ∆(tl , tl+1) ∆c→i ∆i→c

1 401/500 59.0 61.0 2.0 8/29 18/79
2 19/22 61.0 61.2 0.2 0/3 1/18
3 6/8 61.2 61.0 -0.2 2/2 1/6
4 2/2 61.0 61.0 0.0 - 0/2
5 1/1 61.0 61.0 0.0 - 0/1
6 0/1 61.0 - - - -

Table 9: Performance across all solution turns on MATH500 for Llama-3.1-8B-Instruct base model.
∆c→i and ∆i→c indicate nc→i

nc→c+nc→i
and ni→c

ni→i+ni→c
over turns, respectively.

D Preliminaries

CGPO (Xu et al., 2024) is a constrained RL framework that allows for flexible applications
of constraints on model generations. Denoting the contraints that the LLM generations
need to satisfy as {C1, . . . , CM}, the prompt-generation set that satisfies constraint Cm is
defined as Σm = {(x, y) ∈ X × Y : (x, y) satisfies Cm}. The feasible region is defined as

17

Published as a conference paper at COLM 2025

the prompt-generation set that satisfies all constraints, i.e., Σ = ∩M
m=1Cm. In the single-task

setting, CGPO solves the constrained optimization problem as follows:

max
θ

Ex∼X ,y∼πθ(x) [r(x, y)]

s.t. Px∼X ,y∼πθ(x) ((x, y) ∈ Σ) > 0,

KLx∼X (πθ(x)∥πref(x)) ≤ KLmax

where r(x, y) is the reward function. CGPO is compatible with a wide spectrum of policy
optimizers. The RAFT (Dong et al., 2023) algorithm prompts the current policy to generate
multiple responses for each prompt, and the best-of-N (BoN) response is used to perform a
one-step SFT update on the policy.

18

Published as a conference paper at COLM 2025

E Prompts

Llama 3.1 COT query template

User:
Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: $\\boxed{answer}$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.

Problem: {{ Question }}

Figure 4: Llama 3.1 COT query template (Dubey et al., 2024).

Simple COT query template

User:
Please reason step by step, and put your final answer within \\boxed{}.
Question: {{ Question }}

Figure 5: Simple COT query template (Guo et al., 2025).

19

Published as a conference paper at COLM 2025

Instance reflection query template

User:
Compare a correct solution and a potential solution to the same math question,
identify the error in the potential solution, if any, and briefly explain the
error in two sentences or less in the <reflection> ... </reflection> tags,
and then conclude with:

Verification: Is the previous solution correct? (Yes/No)

The explanation should be "I think the solution is correct." if the potential
solution is correct.

DO NOT solve the question. DO NOT include phrases implying the comparison
between the two solutions.

Question: {{ Question }}

Correct solution: {{ correct_solution }}

Potential solution: {{ potential_solution }}

Figure 6: Instance reflection query template.

SPOC simple COT query template

User:
Please reason step by step, and put your final answer within \\boxed{}.

After each solution attempt, reflect on its correctness within <reflection>
... </reflection> tags.

Your reflection should first concisely evaluate the previous solution, and
then conclude with:

Verification: Is the previous solution correct? (Yes/No)

If the verification is "No", rewrite the solution in a separate attempt,
either correcting the error or choosing a different approach altogether.

Question: {{ Question }}

Figure 7: SPOC simple COT query template.

20

Published as a conference paper at COLM 2025

Self-Refine w/o oracle query template

User:
There might be an error in the solution above because of lack of understanding
of the question.
Please correct the error, if any, and rewrite the solution.
Be sure to apply the given format and conclude with:
"Therefore, the final answer is: $\\boxed{answer}$."

Figure 8: Self-Refine w/o oracle query template (Madaan et al., 2023).

Self-Refine w/ oracle query template

User:
There is an error in the solution above because of lack of understanding of
the question.
Please correct the error and rewrite the solution.
Ensure you use the information from past attempts.
If you arrive at a solution you have already had, the answer is incorrect once
again, so take that into account and retry if necessary.
Be sure to apply the given format and conclude with:
"Therefore, the final answer is: $\\boxed{answer}$."

Figure 9: Self-Refine w/ oracle query template (Madaan et al., 2023).

F Example response

We present example responses of SPOC finetuned on Llama-3.1-70B-Instruct on MATH500.

SPOC sample response

Problem info:
Problem: Positive integers a, b, and 2009, with $a<b<2009$, form a geometric
sequence with an integer ratio. What is a?
Answer: 41
Subject: Algebra
Level: 4
Unique_id: test/algebra/791.json

User:

Please reason step by step, and put your final answer within \\boxed{}.

After each solution attempt, reflect on its correctness within <reflection> ...
</reflection> tags.

Your reflection should first concisely evaluate the previous solution, and then
conclude with:

Verification: Is the previous solution correct? (Yes/No)

If the verification is "No", rewrite the solution in a separate attempt, either
correcting the error or choosing a different approach altogether.

Question: Positive integers a, b, and 2009, with $a<b<2009$, form a geometric
sequence with an integer ratio. What is a?

21

Published as a conference paper at COLM 2025

Assistant:
Step 1: Understand the problem and recall the formula for a geometric sequence.
A geometric sequence is defined by the formula \(a, ar, ar^2, \ldots, ar^{n-1} \),
where \(a \) is the first term and \(r \) is the common ratio. In this problem, we
have \(a, b, 2009 \) as the terms of the geometric sequence, with \(a < b < 2009 \).
Therefore, we can write \(b = ar \) and \(2009 = ar^2 \).

Step 2: Express \(b \) in terms of \(a \) and \(r \), and \(2009 \) in terms of
\(a \) and \(r \) to find the relationship between \(a \) and \(r \).
Given \(b = ar \) and \(2009 = ar^2 \), we can see that \(r = \frac{b}{a} \) and
\(r^2 = \frac{2009}{a} \). Since \(r \) is an integer, \(r^2 \) must also be an
integer, which means \(\frac{2009}{a} \) must be an integer. Therefore, \(a \) must
be a factor of 2009.

Step 3: Find the factors of 2009 to determine possible values for \(a \).
To find the factors of 2009, we can start by checking for its prime factorization. 2009
is a prime number, which means its only factors are 1 and 2009. However, since \(a < b
< 2009 \), \(a \) cannot be 2009. Thus, the only possible value for \(a \) is 1, but
we need to verify if this satisfies the condition of forming a geometric sequence with
an integer ratio.

Step 4: Verify if \(a = 1 \) satisfies the conditions of the problem.
If \(a = 1 \), then \(b = ar = 1 \cdot r = r \) and \(2009 = ar^2 = 1 \cdot r^2 =
r^2 \). This implies \(r^2 = 2009 \), but since 2009 is not a perfect square (it is a
prime number), \(r \) cannot be an integer. Therefore, \(a = 1 \) does not satisfy
the condition of having an integer ratio \(r \). We need to reconsider our approach
based on the prime factorization of 2009 and the properties of geometric sequences.

Step 5: Reconsider the prime factorization of 2009 and its implications for \(a \)
and \(r \).
Given that 2009 is a prime number, for \(a, b, 2009 \) to form a geometric sequence
with \(a < b < 2009 \) and an integer ratio \(r \), we must have \(b = ar \) and
\(2009 = ar^2 \). Since \(r \) is an integer and \(2009 = ar^2 \), \(r^2 \) must
divide 2009. However, since 2009 is prime, the only integer divisors of 2009 are 1 and
2009 itself. This means \(r^2 = 2009 \) is not possible for any integer \(r \) since
2009 is not a perfect square. The only other option is \(r^2 = 1 \), which gives
\(r = 1 \) or \(r = -1 \), but \(r = 1 \) would not give a geometric sequence with
distinct terms, and \(r = -1 \) would not satisfy \(a < b < 2009 \) since multiplying
by -1 would change the order of the terms. We need to think about the factors of 2009
in a different way, considering that \(a \) and \(r \) must both be integers and
\(a < b < 2009 \).

Step 6: Consider the factorization of 2009 in the context of geometric sequences.
Since 2009 is a prime number, for \(a, b, 2009 \) to be in a geometric sequence, we
have to think about how \(a \) and \(r \) can be chosen such that \(b = ar \) and
\(2009 = ar^2 \) are both integers and \(a < b < 2009 \). Given \(2009 = ar^2 \),
and knowing 2009 is prime, we realize that for \(r^2 \) to divide 2009, \(r^2 \)
must be 1 (since 2009 is prime and has no other divisors besides 1 and itself).
This implies \(r = 1 \) or \(r = -1 \), but as discussed, \(r = 1 \) does not yield
a geometric sequence with distinct terms, and \(r = -1 \) does not satisfy the
condition \(a < b < 2009 \) because multiplying by -1 would reverse the order. We must
reconsider the relationship between \(a \), \(b \), and 2009 in terms of their
prime factorization and the properties of geometric sequences.

Step 7: Apply the correct relationship between \(a \), \(b \), and 2009
considering the geometric sequence and integer ratio.
Given \(b = ar \) and \(2009 = ar^2 \), dividing the second equation by the first
gives \(\frac{2009}{b} = r \). Since \(r \) is an integer, \(b \) must be a factor
of 2009.
The factors of 2009 are 1 and 2009 (since 2009 is prime), but \(b \) cannot be 2009
because \(b < 2009 \). Thus, \(b = 1 \) is not possible since \(a < b \), implying
\(a \) would have to be less than 1, which is not possible for positive integers. We

22

Published as a conference paper at COLM 2025

need to find a factor of 2009 that fits the geometric sequence criteria. However, our
analysis has been misguided because we overlooked the simplest factorization that allows
for a geometric sequence with integer ratio. Let's correct this by directly applying the
condition that \(a, b, 2009 \) form a geometric sequence with \(r \) being an integer.

Step 8: Correctly apply the geometric sequence formula and the fact that
2009 is a prime number.
Since \(2009 = ar^2 \) and \(r \) is an integer, we look for integer factors of 2009.
However, since 2009 is prime, its only factors are 1 and 2009. For \(a, b, 2009 \) to be
in a geometric sequence, we must have \(b = ar \) and \(2009 = ar^2 \). Given \(r \)
is an integer and \(a < b < 2009 \), we examine the possibility of \(r = 2009 \) and
\(a = 1 \), but this does not fit because \(b \) would then be 2009, violating
\(b < 2009 \). The correct approach involves recognizing that since 2009 is prime, the
only way \(a, b, 2009 \) can form a geometric sequence with integer \(r \) is if
\(r \) itself is a factor of 2009, but since 2009 is prime, \(r \) must effectively be
1 or 2009 for the sequence to hold with integer values. However, \(r = 1 \) does not
yield a geometric sequence with distinct terms, and \(r = 2009 \) does not fit the
\(a < b < 2009 \) condition. We need to think about the factors of 2009 in a way that
allows for a geometric sequence with \(a < b < 2009 \) and \(r \) being an integer.

Step 9: Re-evaluate the conditions for \(a \), \(b \), and 2009 to form a geometric
sequence.
Given \(b = ar \) and \(2009 = ar^2 \), and knowing 2009 is prime, for \(r \) to be an
integer, \(a \) must be such that \(ar^2 = 2009 \) holds true with \(r \) being an
integer. Since 2009 is prime, \(r^2 \) must divide 2009, implying \(r^2 = 1 \) or
\(r^2 = 2009 \) since these are the only divisors of 2009. \(r^2 = 2009 \) is not
possible for integer \(r \) since 2009 is not a perfect square. Thus, \(r^2 = 1 \),
giving \(r = 1 \) or \(r = -1 \). However, \(r = 1 \) does not yield a geometric
sequence with distinct terms, and \(r = -1 \) would imply \(b = -a \), which does not
fit \(a < b < 2009 \) for positive integers. We must consider the nature of geometric
sequences and prime numbers to find \(a \).

Step 10: Apply the properties of geometric sequences and prime numbers correctly.
For \(a, b, 2009 \) to be a geometric sequence with integer \(r \), and given 2009 is
prime, we look for \(a \) and \(r \) such that \(2009 = ar^2 \) and \(b = ar \).
Since \(r \) must be an integer and 2009 is prime, \(r^2 \) must be a factor of 2009,
which means \(r^2 = 1 \) (since 2009 is prime and has no other square factors). This
implies \(r = 1 \) or \(r = -1 \), but \(r = 1 \) does not give a geometric sequence
with distinct terms, and \(r = -1 \) does not fit the condition \(a < b < 2009 \) for
positive \(a \) and \(b \). We need to think about the prime factorization of 2009 and
how it applies to geometric sequences. Given 2009 is prime, for \(a, b, 2009 \) to form
a geometric sequence, \(a \) must be 1, and \(r \) must be such that \(r^2 = 2009 \),
but since 2009 is not a perfect square, this approach is flawed. We must reconsider the
basic properties of geometric sequences and the given conditions.

Step 11: Correctly identify \(a \) based on the geometric sequence and prime number
conditions.
Given \(a, b, 2009 \) form a geometric sequence with integer \(r \), and 2009 is prime,
we have \(b = ar \) and \(2009 = ar^2 \). Since \(r \) is an integer and 2009 is
prime, \(r^2 \) must divide 2009, implying \(r^2 = 1 \) or \(r^2 = 2009 \). Since
\(r^2 = 2009 \) is not possible for integer \(r \) (2009 is not a perfect square), we
consider \(r^2 = 1 \), giving \(r = 1 \) or \(r = -1 \). However, \(r = 1 \) does not
yield a geometric sequence with distinct terms, and \(r = -1 \) does not fit
\(a < b < 2009 \) for positive integers. The error lies in assuming \(r^2 \) must
directly divide 2009; instead, we should consider how \(a \) and \(r \) relate through
the geometric sequence formula. Since 2009 is prime, and \(a, b, 2009 \) are in a
geometric sequence, we look for \(a \) and \(r \) such that \(2009 = ar^2 \) and
\(b = ar \), with \(r \) being an integer. Given 2009's primality, \(a \) must be 1
for \(r^2 \) to be an integer factor of 2009, but since 2009 is not a perfect square,
\(r \) cannot be an integer if \(a = 1 \). We need to reconsider the relationship
between \(a \), \(b \), and 2009 in the context of geometric sequences and prime
numbers.

23

Published as a conference paper at COLM 2025

Step 12: Finalize the correct approach for finding \(a \).
Given \(a, b, 2009 \) form a geometric sequence with \(r \) as an integer, and 2009 is
prime, we must find \(a \) such that \(b = ar \) and \(2009 = ar^2 \). Since 2009 is
prime, for \(r^2 \) to divide 2009, \(r^2 \) must be 1 (since 2009 is not a perfect
square). This implies \(r = 1 \) or \(r = -1 \), but \(r = 1 \) does not yield a
geometric sequence with distinct terms, and \(r = -1 \) does not fit \(a < b < 2009 \)
for positive \(a \) and \(b \). The key insight is recognizing that since 2009 is
prime, \(a \) must be such that \(ar^2 = 2009 \) holds with \(r \) being an integer.
Given \(r^2 = 1 \) is the only integer square factor of 2009 (since 2009 is not a
perfect square), we must consider how \(a \) and \(r \) relate through the geometric
sequence. If \(r = -1 \), then \(b = -a \), which does not fit \(a < b < 2009 \) for
positive integers. Thus, we need to think about the factors of 2009 in a way that allows
for a geometric sequence. Since 2009 is prime, the only factors are 1 and 2009, implying
\(a \) could be 1 if \(r^2 = 2009 \), but \(r \) cannot be an integer in this case.
The correct approach involves recognizing that \(a \) must be a factor of 2009 such that
\(r \) can be an integer, but since 2009 is prime, \(a \) must effectively be 1 for
\(r \) to be an integer, given \(r^2 = 1 \) as the only viable integer square factor
of 2009.

Therefore, the final answer is: \boxed{1}<|eom_id|>

<reflection>
The error lies in the incorrect assumption that \(r^2 \) must directly divide 2009,
leading to a flawed analysis of possible values for \(r \) and \(a \). This mistake
results in an incorrect conclusion that \(a \) must be 1, when in fact, \(a \) should
be derived from considering the factors of 2009 and the properties of geometric sequences
with integer ratios.

Verification: Is the previous solution correct? No
</reflection><|eom_id|>

Step 1: Understand the problem and recall the formula for a geometric sequence.
A geometric sequence is defined by the formula \(a_n = a_1 \cdot r^{(n-1)}\), where
\(a_n\) is the nth term of the sequence, \(a_1\) is the first term, \(r\) is the common
ratio, and \(n\) is the term number. For the given problem, we have \(a_1 = a\),
\(a_2 = b\), and \(a_3 = 2009\). Therefore, we can write the equations \(b = ar\) and
\(2009 = ar^2\).

Step 2: Express \(b\) in terms of \(a\) and \(r\), and \(2009\) in terms of \(a\) and
\(r\).
From the geometric sequence formula, we have \(b = ar\) and \(2009 = ar^2\).

Step 3: Solve for \(r\) using the information given.
Dividing the equation \(2009 = ar^2\) by \(b = ar\), we get \(\frac{2009}{b} = r\). Since
\(b = ar\), we can substitute \(b\) in the equation to get \(\frac{2009}{ar} = r\), which
simplifies to \(2009 = ar^2\). We already know this, so let's directly use the
relationship between \(a\), \(b\), and \(2009\) to find \(r\). Given \(b = ar\) and
\(2009 = ar^2\), dividing these equations gives \(r = \frac{2009}{b}\).

Step 4: Determine the possible values of \(r\) and \(a\).
Since \(a\), \(b\), and \(2009\) form a geometric sequence with \(a < b < 2009\), and
\(r\) is an integer, we need to find integer factors of \(2009\) that could serve as
\(r\). The prime factorization of \(2009\) is \(7^2 \cdot 41\). Thus, possible values
for \(r\) could be \(1\), \(7\), \(41\), or \(49\), considering the factors of \(2009\).
However, since \(a < b < 2009\), \(r\) must be greater than \(1\).

Step 5: Test possible values of \(r\) to find \(a\).
Let's test \(r = 7\): If \(r = 7\), then \(2009 = a \cdot 7^2\), which gives
\(a = \frac{2009}{49}\). Calculating this, \(a = 41\), which is an integer and satisfies
\(a < b < 2009\).
Let's test \(r = 41\): If \(r = 41\), then \(2009 = a \cdot 41^2\), which does not yield
an integer \(a\) since \(41^2 = 1681\) and \(2009 / 1681\) is not an integer.
Let's test \(r = 49\): If \(r = 49\), then \(2009 = a \cdot 49^2\) does not apply since

24

Published as a conference paper at COLM 2025

\(49^2 = 2401\), which is larger than \(2009\), making it impossible for \(a\) to be an
integer in this context.

Step 6: Verify the solution.
Given \(r = 7\) and \(a = 41\), we find \(b = ar = 41 \cdot 7 = 287\). Thus, the sequence
is \(41, 287, 2009\), which satisfies the given conditions.

The final answer is: $\boxed{41}$<|eom_id|>

<reflection>
I think the solution is correct.\n\nVerification: Is the previous solution correct? Yes
</reflection><|eot_id|>

25

	Introduction
	Related work
	Method
	Multi-turn formalism
	Enabling multi-turn generation
	Online reinforcement learning

	Experiments
	Experimental setup
	Results
	Ablations

	Conclusions
	Algorithms
	Experimental setup details
	Extra results
	Verifier reliability
	Per-turn performance analysis

	Preliminaries
	Prompts
	Example response

