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ABSTRACT

Multimodal Emotion Recognition in Conversations (MERC) seeks to identify
emotional states across multiple modalities, including text, audio, and video. This
field of study is pivotal for advancing machine intelligence, with significant im-
plications for applications such as intelligent dialogue systems and public opinion
analysis. Most existing approaches primarily employ full-sequence interaction
and distillation techniques, aiming to construct a comprehensive global contextual
understanding while simultaneously enhancing the interaction among heteroge-
neous modalities. However, the presence of repetitive and redundant information,
coupled with gradient conflicts arising from modal heterogeneity, can significantly
impede the effectiveness of multimodal learning and long-range relationship mod-
eling. In this work, we propose an innovative heterogeneous multimodal integra-
tion method called SUMMER, grounded in attention mechanism and knowledge
distillation techniques, which facilitates dynamic interactive fusion of multimodal
representations. Specifically, the Sparse Dynamic Mixture of Experts strategy
is proposed to dynamically adjust the relevance of the temporal information to
construct local to global token-wise interactions. Then a Global Mixture of Ex-
perts is employed to enhance the model’s overall contextual understanding across
modalities. Notably, we introduce retrograde distillation that utilizes a pre-trained
unimodal teacher model to guide the learning of multimodal student model, inter-
vening and supervising multimodal fusion within both the latent and logit spaces.
Experiments on the IEMOCAP and MELD datasets demonstrate that our SUM-
MER framework consistently outperforms existing state-of-the-art methods, with
particularly significant improvements in recognizing minority and semantically
similar emotions in MERC tasks.

1 INTRODUCTION

Multimodal Emotion Recognition in Conversations (MERC) Poria et al. (2019) seeks to elucidate
the emotional dynamics inherent in interactions, thereby enhancing human-computer interaction
Cowie et al. (2001) and fostering empathy across diverse domains such as digital humans, healthcare
Pujol et al. (2019), and social media analytics Andalibi & Buss (2020). Unlike traditional methods,
multimodal emotion analysis integrates cues from text, audio, and visual modalities Zhang et al.
(2024) which can capture nuanced emotional cues and facilitate corrective feedback mechanisms
from varied contexts.

In MERC tasks, most existing studies focus on constructing global context understanding and im-
proving cross-modal fusion. The RNN-based model DialogueRNN Majumder et al. (2019) lever-
ages Recurrent Neural Networks to capture global temporal dependencies, while the GNN-based
model CORECT uses Relational Temporal Graph Neural Networks to represent multimodal rela-
tionships. In contrast, the Transformer-based model MultiEMO and SDT Shi & Huang (2023);
Ma et al. (2023) employs attention mechanisms to prioritize long-range dependencies, integrating
contextual information across multiple modalities.

Despite advances in MERC, challenges such as inefficient modal association persist. As illustrated
in Figure 1 (a): (1) In the 6th utterance, phrases like ”but no” and ”she’s not my girlfriend” clearly
indicate sadness. However, if the model overemphasizes earlier positive expressions like ”we com-
municate on a daily,” it may incorrectly classify the emotion as happiness. This underscores the
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[s1]: Who's Amy? [neutral]

[s1]: Oh, my God! I'm so 
digging with them. [happy]

[s1]: How long has this 
been going on? [excitement]

[s1]: Oh, that's too bad. [sad]

[s3]: We communicate on 
a daily, but no, She's 
not my girlfriend! [sad]

[s2]: His girlfriend. [neutral]

[s2]: Four months. [happy]

[s3]: Yeah... [frustration]

Rounds

Visual Text Audio Audio Text Visual
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Speaker: Penny Speaker: Leonard & Sheldon

[s1]: Oh, that's too bad.

0.8
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0

Audio
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Visual

(a) Illustrative Example of MMER tasks from The Big Bang Theory (b) Limitations of the traditional MoE model

HeatMap

Figure 1: (a) A representative example of multimodal emotion recognition in conversations. For
each given sentence, it contains three modal information about the speaker, text, video, and audio.
The task of MERC is to identify the emotional labels contained in the three modal information. (b)
Examples of the limitations of the traditional MoE model for MERC tasks.

risk of focusing on local context while neglecting key emotional cues. (2) In the 3th utterance, the
correct label is ”excited,” but dynamic changes in facial expressions and vocal tone might mislead
the model to classify it as anger. Such intense emotional variations can be misinterpreted as negative
emotions, highlighting the complexity of multimodal data in emotion recognition tasks.

Although the Mixture of Experts (MoE) model dynamically selects the most suitable token experts
via a gating mechanism, improving multimodal fusion and association efficiency, it also has lim-
itations. As shown in Figure 1 (b), MoE only selects a fixed Top-K subset or weights all experts
for reasoning, limiting its adaptability in complex MERC environments. Therefore, dynamically
selecting token-level information and incorporating a global Mixture of Experts adapter is essential
for optimizing contextual understanding and filtering redundant information.

To enhance the cross-modal fusion of heterogeneous modalities refined by MoE, the Transformer-
based SDT model Ma et al. (2023) employs a self-distillation approach to guide multimodal fusion
learning. Additionally, cross-modality distillation enhances fusion by enabling knowledge transfer
between heterogeneous features. However, self-distillation methods often face gradient conflict
issues, where gradients from the teacher and student model interfere during training. Resolving
fusion disorientation is critical to improving the effectiveness of multimodal fusion.

In this work, we propose a Sparse Unimodal-driven distillation for Multi-Modal Emotion
Recognition named SUMMER to enhance modal association learning and fusion disorientation.
First, we employ Sparse Dynamic MoE (SDMoE) to enhance token-wise interaction for high-quality
localized information and mitigate the impact of redundant data on cross-modal fusion. Then we in-
troduce Hierarchical Cross-Modal Fusion (HCMF) with Global MoE (GMoE) to adaptively capture
and unify intrinsic links between modalities to improve global context understanding. Additionally,
we propose a novel Interactive Knowledge Distillation (IKD) where a high-performing unimodal
teacher model guides the learning of a multimodal student model, facilitating directed learning and
reducing gradient conflicts caused by modal discrepancies.

The main contributions of this work are summarized as follows:

• We propose a Sparse Dynamic Mixture of Experts and Hierarchical Cross-Modal Fusion
method to enhance local key token selection and improve global context understanding,
thereby refining heterogeneous modal information for more effective multimodal fusion.

• We introduce a retrograde distillation strategy where a unimodal-driven teacher model
guides the multimodal student model, standardizing and addressing fusion disorientation
in multimodal learning.

• Our model significantly outperforms state-of-the-art benchmarks on the IEMOCAP and
MELD datasets, demonstrating superior performance in capturing subtle emotional nu-
ances, and excelling in semantically similar and underrepresented emotion categories.
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2 RELATED WORK

Multimodal Emotion Recognition in Conversations. The core objective of MERC Dashtipour
et al. (2016) is to analyze speakers’ emotional states by leveraging multimodal data over time. While
early approaches relied heavily on GNN-based Ghosal et al. (2019); Song et al. (2023); Hu et al.
(2021) and RNN-based architectures Poria et al. (2017); Majumder et al. (2019); Jiao et al. (2019);
Li et al. (2022), which were standard in natural language processing, these recurrent models faced
limitations in handling long sequences and lacked scalability. In contrast to these models, contem-
porary approaches aim to capture both intra- and inter-modal interactions, leading to more nuanced
emotional analysis by unifying information from text, audio, and visual modalities. Techniques such
as tensor fusion, as employed by LMF Liu et al. (2018), manage complementary information while
reducing redundancy across modalities, further enhancing multimodal fusion. Additionally, MM-
DFN Hu et al. (2022) dynamically captures contextual and multimodal features while minimizing
irrelevant information across modalities.

Transformer-based Models. The introduction of Transformer models Vaswani (2017) revolu-
tionized MERC by enabling efficient parallel computing and long-sequence modeling through self-
attention mechanisms, leading to significant advancements in intra- and inter-modal fusion. Models
like CTNet Lian et al. (2021) employ single and cross-modality Transformers, while CKETF Ghosh
et al. (2021) enhances context and knowledge representation within a Transformer framework. TL-
ERC leverages transfer learning to improve performance across tasks.

To improve multimodal understanding, dynamic attention mechanisms are employed to adjust at-
tention weights, enabling more effective cross-modal encoding. TFR-Net Yuan et al. (2021) and
Emocaps Li et al. (2022) leverage intra- and inter-modal attention to capture sentiment trends. Tai-
lor Zhang et al. (2022) uses a Transformer-based unimodal extractor and a multi-label bootstrap
decoder to model dependencies between labels and modalities. SDT Ma et al. (2023) introduces an
Intra- and Inter-modal Transformer for emotional interactions across modalities and sessions, while
TACFN Liu et al. (2023) proposes an Adaptive Inter-modal Fusion Network to reduce redundancy
and improve feature integration.

Knowledge Distillation. Knowledge Distillation (KD) Gou et al. (2021) has become a powerful
method for compressing models and improving efficiency by transferring knowledge from a larger
teacher model to a smaller student model. In multimodal emotion recognition, KD enables the in-
tegration of complementary information across modalities, helping the student model capture richer
emotional representations. SENet Albanie et al. (2018) transfers visual knowledge into speech emo-
tion recognition models using unlabeled video data. Schoneveld Schoneveld et al. (2021) utilizes the
KD method to improve the performance of models in facial expression recognition. Similarly KIAN
Wang et al. (2020) proposes K-injection subnetworks to distill linguistic and acoustic information,
allowing implicit knowledge transfer in audiovisual models for group emotion recognition.

The majority of these approaches rely on offline distillation, which necessitates the pre-training of
a large teacher model to guide the learning of smaller student model. However, little attention has
been given to using a smaller unimodal-driven teacher model to instruct more complex multimodal
students, which has the potential for effective cross-modal learning. This gap serves as the primary
motivation for our work.

3 METHODOLOGY

3.1 TASK DEFINITION

In MERC tasks, each conversation consists of n utterances {u1, u2, ..., un} and m speakers
{s1, s2, ..., sm}. Each utterance ui comprises three modalities, represented as ui = {ut

i, u
a
i , u

v
i },

where t, a, and v denote text, audio, and visual modalities, respectively. The objective is to predict
the sentiment classification label yi corresponding to each ui within the conversation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unimodal Restruction

SDMoEt

SDMoEa

SDMoEv

Sparse Dynamic MoE

S

S

S

HCMFtav
CHCMFtva

HCMFatv
CHCMFavt

HCMFvta
CHCMFvat

Hierarchical Cross-Modal Fusion

Residual

Residual

Residual

C

Interactive 
Knowledge Distillation

G
ro

un
d 

Tr
ut

h

DialogueRNNt

Text Encoder

Audio Encoder

Visual Encoder

DialogueRNNa

DialogueRNNv

OpenSmlie

LFNet3D

Unified Multimodal Student Model Backbone

yl
y2

yn

y3

SDMoEt

S

C

HCMFtext

Residual

Teacher
Classifier

Let's talk ...
sounds good.

RoBERTa DialogueRNNt

Text Encoder

Unimodal-based Teacher Model Backbone

RoBERTa

Classifier

Classifier

Classifier

ptr

Text

Audio

Visual

Text
Audio
Visual

Low Rank

Pos Embedding

S Spaker Embedding

C Concat

Frozen Model

Trainable Model

Add

Teacher

Classifier

Figure 2: Illustration of the SUMMER framework, which comprises the Unimodal Teacher Model,
Unified Multimodal Student Model, and Interactive Knowledge Distillation. The frozen teacher
model is dedicated to mentoring the student model by providing a comprehensive guide for learning.

3.2 MODEL OVERVIEW

As shown in Figure 2, SUMMER consists of four core modules: Unimodal Reconstruction, Sparse
Dynamic Mixture of Experts (SDMoE), Hierarchical Cross-Modal Fusion (HCMF), and Interactive
Knowledge Distillation (IKD). The unimodal encoder extracts features from text, audio, and visual
inputs, while SDMoE focuses on token-wise interaction, dynamically adjusting global context as-
sociations and filtering redundant information. HCMF enriches semantics by aligning multimodal
weights, and IKD improves cross-modal feature fusion through efficient knowledge transfer, lever-
aging lightweight pre-trained teacher models via latent and logit spaces.

3.3 UNIMODAL RESTRUCTION

Unimodal Encoder. For the Text Encoder, we use the pre-trained roBERTa model to extract text
features ht

i ∈ Rls×dt , incorporating speaker identity and dialogue separators to capture both intra-
and inter-speaker context. The Audio Encoder leverages OpenSMILE to extract 6,373-dimensional
acoustic features ha

i ∈ Rls×da , which are reduced to 512 dimensions for efficiency. To address
challenges with direct CNN(3D) video processing, we propose LFNet3D (see details in A.1) to pro-
duce 256-dimensional spatio-temporal features hv

i ∈ Rls×dv . Finally, DialogueRNN is employed to
capture global emotional trends and speaker-emotion dynamics in conversations.

Utterance-Speaker Embeddings. As illustrated in the 4-7th utterances in Figure 1 (a), emotion
of the current speaker directly influences the next speaker. To effectively model the relationships
between speaker identity Sj and utterance in affective states, it is crucial to incorporate a latent
speaker representation into the positional embeddings. This is achieved using an input feature set
Hm

i = {ht
i, h

a
i , h

v
i }, which includes text, audio, and visual features extracted by a unimodal encoder.

Sj = Vsjosj ∈ Rls×ds , (1)

Ue = Hm
i + Si + Pi, (2)

where j represents the identity of different speakers, Vsj is a learnable speaker identity embedding,
osj is the one-hot encoding of each speaker, and Pi represents the absolute position embeddings of
the utterance.

3.4 SPARSE DYNAMIC MIXTURE OF EXPERTS

In certain cases, the complexity of the dialogue environment impacts model accuracy. To mitigate
this, we propose a SDMoE module, as shown in Figure 3 (a), comprising three key components: an
Auxiliary Expert Network, a Dynamic Routing Mechanism, and a Global MoE.
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Figure 3: (a) SDMoE comprises two main components: the Auxiliary Expert Network and the
Dynamic Routing Mechanism. Specifically, the dynamic router adjusts the relevance of the attention
map to facilitate local token-wise interactions. (b) HCMF integrates a Teacher-guided Cross-Modal
Fusion with a GMoE module to enhance overall contextual understanding across modalities.

Auxiliary Expert Network. We capture modality-specific emotional semantics at multiple levels
using a set of BiGRU experts. Each expert model processes the encoded features Ei = BiGRU(Ue),
enhancing the model’s ability to adapt to temporal dependencies while mitigating noise and re-
dundancy. Parameters are shared within intra-modal components but remain independent across
inter-modal components. The expert network outputs are aggregated as Eo = {Eo1, Eo2, . . . , Eon},
where n denotes the number of experts.

Dynamic Routing Mechanism. Instead of summing the weights of all or Top-K expert models
as in traditional MoE, we propose a dynamic routing mechanism Gdyn, which dynamically adjusts
the number of experts according to the simplicity of the scenario. The gating network generates a
global representation of the multimodal context and produces a sparse key representation Msparse.

Gdyn =

{
Softmax(Wg)

T , if Wg ∈ (µ− 2σ, µ+ 2σ)

0, otherwise
(3)

where T represents a temperature-adjusted parameter to control weight distribution, while µ and σ
denote the mean and standard deviation of the weights, respectively. Weights in Wg are selectively
deactivated if they fall outside the range (µ− 2σ, µ+ 2σ), with non-critical features set to zero.

However, our selection mechanism involves a discrete sampling process, resulting in a non-
differentiable model during gradient propagation. To address this, we introduce Gumbel noise to
ensure differentiability during backpropagation, gnoise = −log(−log(Ri)), where Ri is a random
variable sampled from a uniform distribution (0, 1). The improved ˆGdyn can be expressed as:

ˆGdyn =
exp(

Wg+gnoise

τ )∑n
1 exp(

Wg+gnoise

τ )
, (4)

Msparse =

n∑
i

( ˆGdyn × Eo), (5)

where τ is a learnable parameter that controls the smoothness of the distribution.

Global MoE. To mitigate the potential loss of global contributions from various modules caused
by directly using decision variables for inference, we introduced a GMoE that dynamically selects
representations Hm from the HCMF 3.5 modules, managed by a global router. Assuming the expert
outputs are Fo = {ft, fa, fv}, the global router is defined as Gglobal = Vg × Fo, where Vg is a
learnable global dynamic adapter. The multimodal decision vector Hfuse can then be computed as:

Hfuse =

n∑
i

(Vg × Fo ×Hm). (6)

5
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Notably, leveraging the sparse dynamic routing mechanism extends the capacity of the global router
without significantly increasing training or inference time. And our proposed GMoE can be applied
to any layer for intermediate output processing.

3.5 HIERARCHICAL CROSS-MODAL FUSION

Unimodal-driven Multimodal Learning. Modal imbalance often occurs in multimodal learn-
ing when the model fails to effectively leverage all modalities, resulting in unstable performance.
Therefore, we designed and pre-trained a unimodal teacher model using the SDMoE module. Ex-
perimental results (discussed in Section 4.5) demonstrate that the text-based teacher model achieves
the best performance in a unimodal setup. This finding motivates the use of a single modality as a
prior to bootstrap cross-modal feature distillation and enables transfer learning.

Teacher-Guided Cross-Modal Fusion. Our proposed teacher-guided HCMF framework (Figure
3 (b)), consists of three sub-branches: HCMFt, HCMFa, and HCMFv , each employing a BERT-like
bidirectional encoder to process text, audio, and visual modalities, respectively. Taking the HCMFt

branch as an example, we define the inputs to the student model as Qstt, Kt
st, V

t
st ∈ Rlm×dm ,

while the intermediate outputs of the teacher model are denoted as Qtr, Ktr, Vtr. To transfer
the intermediate features from the teacher model to the student model via masking, a mask Mij is
applied to ensure that the student model’s intermediate representations align with the teacher model’s
guidance. The teacher-guided attention DynAttn can be described as follows:

Mij =

{
1, if

√
(str − sst)2 > 0.5,

0, otherwise,
(7)

DynAttn =

n∑
i=1

((1− ϕMij) · Softmax(
Qt

stK
tT

st√
d

)V t
st), (8)

where str and sst represent the dot products of the Q (query) and K (key) matrices from the teacher
and student model, respectively. ϕ is a dynamic adjustment factor that moderates the masking field.
Based on DynAttn, we can fuse multiple modals dynamically, where Hta (text-audio) and Htav

(text-audio-visual) are the hierarchical cross-modal fusion outputs, formally defined as follows:
Hta = DynAttnta(Q

t
st,K

a
st, V

a
st), (9)

Htav = DynAttntav(Hta,K
v
st, V

v
st). (10)

For encoder at the same level, intra-modal interaction occurs via multi-head attention which en-
hances high-level semantic fusion. To ensure smoother cross-modal fusion, residual blocks are
introduced to retain more original modal information.

3.6 INTERACTIVE KNOWLEDGE DISTILLATION

Verified by previous work on the distillation method Wang et al. (2024), relying solely on the
teacher’s final representations can lead to gradient conflicts due to the use of hard labels. Our pro-
posed IKD approach (Figure 2) updates the student model’s intermediate parameters by transferring
knowledge in the space of homogeneous probability distributions for heterogeneous modal features,
effectively mitigating prediction bias through the use of soft labeling.

Interactive KD. To transfer knowledge without making the student model overly reliant on the
teacher, we freeze the teacher’s parameters and apply its classifiers to the student’s intermediate
features. This approach ensures that the heterogeneous modal features are mapped into a uniform
distribution space. Simultaneously, we constrain the labels of the student model and supervise the
feature fusion by leveraging the gaps in the logit space. The interaction loss LKD

cls is computed using
KL divergence and Cross Entropy loss, which is defined as:

LKD
cross =

N∑
i=1

ˆpmi
log

ˆpmi

¯pmi

, (11)

LLabel
align = −

N∑
i=1

C∑
j=1

gti log( ˆpmi
), (12)

6
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where ˆpmi
and ¯pmi

represent the predicted distributions of the student and teacher intermediate
features, both processed through the teacher model’s classifier. gti is the ground truth label.

Inner KD. Intermediate feature knowledge is transferred from the teacher to the student model,
allowing the student fst

mi
to replicate the teacher’s feature distribution f tr

mi
. The discrepancy between

their feature distributions is measured using MSE loss. Inner loss LKD
inner can be represent as follow:

LKD
inner =

N∑
i=1

C∑
j=1

||f tr
mi

− fst
mi

||2, (13)

Label Smooth Loss. To reduce sensitivity to noise and prevent overconfidence in single cate-
gories, we employ soft labels instead of hard labels. This adjustment mitigates the risk of excessive
reliance on incorrect teacher predictions. The corresponding smooth loss function is defined as:

LLabel
smooth = −

C∑
j=1

(
exp(pstmi

)∑N
i exp(pstmi

)
· δ(gti)), (14)

where C represents the number of categories, pmi
is the prediction of multimodal fusion vector pass

through the student model’s classifier, gt denotes the target label. For the correct category gti = ϵ,
while for the other categories gtj = (1− ϵ)/(C − 1) where ϵ ∈ (0, 1).

Training Objectives. Our overall training objective of Interactive KD can be represented below,
where κ1, κ2, κ3 are compromise parameters between different objectives. In particular, κ4 is set
with a higher weight to minimize the impact of teacher model bias on the student model.

LKD = κ1L
KD
cross + κ2L

Label
align + κ3L

KD
inner + κ4L

Label
smooth. (15)

4 EXPERIMENTAL SETTINGS

4.1 DATASETS AND EVALUATION METRICS

To verify the validity of our proposed SUMMER model, we perform experiments on two widely-
used MERC datasets, IEMOCAP Busso et al. (2008) and MELD Poria et al. (2018), which consist of
multimodal data (text, audio, and video). IEMOCAP comprises 12 hours of conversations annotated
with six emotion labels, while MELD contains dialogue clips from the TV show Friends with seven
distinct emotion labels. In our experiments, we report accuracy (Acc) and F1-score for each emotion
category, along with the overall weighted average accuracy (w-Acc) and weighted average F1 (w-
F1) to compare the performance of the proposed method against baseline approaches.

4.2 BASELINES

We compare our model against several strong baselines: DialogueRNN Majumder et al. (2019) uses
GRUs to model speaker states, context, and emotions, while DialogueGCN Ghosal et al. (2019) ap-
plies GCNs to represent conversations as graphs. MMGCN Hu et al. (2021) and CORECT Nguyen
et al. (2023) use GCNs with dynamic fusion for multimodal context modeling, and MultiEMO Shi
& Huang (2023) employs correlation-aware attention for multimodal fusion. SDT Ma et al. (2023)
leverages self-distillation to capture intra- and inter-modal interactions, and CHFusion Majumder
et al. (2018) introduces a hierarchical fusion strategy for restructuring contextual information.

4.3 IMPLEMENTATION DETAILS

We implemented the model in PyTorch, using the Adam optimizer with learning rates of 1e-4 for
IEMOCAP and 5e-5 for MELD, with batch sizes of 32 and 100, respectively. Input dimensions are
100 for text and audio, and 256 for visual features in IEMOCAP, while MELD uses 768 for text,
512 for audio, and 1000 for visual inputs. The HCMF architecture includes a hidden size of 1024, 4
attention heads, and 6 cross-modal fusion layers, with L2 weight decay set to 1e-5.

7
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Table 1: Quantative comparisons on IEMOCAP(6-ways) multimodal (A+V+T) setting.

Models
happy sad neutral anger excitement frustration

w-ACC w-F1
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DialogueRNN 44.05 32.46 86.61 82.73 54.08 54.64 67.72 65.24 63.71 70.64 56.23 57.11 61.81 61.55
DialogueGCN 61.11 51.87 84.90 76.76 69.27 56.76 76.47 62.26 76.25 72.71 50.39 58.04 69.73 63.07
MMGCN 48.94 38.66 80.54 76.39 59.56 61.73 74.68 68.18 71.91 74.80 60.53 62.97 65.87 65.67
CORECT 59.15 58.74 86.18 80.95 71.43 69.52 63.74 65.91 80.60 76.19 62.89 68.11 71.44 70.81
MultiEMO 53.80 56.29 83.95 80.18 75.84 69.76 67.86 67.46 79.78 76.01 64.40 69.42 72.31 71.64
SDT 61.96 65.80 85.46 82.20 76.16 72.70 63.27 67.76 78.12 82.94 64.51 67.90 74.44 74.13
CHFusion - - - - - - - - - - - - 76.50 76.80

Teacher Model 70.83 73.12 82.79 83.61 84.86 74.23 65.22 71.95 82.94 81.30 68.63 70.10 75.21 74.22
Student Model 71.72 74.29 82.52 85.47 78.45 80.46 75.97 72.67 88.76 84.34 73.94 73.42 79.11 78.95

Table 2: Quantative comparisons on MELD(7-ways) multimodal (A+V+T) setting.

Models
neutral surprise fear sadness joy disgust anger

w-ACC↑ w-F1↑
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

MMGCN 68.87 77.51 48.12 46.80 0 0 50.00 13.33 55.46 51.47 0 0 45.40 45.60 56.85 57.35
DialogueRNN 71.62 75.66 52.17 46.97 0 0 32.46 22.98 48.00 52.00 0 0 43.60 45.88 55.83 57.37
DialogueGCN 79.06 75.80 53.02 50.42 0 0 17.79 23.72 59.20 55.48 0 0 50.43 48.27 60.96 58.72
CORECT 80.00 81.60 58.49 49.60 37.90 26.47 52.53 43.78 67.79 63.32 44.83 31.58 52.72 51.64 66.01 65.92
SDT 76.96 79.85 56.75 57.54 25.00 17.95 58.20 43.03 65.72 64.56 39.47 28.30 50.64 53.80 66.10 66.19
MultiEMO 78.55 79.94 54.49 58.28 36.00 24.00 56.15 43.20 61.06 64.64 43.75 28.00 53.31 53.47 66.43 66.40

Teacher Model 82.78 76.92 62.70 65.35 52.80 55.74 49.37 45.66 65.13 69.03 45.37 45.04 52.44 56.59 66.92 67.59
Student Model 86.29 83.44 62.66 68.95 53.42 56.39 49.38 43.04 66.86 70.96 45.28 47.52 55.13 57.33 68.78 69.81

4.4 RESULTS AND ANALYSIS

Tables 1 and 2 represent a comparative analysis of performance metrics for the baseline models on
the IEMOCAP and MELD datasets.

On the IEMOCAP dataset, the proposed SUMMER framework achieves a 2.61% improvement in
w-ACC and 2.15% in w-F1, surpassing baselines like CHFusion, particularly in minority classes
such as ”excitement.” The teacher model also outperforms prior approaches, with notable gains of
9.76% in w-ACC and 8.49% in w-F1 for the ”happy” category. Improvements in ”sadness” (1.86%)
and ”frustration” (3.32%) further demonstrate the effectiveness of token-wise interaction and soft-
labeling in differentiating similar emotions.

On the MELD dataset, the teacher model surpasses all existing models in overall w-ACC and w-
F1. The student model demonstrates strong performance in recognizing underrepresented emotions,
with a 15.5% improvement in ”Fear” over CORECT and notable gains in differentiating similar
emotions like ”Anger” (3.5%) and ”Disgust” (5.81%) compared to SDT. These results highlight
the model’s effectiveness in addressing class imbalance while maintaining consistent performance
across both major and minority emotion categories.

Overall, the results demonstrate the effectiveness of our unimodal-driven distillation and SDMoE
strategy which enhances the student’s ability to absorb structured knowledge, while balancing
modality-specific and cross-modal features, especially in fine-grained emotional distinctions.

4.5 ABLATION STUDIES

To investigate the effectiveness of each component within SUMMER, we conduct ablation studies
on both the IEMOCAP and MELD datasets. The results are represented in Table 3 and Table 4.

Guidelines for Teacher Model Selection. To assess the effectiveness of the proposed teacher
model, our experiment with various combinations of text, audio, and visual modalities, using the
original attention mechanism model. As shown in Table 3, the text modality consistently outper-
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Table 3: Ablation studies with different
modality settings on IEMOCAP and MELD.

Modality
IEMOCAP MELD

ACC w-F1 ACC w-F1

Text 69.57 69.73 66.49 65.32
Audio 67.37 67.18 55.78 55.47
Visual 66.20 66.28 53.89 53.43
Text+Audio 71.18 70.83 67.55 66.58
Text+Visual 69.80 69.51 67.54 66.41
Audio+Visual 68.05 67.49 59.01 58.33
Text+Audio+Visual 71.62 71.18 67.71 66.61

Table 4: Ablation studies of key components
on IEMOCAP and MELD.

Module IEMOCAP MELD

SDMoE HCMF IKD ACC w-F1 ACC w-F1

✓ × × 76.52 76.64 67.43 68.57
× ✓ × 76.15 75.43 67.83 68.24
× × ✓ 77.48 76.86 68.39 69.52

✓ ✓ × 77.82 78.13 68.17 69.04
× ✓ ✓ 77.95 77.94 68.42 69.21
✓ × ✓ 78.54 78.64 68.57 69.33

✓ ✓ ✓ 79.11 78.95 68.78 69.81

forms others in multimodal emotion recognition, prompting its selection as the teacher model in
our framework. While combining text with other modalities offers marginal performance gains, the
added complexity and risk of overfitting make unimodal teacher models a more efficient choice.

Effectiveness of SDMoE modules. In our ablation study, we replaced SDMoE in SUMMER with
the MoE module, as shown in Table 4. Results consistently reveal a performance decline across
emotion categories when SDMoE is removed. Moreover, pre-training the teacher model with SD-
MoE (Figure 4) shows significant improvements over previous benchmarks. This is attributed to
SDMoE’s ability to dynamically adjust attention weights and resource allocation, which reduces
redundant information with local token-wise interactions, ultimately boosting overall performance.
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Figure 4: Performance of the SDMoE module across var-
ious modalities on the IEMOCAP and MELD datasets.
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Figure 5: The Trend Visualization of
HCMF Module Loss Functions.

Impact of HCMF. To evaluate the HCMF module, we conducted ablation experiments by replac-
ing it with a self-attention mechanism. This led to a noticeable performance decline, confirming that
HCMF outperforms static fusion strategies in integrating multimodal information which enhances
the model’s ability to learn high-level semantic relationships between modalities. Additionally, as
shown in Figure 5, we found that introducing residual structures made model training smoother and
improved convergence.

Interactive knowledge Distillation. As shown in Table 4, the novel interactive distillation
achieves the best performance in single ablation experiments, guiding the student model with frozen
teacher representations and enhancing its ability to integrate complex inter-modal relationships.
Moreover, soft labels preserve relational information between categories better than hard labels, im-
proving generalization and performance. While KL divergence further helps the student model cap-
ture subtle inter-class differences, stabilizing training and mitigating gradient conflicts from modal-
ity heterogeneity. The detailed experimental setup is discussed in A.2.

Error Analysis. In the SUMMER framework, the teacher model excels at capturing fine-grained
features in unimodal settings, while the student model benefits from multimodal fusion, offering
more generalized yet robust performance. Despite slightly lower results in specific categories, the
student model remains strong overall. The underperformance in the ”Sad” category may be due
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（a）Origin Representations of IEMOCAP （b）IEMOCAP Features Learned by our method

（c）Origin Representations of MELD （d）MELD Features Learned by our method

Figure 6: Visualization of features for MERC on the IEMOCAP and MELD datasets. Each point
corresponds to an utterance, with colors denoting different emotions. (a) Original features from the
IEMOCAP dataset. (b) Features learned by our method on the IEMOCAP dataset. (c) Original
features from the MELD dataset. (d) Features learned by our method on the MELD dataset.

to multimodal conflicts, overlapping emotional boundaries (e.g., sadness and frustration), and data
imbalance. Addressing these challenges is crucial to improving multimodal emotion recognition.

4.6 MULTI-MODAL REPRESENTATION VISUALIZATION

To visually assess the performance of our method, we applied t-SNE to project the high-dimensional
multimodal features into a two-dimensional space (Figure 6). The visualization results indicate that
while there is still slight overlap between similar emotions (such as ”happy” and ”excited”), the
separation between emotion categories is quite distinct. Notably, SUMMER enhances the cluster-
ing of emotion categories, reducing the mixing of closely related emotions and strengthening the
distinction between neutral and other emotions. Additionally, the SUMMER model demonstrates
greater robustness in integrating multimodal features, allowing it to capture subtle emotional vari-
ations more accurately, especially in the presence of data noise and blurred emotional boundaries.

5 CONCLUSION

In this work, we propose SUMMER framework for Multimodal Emotion Recognition in Conver-
sations, effectively integrating heterogeneous modalities through a Sparse Dynamic Mixture of Ex-
perts for local token-wise interaction and a global Mixture of Experts for context modeling. By
employing a novel retrograde distillation method where a unimodal teacher guides a multimodal stu-
dent model, SUMMER mitigates gradient conflicts and enhances inter-modal relationship learning.
Experiments on IEMOCAP and MELD datasets show that SUMMER outperforms state-of-the-art
methods, improving recognition of both majority and minority emotion classes, and highlighting its
robustness in MERC tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Emotion recognition in
speech using cross-modal transfer in the wild. In Proceedings of the 26th ACM International
Conference on Multimedia, pp. 292–301, 2018.

Nazanin Andalibi and Justin Buss. The human in emotion recognition on social media: Attitudes,
outcomes, risks. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–16, 2020.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
motion capture database. Language Resources and Evaluation, 42:335–359, 2008.

Roddy Cowie, Ellen Douglas-Cowie, Nicolas Tsapatsoulis, George Votsis, Stefanos Kollias, Win-
fried Fellenz, and John G Taylor. Emotion recognition in human-computer interaction. IEEE
Signal Processing Magazine, 18(1):32–80, 2001.

Kia Dashtipour, Soujanya Poria, Amir Hussain, Erik Cambria, Ahmad YA Hawalah, Alexander
Gelbukh, and Qiang Zhou. Multilingual sentiment analysis: state of the art and independent
comparison of techniques. Cognitive Computation, 8:757–771, 2016.

Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, and Alexander Gelbukh.
Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation.
ArXiv Preprint ArXiv:1908.11540, 2019.

Soumitra Ghosh, Deeksha Varshney, Asif Ekbal, and Pushpak Bhattacharyya. Context and knowl-
edge enriched transformer framework for emotion recognition in conversations. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Dou Hu, Xiaolong Hou, Lingwei Wei, Lianxin Jiang, and Yang Mo. Mm-dfn: Multimodal dynamic
fusion network for emotion recognition in conversations. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7037–7041. IEEE,
2022.

Jingwen Hu, Yuchen Liu, Jinming Zhao, and Qin Jin. Mmgcn: Multimodal fusion via deep graph
convolution network for emotion recognition in conversation. ArXiv Preprint ArXiv:2107.06779,
2021.

Wenxiang Jiao, Haiqin Yang, Irwin King, and Michael R Lyu. Higru: Hierarchical gated recurrent
units for utterance-level emotion recognition. ArXiv Preprint ArXiv:1904.04446, 2019.

Zaijing Li, Fengxiao Tang, Ming Zhao, and Yusen Zhu. Emocaps: Emotion capsule based model
for conversational emotion recognition. ArXiv Preprint ArXiv:2203.13504, 2022.

Zheng Lian, Bin Liu, and Jianhua Tao. Ctnet: Conversational transformer network for emotion
recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:985–1000,
2021.

Feng Liu, Ziwang Fu, Yunlong Wang, and Qijian Zheng. Tacfn: transformer-based adaptive cross-
modal fusion network for multimodal emotion recognition. CAAI Artificial Intelligence Research,
2, 2023.

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, Amir Zadeh, and
Louis-Philippe Morency. Efficient low-rank multimodal fusion with modality-specific factors.
ArXiv Preprint ArXiv:1806.00064, 2018.

Hui Ma, Jian Wang, Hongfei Lin, Bo Zhang, Yijia Zhang, and Bo Xu. A transformer-based model
with self-distillation for multimodal emotion recognition in conversations. IEEE Transactions on
Multimedia, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Navonil Majumder, Devamanyu Hazarika, Alexander Gelbukh, Erik Cambria, and Soujanya Poria.
Multimodal sentiment analysis using hierarchical fusion with context modeling. Knowledge-
based Systems, 161:124–133, 2018.

Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh,
and Erik Cambria. Dialoguernn: An attentive rnn for emotion detection in conversations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 6818–6825, 2019.

Cam-Van Thi Nguyen, Anh-Tuan Mai, The-Son Le, Hai-Dang Kieu, and Duc-Trong Le. Conversa-
tion understanding using relational temporal graph neural networks with auxiliary cross-modality
interaction. ArXiv Preprint arXiv:2311.04507, 2023.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh, and Louis-
Philippe Morency. Context-dependent sentiment analysis in user-generated videos. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (volume 1:
Long papers), pp. 873–883, 2017.

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations.
ArXiv Preprint ArXiv:1810.02508, 2018.

Soujanya Poria, Navonil Majumder, Rada Mihalcea, and Eduard Hovy. Emotion recognition in con-
versation: Research challenges, datasets, and recent advances. IEEE Access, 7:100943–100953,
2019.

Francisco A Pujol, Higinio Mora, and Ana Martı́nez. Emotion recognition to improve e-healthcare
systems in smart cities. In Research & Innovation Forum 2019: Technology, Innovation, Educa-
tion, and their Social Impact 1, pp. 245–254. Springer, 2019.

Liam Schoneveld, Alice Othmani, and Hazem Abdelkawy. Leveraging recent advances in deep
learning for audio-visual emotion recognition. Pattern Recognition Letters, 146:1–7, 2021.

Tao Shi and Shao-Lun Huang. Multiemo: An attention-based correlation-aware multimodal fusion
framework for emotion recognition in conversations. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14752–14766,
2023.

Rui Song, Fausto Giunchiglia, Lida Shi, Qiang Shen, and Hao Xu. Sunet: Speaker-utterance inter-
action graph neural network for emotion recognition in conversations. Engineering Applications
of Artificial Intelligence, 123:106315, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jiabao Wang, Yuming Chen, Zhaohui Zheng, Xiang Li, Ming-Ming Cheng, and Qibin Hou. Crosskd:
Cross-head knowledge distillation for object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 16520–16530, 2024.

Yanan Wang, Jianming Wu, Panikos Heracleous, Shinya Wada, Rui Kimura, and Satoshi Kurihara.
Implicit knowledge injectable cross attention audiovisual model for group emotion recognition.
In Proceedings of the 2020 International Conference on Multimodal Interaction, pp. 827–834,
2020.

Ziqi Yuan, Wei Li, Hua Xu, and Wenmeng Yu. Transformer-based feature reconstruction network for
robust multimodal sentiment analysis. In Proceedings of the 29th ACM International Conference
on Multimedia, pp. 4400–4407, 2021.

Shiqing Zhang, Yijiao Yang, Chen Chen, Xingnan Zhang, Qingming Leng, and Xiaoming Zhao.
Deep learning-based multimodal emotion recognition from audio, visual, and text modalities: A
systematic review of recent advancements and future prospects. Expert Systems with Applications,
237:121692, 2024.

Yi Zhang, Mingyuan Chen, Jundong Shen, and Chongjun Wang. Tailor versatile multi-modal learn-
ing for multi-label emotion recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 9100–9108, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 VISUAL FEATURE EXTRACTION

In conversational analysis, facial expressions serve as crucial indicators of emotional changes in
speakers. However, existing studies predominantly employ 3D-CNNs to directly process video
streams, a method that introduces several challenges. Video streams often contain a substantial
amount of redundant or minimally varying information, as adjacent frames typically exhibit minimal
differences, resulting in highly similar extracted features. This not only increases computational load
and noise but also complicates the alignment with other modal information.

To address these challenges, we propose an improved visual feature extraction method, termed
LENet(3D). Initially, we apply a keyframe extraction strategy, sampling video frames at intervals
Ns = Frames

10 of 10 frames, denoted as uv
i . Subsequently, facial landmarks in the video frames are

detected and aligned using a Multi-task Cascaded Convolutional Network (MTCNN) , ensuring the
precision of facial region alignment cvi = MTCNN(uv

i ), i ∈ {1, 2, ..., Ns}. This process yields a
continuous, aligned video stream that serves as input to the 3D-CNN.

We utilize a pre-trained 3D-CNN model fine-tuned on the VGGFace2 dataset, specifically adapted
for facial feature extraction tasks. The aligned face video segments are passed through the 3D-
CNN, where we extract spatio-temporal feature vectors from intermediate layers rather than the
final output layer. Finally, a DialogueRNN network is employed to model the temporal dynamics
of both the speaker’s emotional states and visual information. The extracted features are reduced to
256 dimensions via a fully connected layer to facilitate further analysis.

A.2 MODEL DISTRIBUTIONS

In this experiment, we used a text-based teacher model to guide the learning process of the student
model, and the results demonstrate significant improvements in the student model’s performance.
We computed and visualized the feature distribution of the model outputs to further validate the
effectiveness of this approach.

As shown in Figure 7. Initially, the student model’s feature distribution was more dispersed com-
pared to the well-structured distribution of the teacher model, particularly due to the inherent hetero-
geneity in multimodal data. However, as the student model learned from the teacher, its distribution
gradually converged towards that of the teacher model, showing a clear alignment in the learned
feature space. This convergence indicates that the teacher model effectively transfers knowledge,
guiding the student model to capture more refined and meaningful features.

By comparing the feature distributions at different stages of training, we observed that the teacher
model not only enhances the student model’s ability to learn from text but also improves the overall
integration of multimodal data. The text-based teacher model proves to be instrumental in resolving
challenges of multimodal learning, particularly in cross-modal feature representation.
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Figure 7: Visualization of distributions of the student model and teacher model.
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