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ABSTRACT

Multimodal Emotion Recognition in Conversations (MERC) seeks to identify
emotional states across multiple modalities, including text, audio, and video. This
field of study is pivotal for advancing machine intelligence, with significant im-
plications for applications such as intelligent dialogue systems and public opinion
analysis. Most existing approaches primarily employ full-sequence interaction
and distillation techniques, aiming to construct a comprehensive global contextual
understanding while simultaneously enhancing the interaction among heteroge-
neous modalities. However, the presence of repetitive and redundant information,
coupled with gradient conflicts arising from modal heterogeneity, can significantly
impede the effectiveness of multimodal learning and long-range relationship mod-
eling. In this work, we propose an innovative heterogeneous multimodal integra-
tion method called SUMMER, grounded in attention mechanism and knowledge
distillation techniques, which facilitates dynamic interactive fusion of multimodal
representations. Specifically, the Sparse Dynamic Mixture of Experts strategy
is proposed to dynamically adjust the relevance of the temporal information to
construct local to global token-wise interactions. Then a Global Mixture of Ex-
perts is employed to enhance the model’s overall contextual understanding across
modalities. Notably, we introduce retrograde distillation that utilizes a pre-trained
unimodal teacher model to guide the learning of multimodal student model, inter-
vening and supervising multimodal fusion within both the latent and logit spaces.
Experiments on the IEMOCAP and MELD datasets demonstrate that our SUM-
MER framework consistently outperforms existing state-of-the-art methods, with
particularly significant improvements in recognizing minority and semantically
similar emotions in MERC tasks.

1 INTRODUCTION

Multimodal Emotion Recognition in Conversations (MERC) |Poria et al.| (2019) seeks to elucidate
the emotional dynamics inherent in interactions, thereby enhancing human-computer interaction
Cowie et al.[(2001) and fostering empathy across diverse domains such as digital humans, healthcare
Pujol et al.|(2019), and social media analytics |Andalibi & Buss|(2020). Unlike traditional methods,
multimodal emotion analysis integrates cues from text, audio, and visual modalities Zhang et al.
(2024) which can capture nuanced emotional cues and facilitate corrective feedback mechanisms
from varied contexts.

In MERC tasks, most existing studies focus on constructing global context understanding and im-
proving cross-modal fusion. The RNN-based model DialogueRNN [Majumder et al.| (2019) lever-
ages Recurrent Neural Networks to capture global temporal dependencies, while the GNN-based
model CORECT uses Relational Temporal Graph Neural Networks to represent multimodal rela-
tionships. In contrast, the Transformer-based model MultiEMO and SDT [Shi & Huang| (2023));
Ma et al.| (2023) employs attention mechanisms to prioritize long-range dependencies, integrating
contextual information across multiple modalities.

Despite advances in MERC, challenges such as inefficient modal association persist. As illustrated
in Figure[T] (a): (1) In the 6th utterance, phrases like “but no” and “she’s not my girlfriend” clearly
indicate sadness. However, if the model overemphasizes earlier positive expressions like ”we com-
municate on a daily,” it may incorrectly classify the emotion as happiness. This underscores the
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Figure 1: (a) A representative example of multimodal emotion recognition in conversations. For
each given sentence, it contains three modal information about the speaker, text, video, and audio.
The task of MERC is to identify the emotional labels contained in the three modal information. (b)
Examples of the limitations of the traditional MoE model for MERC tasks.

risk of focusing on local context while neglecting key emotional cues. (2) In the 3th utterance, the
correct label is “excited,” but dynamic changes in facial expressions and vocal tone might mislead
the model to classify it as anger. Such intense emotional variations can be misinterpreted as negative
emotions, highlighting the complexity of multimodal data in emotion recognition tasks.

Although the Mixture of Experts (MoE) model dynamically selects the most suitable token experts
via a gating mechanism, improving multimodal fusion and association efficiency, it also has lim-
itations. As shown in Figure [1| (b), MoE only selects a fixed Top-K subset or weights all experts
for reasoning, limiting its adaptability in complex MERC environments. Therefore, dynamically
selecting token-level information and incorporating a global Mixture of Experts adapter is essential
for optimizing contextual understanding and filtering redundant information.

To enhance the cross-modal fusion of heterogeneous modalities refined by MoE, the Transformer-
based SDT model Ma et al.| (2023) employs a self-distillation approach to guide multimodal fusion
learning. Additionally, cross-modality distillation enhances fusion by enabling knowledge transfer
between heterogeneous features. However, self-distillation methods often face gradient conflict
issues, where gradients from the teacher and student model interfere during training. Resolving
fusion disorientation is critical to improving the effectiveness of multimodal fusion.

In this work, we propose a Sparse Unimodal-driven distillation for Multi-Modal Emotion
Recognition named SUMMER to enhance modal association learning and fusion disorientation.
First, we employ Sparse Dynamic MoE (SDMoE) to enhance token-wise interaction for high-quality
localized information and mitigate the impact of redundant data on cross-modal fusion. Then we in-
troduce Hierarchical Cross-Modal Fusion (HCMF) with Global MoE (GMOoE) to adaptively capture
and unify intrinsic links between modalities to improve global context understanding. Additionally,
we propose a novel Interactive Knowledge Distillation (IKD) where a high-performing unimodal
teacher model guides the learning of a multimodal student model, facilitating directed learning and
reducing gradient conflicts caused by modal discrepancies.

The main contributions of this work are summarized as follows:

* We propose a Sparse Dynamic Mixture of Experts and Hierarchical Cross-Modal Fusion
method to enhance local key token selection and improve global context understanding,
thereby refining heterogeneous modal information for more effective multimodal fusion.

* We introduce a retrograde distillation strategy where a unimodal-driven teacher model
guides the multimodal student model, standardizing and addressing fusion disorientation
in multimodal learning.

* Our model significantly outperforms state-of-the-art benchmarks on the IEMOCAP and
MELD datasets, demonstrating superior performance in capturing subtle emotional nu-
ances, and excelling in semantically similar and underrepresented emotion categories.



Under review as a conference paper at ICLR 2025

2 RELATED WORK

Multimodal Emotion Recognition in Conversations. The core objective of MERC |Dashtipour
et al. (2016) is to analyze speakers’ emotional states by leveraging multimodal data over time. While
early approaches relied heavily on GNN-based |Ghosal et al.| (2019); [Song et al.| (2023)); [Hu et al.
(2021)) and RNN-based architectures |Poria et al.| (2017); Majumder et al.[(2019); Jiao et al.|(2019);
Li et al.|[(2022), which were standard in natural language processing, these recurrent models faced
limitations in handling long sequences and lacked scalability. In contrast to these models, contem-
porary approaches aim to capture both intra- and inter-modal interactions, leading to more nuanced
emotional analysis by unifying information from text, audio, and visual modalities. Techniques such
as tensor fusion, as employed by LMF [Liu et al.|(2018)), manage complementary information while
reducing redundancy across modalities, further enhancing multimodal fusion. Additionally, MM-
DFN Hu et al.|(2022) dynamically captures contextual and multimodal features while minimizing
irrelevant information across modalities.

Transformer-based Models. The introduction of Transformer models Vaswani| (2017} revolu-
tionized MERC by enabling efficient parallel computing and long-sequence modeling through self-
attention mechanisms, leading to significant advancements in intra- and inter-modal fusion. Models
like CTNet|Lian et al.| (2021) employ single and cross-modality Transformers, while CKETF Ghosh
et al.[(2021)) enhances context and knowledge representation within a Transformer framework. TL-
ERC leverages transfer learning to improve performance across tasks.

To improve multimodal understanding, dynamic attention mechanisms are employed to adjust at-
tention weights, enabling more effective cross-modal encoding. TFR-Net Yuan et al.| (2021) and
Emocaps [Li et al|(2022) leverage intra- and inter-modal attention to capture sentiment trends. Tai-
lor [Zhang et al.| (2022) uses a Transformer-based unimodal extractor and a multi-label bootstrap
decoder to model dependencies between labels and modalities. SDT |Ma et al.|(2023) introduces an
Intra- and Inter-modal Transformer for emotional interactions across modalities and sessions, while
TACFN |Liu et al.| (2023) proposes an Adaptive Inter-modal Fusion Network to reduce redundancy
and improve feature integration.

Knowledge Distillation. Knowledge Distillation (KD) |Gou et al.| (2021)) has become a powerful
method for compressing models and improving efficiency by transferring knowledge from a larger
teacher model to a smaller student model. In multimodal emotion recognition, KD enables the in-
tegration of complementary information across modalities, helping the student model capture richer
emotional representations. SENet|Albanie et al.|(2018)) transfers visual knowledge into speech emo-
tion recognition models using unlabeled video data. Schoneveld|Schoneveld et al.[(2021)) utilizes the
KD method to improve the performance of models in facial expression recognition. Similarly KIAN
Wang et al.| (2020) proposes K-injection subnetworks to distill linguistic and acoustic information,
allowing implicit knowledge transfer in audiovisual models for group emotion recognition.

The majority of these approaches rely on offline distillation, which necessitates the pre-training of
a large teacher model to guide the learning of smaller student model. However, little attention has
been given to using a smaller unimodal-driven teacher model to instruct more complex multimodal
students, which has the potential for effective cross-modal learning. This gap serves as the primary
motivation for our work.

3 METHODOLOGY

3.1 TASK DEFINITION

In MERC tasks, each conversation consists of n utterances {uy,uz,...,u,} and m speakers
{s1, 82, ..., $m }. Each utterance u; comprises three modalities, represented as u; = {uf,u?,u!},
where ¢, a, and v denote text, audio, and visual modalities, respectively. The objective is to predict
the sentiment classification label y; corresponding to each u; within the conversation.
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Figure 2: Illustration of the SUMMER framework, which comprises the Unimodal Teacher Model,
Unified Multimodal Student Model, and Interactive Knowledge Distillation. The frozen teacher
model is dedicated to mentoring the student model by providing a comprehensive guide for learning.

3.2 MODEL OVERVIEW

As shown in Figure 2] SUMMER consists of four core modules: Unimodal Reconstruction, Sparse
Dynamic Mixture of Experts (SDMoE), Hierarchical Cross-Modal Fusion (HCMF), and Interactive
Knowledge Distillation (IKD). The unimodal encoder extracts features from text, audio, and visual
inputs, while SDMoE focuses on token-wise interaction, dynamically adjusting global context as-
sociations and filtering redundant information. HCMF enriches semantics by aligning multimodal
weights, and IKD improves cross-modal feature fusion through efficient knowledge transfer, lever-
aging lightweight pre-trained teacher models via latent and logit spaces.

3.3 UNIMODAL RESTRUCTION

Unimodal Encoder. For the Text Encoder, we use the pre-trained roBERTa model to extract text
features ht € R'* % incorporating speaker identity and dialogue separators to capture both intra-
and inter-speaker context. The Audio Encoder leverages OpenSMILE to extract 6,373-dimensional
acoustic features h¢ € R'*da which are reduced to 512 dimensions for efficiency. To address
challenges with direct CNN(3py video processing, we propose LENetsp (see details in [A;I'[) to pro-
duce 256-dimensional spatio-temporal features oY € R!<*9>_ Finally, DialogueRNN is employed to
capture global emotional trends and speaker-emotion dynamics in conversations.

Utterance-Speaker Embeddings. As illustrated in the 4-7th utterances in Figure [I] (a), emotion
of the current speaker directly influences the next speaker. To effectively model the relationships
between speaker identity S; and utterance in affective states, it is crucial to incorporate a latent
speaker representation into the positional embeddings. This is achieved using an input feature set
H™ = {ht, h%, hY}, which includes text, audio, and visual features extracted by a unimodal encoder.

Sj =V 05, € R*¥%, (D
Ue=H"+S;+ P, )

where j represents the identity of different speakers, V;, is a learnable speaker identity embedding,
0s; 1s the one-hot encoding of each speaker, and P; represents the absolute position embeddings of
the utterance.

3.4 SPARSE DYNAMIC MIXTURE OF EXPERTS

In certain cases, the complexity of the dialogue environment impacts model accuracy. To mitigate
this, we propose a SDMoE module, as shown in Figure 3] (a), comprising three key components: an
Auxiliary Expert Network, a Dynamic Routing Mechanism, and a Global MoE.
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Figure 3: (a) SDMoE comprises two main components: the Auxiliary Expert Network and the
Dynamic Routing Mechanism. Specifically, the dynamic router adjusts the relevance of the attention
map to facilitate local token-wise interactions. (b) HCMF integrates a Teacher-guided Cross-Modal
Fusion with a GMoE module to enhance overall contextual understanding across modalities.

Auxiliary Expert Network. We capture modality-specific emotional semantics at multiple levels
using a set of BiGRU experts. Each expert model processes the encoded features F; = BiGRU(U,),
enhancing the model’s ability to adapt to temporal dependencies while mitigating noise and re-
dundancy. Parameters are shared within intra-modal components but remain independent across
inter-modal components. The expert network outputs are aggregated as E, = {E,1, Eo2, - ., Eon},
where n denotes the number of experts.

Dynamic Routing Mechanism. Instead of summing the weights of all or Top-K expert models
as in traditional MoE, we propose a dynamic routing mechanism G gy,,, which dynamically adjusts
the number of experts according to the simplicity of the scenario. The gating network generates a
global representation of the multimodal context and produces a sparse key representation Mpqrse-

Softmer@Va) - if W, € (u— 20, pu+20)

Gayn = , 3)
’ 0, otherwise

where 7' represents a temperature-adjusted parameter to control weight distribution, while p and o

denote the mean and standard deviation of the weights, respectively. Weights in W, are selectively

deactivated if they fall outside the range (1 — 20, u + 20), with non-critical features set to zero.

However, our selection mechanism involves a discrete sampling process, resulting in a non-
differentiable model during gradient propagation. To address this, we introduce Gumbel noise to
ensure differentiability during backpropagation, g,eise = —log(—log(R;)), where R; is a random
variable sampled from a uniform distribution (0, 1). The improved G(;yn can be expressed as:

Wotgnoise
oo (et “
yn n noise \
21 eXp(Wng%)
Msparse = Z(Géyn X E0)7 (5)
[

where 7 is a learnable parameter that controls the smoothness of the distribution.

Global MoE. To mitigate the potential loss of global contributions from various modules caused
by directly using decision variables for inference, we introduced a GMoE that dynamically selects
representations H,, from the HCMF [3.5|modules, managed by a global router. Assuming the expert
outputs are F, = {fy, fa, fo}, the global router is defined as Ggiopar = Vy X Fy,, where V is a
learnable global dynamic adapter. The multimodal decision vector H .. can then be computed as:

Hpyse = Y (Vg X Fy x Hp,). (6)

?
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Notably, leveraging the sparse dynamic routing mechanism extends the capacity of the global router
without significantly increasing training or inference time. And our proposed GMoE can be applied
to any layer for intermediate output processing.

3.5 HIERARCHICAL CROSS-MODAL FUSION

Unimodal-driven Multimodal Learning. Modal imbalance often occurs in multimodal learn-
ing when the model fails to effectively leverage all modalities, resulting in unstable performance.
Therefore, we designed and pre-trained a unimodal teacher model using the SDMoE module. Ex-
perimental results (discussed in Section[4.5)) demonstrate that the text-based teacher model achieves
the best performance in a unimodal setup. This finding motivates the use of a single modality as a
prior to bootstrap cross-modal feature distillation and enables transfer learning.

Teacher-Guided Cross-Modal Fusion. Our proposed teacher-guided HCMF framework (Figure
E] (b)), consists of three sub-branches: HCMF,, HCMF,, and HCMF,,, each employing a BERT-like
bidirectional encoder to process text, audio, and visual modalities, respectively. Taking the HCMF,
branch as an example, we define the inputs to the student model as Qstt, K ;t, Vstt € Rimxdm
while the intermediate outputs of the teacher model are denoted as @, Ky, V.. To transfer
the intermediate features from the teacher model to the student model via masking, a mask M;; is
applied to ensure that the student model’s intermediate representations align with the teacher model’s
guidance. The teacher-guided attention Dyn Attn can be described as follows:

1, Zf (Str — Sst)Q > 05,
M;; = ) 7
J {O, otherwise, @

n ittt
DynAttn = 1 — ¢M;;) - Softmax(=L=2L)VE), (8)
y ;(( ¢M;;) - Softmaz( Nz Wit)
where s, and s, represent the dot products of the ) (query) and K (key) matrices from the teacher
and student model, respectively. ¢ is a dynamic adjustment factor that moderates the masking field.
Based on DynAttn, we can fuse multiple modals dynamically, where Hy, (text-audio) and Hig,
(text-audio-visual) are the hierarchical cross-modal fusion outputs, formally defined as follows:

Hy, = DynAttng, (QL,, K&, V%), 9
Htav = DynAttntav (Htav K:ta Ve?) (10)
For encoder at the same level, intra-modal interaction occurs via multi-head attention which en-

hances high-level semantic fusion. To ensure smoother cross-modal fusion, residual blocks are
introduced to retain more original modal information.

3.6 INTERACTIVE KNOWLEDGE DISTILLATION

Verified by previous work on the distillation method [Wang et al| (2024)), relying solely on the
teacher’s final representations can lead to gradient conflicts due to the use of hard labels. Our pro-
posed IKD approach (Figure[2)) updates the student model’s intermediate parameters by transferring
knowledge in the space of homogeneous probability distributions for heterogeneous modal features,
effectively mitigating prediction bias through the use of soft labeling.

Interactive KD. To transfer knowledge without making the student model overly reliant on the
teacher, we freeze the teacher’s parameters and apply its classifiers to the student’s intermediate
features. This approach ensures that the heterogeneous modal features are mapped into a uniform
distribution space. Simultaneously, we constrain the labels of the student model and supervise the
feature fusion by leveraging the gaps in the logit space. The interaction loss Lg SD is computed using
KL divergence and Cross Entropy loss, which is defined as:

N N
LED =3 pi, log P, (11
i=1 Pm;
N C
Lihel = =33 gtilog(pm.), (12)

i=1j=1
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where p;,, and p,,, represent the predicted distributions of the student and teacher intermediate
features, both processed through the teacher model’s classifier. gt; is the ground truth label.

Inner KD. Intermediate feature knowledge is transferred from the teacher to the student model,
allowing the student ff,fi to replicate the teacher’s feature distribution ff,f The discrepancy between

their feature distributions is measured using MSE loss. Inner loss L can be represent as follow:

inner
N C
KD _ E E tr st
Linner - H m;  Jmy;

i=1j=1

2, (13)

Label Smooth Loss. To reduce sensitivity to noise and prevent overconfidence in single cate-
gories, we employ soft labels instead of hard labels. This adjustment mitigates the risk of excessive
reliance on incorrect teacher predictions. The corresponding smooth loss function is defined as:

JLavel _ < eXp(p‘;rtL,;)
> (=2 8(gts), (14)

smooth — — N
j=1 Zz exp(pfﬁi)

where C represents the number of categories, p,,, is the prediction of multimodal fusion vector pass
through the student model’s classifier, gt denotes the target label. For the correct category gt; = €,
while for the other categories gt; = (1 —€)/(C' — 1) where € € (0, 1).

Training Objectives. Our overall training objective of Interactive KD can be represented below,
where k1, ko, k3 are compromise parameters between different objectives. In particular, x4 is set
with a higher weight to minimize the impact of teacher model bias on the student model.

LKD _ /ilLKD + KzLLabel + H3LKD + K4LLabel (15)

cross align inner smooth*

4 EXPERIMENTAL SETTINGS

4.1 DATASETS AND EVALUATION METRICS

To verify the validity of our proposed SUMMER model, we perform experiments on two widely-
used MERC datasets, IEMOCAP Busso et al.|(2008)) and MELD |Poria et al.|(2018]), which consist of
multimodal data (text, audio, and video). IEMOCAP comprises 12 hours of conversations annotated
with six emotion labels, while MELD contains dialogue clips from the TV show Friends with seven
distinct emotion labels. In our experiments, we report accuracy (Acc) and F1-score for each emotion
category, along with the overall weighted average accuracy (w-Acc) and weighted average F1 (w-
F1) to compare the performance of the proposed method against baseline approaches.

4.2 BASELINES

We compare our model against several strong baselines: DialogueRNN Majumder et al.| (2019) uses
GRUs to model speaker states, context, and emotions, while Dialogue GCN |Ghosal et al.| (2019) ap-
plies GCNss to represent conversations as graphs. MMGCN Hu et al.| (2021)) and CORECT [Nguyen
et al.| (2023) use GCNs with dynamic fusion for multimodal context modeling, and MultiEMO (Shi
& Huang| (2023) employs correlation-aware attention for multimodal fusion. SDT Ma et al.[(2023))
leverages self-distillation to capture intra- and inter-modal interactions, and CHFusion [Majumder
et al.| (2018) introduces a hierarchical fusion strategy for restructuring contextual information.

4.3 IMPLEMENTATION DETAILS

We implemented the model in PyTorch, using the Adam optimizer with learning rates of le-4 for
IEMOCAP and Se-5 for MELD, with batch sizes of 32 and 100, respectively. Input dimensions are
100 for text and audio, and 256 for visual features in IEMOCAP, while MELD uses 768 for text,
512 for audio, and 1000 for visual inputs. The HCMF architecture includes a hidden size of 1024, 4
attention heads, and 6 cross-modal fusion layers, with L2 weight decay set to le-5.
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Table 1: Quantative comparisons on IEMOCAP(6-ways) multimodal (A+V+T) setting.

happy sad neutral anger excitement | frustration
ACC FlI |ACC Fl1 |ACC Fl |ACC Fl1 |ACC Fl |ACC F1
DialogueRNN |44.05 32.46 | 86.61 82.73 | 54.08 54.64 | 67.72 65.24 | 63.71 70.64 | 56.23 57.11| 61.81 61.55
DialogueGCN | 61.11 51.87 | 84.90 76.76 | 69.27 56.76 | 76.47 62.26 | 76.25 72.71 |50.39 58.04 | 69.73 63.07

Models

w-ACC w-Fl

MMGCN 48.94 38.66 | 80.54 76.39|59.56 61.73|74.68 68.18|71.91 74.80|60.53 62.97| 65.87 65.67
CORECT 59.15 58.74 | 86.18 80.95|71.43 69.52|63.74 65.91|80.60 76.19|62.89 68.11 | 71.44 70.81
MultiEMO 53.80 56.29 |83.95 80.18 |75.84 69.76 | 67.86 67.46|79.78 76.01 |64.40 69.42| 7231 71.64
SDT 61.96 65.80|85.46 82.20(76.16 72.70|63.27 67.76|78.12 82.94|64.51 67.90| 7444 74.13
CHFusion - - - - - - - - - - - - 76.50 76.80

Teacher Model | 70.83 73.12 | 82.79 83.61 | 84.86 74.23 |65.22 71.95|82.94 81.30 [ 68.63 70.10 | 75.21 74.22
Student Model | 71.72 74.29 | 82.52 85.47 | 78.45 80.46 | 75.97 72.67 | 88.76 84.34|73.94 7342 | 79.11 78.95

Table 2: Quantative comparisons on MELD(7-ways) multimodal (A+V+T) setting.

Models neutral surprise fear sadness joy disgust anger w-ACCT w-FIt
ACC FlI | ACC Fl |ACC Fl |ACC Fl |ACC Fl1 |ACC Fl |ACC Fl
MMGCN 68.87 77.51|48.12 4680 | O 0 |50.00 1333|5546 5147| O 0 |4540 4560| 5685 57.35

DialogueRNN | 71.62 75.66 | 52.17 4697 | O 0 [3246 2298|48.00 52.00( O 0 [43.60 4588 | 5583 57.37
DialogueGCN | 79.06 75.80|53.02 50.42| 0 0 17.79 23.72159.20 5548 | O 0 (5043 4827| 6096  58.72
CORECT 80.00 81.60 | 58.49 49.60 | 37.90 26.47 | 52.53 43.78 | 67.79 63.32 | 44.83 31.58 | 52.72 51.64| 66.01 65.92
SDT 76.96 79.85|56.75 57.54 |25.00 17.95|58.20 43.03 | 65.72 64.56 | 39.47 28.30 | 50.64 53.80 | 66.10  66.19
MultiEMO 78.55 79.94 | 5449 58.28 | 36.00 24.00 | 56.15 43.20|61.06 64.64 | 43.75 28.00 | 53.31 53.47| 6643  66.40

Teacher Model | 82.78 76.92 | 62.70 65.35 | 52.80 55.74 | 49.37 45.66 | 65.13 69.03 | 45.37 45.04 | 52.44 56.59| 66.92  67.59
Student Model | 86.29 83.44 | 62.66 68.95 | 53.42 56.39 | 49.38 43.04 | 66.86 70.96 | 45.28 47.52|55.13 57.33| 68.78  69.81

4.4 RESULTS AND ANALYSIS

Tables [ and [2] represent a comparative analysis of performance metrics for the baseline models on
the IEMOCAP and MELD datasets.

On the IEMOCAP dataset, the proposed SUMMER framework achieves a 2.61% improvement in
w-ACC and 2.15% in w-F1, surpassing baselines like CHFusion, particularly in minority classes
such as “excitement.” The teacher model also outperforms prior approaches, with notable gains of
9.76% in w-ACC and 8.49% in w-F1 for the "happy” category. Improvements in ”sadness” (1.86%)
and “frustration” (3.32%) further demonstrate the effectiveness of token-wise interaction and soft-
labeling in differentiating similar emotions.

On the MELD dataset, the teacher model surpasses all existing models in overall w-ACC and w-
F1. The student model demonstrates strong performance in recognizing underrepresented emotions,
with a 15.5% improvement in “Fear” over CORECT and notable gains in differentiating similar
emotions like ”Anger” (3.5%) and “Disgust” (5.81%) compared to SDT. These results highlight
the model’s effectiveness in addressing class imbalance while maintaining consistent performance
across both major and minority emotion categories.

Overall, the results demonstrate the effectiveness of our unimodal-driven distillation and SDMoE
strategy which enhances the student’s ability to absorb structured knowledge, while balancing
modality-specific and cross-modal features, especially in fine-grained emotional distinctions.

4.5 ABLATION STUDIES

To investigate the effectiveness of each component within SUMMER, we conduct ablation studies
on both the IEMOCAP and MELD datasets. The results are represented in Table [3]and Table 4]

Guidelines for Teacher Model Selection. To assess the effectiveness of the proposed teacher
model, our experiment with various combinations of text, audio, and visual modalities, using the
original attention mechanism model. As shown in Table [3| the text modality consistently outper-
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Table 3: Ablation studies with different Table 4: Ablation studies of key components
modality settings on IEMOCAP and MELD. on IEMOCAP and MELD.
Modality IEMOCAP | MELD Module IEMOCAP | MELD
ACC w-Fl | ACC w-Fl SDMoE HCMF IKD | ACC w-FI | ACC w-Fl
Text 69.57 69.73 | 66.49 6532 v x x |76.52 76.64|67.43 68.57
Audio 67.37 67.18|55.78 55.47 X v x |76.15 75.43|67.83 68.24
Visual 66.20 66.28 | 53.89 53.43 x x v | 7748 76.86|6839 69.52
Text+Audio 7118 70.83 | 67.55 66.58 v v x |77.82 78.13]68.17 69.04
Text+Visual 69.80 69.51 | 67.54 66.41 x v v 7795 77.94 | 68.42 69.21
Audio+Visual 68.05 67.49 | 59.01 58.33 v x v 7854 78.64|68.57 69.33
Text+Audio+Visual | 71.62 71.18 | 67.71 66.61 v v v 7911 78956878 69.81

forms others in multimodal emotion recognition, prompting its selection as the teacher model in
our framework. While combining text with other modalities offers marginal performance gains, the
added complexity and risk of overfitting make unimodal teacher models a more efficient choice.

Effectiveness of SDMoE modules. In our ablation study, we replaced SDMoE in SUMMER with
the MoE module, as shown in Table @ Results consistently reveal a performance decline across
emotion categories when SDMOoE is removed. Moreover, pre-training the teacher model with SD-
MoE (Figure [) shows significant improvements over previous benchmarks. This is attributed to
SDMOokE’s ability to dynamically adjust attention weights and resource allocation, which reduces
redundant information with local token-wise interactions, ultimately boosting overall performance.
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Figure 4: Performance of the SDMoE module across var-
ious modalities on the IEMOCAP and MELD datasets.

Figure 5: The Trend Visualization of
HCMF Module Loss Functions.

Impact of HCMF. To evaluate the HCMF module, we conducted ablation experiments by replac-
ing it with a self-attention mechanism. This led to a noticeable performance decline, confirming that
HCMF outperforms static fusion strategies in integrating multimodal information which enhances
the model’s ability to learn high-level semantic relationships between modalities. Additionally, as
shown in Figure 5] we found that introducing residual structures made model training smoother and
improved convergence.

Interactive knowledge Distillation. As shown in Table {4 the novel interactive distillation
achieves the best performance in single ablation experiments, guiding the student model with frozen
teacher representations and enhancing its ability to integrate complex inter-modal relationships.
Moreover, soft labels preserve relational information between categories better than hard labels, im-
proving generalization and performance. While KL divergence further helps the student model cap-
ture subtle inter-class differences, stabilizing training and mitigating gradient conflicts from modal-
ity heterogeneity. The detailed experimental setup is discussed in[A.2]

Error Analysis. In the SUMMER framework, the teacher model excels at capturing fine-grained
features in unimodal settings, while the student model benefits from multimodal fusion, offering
more generalized yet robust performance. Despite slightly lower results in specific categories, the
student model remains strong overall. The underperformance in the ”Sad” category may be due
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Figure 6: Visualization of features for MERC on the IEMOCAP and MELD datasets. Each point
corresponds to an utterance, with colors denoting different emotions. (a) Original features from the
IEMOCAP dataset. (b) Features learned by our method on the IEMOCAP dataset. (c) Original
features from the MELD dataset. (d) Features learned by our method on the MELD dataset.

to multimodal conflicts, overlapping emotional boundaries (e.g., sadness and frustration), and data
imbalance. Addressing these challenges is crucial to improving multimodal emotion recognition.

4.6 MULTI-MODAL REPRESENTATION VISUALIZATION

To visually assess the performance of our method, we applied t-SNE to project the high-dimensional
multimodal features into a two-dimensional space (Figure[6). The visualization results indicate that
while there is still slight overlap between similar emotions (such as “happy” and excited”), the
separation between emotion categories is quite distinct. Notably, SUMMER enhances the cluster-
ing of emotion categories, reducing the mixing of closely related emotions and strengthening the
distinction between neutral and other emotions. Additionally, the SUMMER model demonstrates
greater robustness in integrating multimodal features, allowing it to capture subtle emotional vari-
ations more accurately, especially in the presence of data noise and blurred emotional boundaries.

5 CONCLUSION

In this work, we propose SUMMER framework for Multimodal Emotion Recognition in Conver-
sations, effectively integrating heterogeneous modalities through a Sparse Dynamic Mixture of Ex-
perts for local token-wise interaction and a global Mixture of Experts for context modeling. By
employing a novel retrograde distillation method where a unimodal teacher guides a multimodal stu-
dent model, SUMMER mitigates gradient conflicts and enhances inter-modal relationship learning.
Experiments on [IEMOCAP and MELD datasets show that SUMMER outperforms state-of-the-art
methods, improving recognition of both majority and minority emotion classes, and highlighting its
robustness in MERC tasks.
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A APPENDIX

A.1 VISUAL FEATURE EXTRACTION

In conversational analysis, facial expressions serve as crucial indicators of emotional changes in
speakers. However, existing studies predominantly employ 3D-CNNs to directly process video
streams, a method that introduces several challenges. Video streams often contain a substantial
amount of redundant or minimally varying information, as adjacent frames typically exhibit minimal
differences, resulting in highly similar extracted features. This not only increases computational load
and noise but also complicates the alignment with other modal information.

To address these challenges, we propose an improved visual feature extraction method, termed
LENet(3p). Initially, we apply a keyframe extraction strategy, sampling video frames at intervals
Ny = % of 10 frames, denoted as u;. Subsequently, facial landmarks in the video frames are
detected and aligned usmg a Multi-task Cascaded Convolutional Network (MTCNN) , ensuring the
precision of facial region alignment ¢/ = MTCNN(u?),i € {1,2,..., Ns}. This process yields a
continuous, aligned video stream that serves as input to the 3D-CNN.

We utilize a pre-trained 3D-CNN model fine-tuned on the VGGFace?2 dataset, specifically adapted
for facial feature extraction tasks. The aligned face video segments are passed through the 3D-
CNN, where we extract spatio-temporal feature vectors from intermediate layers rather than the
final output layer. Finally, a DialogueRNN network is employed to model the temporal dynamics
of both the speaker’s emotional states and visual information. The extracted features are reduced to
256 dimensions via a fully connected layer to facilitate further analysis.

A.2 MODEL DISTRIBUTIONS

In this experiment, we used a text-based teacher model to guide the learning process of the student
model, and the results demonstrate significant improvements in the student model’s performance.
We computed and visualized the feature distribution of the model outputs to further validate the
effectiveness of this approach.

As shown in Figure [/} Initially, the student model’s feature distribution was more dispersed com-
pared to the well-structured distribution of the teacher model, particularly due to the inherent hetero-
geneity in multimodal data. However, as the student model learned from the teacher, its distribution
gradually converged towards that of the teacher model, showing a clear alignment in the learned
feature space. This convergence indicates that the teacher model effectively transfers knowledge,
guiding the student model to capture more refined and meaningful features.

By comparing the feature distributions at different stages of training, we observed that the teacher
model not only enhances the student model’s ability to learn from text but also improves the overall
integration of multimodal data. The text-based teacher model proves to be instrumental in resolving
challenges of multimodal learning, particularly in cross-modal feature representation.
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Figure 7: Visualization of distributions of the student model and teacher model.
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