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Abstract

In this paper we propose a similarity function between graphs based on a math-
ematically principled metric for graphs of different sizes: the graph generalised
optimal subpattern assignment (GOSPA) metric. The similarity function is based
on an optimal assignment between nodes and has an interpretable meaning in terms
of similarity for node attribute error, number of unassigned nodes, and number of
edge mismatches. The proposed similarity function is computable in polynomial
time. We also propose its use in Gaussian processes (GPs) for graphs to predict
molecular properties. Experimental results show the benefits of the proposed GP
model compared to other GP baselines.

1 Introduction

With the success of machine learning in multiple research areas, data-driven analysis plays a more im-
portant role in many applications in chemistry, including prediction of chemical properties Delaney
(2004); Lusci et al. (2013); Mobley et al. (2014); An et al. (2024), chemical reactivities Coley et al.
(2019) and drug discovery von Lilienfeld & Burke (2020); Ahn et al. (2021). Recent advances in deep
neural networks (DNNs) have demonstrated promising performance in many tasks and have been
widely used in molecular property prediction tasks Yang et al. (2019); Chithrananda et al. (2020);
Chen et al. (2018); Meuwly (2021). However, to make a DNN model successful, high-quality and
comprehensive datasets are the key. This drawback becomes important when exploring a new class
of molecules, as a limited quantity of high-quality experimental data is usually available in the very
early stage of the exploration Thawani et al. (2020).

Gaussian processes (GPs) are a type of kernel-based method to solve regression and classification
problems Rasmussen & Williams (2006) that are specially suitable for small datasets, since they
typically only have few parameters. GPs can be used with inputs that are graphs using a kernel for
graphs Nikolentzos et al. (2021). Generally, there are three types of kernels or similarity functions
for graphs:

(I) Diffusion kernels based on a metric on graphs (Neuhaus & Bunke, 2007, Chap. 5), such as
the graph edit distance (GED) Sanfeliu & Fu (1983). A drawback of these kernels is that they are
computationally intensive to compute because of the matrix exponential in kernel calculation.

(II) Similarity measures based on applying a transformation to the GED such that low metric values
are mapped to high similarities, and the other way round (Neuhaus & Bunke, 2007, Chap. 5). While
these transformations do not define valid kernels, they can be used in practice Boughorbel et al.
(2004). A drawback is that the computation of the GED is generally NP-hard Zeng et al. (2009).

(III) Kernels based on features obtained via pre-processing of the graphs, which can imply a loss of
information. Examples of these are the random walk kernel Kashima et al. (2003); Gardner et al.
(2018), and the Weisfeiler-Lehman (WL) graph kernel Shervashidze et al. (2011); Griffiths et al.
(2024).

In this paper, we propose a similarity function between graphs, where each node can have certain fea-
tures, that is based on a mathematically principled metric for graphs, meeting the identity, symmetry
and triangle inequality properties. In particular, we propose to use the graph generalized optimal sub-
pattern assignment (GOSPA) metric Gu et al. (2024); Rahmathullah et al. (2017). The graph GOSPA
metric is based on computing an optimal assignment between nodes by penalising node attributes
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for assigned nodes, the number of unassigned nodes and the number of edge mismatches. There-
fore, the graph GOSPA similarity function has an interpretable meaning, inherited from the graph
GOSPA metric, which takes into account the whole information of the graph and can be computed
in polynomial time.

Our contributions can be summarised as follows:

(1) We propose a novel similarity measure for graphs, based on the graph GOSPA metric.

(2) We show the decomposition of the graph GOSPA similarity into interpretable components.

(3) We use the graph GOSPA similarity as the kernel function of a GP to predict molecular prop-
erties in several datasets. Experimental results demonstrate that Graph GOSPA GP has the best
performance compared to other GP baselines in several of the considered datasets. We also show
that the decomposition of the kernel can be used to assist with the interpretation of the similarity
score.

2 Background on graphs and graph GOSPA metric

2.1 Weighted undirected graphs

A weighted, undirected graph is formed by vertices (also called nodes) and weighted edges, each
edge connecting two vertices. The set of vertices is V = {x1, . . . , xn} with the i-th node feature
denoted by xi ∈ RN Trudeau (1993). The edges and their weights can be represented by a symmetric
adjacency matrix A ∈ Rn×n, whose (i, j) element A(i, j) indicates the weight between the i-th and
j-th node, with A(i, j) = 0 indicating no edge.

2.2 Graph GOSPA metric

The graph GOSPA metric is a mathematically principled metric, as it meets the identity, symmetry,
and triangle inequality properties, for graphs of different sizes Gu et al. (2024). Let us consider two
graphs X and Y with vertices VX = {x1, . . . , xnX

}, VY = {y1, . . . , ynY
}, and adjacency matrices

AX ∈ RnX×nX and AY ∈ RnY ×nY .

The graph GOSPA metric looks for an optimal assignment between nodes in VX and nodes in VY ,
but it can leave some nodes unassigned. The assignments between VX and VY can be represented
by a binary matrix (nX + 1)× (nY + 1). We use WX,Y to denote the set of all binary matrices. A
matrix W ∈ WX,Y satisfies:

nX+1∑
i=1

W (i, j) = 1, j = 1, . . . , nY (1)

nY +1∑
j=1

W (i, j) = 1, i = 1, . . . , nX (2)

W (nX + 1,nY + 1) = 0, (3)
W (i, j) ∈ {0, 1}, ∀ i, j (4)

The element W (i, j) = 1 if xi is assigned to yj . If xi remains unassigned, W (i, nY + 1) = 1, and
if yj remains unassigned then W (nX + 1, j) = 1.

If we consider X to be a ground truth graph and Y an estimate (obtained by some algorithm), the
unassigned nodes in X and Y are referred to as missed and false nodes, respectively.

Definition 1. For 1 < p < ∞, a scalar c > 0, edge mismatch penalty ϵ > 0 and base metric d(·, ·)
on the node feature space RN , the graph GOSPA metric d(c,ϵ)p (·, ·) between two graphs X and Y is

d(c,ϵ)p (X,Y ) = min
W∈WX,Y

(
tr
[
D⊤

X,Y W
]
+ eX,Y (W )p

)1/p (5)
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Figure 1: Example to illustrate the node and edge mismatch costs for the same ground truth graph X ,
and different estimated graphs Y . (a) All nodes are properly assigned and one edge mismatch; (b)
three properly assigned nodes, one missing node and a half edge mismatch penalty; (c) three properly
assigned nodes, two unassigned nodes and two half-edge mismatch penalties.

where

DX,Y (i, j) =


d (xi, yj)

p
i ≤ nX , j ≤ nY ,

cp

2 i = nX + 1, j ≤ nY ,
cp

2 i ≤ nX , j = nY + 1,

0 i = nX + 1, j = nY + 1,

(6)

and

eX,Y (W )p =
ϵp

2
||AXW1:nX ,1:nY

−W1:nX ,1:nY
AY ||, (7)

where W1:nX ,1:nY
is the matrix formed by the first nX rows and the first nY columns of matrix W

(e.g., removing the last row and column of W ) and || · || is the component-wise 1-norm of a matrix.

Due to the binary constraint in (4), it is NP hard to compute (5). With the relaxation of the constraints
in (4) to W (i, j) ≥ 0,∀i, j, we obtain a relaxed version of the metric, which also satisfies the metric
properties and can be computed in polynomial time using linear programming Khachiyan (1980).
We also refer to this relaxed version of the metric as the graph GOSPA metric.

The graph GOSPA metric penalises node attribute errors for assigned nodes, number of unassigned
nodes (each with a cost cp/2), and number of edge mismatches. In particular, for two pairs of assigned
nodes (two nodes in X and two nodes in Y ), the edge mismatch penalty is ϵp multiplied by the
absolute difference in the corresponding edge weights. In addition, each edge connecting an assigned
node and an unassigned node creates a half-edge mismatch penalty of ϵp/2 multiplied by the weight
of the edge, see full details in Gu et al. (2024).

2.3 Examples

We illustrate how the graph GOSPA metric works using the examples in Figure 1. This figure com-
pares a ground truth graph X with three different graph estimates Y . The weights of all edges are
one. In all these examples, we consider that the distance between all assigned nodes is δ, p = 1,
ϵ ≪ c, and δ ≪ c.

In Figure 1a, we have the ground truth graph X with nodes x1, x2, x3 and x4, denoted by circles, and
graph Y with nodes y1, y2, y3 and y4. In graph Y , we also use circles to denote the nodes assigned
to the corresponding nodes in graph X . Although the nodes in Y are all assigned to the nodes in X ,
there is an extra edge between node y3 and y4 which does not exist in graph X . Thus, the distance
between graph X and graph Y only has note attribute (localisation) errors δ for each assigned node,
and one edge mismatch error ϵp. The metric value is d(c,ϵ)p (X,Y ) = 4δ + ϵ.

In Figure 1b, we compare graphs of different sizes. There is one node missing in graph Y , which
leaves node x4 unassigned. In this case, apart from the localisation errors in the assigned nodes, there
is also a penalty for the unassigned node. Furthermore, there is an edge connected to x4 in graph X ,
and this contributes with a half-mismatch penalty. The metric value is d(c,ϵ)p (X,Y ) = 3δ + c

2 + ϵ
2 .

In Figure 1c, both graphs have four nodes, and we consider that ∆ ≫ c. This implies that node x4

and node y4 are unassigned, and they contribute to two unassigned node errors. There is one edge
connected to each unassigned node, that is also connected to an assigned node on the other end, so
they both contribute to a half-edge mismatch error. Thus, the distance consists of localisation errors,
two unassigned node errors, and two half-edge mismatch errors. The metric value is 3δ + c+ ϵ.
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3 Gaussian processes for graphs with graph GOSPA similarity

3.1 Gaussian processes

A Gaussian Process (GP) is a non-parametric Bayesian model over functions Rasmussen & Williams
(2006). A GP can be fully specified by its mean m(·) and covariance function (also called kernel)
k(·, ·) and we can write it as f ∼ GP(m(·), k(·, ·)). The mean function m(·) is typically chosen to
be a constant function with zero value, while the choice of covariance function given by that kernel
may vary from task to task.

For a regression task, consider that we have a set of n data points, D = {(xi, yi)}ni=1, where xi ∈ X
is the input data point and yi ∈ R is its associated output. Given the dataset and a new test point x∗,
we want to infer the value of its output, a problem called regression. In GP regression, we assume
that there is additive noise such that yi = f(xi)+ ϵi, where f(xi) is the function value of sample xi

and ϵi is a zero-mean Gaussian noise with variance σ2, which is independent of other variables.

For simplicity, we write the function value f(x) = [f(x1), . . . , f(xn)]
T as f , and the function

value f(x∗) as f∗ and y = {y1, . . . , yn}. The marginal likelihood of the model can be written as
p(y|x) =

∫
p(y|f ,x)p(f |x) df , where we marginalise the function value f . In a Gaussian processes

model, the prior is assumed to be a zero-mean Gaussian, f |x ∼ N (0,K), where K refers to the n
by n covariance matrix whose (i, j) element is k(xi,xj). The likelihood is also a Gaussian, y|f ∼
N (f , σ2

nI), so the log marginal likelihood is

log p(y|x) = −1

2
yT (K+ σ2

nI)
−1y − 1

2
log |K+ σ2

nI| −
n

2
log 2π.

For the test input x∗, the joint distribution of the observed target values and the function values at
the test locations can be written as[

y
f∗

]
∼ N

(
0,

[
K+ σ2

nI K∗
K∗

T K∗∗

])
, (8)

where K∗ = [k(x1,x∗), . . . , k(xn,x∗)] = [k(x∗,x1)
T , . . . , k(x∗,xn)

T ] and K∗∗ = k(x∗,x∗).
Then the posterior of the test output, which solves the regression problem and provides its associated
uncertainty is

f∗|x∗,x, f ∼ N (KT
∗ (K+ σ2

nI)
−1y,K∗∗ −KT

∗ (K+ σ2
nI)

−1K∗) (9)

3.2 Kernel based on the graph GOSPA metric

Once we have a training set, as explained above, we can apply a GP if we have a kernel function.
A kernel is a function k : X × X → R that measures the similarity between elements of the space
X. In addition, a kernel can be written as the inner product on a feature space F that corresponds
to the mapping ϕ : X → F. That is, given x, y ∈ X, k(x, y) = ⟨ϕ(x), ϕ(y)⟩. Such projection
function ϕ exists if and only if k is a positive-semidefinite function, which means the Gram matrix
Ki,j = k(xi, xj), where x1, . . . , xn ∈ X and i, j ∈ {0, . . . , n}, is positive-semidefinite for every
possible set of data points.

Kernel functions like the radial basis function (RBF) kernel and the Matérn kernels are commonly
used Rasmussen & Williams (2006), but they are designed for a vector input, x ∈ RN. For graphs,
there are kernels such as random walk kernels Vishwanathan et al. (2010) or Weisfeiler-Lehman
graph kernels Shervashidze et al. (2011). An alternative is to define similarity functions that can
work as kernels, but do not meet the above properties, for instance, a similarity function based on the
GED (Neuhaus & Bunke, 2007, Chap. 5).

Here we introduce the similarity function based on the graph GOSPA metric.
Definition 2. Let X and Y be two graphs, p′ > 1 and ℓ > 0, a length scale hyperparameter. We
define the similarity function between two graphs based on the graph GOSPA metric d(c,ϵ)p (·, ·) as

k (X,Y ) = exp

(
−d

(c,ϵ)
p (X,Y )p

′

ℓ

)
. (10)
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As will be shown in Section 3.3, this similarity function can be decomposed into its different compo-
nents to provide clear interpretability of the results. Although trivial similarity functions defined like
this are not generally positive semidefinite Vert (2008), they can show suitable performance in prac-
tice Boughorbel et al. (2004); Neuhaus & Bunke (2007). To improve the stability of the algorithm,
we add σ2I to the covariance matrix K. In addition, during the training process, if the resulting
covariance matrix for a given choice of hyperparameters (c, ϵ, p, p′) is not positive definite, these
hyperparameters are discarded.

3.3 Decomposition of graph GOSPA similarity function

In this section, we present the decomposition of the graph GOSPA similarity function. We first
review the graph GOSPA metric decomposition into different types of costs Gu et al. (2024). We
know from the graph GOSPA metric that DX,Y (i, j) represents the following costs:

1. Node attribute (localisation) error for assigned nodes, if i ≤ nX , j ≤ nY .
2. Missed node cost if i ≤ nX , j = nY + 1.
3. False node cost if i = nX + 1, j ≤ nY .

The sets of indices (i, j) that belong to each of the previously mentioned categories are denoted byS1,
S2 and S3. Therefore, for a given assignment matrix W , we have the following costs: node attribute
(localisation) cost, number of missed nodes cost, and number of false nodes cost. Mathematically,
these are given by

l(X,Y,W )p =
∑

(i,j)∈S1

DX,Y (i, j)W (i, j) (11)

m(X,Y,W )p =
cp

2

∑
(i,j)∈S2

W (i, j) (12)

f(X,Y,W )p =
cp

2

∑
(i,j)∈S3

W (i, j). (13)

Let W ∗ denote the optimal assignment in (5). Then, the graph GOSPA metric can be written as

d(c,ϵ)p (X,Y ) = (l(X,Y,W ∗)p +m(X,Y,W ∗)p + f(X,Y,W ∗)p + eX,Y (W
∗)p)

1/p
. (14)

Therefore, the graph GOSPA similarity function for p′ = p can be written as the product over the
similarity functions for node attribute errors, number of missed nodes, number of false nodes and
edge mismatches

k (X,Y ) = kl (X,Y ) km (X,Y ) kf (X,Y ) ke (X,Y ) (15)

where

kl (X,Y ) = exp

(
− l(X,Y,W ∗)p

ℓ

)
(16)

km (X,Y ) = exp

(
−m(X,Y,W ∗)p

ℓ

)
(17)

kf (X,Y ) = exp

(
−−f(X,Y,W ∗)p

ℓ

)
(18)

ke (X,Y ) = exp

(
−eX,Y (W

∗)p

ℓ

)
. (19)

It is also possible to merge the similarities for the missed and false nodes into a single similarity score
for unassigned nodes, given by the product of these two similarities ku(X,Y ) = km(X,Y )kf(X,Y ).
Here we show the similarity decomposition for the examples in Figure 1.

5
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In Figure 1a, the similarity for localisation is kl(X,Y ) = exp(−4δ/ℓ). The similarity for unassigned
nodes is ku(X,Y ) = 1, and the edge similarity is ke(X,Y ) = exp(−ϵ/ℓ). We can see that the
similarity for unassigned nodes is one, meaning that there are not any unassigned nodes in the optimal
assignment. In Figure 1b, the similarity for localisation is kl(X,Y ) = exp(−3δ/ℓ), the similarity for
unassgined nodes is ku(X,Y ) = exp(−c/2ℓ), and the edge similarity is ke(X,Y ) = exp(−ϵ/2ℓ).
In this case, none of the similarity decompositions are one, meaning that the graphs differ in the
localisation of some nodes, there are unassigned nodes, and also edge mismatches. In Figure 1c,
the similarity for localisation is also kl(X,Y ) = exp(−3δ/ℓ), the similarity for unassigned node is
ku(X,Y ) = km(X,Y )kf(X,Y ) = exp(−c/ℓ) and the edge similarity is ke(X,Y ) = exp(−ϵ/ℓ).

In Section 4.3, we also provide an example of how this similarity decomposition can be applied to
molecules. With the decomposition of the graph GOSPA similarity, we can have a better interpre-
tation on the similarities or dissimilarities between graphs, which can assist in the understanding of
the GP predictions.

4 Experimental results

In this section, we first compare the Gaussian process based on the graph GOSPA similarity function
with other Gaussian process models to make predictions on molecular properties in real datasets.
Then, we illustrate the decomposition of the graph GOSPA similarity function applied to molecules.

4.1 Experimental setup

Datasets

In the experiments, we use 6 regression datasets, five from MoleculeNet Wu et al. (2018), and one
from Griffiths et al. (2022). Specifically, ESOL, FreeSolv, Lipophilicity and Photoswitch are datasets
about the physical chemical properties of molecules and there is only one property to predict. QM8
is a dataset consisting of quantum mechanical properties. In this dataset, for numerical tractability
of GPs, we only use a subset of the molecules by random sampling 2000 molecules from the full
dataset and only considering the first 6 properties to predict.

The datasets are split into training and test sets with a ratio of 80/20 (note that validation sets are not
required for GP models since hyperparameters are chosen based on the marginal likelihood objective
on the training set). The graphs are obtained by converting the SMILES strings Weininger (1988)
into the corresponding molecular graphs.

Baselines

We compare the proposed method with GPs with the following kernels for molecules: Tanimoto
kernel Ralaivola et al. (2005) using ECFP fingerprints Rogers & Hahn (2010), subsequence string
kernel (SSK) Moss et al. (2020) using SMILES Weininger (1988) and WL kernel Shervashidze et al.
(2011) using graphs with atom type as the node attributes. Shortest path kernel Borgwardt & Kriegel
(2005) for labelled graphs, neighbourhood hash kernel Hido & Kashima (2009), edge histogram
kernel and vertex histogram kernel Sugiyama & Borgwardt (2015).

Evaluation metrics

For ESOL, FreeSolv, Lipophilicity and Photoswitch datasets, we use the root mean square error
(RMSE) to evaluate the performance. For QM8, we use mean absolute error (MAE), as this is the
common choice in other papers for this dataset Wu et al. (2018); Hu et al. (2020). We also use negative
log predictive density (NLPD) as the metric to quantify the uncertainty Griffiths et al. (2024).

Implementation details

All GP models are single-output GPs and the results are obtained by averaging over 20 random splits
of the training and the test set. The node attribute in the GP model based on graph GOSPA similarity
is the atom type. The base metric for node attributes of the graph GOSPA metric is d(x, y) = 0 if
x = y, and d(x, y) = c if x ̸= y. All GPs are trained using the L-BFGS-B optimiser Liu & Nocedal

6
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(1989), except the graph GOSPA similarity, which is trained with the Adam optimiser Kingma & Ba
(2014) on the marginal log-likelihood with 2000 iterations. The learning rate is set to 0.001. The
hyperparameters for graph GOSPA metric in the graph GOSPA similarity function are set to c = 3,
p = 2, p′ = 1 and the value of ϵ is set based on the optimal value of marginal likelihood with grid
search between [0,3] with step 0.2. The hyperparameter ℓ for the graph GOSPA similarity function
is optimised during the GP training process, the initial value is set to ℓ = 1.

The models using SSK kernel, Tanimoto kernel and graph GOSPA similarity are implemented in
GPflow 1 Matthews et al. (2017). The WL kernel, shortest path kernel, neighbourhood has kernel,
edge histogram kernel and vertex histogram kernel are obtained from functions in the GraKeL library
Siglidis et al. (2020). The GP models for these graph kernels are using the implementation in the
library GAUCHE Griffiths et al. (2024), which are implemented in GPytorch Gardner et al. (2018).

4.2 Results

Table 1 shows the results of the proposed methods and the baselines on the molecular datasets. The
best results for each task are shown in bold, and the underlined values are the second-best results.
From Table 1, it can be observed that the proposed graph GOSPA similarity performs the best in
three datasets, and second best in the FreeSolv dataset.

Table 1: Molecular property prediction over 4 physical chemical datasets.

Dataset (RMSE ↓)
Kernels ESOL FreeSolv Lipophilicity Photoswitch

SSK 0.66 ± 0.02 1.34 ± 0.03 0.73 ± 0.01 26.62 ± 1.07
Tanimoto 1.02 ± 0.02 1.88 ± 0.13 0.76 ± 0.01 23.42± 0.80

WL Kernel 0.75 ± 0.01 1.48 ± 0.04 0.74 ± 0.01 24.02 ± 0.65
Shortest Path Labelled 0.98 ± 0.01 2.41 ± 0.05 1.02 ± 0.02 43.58 ±7.11
Neighbourhood Hash 0.96 ± 0.05 1.82 ± 0.13 1.71 ± 0.18 33.62 ± 5.11

Edge Histogram 2.12 ± 0.02 3.94 ± 0.09 1.19 ± 0.01 66.76 ± 1.10
Vertex Histogram 1.12 ± 0.01 2.93 ± 0.07 1.09 ± 0.01 48.95 ± 1.52

Graph GOSPA 0.66 ± 0.01 1.37 ± 0.05 0.70 ± 0.03 21.44 ± 0.68

In Table 2, which contains the results of the QM8 dataset, the SSK kernel produces the best results
followed by graph GOSPA and Tanimoto. Graph GOSPA performs the best among the algorithms
that use a molecular graph as input.

Table 2: Molecular property prediction over a subset of 2000 molecules on the QM8 dataset. MAE
values are scaled up by 100.

Dataset (MAE ↓)

Kernels QM8 subset (results scaled up by 102)
E1-CC2 E2-CC2 f1-CC2 f2-CC2 E1-PBE0 E2-PBE0

SSK 1.41 ± 0.01 1.20 ± 0.02 2.46 ± 0.06 4.09 ± 0.04 1.29 ± 0.01 2.34 ± 0.05
Tanimoto 1.41 ± 0.01 1.36 ± 0.02 2.45 ± 0.05 3.98 ± 0.06 1.47 ± 0.01 2.29 ± 0.05
WL kernel 2.76 ± 0.02 1.99 ± 0.01 2.83 ± 0.03 4.23 ± 0.03 3.10 ± 0.02 2.51 ± 0.02

Shortest Path Labelled 2.94 ± 0.02 2.13 ± 0.01 2.93 ± 0.02 4.45 ± 0.26 3.27 ± 0.02 2.67 ± 0.02
Neighbourhood Hash 2.97 ± 0.03 2.26 ± 0.04 3.62 ± 0.26 4.57 ± 0.08 3.29 ± 0.05 2.81 ± 0.09

Edge Histogram 3.61 ± 0.03 2.66 ± 0.02 3.17 ± 0.03 4.66 ± 0.03 3.87 ± 0.03 3.18 ± 0.02
Vertex Histogram 3.24 ± 0.02 2.29 ± 0.02 2.97 ± 0.03 4.55 ± 0.03 3.55 ± 0.02 2.87 ± 0.02

Graph GOSPA 1.48 ± 0.01 1.29 ± 0.01 2.54 ± 0.06 3.81 ± 0.05 1.41 ± 0.02 2.44 ± 0.05

The NLPD results are shown in Table 3 and Table 4. In Table 3, we can observe that the GP with
graph GOSPA performs the best in quantifying uncertainty in the ESOL and the Photoswitch dataset
and second best in the FreeSolv and the Lipophilicity dataset. It can be observed that, in Table 4,
the GP with Graph GOSPA similarity function generally outperforms the considered baselines in
uncertainty quantification.

1Code will be released via Github if the paper is accepted.
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Table 3: Uncertainty quantification over 4 physical chemical datasets.

Dataset (NLPD ↓)
Kernels ESOL FreeSolv Lipophilicity Photoswitch

SSK 0.40 ± 0.05 0.08 ± 0.06 1.18 ± 0.02 0.64 ± 0.07
Tanimoto 1.00 ± 0.09 0.62 ± 0.04 0.89 ± 0.02 0.39 ± 0.04

WL Kernel 0.38 ± 0.02 0.38 ± 0.02 0.75 ± 0.01 0.36 ± 0.03
Shortest Path Labelled 0.62 ± 0.01 0.92 ± 0.02 1.22 ± 0.01 0.39 ± 0.03
Neighbourhood Hash 1.88 ± 0.18 1.49 ± 0.13 3.57 ± 0.12 1.53 ± 0.16

Edge Histogram 1.41 ± 0.01 1.44 ± 0.03 1.41 ± 0.01 1.38 ± 0.02
Vertex Histogram 0.80 ± 0.01 1.16 ±0.03 1.33 ± 0.01 1.13 ± 0.04

Graph GOSPA 0.30 ± 0.08 0.27 ± 0.03 0.85 ± 0.11 0.33 ± 0.04

Table 4: Uncertainty quantification over a subset of 2000 molecules on the QM8 dataset.

Dataset (NLPD ↓)

Kernels QM8 subset
E1-CC2 E2-CC2 f1-CC2 f2-CC2 E1-PBE0 E2-PBE0

SSK 3.44 ± 0.17 4.10 ± 0.13 4.46 ± 1.12 8.24 ± 0.40 3.08 ± 0.16 3.68 ± 0.10
Tanimoto 0.59 ± 0.01 0.78 ± 0.01 1.13 ± 0.04 1.24 ± 0.02 0.56 ± 0.01 0.71 ± 0.01
WL kernel 1.22 ± 0.01 1.34 ± 0.01 1.35 ± 0.03 1.34 ± 0.01 1.24 ± 0.01 1.19 ± 0.01

Shortest Path Labelled 1.25 ± 0.01 1.36 ± 0.01 1.38 ± 0.03 1.37 ± 0.01 1.27 ± 0.01 1.24 ± 0.01
Neighbourhood Hash 1.64 ± 0.12 1.50 ± 0.06 1.97 ± 0.16 2.21 ± 0.53 1.54 ± 0.12 1.84 ± 0.18

Edge Histogram 1.43 ± 0.01 1.44 ± 0.01 1.43 ± 0.03 1.40 ± 0.01 1.42 ± 0.01 1.42 ± 0.01
Vertex Histogram 1.33 ± 0.01 1.38 ± 0.01 1.41 ±0.03 1.39 ±0.01 1.34 ± 0.01 1.29 ± 0.01

Graph GOSPA 0.63 ± 0.01 0.72 ± 0.01 1.12 ± 0.04 1.20 ± 0.02 0.62 ± 0.02 0.66 ± 0.01

4.3 Decomposition of graph GOSPA similarity example

In this section, we illustrate how the graph GOSPA similarity function can be decomposed into differ-
ent parts to quantify the similarity of different parts in a graph (node attributes, unassigned nodes and
edge mismatches). For demonstration, we choose three molecules from the ESOL dataset, shown in
Figure 2. We set the hyperparameters c = 3, p′ = p = 1, ϵ = 0.8, and ℓ has been set to the optimised
value on the ESOL dataset, ℓ = 27.371, see Section 4.1.

Figure 2: Example molecules with their SMILES strings Weininger (1988).

In Figure 3, we show the decomposition of the graph GOSPA similarity. Figure 3a shows the simi-
larity matrix between the molecular graphs of the molecules in Figure 2. The indices 0, 1 and 2 in
Figure 3 represent the molecules from left to right in Figure 2.

As can be seen in Figure 2, intuitively, the molecules become more different from left to right, being
molecules 0 and 1 more similar than molecule 2. Therefore, the similarity decreases from molecule
0 to molecule 2. Figures 3b, Figure 3c, and Figure 3d show the decomposition of total similarity.
In Figure 3b, the matrix shows the similarity in the node elements. By looking at the first row, we
can see that molecule 0 is more similar in node elements to molecule 1 than to molecule 2. Figure
3c shows the similarity of the unassigned nodes. Again, molecule 0 is more similar to molecule 1
than to molecule 2 since they have a higher number of assigned nodes. Finally, Figure 3d shows the
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(a) Similarity matrix of graphs.
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(b) Similarity matrix of node elements.
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(c) Similarity matrix of unassigned nodes.
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(d) Similarity matrix of edges.

Figure 3: Plots of the decomposition of the similarity across the three molecules in Figure 2 based on
the graph GOSPA similarity. (a) Similarity of graphs; (b) similarity of node elements; (c) similarity
of unassigned nodes; (d) similarity of edges.

decomposition for edge similarity between graphs. Again, molecule 0 is more similar to molecule 1
than to molecule 2, since they have a fewer number of edge mismatches.

5 Conclusion

In this paper, we have proposed a Graph GOSPA similarity function, which is able to measure graph
similarity in an interpretable manner based on the graph GOSPA metric. The interpretability that
comes from the similarity decomposition is an important characteristics as it helps identify the sim-
ilar/different aspects between two graphs. We have also introduced a GP model based on the Graph
GOSPA similarity, which is able to learn both node and structural features in graphs by measuring
differences in node attributes, number of unassigned nodes, and edge mismatches.

Finally, we have evaluated the proposed Graph GOSPA GP on various molecular property prediction
datasets. Experimental results demonstrate that Graph GOSPA GP has better performance than the
baselines in a number of datasets, and closely follows the best performing algorithms when it does
not provide the best results. It has also been the best method at quantifying uncertainty via the NLPD.
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Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research, 18(40):1–6, apr 2017.

Markus Meuwly. Machine learning for chemical reactions. Chemical Reviews, 121(16):10218–
10239, 2021.

David L Mobley, Karisa L Wymer, Nathan M Lim, and J Peter Guthrie. Blind prediction of solvation
free energies from the SAMPL4 challenge. Journal of computer-aided molecular design, 28:135–
150, 2014.
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