

000 WEARABLES AS GRAPH: PERSONALIZED HEALTH IN- 001 SIGHTS VIA DYNAMIC RETRIEVAL FROM ADAPTIVE 002 KNOWLEDGE GRAPHS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 The growing prevalence of multi-sensor wearable devices generates vast amounts
014 of long-term, multimodal time-series data, posing significant challenges for man-
015 ual analysis and context-aware Large Language Models (LLMs). Current LLM-
016 based health analysis methods typically rely on manually curated context, which
017 becomes impractical with increasing data volume and sensor diversity. To over-
018 come these limitations, we introduce **Wearable As Graph (WAG)**, a novel frame-
019 work that automates context retrieval for LLMs using personalized knowledge
020 graphs. WAG constructs knowledge graphs mapping relationships between wear-
021 able modalities and incorporates user-specific data. We develop a data-driven re-
022 trieval pipeline that leverages both global (long-term) and local (short-term) rela-
023 tionships within metrics to identify the most relevant nodes for user queries. We
024 evaluate WAG on a benchmark of over 10k data-associated queries created from
025 multiple wearable datasets. Both LLM- and human-based evaluations show that
026 WAG substantially improves response quality, achieving a $\sim 70\%$ win rate over
027 baseline methods. Ablation studies further demonstrate the complementary value
028 of global modeling (implemented via Hierarchical Bayesian Modeling to integrate
029 general knowledge, population trends, and individual variation) and local model-
030 ing (adapted based on anomalies and query openness). WAG pioneers a wearable
031 knowledge graph, a tailored retrieval algorithm, and a real-data based query set,
032 creating a foundation for future research in wearable-based health monitoring.

1 INTRODUCTION

033 Mobile and wearable sensors have become powerful tools for collecting rich behavioral and health
034 data. While clinical experts can analyze short-term, single-sensor data, long-term and multimodal
035 analysis presents significant challenges due to human cognitive limitations. Large Language Models
036 (LLMs) have demonstrated remarkable capabilities in interpreting time-series data—whether as raw
037 values, reprogrammed patches, or encoder embeddings—often surpassing specialized models in
038 pattern recognition tasks (Jin et al., 2024; Chan et al., 2024; Zhou et al., 2022; Mo et al., 2024;
039 Gruver et al., 2023). Researchers have successfully applied LLMs to wearable data, combining
040 textual and temporal information for health predictions across domains such as sleep, activity (Kim
041 et al., 2024; Liu et al., 2023; Merrill et al., 2024; Englhardt et al., 2024), nutrition (Sempionatto
042 et al., 2021), and mental health (Tazarv et al., 2021; Vos et al., 2023; Salekin et al., 2018).

043 Despite these advances, most existing methods require manual context preparation tailored to spe-
044 cific tasks. As wearable devices incorporate more sensors and accumulate longer time series, pro-
045 viding all data as context to LLMs becomes infeasible. Longer contexts increase computational
046 cost, inference time, and the risk of including irrelevant information, which can reduce analytical
047 performance (Liu et al., 2024).

048 To address these challenges, we propose **Wearable As Graph (WAG)**: a context retrieval framework
049 that enables LLMs to automatically identify and retrieve relevant sensor data based on user queries.
050 Building on the established use of knowledge graphs in medical domains such as Electronic Health
051 Records (EHRs), WAG also employs a graph-based Retrieval-Augmented Generation (RAG) pro-
052 cess. This method integrates and aligns multimodal sensor data, retrieving the most informative
053 context to support robust, evidence-based LLM analysis.

054 Our main contributions are as follows:
 055

056 • We introduce the first knowledge graph for wearable sensors, capturing connections across
 057 common modalities while supporting personalization with user-specific data.
 058 • We construct a query set of over 10k data-associated queries from multiple wearable
 059 datasets to benchmark our framework.
 060 • We design a data-driven context retrieval pipeline that combines long-term relationships
 061 (global modeling) with short-term anomalies (local modeling) of metrics to enhance health
 062 analysis using LLMs.
 063 • We conduct both LLM- and human-based evaluations. Results show that WAG achieves a
 064 70% win rate over baselines. Ablation studies validate the effectiveness of global mod-
 065 eling (via Hierarchical Bayesian Modeling, integrating general knowledge, population
 066 trends, and individual variations) and local modeling (capturing anomalies and balanc-
 067 ing exploratory vs. conservative reasoning based on query openness). Human evaluations,
 068 though with high inter-rater reliability, also align closely with LLM findings.

069 2 RELATED WORK 070

071 **LLM for Wearable Sensing** Large Language Models (LLMs) have shown strong capabilities in
 072 interpreting time-series data.(Gruver et al., 2023; Jin et al., 2024) Their zero-shot reasoning ability
 073 has spurred widespread use in automated data analysis,(Chakraborty et al., 2024; Guo et al., 2024;
 074 Hong et al., 2024; Jiang et al., 2023; Hegselmann et al., 2023) where time-series signals are espe-
 075 cially common in wearable health sensing.(Tazarv et al., 2021; Vos et al., 2023; Salekin et al., 2018;
 076 Belyaeva et al., 2023) Integrating LLMs into this domain holds promise not only for improving
 077 prediction and forecasting but also for generating meaningful insights that extend beyond label out-
 078 puts.(Kim et al., 2024; Liu et al., 2023; Merrill et al., 2024; Englhardt et al., 2024; Ma et al., 2023;
 079 Strömel et al., 2024; Choe et al., 2015) However, existing methods typically assume that all relevant
 080 data is readily available. Our work addresses this gap by introducing an automated context retrieval
 081 process that selects suitable health data from large clusters of sensor signals based on user queries,
 082 prior to downstream analysis.

083 **Graph-based RAG** Retrieval-Augmented Generation (RAG)(Lewis et al., 2020) equips LLMs
 084 with external knowledge, offering an efficient alternative to retraining.(Hu et al., 2022) Graphs,
 085 structured representations of concept relationships, are widely used as knowledge bases to improve
 086 LLM reasoning.(Sun et al., 2018; Rotmansch et al., 2017; Edge et al., 2025) Although LLMs encode
 087 broad medical knowledge,(Singhal et al., 2023a) they often fall short in delivering contextualized
 088 analyses in applications such as electronic health record (EHR) analysis (Shi et al., 2024; Kweon
 089 et al., 2024; Liu et al., 2022; Cui et al., 2024; Choi et al., 2018; Yang et al., 2022) and medical
 090 question answering (QA).(Tang et al., 2024; Toma et al., 2023; Tu et al., 2024; Singhal et al., 2023b;
 091 Saab et al., 2024) To bridge this gap, graph-based RAG methods have been explored for injecting
 092 precise, in-domain medical knowledge.(Fei et al., 2021; Bhoi et al., 2021; Chen et al., 2019; Shang
 093 et al., 2019; Jiang et al., 2025) Wearable data analysis presents a similar challenge, as it may also
 094 requires expertise-level health knowledge that LLMs may lack. Yet, to the best of our knowledge,
 095 no knowledge graph currently captures the connections among wearable health metrics. This gap
 096 motivates our development of such a graph to enable more effective, contextualized analysis of
 097 wearable health data.

098 3 METHOD

099 WAG is designed to construct a personalized knowledge graph (PKG) that stores both general knowl-
 100 edge and user-specific wearable data. Through carefully designed graph-based retrieval, WAG lever-
 101 ages the PKG to provide richer and more context-aware health insights. The framework consists of
 102 four key stages: (1) query set construction, (2) knowledge graph construction, (3) query inference
 103 using a personal knowledge graph (PKG), and (4) evaluation.

104 3.1 QUERY SET CONSTRUCTION

105 To simulate the construction of PKGs and the querying process, we used existing wearable datasets
 106 that record various daily health metrics across multiple participants. These datasets enabled us

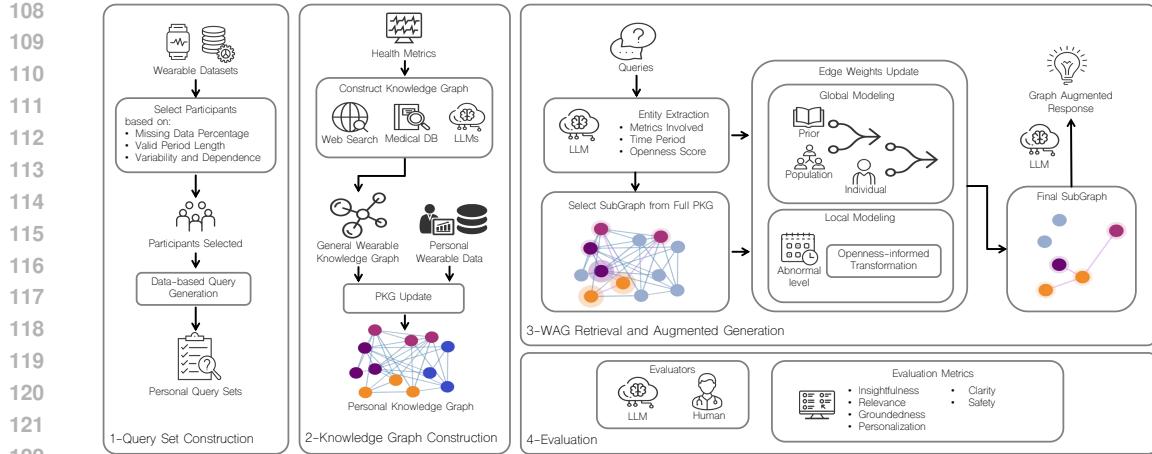


Figure 1: Main diagram.

to generate a diverse data associated query set reflecting single- and multi-metric questions. By leveraging real-world data, our simulation closely mirrors practical scenarios in which WAG would provide personalized, context-aware insights.

PARTICIPANT SELECTION

For a given dataset \mathcal{D} , we selected a subset of subjects $\mathcal{S}_{\text{sel}} \subset \mathcal{S}$. The selection was based on the following criteria to ensure a diverse and representative sample:

Missing Data Percentage: The percentage of missing data for a subject s is calculated across all metrics $m \in \mathcal{M}^{\mathcal{D}}$ as:

$$\text{MD}_s = \frac{1}{|\mathcal{M}^{\mathcal{D}}|} \sum_{m \in \mathcal{M}^{\mathcal{D}}} \frac{|\{t \in \mathcal{T}_s : v_{s,m,t} = \emptyset\}|}{|\mathcal{T}_s|}, \text{ where } \mathcal{M}^{\mathcal{D}} \text{ is the set of all measured metrics, } \mathcal{T}_s \text{ is the set of all timestamps for participant } s, \text{ and } v_{s,m,t} \text{ is the value of metric } m \text{ at time } t.$$

Valid Period Length: The length of a participant's data collection period is defined as: $\text{VL}_s = \max(\mathcal{T}_s) - \min(\mathcal{T}_s)$

Data Variability and Interdependence:

- **Coefficient of Variation:** The overall variability of a participant's data across all metrics: $\text{CV}_s = \sum_{m \in \mathcal{M}^{\mathcal{D}}} \frac{\sigma_{s,m}}{\mu_{s,m}}$, where $\sigma_{s,m}$ and $\mu_{s,m}$ are the standard deviation and mean, respectively, of metric m for subject s .
- **Pairwise Mutual Information:** The total pairwise mutual information between all metrics, quantifying their statistical dependencies: $\text{MI}_p = \sum_{\substack{(m_i, m_j) \in \mathcal{M}^{\mathcal{D}^2} \\ i < j}} I(m_i; m_j)$

Participants were first selected based on high data completeness and recording duration. We then applied stratified sampling across deciles of data variability, ensuring that the final cohort represents a wide range of physiological dynamics and data conditions.

Then, for each selected participant, we sample specific timestamps and periods of interest for various metrics. This sampled data forms the foundational evidence used to construct data-driven queries. The query generation process is divided into two branches: single-metric and multi-metric queries.

QUERY GENERATION

Single Metric Query For each participant $s \in \mathcal{S}_{\text{sel}}$ and each metric $m \in \mathcal{M}^{\mathcal{D}}$, we analyze the data over a set of predefined temporal windows $\mathcal{K} = \{1 \text{ day}, 7 \text{ days}, 14 \text{ days}, 30 \text{ days}, \text{all time}\}$. For a given window size $k \in \mathcal{K}$:

- **numeric metrics:** For metric m , we compute the abnormal level by computing the rolling average of the absolute Z-scores of temporal window k : $\zeta_{s,m,t} = \frac{1}{k} \sum_{i=0}^{k-1} \left| \frac{v_{s,m,t-i} - \mu_{s,m}}{\sigma_{s,m}} \right|$.

162 We sample timestamps t where $\zeta_{s,m,t}$ falls into one of three anomaly levels: *low* (bottom
 163 33%), *medium* (34–66%), or *high* (top 33%). Additionally, we sample timestamps t_{missing}
 164 where the original data point is missing ($v_{s,m,t} = \emptyset$).

165 • *non-numeric metrics (e.g., text)*: We randomly select a timestamp t where a valid entry
 166 exists ($v_{s,m,t} \neq \emptyset$).

167 The resulting input tuple for generating a single-metric query is

168 $\mathcal{I}^{\text{single}} = (\text{metric } m, \text{ timestamp } t, \text{ temporal window } k, \text{ abnormal levels } \zeta_{s,m,t,k}).$

169 **Multi-Metric Query** For each participant $s \in \mathcal{S}_{\text{sel}}$, multi-metric queries are generated as follows.
 170 We first randomly select a subset of metrics $\mathcal{M}_{\text{sel}} \subset \mathcal{M}^{\mathcal{D}}$ with $|\mathcal{M}_{\text{sel}}| \in \{2, 3\}$. Next, we identify
 171 a timestamp t at which all selected metrics have valid data, i.e., $\forall m \in \mathcal{M}_{\text{sel}}, v_{s,m,t} \neq \emptyset$. We then
 172 randomly choose a temporal window $k \in \mathcal{K}$.

173 The resulting input tuple for generating a multi-metric query is

174 $\mathcal{I}^{\text{multiple}} = (\text{selected metric set } \mathcal{M}_{\text{sel}}, \text{ timestamp } t, \text{ temporal window } k, \text{ abnormal levels } \zeta_{s,\mathcal{M}_{\text{sel}},t,k}).$

175 **Query Types** We predefined a set of question categories, along with their openness ranges, for
 176 both single- and multi-metric queries, with additional details provided in Appendix Table 24. These
 177 categories span openness levels $\eta \in [0, 1]$, which quantify how open-ended or exploratory a query
 178 is.

184 Single-Metric	General Knowledge (0.2–0.4), Data Retrieval (0.1–0.3), Trend Analysis (0.4–0.6), Comparative Insight 185 (0.5–0.7), Anomaly Detection (0.6–0.8), Actionable Advice (0.3–0.5), Exploratory Analysis (0.7–1.0)
186 Multi-metric	Metric Relationships (0.4–0.6), Contextual Queries (0.5–0.7)

187 Queries with a high openness score invite a broad range of responses, often requiring exploration
 188 of multiple contributing factors. In contrast, low-openness queries tend to be more closed-ended,
 189 eliciting direct or binary answers with limited elaboration. Importantly, phrasing can shift a query’s
 190 openness even if the intent remains similar. For instance: “*Do you think I am stressed?*” → low
 191 openness (binary yes/no response). “*I am feeling stressed, do you have an idea why?*” → high
 192 openness (encourages interpretation and reasoning).

193 The resulting query tuples are passed to a LLM via the QUERYGEN module (Appendix; Prompt 1,
 194 Prompt 2), which takes $[\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_n]$ as input and generates the query set \mathcal{Q} .

197 3.2 KNOWLEDGE GRAPH CONSTRUCTION

198 The objective of this step is to construct a knowledge graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ to model the interconnections
 199 among various health-related metrics. In this graph, \mathcal{V} represents the set of nodes corresponding to
 200 different health metrics, while \mathcal{E} denotes the edges that capture relationships between these metrics.

202 **Nodes** Each node $v \in \mathcal{V}$ represents a distinct health metric and is assigned to one of seven prede-
 203 fined categories $c \in \mathcal{C}$:

204 $\mathcal{C} = \{\text{Physiological}, \text{Sleep}, \text{Activity}, \text{Mental}, \text{Environmental}, \text{Lifestyle}, \text{Demographic}\}.$

205 Each node is further characterized by the attributes *Name*, *Description*, *Range*, *Recommendations*,
 206 and *Data Source*, etc. as detailed in Appendix Table 26.

207 **Edges** Each edge $e_{i,j} \in \mathcal{E}$ is undirected and encodes the relationship between nodes v_i and v_j .
 208 Each edge is characterized by the following attributes: *Relationship*, *Description*, *Weight* $w_{i,j}$, as
 209 detailed in Appendix Table 27.

210 **Knowledge Extraction and Processing** The textual information associated with nodes and
 211 edges—including descriptions, units, ranges, and recommendations—is initially gathered through
 212 web searches, scientific literature, and the Unified Medical Language System (UMLS). For web-
 213 based sources, only pages from a curated list of trusted domains are used to ensure reliability. If

216 a node pertains to personal health data, relevant contextual information, such as sensing signals,
 217 measurement devices, and specialized value ranges, is also incorporated. To enhance completeness
 218 and ensure evidence-based knowledge integration, all retrieved content is further processed using a
 219 large language model (LLM) guided by carefully crafted prompting strategies.
 220

221 GENERAL WEARABLE GRAPH

223 We started by introducing \mathcal{M}^0 , a set of health metric concepts (e.g., heart rate, step count) commonly
 224 measured by wearable devices, verified by medical experts. These metrics form the initial node set
 225 $\mathcal{V}^0 = (v_1, v_2, \dots, v_{|\mathcal{M}^0|})$ of our graph $\mathcal{G}^0 = (\mathcal{V}^0, \mathcal{E}^0)$, where edges $\mathcal{E}^0 = (e_1, e_2, \dots, e_{|\mathcal{E}^0|})$ represent
 226 pairwise relationships between nodes, with $|\mathcal{E}^0| = \binom{|\mathcal{M}^0|}{2}$. Edge weights w are initialized using a
 227 predefined prior w^{prior} ; in our setup, they are assigned by an LLM and validated by human experts.
 228

229 PERSONAL DATA INTEGRATION AND GRAPH EXTENSION

230 To enhance the initial general knowledge
 231 graph \mathcal{G}^0 with personal health metrics, we
 232 introduce a set of novel measurable quantities
 233 $\mathcal{M}^D = \{m_1, \dots, m_{|\mathcal{M}^D|}\}$ derived
 234 from dataset \mathcal{D} to simulate individual data
 235 streams. These metrics are incorporated
 236 following a structured process to construct
 237 the personal knowledge graph \mathcal{G} , as formalized
 238 in Algorithm 1.

239 Here, *NodeGen* performs knowledge retrieval
 240 from trusted knowledge bases and feeds the information to the LLM (Appendix; Prompt 4) to generate node structures
 241 for each health metric concept m . *UpdateNode* updates a existing node with
 242 new sensor specific information from new metric. Similarly, *EdgeGen* retrieves relevant knowledge and feeds it to the LLM
 243 (Appendix; Prompt 5) to generate edges between connected nodes. Finally, *Merge* (Appendix; Prompt 6) identifies potential duplicate metrics
 244 using the LLM to prevent graph inflation from redundant nodes, ensuring that only genuinely
 245 new metrics result in new nodes. Further deatils can be found in Appendix B.1.
 246

247 4 WAG RETRIEVING AND AUGMENTED GENERATION

248 For each participant $s \in S_{\text{sel}}$, given a query q , a large language model extracts structured components:

$$249 \quad (\mathcal{M}^q, k^q, t^q, \eta^q) = \text{QueryParse}(q),$$

250 where $\mathcal{M}^q = \{m_1, \dots, m_{|\mathcal{M}^q|}\}$ are detected entities or metrics, k^q is the relevant time window, the
 251 reference timestamp t^q , and the openness score η^q .

252 The openness score η^q governs two aspects of retrieval from the personal knowledge graph $\mathcal{G} =$
 253 $(\mathcal{V}, \mathcal{E})$: (1) the **breadth of expansion**, i.e., how many neighbors are retrieved around primary entities;
 254 and (2) the **edge weight fusion**, i.e., blending long-term (global) and short-term (local) relationship strengths. The procedure is summarized in Algorithm 2.

255 Each $m \in \mathcal{M}^q$ is matched to nodes in \mathcal{V} using a semantic similarity function $\text{sim}(\cdot, \cdot)$ with threshold
 256 δ . The resulting primary nodes \mathcal{V}_p define neighborhoods $Y = \{y_1, \dots, y_{|Y|}\}$ around each $x \in \mathcal{V}_p$.

257 For each neighborhood, edges are reweighted by combining global and local components:

$$258 \quad w_{x,y}^{\text{final}} = (1 - \beta) w_{x,y}^{\text{global}} + \beta w_{x,y}^{\text{local}}, \quad \beta \in [0, 1], \quad (1)$$

259 where $w_{x,y}^{\text{global}} \in \mathcal{W}^{\text{global}}$ is the Bayesian-updated global weight, $w_{x,y}^{\text{local}} \in \mathcal{W}^{\text{local}}$ the openness-modulated local weight (defined below) and β is the hyperparameter controlling w^{global} and w^{local} .

270 GLOBAL MODELING OF LONG-TERM RELATIONSHIP MODELING
271272 Formally, for subject s , the latent vector of long-term edge weights is $\Theta_x^s = [\theta_{x,y_1}^s, \dots, \theta_{x,y_{|Y|}}^s]^\top$
273 estimated using a hierarchical Bayesian model (HBM) that integrates three information sources:

274
$$\mathcal{W}^{\text{global}} = \text{HBM}(\mathcal{W}^{\text{prior}}, \mathcal{W}^{\text{pop}}, \mathcal{W}^{\text{ind}}),$$

275

276 where $\mathcal{W}^{\text{prior}}$ follows the **Prior Distribution**: $\Theta_x^s \sim \mathcal{N}(\boldsymbol{\mu}_x^{\text{prior}}, \boldsymbol{\Sigma}_x^{\text{prior}})$, initialized as a Gaussian
277 prior representing general knowledge.
278279 \mathcal{W}^{pop} is the **Population Likelihood**: $R_x^{\text{pop}} \mid \Theta_x^s \sim \mathcal{N}(\Theta_x^s, \mathbf{V}_x^{\text{pop}})$, representing observed relation-
280 ship patterns shared across subjects.
281282 \mathcal{W}^{ind} is the **Individual Likelihood**: $R_x^s \mid \Theta_x^s \sim \mathcal{N}(\Theta_x^s, \mathbf{V}_x^s)$, representing observed relationship
283 patterns specific to the individual user.
284285 From Bayes' theorem, the full posterior distribution, combining all sources of information can be
286 viewed as updating the population-informed posterior with the individual's data:
287

288
$$p(\Theta_x^s \mid R_x^{\text{pop}}, R_x^s) \propto p(R_x^s \mid \Theta_x^s) p(\Theta_x^s \mid R_x^{\text{pop}}).$$

289

290 STAGE 1: POPULATION-INFORMED POSTERIOR VIA GAUSSIAN CONJUGATE PRIORS
291292 First, we update the prior with the population data:
293

294
$$\Theta_x^s \mid R_x^{\text{pop}} \sim \mathcal{N}(\boldsymbol{\mu}_x^{\text{pop}}, \boldsymbol{\Sigma}_x^{\text{pop}}),$$

295

296
$$\boldsymbol{\Sigma}_x^{\text{pop}} = ((\boldsymbol{\Sigma}_x^{\text{prior}})^{-1} + (\mathbf{V}_x^{\text{pop}})^{-1})^{-1}, \quad \boldsymbol{\mu}_x^{\text{pop}} = \boldsymbol{\Sigma}_x^{\text{pop}} ((\boldsymbol{\Sigma}_x^{\text{prior}})^{-1} \boldsymbol{\mu}_x^{\text{prior}} + (\mathbf{V}_x^{\text{pop}})^{-1} R_x^{\text{pop}})$$

297

298 STAGE 2: SUBJECT-SPECIFIC POSTERIOR (FINAL)
299300 We then update the population-informed posterior with the individual's data:
301

302
$$\Theta_x^s \mid R_x^{\text{pop}}, R_x^s \sim \mathcal{N}(\boldsymbol{\mu}_x^s, \boldsymbol{\Sigma}_x^s),$$

303

304
$$\boldsymbol{\Sigma}_x^s = ((\boldsymbol{\Sigma}_x^{\text{pop}})^{-1} + (V_x^s)^{-1})^{-1}, \quad \boldsymbol{\mu}_x^s = \boldsymbol{\Sigma}_x^s ((\boldsymbol{\Sigma}_x^{\text{pop}})^{-1} \boldsymbol{\mu}_x^{\text{pop}} + (V_x^s)^{-1} R_x^s)$$

305

306 Intuitively, $(\boldsymbol{\mu}_x^{\text{prior}}, \boldsymbol{\Sigma}_x^{\text{prior}})$ encode prior
307 knowledge about the x - Y relationship
308 in the graph, whereas $(R_x^{\text{pop}}, V_x^{\text{pop}})$ and
309 (R_x^s, V_x^s) capture population-level and
310 subject-specific empirical relationships,
311 respectively. Each covariance V quantifies
312 the uncertainty associated with its corre-
313 sponding domain.
314315 LOCAL MODELING
316 OF SHORT-TERM RELATIONSHIP
317318 Short-term weights capture context-
319 sensitive relationships over the past k^q
320 days relative to query time t^q . For node x
321 and neighbor y , the normalized abnormal-
322 ity score is: $\zeta_y = \frac{1}{k^q} \sum_{i=0}^{k^q-1} \left| \frac{v_{y,t^q-i} - \mu_y}{\sigma_y} \right|$,
323 where μ_y and σ_y are the historical mean
324 and standard deviation.
325326 The openness-modulated transformation
327 is:
328

329
$$w_{x,y}^{\text{short}} = (2\eta^q - 1) \zeta_y + (1 - \eta^q),$$

330

331 The parameter η^q acts as a dial between different behaviors:
332**Algorithm 2** WAG Retrieval

Require: Personal graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, User query q , LLM-based function QueryParse , Similarity threshold δ , Max number of retrieved nodes κ

- 1: $(\mathcal{M}^q, t^q, \eta^q) \leftarrow \text{QueryParse}(q)$ {Extract entities, period, openness}
- 2: $\mathcal{V}_{\text{primary}} \leftarrow \{v \in \mathcal{V} : \exists m \in \mathcal{M}^q, \text{sim}(v, m) > \delta\}$
- 3: $\mathcal{V}_{\text{sub}} \leftarrow \mathcal{V}_{\text{primary}}, \mathcal{E}_{\text{sub}} \leftarrow \emptyset$
- 4: **for** each primary node $v_p \in \mathcal{V}_{\text{primary}}$ **do**
- 5: $(\mathcal{V}_{\text{nbr}}, \mathcal{E}_{\text{nbr}}) \leftarrow \text{GETNEIGHBOR}(v_p, \mathcal{G}, \text{hops} = 1)$ {1-hop neighborhood expansion}
- 6: $\mathcal{E}'_{\text{nbr}} \leftarrow \text{UPDATEWEIGHTS}(\mathcal{E}_{\text{nbr}}, \tau^q, \eta^q)$ {Apply global and local modeling, Eq. 1}
- 7: $\mathcal{V}_{\text{top}} \leftarrow \text{RANKNODES}(\mathcal{V}_{\text{nbr}}, \mathcal{E}'_{\text{nbr}}, k = \lceil \kappa / |\mathcal{M}^q| \rceil)$ {Select top- k neighbors}
- 8: $\mathcal{V}_{\text{sub}} \leftarrow \mathcal{V}_{\text{sub}} \cup \mathcal{V}_{\text{top}}$
- 9: $\mathcal{E}_{\text{sub}} \leftarrow \mathcal{E}_{\text{sub}} \cup \mathcal{E}'_{\text{nbr}}$
- 10: **end for**
- 11: **return** $\mathcal{G}_{\text{sub}} = (\mathcal{V}_{\text{sub}}, \mathcal{E}_{\text{sub}})$

- $\eta^q \approx 0$: $w_{x,y}^{\text{short}} \approx 1 - \zeta_y$, which prioritizes neighbors with consistently low abnormality.
- $\eta^q = 0.5$: $w_{x,y}^{\text{short}} = 0.5$, which is independent of ζ_y . Here, the model effectively ignores short-term abnormality and applies equal weighting across neighbors.
- $\eta^q \approx 1$: $w_{x,y}^{\text{short}} \approx \zeta_y$, which emphasizes nodes with higher abnormality scores, allowing sensitivity to transient deviations and emerging irregular patterns.

Final Retrieval. Top- $\kappa/|\mathcal{V}_p|$ neighbors are selected for each primary node using the fused weights $w_{x,y}^{\text{final}}$ (Eq. 1). The final subgraph \mathcal{G}^{sub} consists of all primary nodes, their selected neighbors, and associated reweighted edges, which are then provided to the LLM for contextualized reasoning and response generation via Appendix Prompt 7 and 8.

Further implementation details and derivations can be found in Appendices B.2 and G.

5 EXPERIMENT

DATASET

In this study, we utilize several publicly available multimodal lifelogging datasets to ensure a comprehensive analysis. The selected datasets are described below: IFH Affect (Labbaf et al., 2024), Pmdata (Thambawita et al., 2020), Lifesnaps (Yfantidou et al., 2022), and Globem (Xu et al., 2022). For each dataset \mathcal{D} , we selected 10 groups, comprising 40 subjects in total. We start identifying 65 health metrics (Appendix; Table 28), from these datasets, a total of 52 distinct wearable metrics are selected for incorporation into our graph. A detailed breakdown of these metrics is provided in Appendix Table 29. A visualization of our created WAG PKG is shown in Figure 2. Based on these metrics and datasets, we

EVALUATION PROCEDURE

Leveraging LLMs for evaluation has proven to be an effective and scalable methodology, particularly in scenarios where standardized benchmarks are lacking (Zheng et al., 2023; Saad-Falcon et al., 2024; Chen et al., 2024; Lin & Chen, 2023). Advanced LLMs can approximate both controlled laboratory and crowdsourced human judgments, often achieving levels of inter-annotator agreement comparable to those between humans (Sottana et al., 2023; Zheng et al., 2023).

Evaluation Metrics Inspired from foundational concepts defined from prior work (Abbasian et al., 2024), we selected *Sensibility*, *Specificity*, *Interestingness (SSI)*, *Groundedness*, *Personalization*, *Conciseness*, and *Safety* to formulate our own metrics:

Table 1: Evaluation dimensions for assessing response quality.

Dimension	Description
Insightfulness	Similar to <i>Interestingness</i> in <i>SSI</i> (Thoppilan et al., 2022). Captures whether incorporating high-quality, context-aware information leads to more insightful responses.
Relevance	Derived from <i>Specificity</i> and <i>Sensibility</i> in <i>SSI</i> . Assesses whether the system retrieves highly relevant content tailored to the user's context.
Groundedness	Evaluates whether responses are supported by factual or retrievable content.
Personalization	Measures how accurately responses reflect the user's specific data and context.
Clarity	Related to <i>Conciseness</i> . Judges whether responses are clear, and accessible, even for complex queries.
Safety & Security	Ensures responses avoid unsafe, harmful, or misleading content.
Overall Quality	A holistic assessment combining the above dimensions to capture the overall usefulness and reliability of responses.

Our evaluation procedure is as follows: For a given query, the responses from all evaluated methods are presented to a powerful LLM judge. The judge is instructed to rank the responses according to

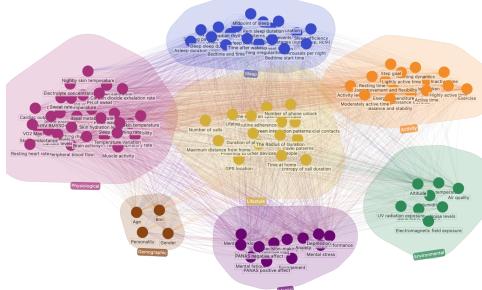


Figure 2: Visualization of the generated knowledge graph.

378 Table 2: Main experiment - Comparison of our method with baselines across all datasets. Note: For
 379 rank metrics (\downarrow), lower values are better from 1 to 3. For win rate (\uparrow), higher values are better.

380	381	Dataset	Method	Rank \downarrow						Overall	Win Rate \uparrow
				382	383	384	385	386	387		
388	389	Globem	Base	2.57	2.57	2.42	2.55	2.24	1.00	2.57	0.06
			Rag	2.00	1.99	2.03	2.00	1.86	1.00	1.99	0.24
			WAG	1.43	1.44	1.50	1.44	1.82	1.00	1.43	0.70
390	391	IFH Affect	Base	2.59	2.58	2.45	2.57	2.24	1.00	2.59	0.06
			Rag	2.01	2.01	2.05	2.02	1.90	1.00	2.01	0.23
			WAG	1.40	1.40	1.46	1.41	1.79	1.00	1.40	0.71
392	393	Lifesnap	Base	2.66	2.65	2.50	2.63	2.31	1.00	2.66	0.05
			Rag	1.95	1.95	2.00	1.96	1.83	1.00	1.95	0.25
			WAG	1.39	1.40	1.45	1.40	1.75	1.00	1.39	0.70
394	395	Pmdata	Base	2.63	2.61	2.45	2.60	2.28	1.00	2.62	0.06
			Rag	1.97	1.97	2.04	1.98	1.85	1.00	1.96	0.23
			WAG	1.41	1.41	1.47	1.41	1.78	1.00	1.41	0.70

396 the criteria defined above using the structured prompt detailed in Appendix Prompt 9. The resulting
 397 rankings are then aggregated across the entire query set. We report the average rank for each method
 398 and compute the *win rate*, defined as the percentage of queries for which a system’s response is
 399 ranked highest. To validate the reliability of the LLM-based judgments, we also perform a human
 400 evaluation on a randomly sampled subset of queries. Domain experts are asked to provide rankings
 401 for the same responses, allowing us to evaluate the connection between LLM and human judgments.

402 We design three experiments to evaluate the effectiveness of our proposed framework. For the
 403 LLM-judged main experiment, we use the entire constructed query set, while for Exp-G and Exp-
 404 L, we select a total of 1,000 single-metric queries, with 250 drawn from each dataset. Because
 405 different conditions may sometimes produce identical retrieval results from the graph, in Exp-G
 406 and Exp-L, we restrict our selection to queries where all conditions yield distinct retrieval results.
 407 Consequently, these queries tend to have relatively high openness scores η , which generally invite
 408 more exploration. Finally, we sample 100 queries from each experiment to construct the query set
 409 for human evaluation. The evaluation is conducted by three students with medical backgrounds
 410 using a simple web-based interface (Appendix I).

411 MAIN EXPERIMENT

412 We compare three conditions: **Baseline**: the LLM is provided only with relevant personal data, without
 413 any external context (e.g., grounded knowledge). **RAG**: a standard RAG approach, where only
 414 information directly related to the primarily detected entity is retrieved. **WAG**: our method, which
 415 dynamically adjusts edge weights based on both the user’s data and the openness score, enabling
 416 more context-aware and adaptive reasoning from other related nodes.

417 The primary results in Table 2 highlight the superiority of our approach. Compared to the Baseline,
 418 the standard RAG method achieves a substantially lower (better) average overall rank, reflecting a
 419 $\sim 37.5\%$ improvement and confirming that incorporating external knowledge consistently enhances
 420 response quality. Our proposed WAG framework delivers an even greater gain, reducing the average
 421 overall rank to ~ 1.4 , a $\sim 56\%$ improvement over standard RAG. This is further supported by a win
 422 rate of nearly 70%, showing that WAG generated the preferred response for the majority of evaluated
 423 samples. Additional analyses (Appendix; Tables 10 and 12) show that WAG’s advantage is most
 424 pronounced on queries with higher abnormality metrics and those with higher openness scores,
 425 such as Trend Analysis, Comparative Insight, Anomaly Detection, and Exploratory Analysis. These
 426 results demonstrate that WAG is particularly effective for complex, open-ended analytical scenarios
 427 where dynamic and context-aware reasoning is most critical.

428 ABLATION STUDIES

429 We conduct two ablation experiments to evaluate the effectiveness of the two core components in our WAG re-
 430 trieval module: global modeling (Experiment-G) and local modeling (Experiment-L) of edge weights.

431 Experiment-G evaluates four weighting strategies of global modeling within our Hierarchical Bayesian Model

432 Table 3: Exp-G - Comparison of different weighting within global modeling across datasets.

Dataset	W^{global}	W^{ind}	W^{pop}	W^{prior}
Globem	2.14	2.62	2.50	2.22
IFH Affect	2.08	2.42	2.40	2.39
Lifesnap	2.14	2.41	2.32	2.34
Pmdata	2.28	2.42	2.40	2.32
Average	2.16	2.47	2.40	2.32

(HBM). For a primary node \mathcal{V}_p , the weight of a neighboring node Y is defined as follows: \mathcal{W}^{prior} is the initial weight based on prior knowledge from the knowledge graph (μ_x^{prior}); $\mathcal{W}^{pop}(R_x^{pop})$ is derived solely from relationships in the population data; $\mathcal{W}^{ind}(R_x^s)$ is derived solely from relationships in the individual data of user s ; and $\mathcal{W}^{global}(\mu_x^s)$ integrates all three sources via HBM. As shown in Table 3, \mathcal{W}^{global} consistently achieves the lowest average rank across all datasets, demonstrating that integrating prior, population, and individual information improves the retrieval of relevant neighboring nodes. \mathcal{W}^{prior} ranks second, highlighting the value of structured knowledge-graph relationships, while single-source strategies (\mathcal{W}^{ind} or \mathcal{W}^{pop}) perform worst. The overall ranking ($\mathcal{W}^{global} > \mathcal{W}^{prior} > \mathcal{W}^{pop} > \mathcal{W}^{ind}$) is consistent across datasets, and a Friedman test confirms the differences are statistically significant ($p = 4.52 \times 10^{-8}$).

Experiment-L evaluates the effectiveness of local modeling by comparing three conditions. The weight is determined by \mathcal{W}^{global} , the weight obtained from global modeling; \mathcal{W}^{local} , the weight obtained through local modeling; and \mathcal{W}^{final} , the final weight after completing the full modeling framework. As shown in Table 4, \mathcal{W}^{final} also achieves the best average rank across all datasets, indicating that the combined global-local modeling provides the most reliable weighting. Although the improvement is relatively modest (approximately 12% compared to the other two strategies), the effect is consistent across all datasets. A Friedman test confirms that these differences are statistically significant ($p = 0.00151$).

HUMAN EVALUATION

Table 5: Comparison of overall ranks between human evaluators and the LLM evaluator. We report the average human rank across all evaluators and the average LLM rank across all test queries.

Experiment			Main Exp			Exp-G				Exp-L		
Evaluator	WAG	Rag	Base	\mathcal{W}^{global}	\mathcal{W}^{ind}	\mathcal{W}^{pop}	\mathcal{W}^{prior}	\mathcal{W}^{final}	\mathcal{W}^{global}	\mathcal{W}^{local}		
Human	1.47	1.90	2.45	2.31	2.51	2.46	2.43	1.92	1.95	2.05		
LLM	1.41	1.98	2.61	2.16	2.47	2.40	2.32	1.88	1.98	2.03		

As shown in Table 5, the human evaluation results are largely consistent with the trends identified by the LLM evaluator. In the main experiment, WAG is rated much higher than the other two methods, and for experiment-G, the overall ranking preference matches that of the LLM-based evaluation. For Experiment-L, the general trend is still consistent, but \mathcal{W}^{final} only marginally outperforms \mathcal{W}^{global} , indicating some divergence between human and LLM judgments. To further investigate this, we examined the correlation between human and LLM evaluations. While the overall correlation is relatively low, this is unsurprising given the limited inter-rater reliability (IRR) among human annotators (Appendix; Table 21a). Notably, in Experiment-L (Appendix; Table 23), two of the human evaluators followed a trend similar to that of the LLM evaluators, whereas the third exhibited the opposite preference. These findings highlight both the subjectivity of the evaluation task and the challenges of achieving consistent human judgments in this setting.

We also provide some qualitative examples in Appendix J.

6 CONCLUSION

In this work, we introduce **Wearable As Graph (WAG)**, a graph-based context retrieval framework designed to enhance LLM-driven health analysis on wearable data. WAG integrates multimodal sensor signals into personalized knowledge graph, leveraging both global and local modeling strategies to enable LLMs to retrieve the most relevant context for diverse user queries. We also construct a query set that spans a wide range of potential user questions based on real-world wearable data, along with a general knowledge graph capturing broad domain knowledge about health and wearable metrics. Together, these resources provide a foundation for future studies in wearable-based health analysis and enable the research community to benchmark and extend context-aware LLM applications. We envision WAG as a foundational framework that can accelerate research leveraging the growing richness of wearable ecosystems.

Table 4: Exp-L - Evaluation of the effectiveness of local modeling across datasets.

Dataset	\mathcal{W}^{final}	\mathcal{W}^{global}	\mathcal{W}^{local}
Globem	1.90	1.98	2.01
IFH Affect	1.88	1.98	2.02
Lifesnap	1.85	1.94	2.10
Pmdata	1.89	2.01	1.99
Average	1.88	1.98	2.03

486
487 ETHICS STATEMENT

488 This work focuses on methods for improving context-aware health analysis using wearable data
 489 and large language models (LLMs). While our framework, Wearable As Graph (WAG), shows
 490 promise in providing personalized insights, it is not designed or validated for direct clinical use.
 491 The datasets used in this study are publicly available and de-identified to protect participant privacy.
 492 No personally identifiable information was accessed or processed. We acknowledge that automated
 493 health analysis poses potential risks, including misinterpretation, over-reliance and biases introduced
 494 by both the underlying wearable datasets and the LLMs employed.

495
496 REPRODUCIBILITY STATEMENT

497 We have made every effort to provide sufficient details to enable reproduction of our results. This
 498 includes pseudocode of our proposed approach (Algorithms 1 and 2), detailed descriptions of data
 499 processing and query generation (Section 3.1), prompts (Appendix K), hyperparameters, and imple-
 500 mentation details (Section B). All datasets used in this study are publicly available. In addition, the
 501 generated query set and code will be released to support reproducibility.

502
503 REFERENCES

504 Mahyar Abbasian, Elahe Khatibi, Iman Azimi, David Oniani, Zahra Shakeri Hossein Abad, Alexan-
 505 der Thieme, Ram Sriram, Zhongqi Yang, Yanshan Wang, Bryant Lin, et al. Foundation metrics
 506 for evaluating effectiveness of healthcare conversations powered by generative ai. *NPJ Digital
 507 Medicine*, 7(1):82, 2024.

508 Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg
 509 Corrado, Andrew Carroll, Cory Y McLean, and Nicholas A Furlotte. Multimodal llms for health
 510 grounded in individual-specific data. In *Workshop on Machine Learning for Multimodal Health-
 511 care Data*, pp. 86–102. Springer, 2023.

512 Suman Bhoi, Mong Li Lee, Wynne Hsu, Hao Sen Andrew Fang, and Ngiap Chuan Tan. Personaliz-
 513 ing medication recommendation with a graph-based approach. *ACM Transactions on Information
 514 Systems (TOIS)*, 40(3):1–23, 2021.

515 Arnab Chakraborty, Arkadeep Banerjee, Sutanoy Dasgupta, Vikas Raturi, Aditya Soni, Anjali
 516 Gupta, Shrutendra Harsola, and Vignesh Subrahmaniam. Navigator: A gen-ai system for dis-
 517 covery of factual and predictive insights on domain-specific tabular datasets. In *Proceedings of
 518 the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD
 519 CODS and 29th COMAD)*, pp. 528–532, 2024.

520 Nimeesha Chan, Felix Parker, William Bennett, Tianyi Wu, Mung Yao Jia, James Fackler, and Kimia
 521 Ghobadi. Medtsllm: Leveraging llms for multimodal medical time series analysis, 2024. URL
 522 <https://arxiv.org/abs/2408.07773>.

523 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
 524 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
 525 with vision-language benchmark. In *Forty-first International Conference on Machine Learning*,
 526 2024.

527 IY Chen et al. Robustly extracting medical knowledge from ehrs: A case study of learning a health
 528 knowledge graph. in, *biocomputing 2020*, 2019.

529 Eun Kyoung Choe, Bongshin Lee, et al. Characterizing visualization insights from quantified self-
 530 ers’ personal data presentations. *IEEE computer graphics and applications*, 35(4):28–37, 2015.

531 Edward Choi, Cao Xiao, Walter Stewart, and Jimeng Sun. Mime: Multilevel medical embedding
 532 of electronic health records for predictive healthcare. *Advances in neural information processing
 533 systems*, 31, 2018.

534 Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C Ho, and Carl Yang.
 535 Llms-based few-shot disease predictions using ehr: A novel approach combining predictive agent
 536 reasoning and critical agent instruction. *arXiv preprint arXiv:2403.15464*, 2024.

540 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Tru-
 541 itt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global:
 542 A graph rag approach to query-focused summarization, 2025. URL <https://arxiv.org/abs/2404.16130>.

543

544 Zachary Englhardt, Chengqian Ma, Margaret E. Morris, Chun-Cheng Chang, Xuhai "Orson" Xu,
 545 Lianhui Qin, Daniel McDuff, Xin Liu, Shwetak Patel, and Vikram Iyer. From classification to
 546 clinical insights: Towards analyzing and reasoning about mobile and behavioral health data with
 547 large language models. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.*, 8(2), May 2024.
 548 doi: 10.1145/3659604. URL <https://doi.org/10.1145/3659604>.

549

550 Hao Fei, Yafeng Ren, Yue Zhang, Donghong Ji, and Xiaohui Liang. Enriching contextualized
 551 language model from knowledge graph for biomedical information extraction. *Briefings in bioin-
 552 formatics*, 22(3):bbaa110, 2021.

553

554 Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
 555 zero-shot time series forecasters. In *Thirty-seventh Conference on Neural Information Processing
 556 Systems*, 2023. URL <https://openreview.net/forum?id=md68e8iZK1>.

557

558 Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
 559 tomated data science by empowering large language models with case-based reasoning. *arXiv
 560 preprint arXiv:2402.17453*, 2024.

561

562 Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
 563 Sontag. Tabllm: Few-shot classification of tabular data with large language models. In *Inter-
 564 national Conference on Artificial Intelligence and Statistics*, pp. 5549–5581. PMLR, 2023.

565

566 Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Biniao Wu, Ceyao Zhang, Chenxing Wei,
 567 Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. *arXiv
 568 preprint arXiv:2402.18679*, 2024.

569

570 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 571 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 572 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

573

574 Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen. StructGPT: A gen-
 575 eral framework for large language model to reason over structured data. In Houda Bouamor,
 576 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Meth-
 577 ods in Natural Language Processing*, pp. 9237–9251, Singapore, December 2023. Associa-
 578 tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.574. URL <https://aclanthology.org/2023.emnlp-main.574>.

579

580 Pengcheng Jiang, Cao Xiao, Minhao Jiang, Parminder Bhatia, Taha Kass-Hout, Jimeng Sun, and
 581 Jiawei Han. Reasoning-enhanced healthcare predictions with knowledge graph community re-
 582 trieval. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 583 <https://openreview.net/forum?id=8fLgt7PQza>.

584

585 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
 586 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
 587 by reprogramming large language models. In *The Twelfth International Conference on Learning
 588 Representations*, 2024. URL <https://openreview.net/forum?id=Unb5CVpta>.

589

590 Yubin Kim, Xuhai Xu, Daniel McDuff, Cynthia Breazeal, and Hae Won Park. Health-llm: Large
 591 language models for health prediction via wearable sensor data. In Tom Pollard, Edward Choi,
 592 Pankhuri Singhal, Michael Hughes, Elena Sizikova, Bobak Mortazavi, Irene Chen, Fei Wang,
 593 Tasmie Sarker, Matthew McDermott, and Marzyeh Ghassemi (eds.), *Proceedings of the fifth Con-
 594 ference on Health, Inference, and Learning*, volume 248 of *Proceedings of Machine Learning Re-
 595 search*, pp. 522–539. PMLR, 27–28 Jun 2024. URL <https://proceedings.mlr.press/v248/kim24b.html>.

594 Sunjun Kweon, Junu Kim, Jiyoun Kim, Sujeong Im, Eunbyeol Cho, Seongsu Bae, Jungwoo Oh,
 595 Gyubok Lee, Jong Hak Moon, Seng Chan You, Seungjin Baek, Chang Hoon Han, Yoon Bin
 596 Jung, Yohan Jo, and Edward Choi. Publicly shareable clinical large language model built on
 597 synthetic clinical notes. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth (eds.), *Findings of*
 598 *the Association for Computational Linguistics: ACL 2024*, pp. 5148–5168, Bangkok, Thailand,
 599 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
 600 305. URL <https://aclanthology.org/2024.findings-acl.305>.

601 Sina Labbaf, Mahyar Abbasian, Brenda Nguyen, Matthew Lucero, Maryam Sabah Ahmed, Asal
 602 Yunusova, Alexander Rivera, Ramesh Jain, Jessica L Borelli, Nikil Dutt, et al. Physiological
 603 and emotional assessment of college students using wearable and mobile devices during the 2020
 604 covid-19 lockdown: an intensive, longitudinal dataset. *Data in Brief*, 54:110228, 2024.

605 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 606 Goyal, Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
 607 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
 608 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 609 *ral Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 610 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

611 Yen-Ting Lin and Yun-Nung Chen. Llm-eval: Unified multi-dimensional automatic evaluation for
 612 open-domain conversations with large language models. *arXiv preprint arXiv:2305.13711*, 2023.

613 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 614 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 615 *Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 616 <https://aclanthology.org/2024.tacl-1.9/>.

617 Sicen Liu, Xiaolong Wang, Yongshuai Hou, Ge Li, Hui Wang, Hui Xu, Yang Xiang, and Buzhou
 618 Tang. Multimodal data matters: language model pre-training over structured and unstructured
 619 electronic health records. *IEEE Journal of Biomedical and Health Informatics*, 27(1):504–514,
 620 2022.

621 Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-
 622 Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot
 623 health learners. *arXiv preprint arXiv:2305.15525*, 2023.

624 Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. InsightPilot: An LLM-
 625 empowered automated data exploration system. In Yansong Feng and Els Lefever (eds.), *Pro-*
 626 *ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Sys-*
 627 *tem Demonstrations*, pp. 346–352, Singapore, December 2023. Association for Computational
 628 Linguistics. doi: 10.18653/v1/2023.emnlp-demo.31. URL <https://aclanthology.org/2023.emnlp-demo.31>.

629 Mike A Merrill, Akshay Paruchuri, Naghmeh Rezaei, Geza Kovacs, Javier Perez, Yun Liu, Erik
 630 Schenck, Nova Hammerquist, Jake Sunshine, Shyam Tailor, et al. Transforming wearable data
 631 into health insights using large language model agents. *arXiv preprint arXiv:2406.06464*, 2024.

632 Shentong Mo, Russ Salakhutdinov, Louis-Philippe Morency, and Paul Pu Liang. Iot-lm: Large
 633 multisensory language models for the internet of things. *arXiv preprint arXiv:2407.09801*, 2024.

634 Maya Rotmansch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David Sontag. Learning a
 635 health knowledge graph from electronic medical records. *Scientific reports*, 7(1):5994, 2017.

636 Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
 637 Tim Strother, Chunjong Park, Elahe Vedadi, Juanma Zambrano Chaves, Szu-Yeu Hu, Mike
 638 Schaekermann, Aishwarya Kamath, Yong Cheng, David G. T. Barrett, Cathy Cheung, Basil
 639 Mustafa, Anil Palepu, Daniel McDuff, Le Hou, Tomer Golany, Luyang Liu, Jean baptiste
 640 Alayrac, Neil Housby, Nenad Tomasev, Jan Freyberg, Charles Lau, Jonas Kemp, Jeremy Lai,
 641 Shekoofeh Azizi, Kimberly Kanada, SiWai Man, Kavita Kulkarni, Ruoxi Sun, Siamak Shakeri,
 642 Luheng He, Ben Caine, Albert Webson, Natasha Latysheva, Melvin Johnson, Philip Mans-
 643 field, Jian Lu, Ehud Rivlin, Jesper Anderson, Bradley Green, Renee Wong, Jonathan Krause,
 644

648 Jonathon Shlens, Ewa Dominowska, S. M. Ali Eslami, Katherine Chou, Claire Cui, Oriol Vinyals,
 649 Koray Kavukcuoglu, James Manyika, Jeff Dean, Demis Hassabis, Yossi Matias, Dale Web-
 650 ster, Joelle Barral, Greg Corrado, Christopher Semturs, S. Sara Mahdavi, Juraj Gottweis, Alan
 651 Karthikesalingam, and Vivek Natarajan. Capabilities of gemini models in medicine, 2024. URL
 652 <https://arxiv.org/abs/2404.18416>.

653

654 Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: An automated eval-
 655 uation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gomez,
 656 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of*
 657 *the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long*
 658 *Papers)*, pp. 338–354, Mexico City, Mexico, June 2024. Association for Computational Linguis-
 659 *tics*. doi: 10.18653/v1/2024.naacl-long.20. URL <https://aclanthology.org/2024.naacl-long.20/>.

660

661 Asif Salekin, Jeremy W Eberle, Jeffrey J Glenn, Bethany A Teachman, and John A Stankovic. A
 662 weakly supervised learning framework for detecting social anxiety and depression. *Proceedings*
 663 *of the ACM on interactive, mobile, wearable and ubiquitous technologies*, 2(2):1–26, 2018.

664

665 Juliane R Sempionatto, Victor Ruiz-Valdepenas Montiel, Eva Vargas, Hazhir Teymourian, and
 666 Joseph Wang. Wearable and mobile sensors for personalized nutrition. *ACS sensors*, 6(5):1745–
 667 1760, 2021.

668

669 Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented
 670 memory networks for recommending medication combination. In *proceedings of the AAAI Con-*
 671 *ference on Artificial Intelligence*, volume 33, pp. 1126–1133, 2019.

672

673 Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce C. Ho,
 674 Carl Yang, and May Dongmei Wang. EHRAgent: Code empowers large language models for
 675 few-shot complex tabular reasoning on electronic health records. In Yaser Al-Onaizan, Mohit
 676 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Meth-*
 677 *ods in Natural Language Processing*, pp. 22315–22339, Miami, Florida, USA, November 2024.
 678 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1245. URL
<https://aclanthology.org/2024.emnlp-main.1245>.

679

680 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 681 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
 682 clinical knowledge. *Nature*, 620(7972):172–180, 2023a.

683

684 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
 685 Pfohl, Heather Cole-Lewis, Darlene Neal, et al. Towards expert-level medical question answering
 686 with large language models. *arXiv preprint arXiv:2305.09617*, 2023b.

687

688 Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan. Evaluation metrics in the era of GPT-4: Re-
 689 liably evaluating large language models on sequence to sequence tasks. In Houda Bouamor,
 690 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Meth-*
 691 *ods in Natural Language Processing*, pp. 8776–8788, Singapore, December 2023. Associa-
 692 tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.543. URL <https://aclanthology.org/2023.emnlp-main.543/>.

693

694 Konstantin R Strömel, Stanislas Henry, Tim Johansson, Jasmin Niess, and Paweł W Woźniak. Nar-
 695 rating fitness: Leveraging large language models for reflective fitness tracker data interpretation.
 696 In *Proceedings of the CHI Conference on Human Factors in Computing Systems*, pp. 1–16, 2024.

697

698 Haitian Sun, Bhuvan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
 699 William Cohen. Open domain question answering using early fusion of knowledge bases and
 700 text. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings*
 701 *of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 4231–4242,
 Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
 10.18653/v1/D18-1455. URL <https://aclanthology.org/D18-1455>.

702 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Co-
 703 han, and Mark Gerstein. MedAgents: Large language models as collaborators for zero-shot med-
 704 ical reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 705 sociation for Computational Linguistics: ACL 2024*, pp. 599–621, Bangkok, Thailand, August
 706 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.33. URL
 707 <https://aclanthology.org/2024.findings-acl.33>.

708 Ali Tazary, Sina Labbaf, Stephanie M Reich, Nikil Dutt, Amir M Rahmani, and Marco Levorato.
 709 Personalized stress monitoring using wearable sensors in everyday settings. In *2021 43rd Annual
 710 International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp.
 711 7332–7335. IEEE, 2021.

712 Vajira Thambawita, Steven Alexander Hicks, Hanna Borgli, Håkon Kvale Stensland, Debesh Jha,
 713 Martin Kristoffer Svensen, Svein-Arne Pettersen, Dag Johansen, Håvard Dagenborg Johansen,
 714 Susann Dahl Pettersen, et al. Pmdata: a sports logging dataset. In *Proceedings of the 11th ACM
 715 Multimedia Systems Conference*, pp. 231–236, 2020.

716 Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
 717 Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
 718 applications. *arXiv preprint arXiv:2201.08239*, 2022.

719 Augustin Toma, Patrick R Lawler, Jimmy Ba, Rahul G Krishnan, Barry B Rubin, and Bo Wang.
 720 Clinical camel: An open expert-level medical language model with dialogue-based knowledge
 721 encoding. *arXiv preprint arXiv:2305.12031*, 2023.

722 Tao Tu, Anil Palepu, Mike Schaeckermann, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy Wang,
 723 Brenna Li, Mohamed Amin, Nenad Tomasev, et al. Towards conversational diagnostic ai. *arXiv
 724 preprint arXiv:2401.05654*, 2024.

725 Gideon Vos, Kelly Trinh, Zoltan Sarnyai, and Mostafa Rahimi Azghadi. Ensemble machine learning
 726 model trained on a new synthesized dataset generalizes well for stress prediction using wearable
 727 devices. *Journal of Biomedical Informatics*, 148:104556, December 2023. ISSN 1532-0464.
 728 doi: 10.1016/j.jbi.2023.104556. URL [http://dx.doi.org/10.1016/j.jbi.2023.
 729 104556](http://dx.doi.org/10.1016/j.jbi.2023.104556).

730 Xuhai Xu, Han Zhang, Yasaman Sefidgar, Yiyi Ren, Xin Liu, Woosuk Seo, Jennifer Brown, Kevin
 731 Kuehn, Mike Merrill, Paula Nurius, et al. Globem dataset: multi-year datasets for longitudinal
 732 human behavior modeling generalization. *Advances in neural information processing systems*,
 733 35:24655–24692, 2022.

734 Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang Shin, Kaleb E Smith, Christopher Parisien,
 735 Colin Compas, Cheryl Martin, Anthony B Costa, Mona G Flores, et al. A large language model
 736 for electronic health records. *NPJ digital medicine*, 5(1):194, 2022.

737 Sofia Yfantidou, Christina Karagianni, Stefanos Efstathiou, Athena Vakali, Joao Palotti, Dim-
 738 itrios Panteleimon Giakatos, Thomas Marchioro, Andrei Kazlouski, Elena Ferrari, and Šarūnas
 739 Girdzijauskas. Lifesnaps, a 4-month multi-modal dataset capturing unobtrusive snapshots of our
 740 lives in the wild. *Scientific Data*, 9(1):663, 2022.

741 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 742 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 743 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

744 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 745 enhanced decomposed transformer for long-term series forecasting. In *International conference
 746 on machine learning*, pp. 27268–27286. PMLR, 2022.

747

748

749

750

751

752

753

754

755

756 **Contents**

757		
758	A Dataset and Queryset Stats	15
759	A.1 Dataset	15
760	A.2 Queryset	16
761		
762	B Implementation Details	17
763	B.1 Graph Construction	17
764	B.2 Graph Retrieval	17
765	C Illustrative Example of a Single-Metric Query Scenario	19
766		
767	D Discussion	20
768		
769	E LLM Usage	21
770		
771	F Additional Results	22
772		
773	G Detailed Method	25
774	G.1 Global Modeling-HBM derivation	25
775	G.2 Local Modeling	26
776		
777	H Notation	27
778		
779	I Eval-UI	31
780		
781	J Qualitative examples	32
782		
783	K Prompts	38
784		
785		

784 **A DATASET AND QUERYSET STATS**

785 A.1 DATASET

786 **IFH Affect** (Labbaf et al., 2024): A longitudinal dataset collected from 21 university students before, during, and after the COVID-19 lockdown in Southern California. Data was gathered over 787 an average of 7.8 months via a Samsung Galaxy Watch, Oura Ring, the Personicle lifelogging app, and ecological momentary assessments (EMA). It includes raw sensor data (PPG, IMU), processed 788 physiological measures (heart rate, sleep, activity), and extensive self-reported surveys on mood, 789 mental health (BDI-II, GAD-7), and social factors, providing insights into lifestyle and emotional 790 adjustment during major world events.

791 **PMDATA** (Thambawita et al., 2020): This dataset comprises 16 participants (12 men, 3 women, avg. 792 age 34) monitored over 5 months. It combines objective biometrics from a Fitbit Versa 2 smart- 793 watch with subjective self-reports collected via Google Forms (demographics, diet) and a dedicated 794 sports logging app (PMSys) for metrics such as fatigue, mood, and stress, facilitating a link between 795 physical activity and personal well-being.

796 **LifeSnaps** (Yfantidou et al., 2022): A comprehensive, multi-modal dataset from 71 participants 797 (42 male, 29 female) collected over more than 4 months. It integrates automatically synced data 798 from a Fitbit Sense (sleep, heart rate, stress), ecological momentary assessments (EMA) on context 799 and mood via the SEMA3 platform, and validated surveys on demographics and health, supporting 800 research into daily life and behavior.

801 **Globem** (Xu et al., 2022): A large-scale, multi-year dataset encompassing 705 user-years of data 802 from 497 diverse participants. It was collected using the AWARE framework on mobile phones, 803 Fitbit wearables (Flex2 and Inspire 2), and ecological momentary assessments (EMA). The dataset's 804 scale and diversity support the study of long-term behavioral trends across a varied population.

805
806
807
808
809

810 A.2 QUERYSET
811812
813 Table 6: Statistics of query sets
814

815 Dataset	816 #Queries (Exp-G)	817 #Queries (Exp-L)	818 Total	819 #Queries (Exp-Main)
Globem	250	250		1961
IFH Affect	250	250		2921
Lifesnap	250	250		2972
Pmdata	250	250		2487
Total	1000	1000		10341

822
823 Table 7: Query counts per query type
824

825	826 General Knowledge	827 Data Retrieval	828 Trend Analysis	829 Comparative Insight	830 Anomaly Detection	831 Actionable Advice	832 Exploratory Analysis	833 Metric Relationships	834 Contextual Queries
Main experiment									
Globem	104	531	219	196	199	125	387	147	53
IFH Affect	164	749	348	330	305	256	569	141	59
Lifesnap	188	800	335	315	307	254	573	143	57
Pmdata	126	654	287	265	263	188	504	128	70
Total	582	2734	1189	1106	1074	823	2033	559	239
Experiment-G									
Globem	0	1	38	49	50	24	88		
IFH Affect	2	10	18	45	49	24	102		
Lifesnap	2	2	21	39	51	35	100		
Pmdata	0	0	22	31	51	26	120		
Total	4	13	99	164	201	109	410		
Experiment-L									
Globem	1	9	14	51	63	18	94		
IFH Affect	9	15	8	51	56	22	89		
Lifesnap	13	13	16	39	50	22	97		
Pmdata	4	11	12	47	62	20	94		
Total	27	48	50	188	231	82	374		

843
844 Table 8: Query counts per query time period

845 Query Period	846 1	847 7	848 14	849 30	850 all
Main Experiment					
Globem	824	223	250	416	248
IFH Affect	1028	373	468	763	289
Lifesnap	1117	433	366	748	308
Pmdata	876	371	362	628	248
Total	3845	1400	1446	2555	1093
Experiment-G					
Globem	100	37	32	81	
IFH Affect	79	34	43	94	
Lifesnap	88	31	37	94	
Pmdata	95	36	41	78	
Total	362	138	153	347	
Experiment-L					
Globem	114	32	36	68	
IFH Affect	87	38	53	72	
Lifesnap	97	50	36	67	
Pmdata	87	47	37	79	
Total	385	167	162	286	

845 Table 9: Query counts per abnormal level

846 Abnormal Level	847 Low	848 Medium	849 High	850 Other
Main Experiment				
Globem	431	431	442	657
IFH Affect	722	722	734	743
Lifesnap	712	712	729	819
Pmdata	601	601	603	680
Total	2466	2466	2508	2899
Experiment-G				
Globem	26	153	153	
IFH Affect	25	124	184	
Lifesnap	20	125	188	
Pmdata	9	120	204	
Total	81	522	729	
Experiment-L				
Globem	14	108	128	
IFH Affect	31	112	107	
Lifesnap	30	94	126	
Pmdata	20	107	123	
Total	95	421	484	

B IMPLEMENTATION DETAILS

B.1 GRAPH CONSTRUCTION

We provide contextual information to the LLM at every sub-stage of the graph construction process. Starting with a predefined list of metrics, we first collect relevant knowledge from trusted medical databases (e.g., UMLS) and web sources (via the Google Serper API). To ensure reliability, searches are limited to a set of verified domains.

Metric information is fed in batches to the LLM to generate the corresponding nodes. After node generation, we similarly collect knowledge for every pair of nodes to identify appropriate sources, and batched edge information is then used by the LLM to generate edges and assign weights.

During PKG construction, each candidate metric is compared against existing nodes. If it already exists, the node is updated; otherwise, a new node is created. Edges are then established between the new node and all existing nodes using the same batch-wise LLM procedure.

B.2 GRAPH RETRIEVAL

We conducted all experiments using DeepSeek-V3. The default relevant time window k^q is set to 7 days, if it is not specified in the query, and the maximum number of related nodes retrieved per query is set to $\kappa = 5$. The hyperparameter β is set to 0.5 to balance global and local contributions in edge weighting.

The similarity function $\text{sim}(\cdot, \cdot)$ follows a standard embedding-based retrieval mechanism used in RAG frameworks and is computed via cosine similarity in the embedding space. Specifically, we compute embeddings of entity names and compare them with embeddings of node names in the graph. Through experimentation, a threshold of $\delta = 0.85$ was found to reasonably balance node hit rate and retrieval consistency. Population-level and subject-specific relationships, R_x^{pop} and R_x^s , can be represented in different ways, such as correlation or mutual information. In our current setup, we adopt Spearman correlation because it requires less data to yield valid estimates. In contrast, mutual information generally demands much larger sample size but can capture more complex dependencies, particularly within a single user's personal data. As illustrated in Figure 3, while the relationships captured by mutual information and Spearman correlation are often consistent, estimating mutual information can be challenging when data are limited. We also favor Spearman correlation over Pearson correlation, as it better handles non-linear monotonic relationships commonly observed in our setting.

In our current setup, we define

$$R_x^{\text{pop}} = [r_{x,y_1}^{\text{pop}}, r_{x,y_2}^{\text{pop}}, \dots, r_{x,y_{|Y|}}^{\text{pop}}]^{\top}$$

as the Spearman correlations between historical data of x and each $y \in Y$ across the dataset, and

$$R_x^s = [r_{x,y_1}^s, r_{x,y_2}^s, \dots, r_{x,y_{|\mathcal{Y}|}}^s]^\top$$

as the correlations computed from user s 's data. To stabilize the Gaussian modeling, we apply the Fisher z -transform:

$$z = \tanh^{-1}(r) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right), \quad r = \tanh(z).$$

The covariance matrices V_x^{pop} and V_x^s encode the sampling variances on the z -scale (approximately $1/(n - 3)$ for Spearman correlations) and are modulated by hyperparameters α^{pop} and α^{ind} , respectively. The prior covariance is set as $\Sigma_x^{\text{prior}} = V_x^{\text{pop}}$ and is not modulated. All covariance matrices are diagonal, and we enforce a minimum of 10 samples to compute a correlation. Finally, a sigmoid function is applied to both $\mathcal{W}^{\text{global}}$ and $\mathcal{W}^{\text{local}}$ to restrict values to $[0, 1]$, with steepness hyperparameters $\gamma^{\text{global}} = 0.9$ and $\gamma^{\text{local}} = 0.7$.

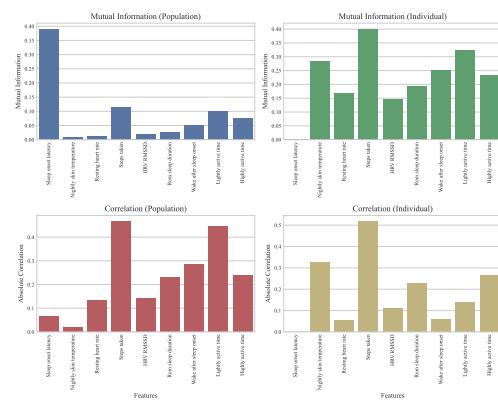
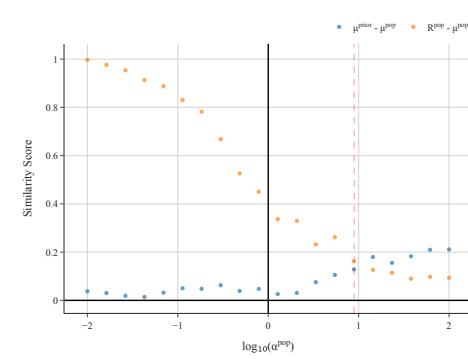


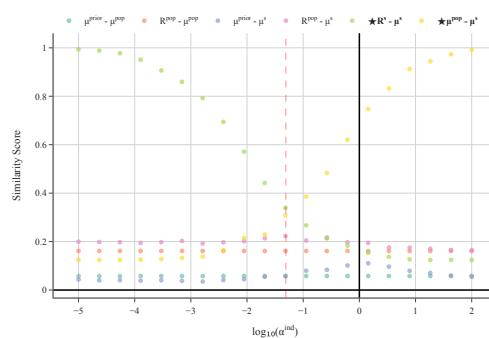
Figure 3: Comparison of weights encoded by spearman correlation and mutual information.

918 For Exp-G and Exp-L, which explore different versions of WAG, we focus only on nodes with
 919 numerical data and ignore non-numerical nodes. This ensures that all relationships include both
 920 population-level and subject-specific information, allowing evaluation of the full retrieval algorithm.
 921

922 **Fallback Strategy for Missing or Invalid Observations** In practice, empirical relationships R
 923 may be missing or invalid (e.g., non-numerical nodes or insufficient data). To maintain robust edge
 924 weight estimation, we employ a sequential fallback strategy:


$$925 \quad 926 \quad 927 \quad 928 \quad 929 \quad w_{x,y}^{\text{final}} \propto \begin{cases} \mu_{x,y}^s, & \text{if } r_{x,y}^s \text{ is valid,} \\ \mu_{x,y}^{\text{pop}}, & \text{if } r_{x,y}^s \text{ is missing or invalid,} \\ w_{x,y}^{\text{prior}}, & \text{if both } r_{x,y}^s \text{ and } r_{x,y}^{\text{pop}} \text{ are unavailable.} \end{cases}$$

930 This ensures that w^{global} defaults sequentially from subject-specific to population-informed to prior
 931 weights, maintaining robustness and interpretability even with incomplete data.
 932


933 **Determination of Hyperparameters α^{pop} and α^{ind}** The optimal population regularization pa-
 934 rameter α^{pop} was determined using a data-driven approach based on Kendall Tau similarity curves.
 935 Specifically, we compute two curves that quantify different aspects of ranking alignment:

- 937 • $\tau(\mu^{\text{prior}}, \mu^{\text{pop}})$ measures the preservation of the original prior ranking under increasing reg-
 938 ularization strength.
- 939 • $\tau(R^{\text{pop}}, \mu^{\text{pop}})$ quantifies the alignment between the regularized population posterior and
 940 observed population statistics.

941 The intersection of these curves identifies the value of α^{pop} where the regularized posterior achieves
 942 an optimal balance between faithfulness to the prior expertise and consistency with population-level
 943 preferences, avoiding both overfitting and excessive dilution of population information.
 944

945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 Figure 4: Kendall Tau similarity scores as a
 function of population regularization strength
 (α^{pop}).

945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 Figure 5: Kendall Tau similarity measures as func-
 tions of individual regularization strength (α^{ind}).

961 Similarly, the individual regularization parameter α^{ind} is determined by analyzing the intersection of
 962 Kendall Tau similarity curves capturing individual-level alignment:
 963

- 964 • $\tau(\mu^{\text{pop}}, \mu^s)$ measures the preservation of the population posterior ranking under increasing
 965 individual regularization strength.
- 966 • $\tau(R^s, \mu^s)$ quantifies the alignment between the regularized individual posterior and empirical
 967 individual statistics.

968 Additional curves, such as $\tau(\mu^{\text{prior}}, \mu^{\text{ind}})$, $\tau(R^{\text{pop}}, \mu^{\text{ind}})$, and $\tau(\mu^{\text{pop}}, \mu^s)$, provide complementary
 969 insights into prior-individual and two-stage posterior alignment. The intersection points in these
 970 analyses identify the optimal α^{ind} , balancing individual-specific data with population-informed pri-
 971 ors.

C ILLUSTRATIVE EXAMPLE OF A SINGLE-METRIC QUERY SCENARIO

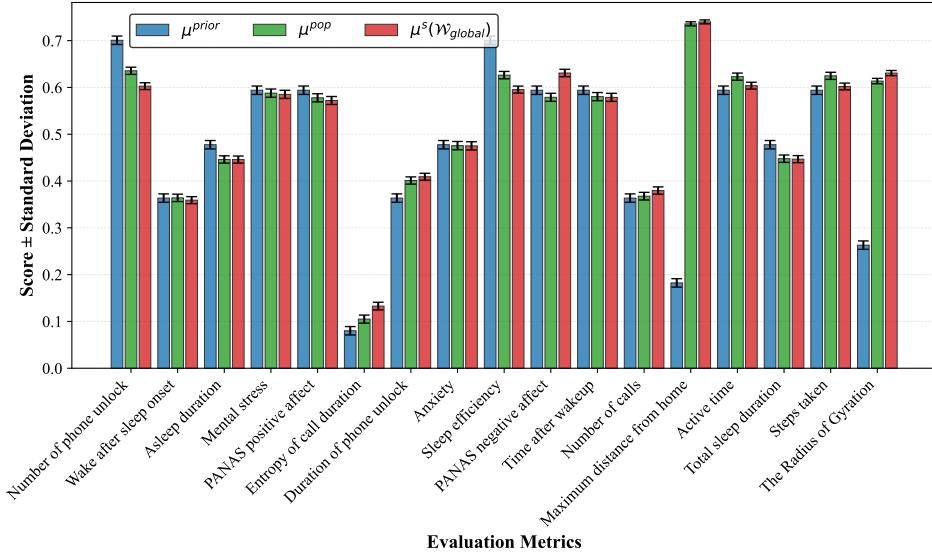


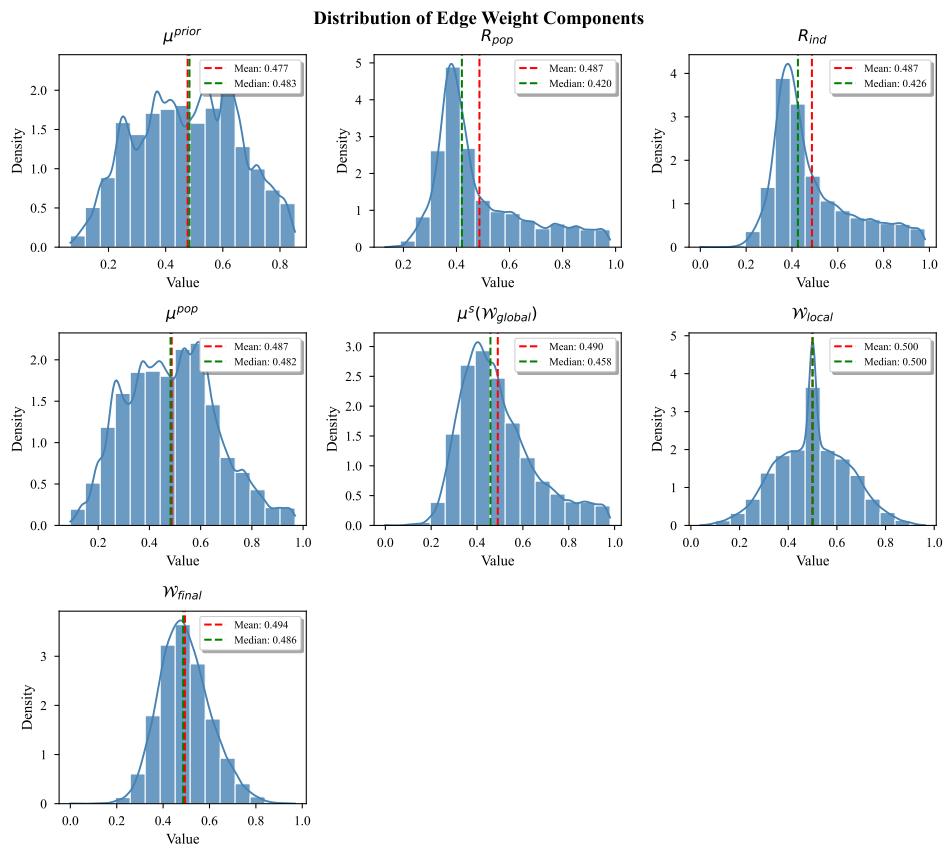
Figure 6: Visualization of hierarchical Bayesian modeling (HBM) updates for all nodes related to the metric “*Circadian rhythm patterns*”. μ^{prior} denotes the prior, μ^{pop} denotes the posterior after population data update, and $\mu^s(\mathcal{W}^{\text{global}})$ denotes the final posterior after incorporating individual-specific data.

Rank \ Weighting by	μ^{prior}	μ^{pop}	$\mu^s(\mathcal{W}^{\text{global}})$
1	Number of phone unlock (0.70)	Maximum distance from home (0.74)	Maximum distance from home (0.74)
2	Sleep efficiency (0.70)	Number of phone unlock (0.64)	PANAS negative affect (0.63)
3	Mental stress (0.59)	Sleep efficiency (0.63)	The Radius of Gyration (0.63)
4	PANAS positive affect (0.59)	Steps taken (0.62)	Active time (0.60)
5	Steps taken (0.59)	Active time (0.62)	Number of phone unlock (0.60)
6	PANAS negative affect (0.59)	The Radius of Gyration (0.61)	Steps taken (0.60)
7	Time after wakeup (0.59)	Mental stress (0.59)	Sleep efficiency (0.60)
8	Active time (0.59)	Time after wakeup (0.58)	Mental stress (0.59)
9	Asleep duration (0.48)	PANAS negative affect (0.58)	Time after wakeup (0.58)
10	Anxiety (0.48)	PANAS positive affect (0.58)	PANAS positive affect (0.57)
11	Total sleep duration (0.48)	Anxiety (0.48)	Anxiety (0.48)
12	Duration of phone unlock (0.36)	Total sleep duration (0.45)	Total sleep duration (0.45)
13	Number of calls (0.36)	Asleep duration (0.45)	Asleep duration (0.45)
14	Wake after sleep onset (0.36)	Duration of phone unlock (0.40)	Duration of phone unlock (0.41)
15	The Radius of Gyration (0.26)	Number of calls (0.37)	Number of calls (0.38)
16	Maximum distance from home (0.18)	Wake after sleep onset (0.36)	Wake after sleep onset (0.36)
17	Entropy of call duration (0.08)	Entropy of call duration (0.11)	Entropy of call duration (0.13)

Figure 7: Ranking of nodes related to “*Circadian rhythm patterns*” based on different HBM weight stages. Nodes selected for retrieval are highlighted in blue.

We illustrate a single-metric query scenario using a simulated subject from the Globem dataset. Suppose the subject issues the query:

“*What factors might be causing the significant deviations in my circadian rhythm patterns over the past 30 days?*”


The query is processed via *QueryParse*, yielding:

- Time granularity $k^q = 30$ days,
- Detected metric $\mathcal{M}^q = \{“\text{Circadian rhythm patterns}”\}$,
- Openness score $\eta^q = 0.8$,
- Internal reference timestamp t^q .

Given a predefined maximum number of related nodes $\kappa = 5$, the number of nodes retrieved is computed as: #retrieved nodes = $\eta^q \cdot \kappa = 0.8 \times 5 = 4$.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 The corresponding edge weights are obtained from the subject’s personal knowledge graph (PKG),
 combining both population-level statistics from Globem and personal data. These weights are then
 passed through our retrieval algorithm. Figure 6 visualizes the changes of edge weights as they are
 updated through the hierarchical Bayesian modeling process, showing how information flows from
 the prior distribution to the population-informed posterior and finally to the final posterior. Table 7
 presents the ranking results derived from these weights, demonstrating that the system retrieves
 different related nodes depending on the weighting mechanism.

1033
 1034
 Additionally, Figure 8 shows the distribution of various edge weights across our entire query set.

1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 Figure 8: Distributions of different edge weight components in the personal knowledge graph. The
 eight subplots display: (a) prior weights (μ^{prior}), representing the initial LLM-assigned weight; (b)
 empirical relationships from the population (R^{pop}), representing correlations observed across all
 subjects; (c) empirical relationships from the individual (R^s), representing correlations computed
 from the subject’s personal data; (d) posterior after population data update (μ^{pop}); (e) posterior after
 incorporating individual-specific data ($\mu^s(W^{\text{global}})$); (f) local weights (W^{local}); (g) final weights
 (W^{final}), obtained via Eq. 1. Mean (red) and median (green) values are marked for reference.

D DISCUSSION

1073
 1074
 1075
 1076
 1077
 1078
 1079
 The implications of WAG extend beyond enhancing data-driven reasoning. By design, WAG en-
 ables users and prescribing healthcare professionals to contribute personalized information to the
 knowledge graph. For instance, a clinician may define individualized thresholds for blood pressure,
 while a user might incorporate contextual interpretations of stress levels based on lifestyle factors
 or recent events. This personalization enhances the system’s adaptability to individual variations in
 health interpretation and reasoning. Moreover, by interacting with an LLM orchestrator, the per-
 sonal knowledge graph can be continuously updated with minimal effort, reducing the burden of
 manual curation.

1080 It is important to note that we did not manually verify the factual correctness of generated responses,
1081 as such evaluation would be prohibitively labor-intensive. The novelty of this work does not lie in
1082 improving factual accuracy, which could be enhanced by employing stronger models or comple-
1083 mentary techniques, but rather in demonstrating how the integration of a wearable knowledge graph
1084 allows LLMs to deliver more insightful and contextually grounded findings.

1085 Our human evaluation further underscores the challenges of this task. We observed relatively low
1086 inter-rater reliability (IRR) and modest correlation between LLM and human rankings, indicating
1087 that response evaluation is inherently subjective. These findings raise the possibility of employing
1088 LLMs themselves as cost-effective evaluators in settings where recruiting large numbers of medical
1089 experts is impractical. However, potential biases embedded in LLMs could be a critical limitation,
1090 requiring further investigation into when and how they can serve as fair substitutes for human eval-
1091 uators. Especially, we found that in difficult cases, where responses are hard to differentiate across
1092 the defined dimensions, LLMs often assign identical ranks across all dimensions of a response. This
1093 observation led us to focus solely on overall quality in Experiments G and L. Future work should
1094 explore strategies to mitigate such biases while leveraging the scalability advantages of LLM-based
1095 evaluation.

1096

1097 E LLM USAGE

1098

1099 LLM serves as a core component of our approach, such as creating the query set and knowledge
1100 graph, etc. Additionally, it is applied to polish the phrasing and wording during the paper writeup.

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

F ADDITIONAL RESULTS

Table 10: Main experiment - Comparison of our method with baselines across all query types.

Query Type	Method	Rank							Overall
		Insight	Relevance	Grounded	Personal	Clarity	Safety	Overall	
General Knowledge	Base	2.37	2.37	2.29	2.31	2.23	1.00	2.37	0.18
	Rag	2.09	2.09	2.10	2.12	1.98	1.00	2.09	0.21
	WAG	1.54	1.54	1.58	1.56	1.73	1.00	1.54	0.60
Data Retrieval	Base	2.68	2.66	2.43	2.63	2.35	1.00	2.68	0.08
	Rag	1.70	1.71	1.76	1.72	1.72	1.00	1.70	0.41
	WAG	1.62	1.63	1.67	1.64	1.77	1.00	1.62	0.51
Trend Analysis	Base	2.63	2.62	2.52	2.62	2.32	1.00	2.63	0.03
	Rag	2.02	2.03	2.07	2.03	1.90	1.00	2.02	0.22
	WAG	1.35	1.35	1.40	1.35	1.73	1.00	1.35	0.75
Comparative Insight	Base	2.67	2.66	2.44	2.65	2.24	1.00	2.67	0.04
	Rag	2.05	2.06	2.14	2.07	1.93	1.00	2.05	0.15
	WAG	1.28	1.28	1.40	1.28	1.76	1.00	1.28	0.80
Anomaly Detection	Base	2.70	2.70	2.51	2.68	2.22	1.00	2.70	0.01
	Rag	2.18	2.18	2.25	2.19	1.91	1.00	2.18	0.07
	WAG	1.12	1.12	1.21	1.12	1.78	1.00	1.12	0.92
Actionable Advice	Base	2.43	2.43	2.38	2.43	2.14	1.00	2.43	0.09
	Rag	2.09	2.09	2.10	2.09	1.95	1.00	2.09	0.21
	WAG	1.48	1.48	1.50	1.47	1.84	1.00	1.48	0.70
Exploratory Analysis	Base	2.63	2.63	2.53	2.63	2.21	1.00	2.63	0.03
	Rag	2.11	2.11	2.15	2.11	1.88	1.00	2.11	0.14
	WAG	1.26	1.26	1.32	1.26	1.85	1.00	1.26	0.83
Metric Relationships	Base	2.55	2.55	2.43	2.52	2.36	1.00	2.55	0.09
	Rag	1.92	1.92	1.98	1.94	1.91	1.00	1.92	0.30
	WAG	1.53	1.53	1.59	1.53	1.71	1.00	1.53	0.61
Contextual Queries	Base	2.50	2.50	2.41	2.49	2.32	1.00	2.50	0.09
	Rag	2.00	2.00	2.05	2.01	1.92	1.00	2.00	0.24
	WAG	1.49	1.50	1.53	1.50	1.75	1.00	1.49	0.67

Table 11: Main experiment - Comparison of our method with baselines across all time periods.

Time Period	Method	Rank							Overall
		Insight	Relevance	Grounded	Personal	Clarity	Safety	Overall	
1	Base	2.74	2.74	2.49	2.71	2.31	1.00	2.74	0.04
	Rag	1.91	1.91	1.98	1.92	1.80	1.00	1.91	0.24
	WAG	1.35	1.36	1.44	1.36	1.74	1.00	1.35	0.72
7	Base	2.65	2.63	2.49	2.62	2.26	1.00	2.65	0.04
	Rag	1.98	1.99	2.04	2.00	1.87	1.00	1.98	0.23
	WAG	1.37	1.38	1.41	1.37	1.79	1.00	1.37	0.74
14	Base	2.60	2.59	2.50	2.58	2.26	1.00	2.60	0.04
	Rag	2.00	2.00	2.04	2.01	1.84	1.00	2.00	0.24
	WAG	1.40	1.40	1.44	1.40	1.85	1.00	1.40	0.72
30	Base	2.50	2.50	2.42	2.49	2.23	1.00	2.50	0.08
	Rag	2.05	2.06	2.09	2.06	1.94	1.00	2.05	0.23
	WAG	1.44	1.45	1.49	1.45	1.80	1.00	1.44	0.69
all	Base	2.40	2.40	2.34	2.39	2.25	1.00	2.40	0.13
	Rag	2.03	2.03	2.04	2.03	1.94	1.00	2.03	0.27
	WAG	1.57	1.57	1.60	1.57	1.77	1.00	1.57	0.60

1188
1189 Table 12: Main experiment - Comparison of our method with baselines across all abnormal levels.
1190
1191

Abnormal level	Method	Insight	Relevance	Grounded	Personal	Clarity	Safety	Overall	Win Rate
low	Base	2.67	2.65	2.46	2.62	2.36	1.00	2.67	0.07
	Rag	1.82	1.83	1.87	1.84	1.77	1.00	1.82	0.33
	WAG	1.51	1.52	1.57	1.52	1.74	1.00	1.51	0.60
medium	Base	2.69	2.68	2.49	2.67	2.26	1.00	2.69	0.03
	Rag	2.06	2.07	2.14	2.08	1.90	1.00	2.06	0.15
	WAG	1.25	1.25	1.34	1.25	1.77	1.00	1.24	0.83
high	Base	2.62	2.62	2.51	2.62	2.19	1.00	2.62	0.03
	Rag	2.12	2.12	2.16	2.12	1.89	1.00	2.12	0.14
	WAG	1.26	1.26	1.32	1.26	1.85	1.00	1.26	0.83
other	Base	2.50	2.49	2.38	2.47	2.27	1.00	2.50	0.11
	Rag	1.92	1.92	1.95	1.93	1.87	1.00	1.92	0.32
	WAG	1.58	1.59	1.62	1.59	1.78	1.00	1.58	0.58

1202
1203 Table 13: Experiment-G - Comparison of different weighting within global modeling across
1204 datasets.
1205

Dataset	\mathcal{W}^{global}		\mathcal{W}^{ind}		\mathcal{W}^{pop}		\mathcal{W}^{prior}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
Globem	2.14	0.30	2.62	0.17	2.50	0.22	2.22	0.36
IFH Affect	2.08	0.34	2.42	0.23	2.40	0.25	2.39	0.27
Lifesnap	2.14	0.28	2.41	0.24	2.32	0.30	2.34	0.28
Pmdata	2.28	0.30	2.42	0.23	2.40	0.23	2.32	0.32
Average	2.16	0.31	2.47	0.22	2.40	0.25	2.32	0.31

1215
1216 Table 14: Experiment-G - Comparison of different weighting within global modeling across query
1217 types.
1218

Dataset	\mathcal{W}^{global}		\mathcal{W}^{ind}		\mathcal{W}^{pop}		\mathcal{W}^{prior}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
General Knowledge	2.00	0.50	2.50	0.00	3.00	0.00	2.00	0.50
Data Retrieval	2.23	0.31	2.38	0.38	2.54	0.15	2.23	0.23
Trend Analysis	2.10	0.34	2.53	0.19	2.58	0.17	2.33	0.33
Comparative Insight	2.14	0.34	2.47	0.22	2.50	0.23	2.34	0.29
Anomaly Detection	2.26	0.25	2.47	0.21	2.21	0.32	2.48	0.29
Actionable Advice	2.06	0.37	2.43	0.26	2.26	0.28	2.38	0.28
Exploratory Analysis	2.16	0.30	2.47	0.22	2.44	0.25	2.21	0.33
Average	2.14	0.34	2.46	0.21	2.50	0.20	2.28	0.32

1229
1230 Table 15: Experiment-G - Comparison of different weighting within global modeling across time
1231 periods.
1232

Dataset	\mathcal{W}^{global}		\mathcal{W}^{ind}		\mathcal{W}^{pop}		\mathcal{W}^{prior}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
1	2.15	0.31	2.49	0.21	2.35	0.28	2.29	0.31
7	2.20	0.29	2.40	0.24	2.25	0.28	2.42	0.28
14	2.08	0.29	2.52	0.21	2.44	0.24	2.29	0.31
30	2.18	0.32	2.45	0.22	2.50	0.21	2.31	0.32
Average	2.16	0.30	2.47	0.22	2.39	0.26	2.33	0.30

1242 Table 16: Experiment-G - Comparison of different weighting within global modeling across abnor-
1243 mal levels.

Dataset	\mathcal{W}^{global}		\mathcal{W}^{ind}		\mathcal{W}^{pop}		\mathcal{W}^{prior}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
low	2.03	0.38	2.57	0.21	2.54	0.16	2.31	0.31
medium	2.19	0.31	2.47	0.20	2.43	0.25	2.35	0.31
high	2.16	0.30	2.45	0.24	2.36	0.26	2.29	0.31
Average	2.12	0.33	2.50	0.22	2.45	0.23	2.32	0.31

1253 Table 17: Experiment-L - Evaluation of the effectiveness of local modeling across datasets

Dataset	\mathcal{W}^{final}		\mathcal{W}^{global}		\mathcal{W}^{local}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
Globem	1.90	0.36	1.98	0.33	2.01	0.35
IFH Affect	1.88	0.38	1.98	0.33	2.02	0.34
Lifesnap	1.85	0.38	1.94	0.37	2.10	0.29
Pmdata	1.89	0.36	2.01	0.36	1.99	0.33
Average	1.88	0.37	1.98	0.35	2.03	0.33

1263 Table 18: Experiment-L - Evaluation of the effectiveness of local modeling across query types.

Query Type	\mathcal{W}^{final}		\mathcal{W}^{global}		\mathcal{W}^{local}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
General Knowledge	1.48	0.63	2.04	0.33	2.30	0.11
Data Retrieval	1.90	0.31	1.75	0.44	2.23	0.25
Trend Analysis	1.94	0.40	1.88	0.34	2.06	0.32
Comparative Insight	1.95	0.34	1.91	0.40	2.09	0.28
Anomaly Detection	1.91	0.34	2.02	0.32	1.93	0.40
Actionable Advice	1.90	0.37	1.96	0.37	1.96	0.33
Exploratory Analysis	1.84	0.39	2.02	0.32	2.04	0.33
Average	1.85	0.40	1.94	0.36	2.09	0.29

1277 Table 19: Experiment-L - Evaluation of the effectiveness of local modeling across time periods.

Time Period	\mathcal{W}^{final}		\mathcal{W}^{global}		\mathcal{W}^{local}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
1	1.89	0.36	1.99	0.33	1.99	0.36
7	1.91	0.35	1.89	0.40	2.08	0.30
14	1.85	0.36	1.96	0.37	2.11	0.30
30	1.87	0.40	2.02	0.33	2.01	0.32
Average	1.88	0.37	1.96	0.36	2.05	0.32

1287 Table 20: Experiment-L - Evaluation of the effectiveness of local modeling across abnormal levels.

Abnormal Level	\mathcal{W}^{final}		\mathcal{W}^{global}		\mathcal{W}^{local}	
	Mean	Win Rate	Mean	Win Rate	Mean	Win Rate
low	1.74	0.45	1.92	0.36	2.20	0.22
medium	1.90	0.36	1.95	0.36	2.04	0.32
high	1.89	0.36	2.01	0.33	1.99	0.35
Average	1.84	0.39	1.96	0.35	2.08	0.30

1296
 1297 (a) IRR and Spearman correlation between LLM
 1298 and human responses (IRR computed via Krip-
 1299 pendorff's alpha).

Experiment	Main	1	2
IRR	0.38	0.26	0.32
Correlation	0.55	0.14	0.13

1300
 1301 (b) Human Evaluator Results for Main Experi-
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 26

1350 The (negative) log of the posterior as follows:

$$\begin{aligned} \mathcal{L}(\Theta) &\equiv -\log p(\Theta_x^s | R_x^{\text{pop}}, R_x^s) + C \\ &= \frac{1}{2}(\Theta - \mu^{\text{prior}})^\top (\Sigma^{\text{prior}})^{-1}(\Theta - \mu^{\text{prior}}) \\ &\quad + \frac{1}{2}(R^{\text{pop}} - \Theta)^\top (V^{\text{pop}})^{-1}(R^{\text{pop}} - \Theta) \\ &\quad + \frac{1}{2}(R^s - \Theta)^\top (V^s)^{-1}(R^s - \Theta), \end{aligned}$$

1357 To simplify notation for the derivation, subscript x and superscript s inside this derivation are
1358 dropped: $\Theta \equiv \Theta_x^s$, $\mu^{\text{prior}} \equiv \mu_x^{\text{prior}}$, $R^{\text{pop}} \equiv R_x^{\text{pop}}$, $R^s \equiv R_x^s$, etc.

1359 Expand each quadratic term and collect terms in Θ :

$$\begin{aligned} \mathcal{L}(\Theta) &= \frac{1}{2}\Theta^\top (\Sigma^{\text{prior}})^{-1}\Theta - (\Sigma^{\text{prior}})^{-1}\mu^{\text{prior}\top}\Theta + \frac{1}{2}\mu^{\text{prior}\top}(\Sigma^{\text{prior}})^{-1}\mu^{\text{prior}} \\ &\quad + \frac{1}{2}\Theta^\top (V^{\text{pop}})^{-1}\Theta - (V^{\text{pop}})^{-1}R^{\text{pop}\top}\Theta + \frac{1}{2}R^{\text{pop}\top}(V^{\text{pop}})^{-1}R^{\text{pop}} \\ &\quad + \frac{1}{2}\Theta^\top (V^s)^{-1}\Theta - (V^s)^{-1}R^{s\top}\Theta + \frac{1}{2}R^{s\top}(V^s)^{-1}R^s. \end{aligned}$$

1365 Collecting the quadratic (in Θ) and linear terms yields

$$\mathcal{L}(\Theta) = \frac{1}{2}\Theta^\top \Lambda \Theta - b^\top \Theta + \text{const},$$

1367 where

$$\Lambda \equiv (\Sigma^{\text{prior}})^{-1} + (V^{\text{pop}})^{-1} + (V^s)^{-1}, \quad (5)$$

$$b \equiv (\Sigma^{\text{prior}})^{-1}\mu^{\text{prior}} + (V^{\text{pop}})^{-1}R^{\text{pop}} + (V^s)^{-1}R^s. \quad (6)$$

1371 Complete the square for the quadratic form:

$$\begin{aligned} \mathcal{L}(\Theta) &= \frac{1}{2}(\Theta^\top \Lambda \Theta - 2b^\top \Theta) + \text{const} \\ &= \frac{1}{2}(\Theta - \Lambda^{-1}b)^\top \Lambda(\Theta - \Lambda^{-1}b) - \frac{1}{2}b^\top \Lambda^{-1}b + \text{const}. \end{aligned}$$

1375 Therefore the posterior is Gaussian,

$$\Theta_x^s | R_x^{\text{pop}}, R_x^s \sim \mathcal{N}(\mu, \Sigma),$$

1378 with

$$\Sigma = \Lambda^{-1} = \left((\Sigma^{\text{prior}})^{-1} + (V^{\text{pop}})^{-1} + (V^s)^{-1} \right)^{-1}, \quad (7)$$

$$\mu = \Sigma b = \Sigma \left((\Sigma^{\text{prior}})^{-1}\mu^{\text{prior}} + (V^{\text{pop}})^{-1}R^{\text{pop}} + (V^s)^{-1}R^s \right). \quad (8)$$

1382 **Note:** Our method is not a typical fully generative hierarchical Bayesian model. In a standard formulation,
1383 the population distribution is treated as a set of latent hyperparameters with their own priors,
1384 and inference is carried out via MCMC or variational methods. While this approach is flexible, it
1385 typically requires computationally intensive sampling, which must be repeated at inference time.
1386 We believe such sampling is not appropriate for our setting, where repeated, efficient inference is
1387 required. Instead, our approach adopts a simplified empirical Bayes formulation with closed-form
1388 Gaussian updates. This allows us to retain the population-to-individual hierarchy while ensuring
1389 computational tractability.

1390 G.2 LOCAL MODELING

1392 weights capture context-sensitive relationships over the past k^q days relative to query time t^q . For
1393 node x and neighbor y , the normalized abnormality score is:

$$\zeta_y = \frac{1}{k^q} \sum_{i=0}^{k^q-1} \left| \frac{v_{y,t^q-i} - \mu_y}{\sigma_y} \right|,$$

1398 where μ_y and σ_y are the historical mean and standard deviation.

1399 We define the short-term weight by convexly mixing ζ_y and its complement:

$$w_{x,y}^{\text{short}} = \eta^q \zeta_y + (1 - \eta^q)(1 - \zeta_y).$$

1402 Expanding gives:

$$w_{x,y}^{\text{short}} = (2\eta^q - 1)\zeta_y + (1 - \eta^q),$$

1403 which is bounded in $[0, 1]$ for $\eta^q, \zeta_y \in [0, 1]$.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

H NOTATION

Table 24: Question Categories for Health Data Analysis

Category	Openness	Description	Example Questions
Single-Entity			
General Knowledge	0.2-0.4	Definition and basic understanding of metrics, optimal ranges, and benchmarks	What is HRV and its optimal range? What is resting heart rate?
Data Retrieval	0.1-0.3	Specific time-bound numerical queries	What was my step count this week? Average deep sleep minutes past 14 days?
Trend Analysis	0.4-0.6	Trend identification and behavioral patterns	Identify trends in my daily movement last 30 days. When do I typically have my most active days?
Comparative Insight	0.5-0.7	Time-based comparisons between periods	How does this week's activity compare to last week? Has my sleep duration improved this month?
Anomaly Detection	0.6-0.8	Outlier identification and unusual deviations	Any unusual sleep metrics this month? Was there an abnormal recovery time this week?
Actionable Advice	0.3-0.5	Actionable suggestions based on current data	How to improve my sleep quality? Ways to increase my activity score?
Exploratory Analysis	0.7-1.0	Multi-factor investigations	Why am I tired despite sleeping 8 hours? Do you think I'm stressed recently?
Multi Entity Category			
Metric Relationships	0.4-0.6	Exploration of correlations or interactions between two or more health metrics over a period of time	Did my activity levels impact my readiness score? How does my REM sleep duration correlate with my stress levels for the past 30 days? What's the relationship between my exercise intensity and recovery time?
Contextual Queries	0.5-0.7	Questions that examine relationships between a health metric and contextual factors (e.g., stress, sleep, activity)	Do my sleep disturbances increase on days with higher stress scores last week? Is there a pattern in my heart rate variability on days I have a higher activity level for the past month?

1458
1459
1460

Table 25: Notations and Descriptions

Notation	Description
D	a dataset
$s \in \mathcal{S}_{sel}$	participants selected
$m \in \mathcal{M}$	a concept of health metric, eg. heart rate, mood
$t \in \mathcal{T}$	all timestamps (day) of data
v_t	data value at timestamp(day) t
MD_s	missing data percentage for a subject s 's data
VL_s	valid period length for a subject s 's data
CV_s	coefficient of variation for a subject s 's data.
MI_p	pairwise mutual information for a subject s 's data
$\zeta_{k,t} \in Z$	abnormal level of data for the past k days before t days
$k \in \mathcal{K}$	window size
\mathcal{I}	input tuple to generate query
$q \in \mathcal{Q}$	query set
η	openness score
$c \in \mathcal{C}$	a category of health metric, eg. sleep, activity
$\mathcal{G} = (\mathcal{V}, \mathcal{E})$	knowledge graph
$v \in \mathcal{V}$	node
$e_{i,j} \in \mathcal{E}$	the edge encodes the relationship between nodes v_i and v_j
$w_{i,j} \in \mathcal{W}$	weight of the edge $e_{i,j}$
θ_x^s	the latent vector of edge weight \mathcal{W}
$\mu^{\text{prior}}, \Sigma^{\text{prior}}$	prior distribution of θ^s
R^{pop}	spearman correlations between historical data across the dataset.
R^s	historical data of correlations computed from user s 's data.
$\mu^{\text{pop}}, \Sigma^{\text{pop}}$	distribution of θ_x^s after posterior update of R_x^{pop}
$\mu_x^s(\mathcal{W}^{\text{global}}), \Sigma_x^s$	distribution of θ_x^s after further posterior update of R_x^{ind}
$\mathcal{W}^{\text{local}}$	weights obtained from local modeling
β	hyperparameter to control $\mathcal{W}^{\text{global}}$ and $\mathcal{W}^{\text{local}}$
δ	match threshold for similarity match $sim(v_i, v_j)$
κ	max number of related nodes that will be retrieved
$\alpha_{\text{pop}}, \alpha_{\text{ind}}$	hyperparameters to control the role of R_x^{pop} and R_x^{ind} respectively in HBM modeling

1490
1491
1492
1493

Table 26: Node Field Descriptions

Field	Description
ID	Id of the node
Name	Name of the node
Description	Description of the node
Range	Range of values with units
Recommendation	Recommendation for improvement
DataSource	Data source specification including dataset name, feature name, description, range, unit, and type, path to data
Weight	Importance weight for sorting (higher = more important)
If_data_associated	Flag indicating data association status
Name_embedding	Name-based embedding vector
Semantic_embedding	Textual embedding vector
Graph_embedding	Graph structure embedding
Umls_name	Standardized UMLS name
CUI	UMLS Concept Unique Identifier
Umls_definition	Formal UMLS concept definition
Raw_web_result	Unprocessed web extraction data

1511

1512
1513
1514
1515
1516

Table 27: Edge Field Descriptions

Field	Description
ID	Unique relationship identifier
Node_1_name	Name of first node in relationship
Node_1_description	Description of first node
Node_1_id	Unique identifier of first node
Node_2_name	Name of second node in relationship
Node_2_description	Description of second node
Node_2_id	Unique identifier of second node
weight	Edge weight (default is generated from LLM)
description	Textual description of relationship nature/purpose
description_embedding	Semantic embedding vector for relationship description
raw_web_result	Reference to raw web search results

1529
1530
1531
1532
1533
1534
1535

Table 28: Initial Health Metrics

Category	Metrics
Physiological	Heart rate, Heart rate variability, Blood pressure, Blood oxygen saturation, Pulse wave velocity, Cardiac output, Peripheral blood flow, Respiratory rate, Oxygen uptake, Carbon dioxide exhalation rate, Lung volume, Breathing rhythm, Muscle activity, Blood glucose levels, Lactate levels, Basal metabolic rate, Core body temperature, Brain activity, Skin temperature, Sweat rate, Electrolyte concentration, Skin hydration levels, Skin conductance, pH of sweat
Sleep	Sleep stages (light, deep, REM), Sleep apnea events, Total sleep duration, Sleep onset latency, Wake after sleep onset, Sleep efficiency, Arousals per night, Breathing irregularities, Snoring patterns, Circadian rhythm patterns
Activity	Steps taken, Distance traveled, Active minutes, Energy expenditure, Activity level, Running dynamics, Balance and stability, Joint movement and flexibility
Mental	Mental stress, Mental fatigue, Mental workload, Engagement, Cognitive load, Memory performance, Decision-making speed, Mood
Environmental	Ambient temperature, Humidity, Barometric pressure, UV radiation exposure, Air quality, Noise levels, Electromagnetic field exposure, Altitude
Lifestyle	GPS location, Travel patterns, Proximity to other devices or people, Interaction frequency with social contacts, Time spent on specific activities, Screen interaction patterns, Daily routine adherence
Demographic	Gender, Age, personality

1562
1563
1564
1565

1566

1567

1568

Table 29: Metrics available across datasets. \checkmark indicates presence, \times absence.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

Type	Metric	Globem	Ifh.affect	Lifesnap	Pmdata
Physiological	Blood oxygen saturation	\times	\times	\checkmark	\times
	Skin conductance	\times	\times	\checkmark	\times
	HRV RMSSD	\times	\checkmark	\checkmark	\times
	Resting heart rate	\times	\checkmark	\checkmark	\times
	Nightly skin temperature	\times	\times	\checkmark	\times
	Sleep breathing rate	\times	\checkmark	\checkmark	\times
	Temperature Variation	\times	\checkmark	\checkmark	\times
	VO2 Max	\times	\times	\checkmark	\times
Sleep	Total sleep duration	\checkmark	\checkmark	\checkmark	\checkmark
	Sleep onset latency	\checkmark	\checkmark	\checkmark	\checkmark
	Wake after sleep onset	\checkmark	\checkmark	\checkmark	\checkmark
	Sleep efficiency	\checkmark	\checkmark	\checkmark	\checkmark
	Circadian rhythm patterns	\checkmark	\times	\times	\times
	Asleep duration	\checkmark	\checkmark	\checkmark	\checkmark
	Light sleep duration	\times	\checkmark	\checkmark	\checkmark
	Deep sleep duration	\times	\checkmark	\checkmark	\checkmark
	Rem sleep duration	\times	\checkmark	\checkmark	\checkmark
	Bedtime start time	\times	\checkmark	\checkmark	\checkmark
	Bedtime end time	\times	\checkmark	\checkmark	\checkmark
	Midpoint of sleep	\times	\checkmark	\times	\times
	Time after wakeup	\checkmark	\times	\checkmark	\checkmark
	Steps taken	\checkmark	\checkmark	\checkmark	\checkmark
Activity	Distance traveled	\times	\checkmark	\checkmark	\checkmark
	Active time	\checkmark	\checkmark	\checkmark	\checkmark
	Energy expenditure	\times	\checkmark	\checkmark	\checkmark
	Resting time	\times	\checkmark	\times	\times
	Inactive time	\times	\times	\checkmark	\checkmark
	Lightly active time	\times	\checkmark	\checkmark	\checkmark
	Moderately active time	\times	\checkmark	\checkmark	\checkmark
	Highly active time	\times	\checkmark	\checkmark	\checkmark
	Exercise	\times	\times	\checkmark	\checkmark
	Step goal	\times	\times	\checkmark	\times
Mental	Mental stress	\checkmark	\times	\times	\checkmark
	Mental fatigue	\times	\times	\times	\checkmark
	Mood	\times	\times	\checkmark	\checkmark
	PANAS positive affect	\checkmark	\checkmark	\checkmark	\times
	PANAS negative affect	\checkmark	\checkmark	\checkmark	\times
	Anxiety	\checkmark	\times	\times	\times
	Depression	\checkmark	\times	\times	\times
Environmental	Barometric pressure	\times	\checkmark	\times	\times
	Lifelog	\times	\times	\checkmark	\checkmark
	Number of calls	\checkmark	\times	\times	\times
	Entropy of call duration	\checkmark	\times	\times	\times
	Number of phone unlock	\checkmark	\times	\times	\times
	Duration of phone unlock	\checkmark	\times	\times	\times
	Time at home	\checkmark	\times	\times	\times
	The Radius of Gyration	\checkmark	\times	\times	\times
	Maximum distance from home	\checkmark	\times	\times	\times
Demographic	Age	\times	\times	\checkmark	\times
	Gender	\times	\times	\checkmark	\times
	Bmi	\times	\times	\checkmark	\times
	Personality	\checkmark	\times	\checkmark	\times

1619

1620 I EVAL-UI

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Human Evaluation Instructions: Comparing Responses to Health Questions

You are asked to evaluate and rank the quality of responses generated by multiple methods for a user's health-related question. Each method may use contextual information such as wearable data, time-series patterns, or other relevant health knowledge.

Evaluate responses based on the following dimensions:

- **Insightfulness (most important):** Does the response provide meaningful, actionable insights beyond the obvious?
- **Relevance:** Is the response relevant and does it provide novel information?
- **Groundedness:** Are factual claims supported by the provided content or trusted sources?
- **Personalization:** Does the response meaningfully incorporate the user's context?
- **Clarity:** Is the response clearly written and easy to understand?
- **Absence of harmful content:** Is the response free from misleading, unsafe, or inappropriate information?

Ranking Rules: Assign rank 1 to the best response(s). Multiple responses can share the same rank if they are indistinguishable. Lower numbers indicate better performance.

You will see a user's question followed by responses from different methods. Compare them carefully and assign ranks based on overall quality.

Load Data from file

Choose File dict.json... global.json
 Loaded `dict_sampled_global.json` successfully.

Question: What lifestyle changes could improve my sleep efficiency which has been unusually low over the past 30 days?
Q_ID: 06ee73f7-508c-4a8d-a9dd-637c6afb7a2

Rank this result:

Response

Based on your sleep efficiency data and related metrics over the past 30 days, here are evidence-based lifestyle recommendations to improve your sleep quality:

- 1. **Sleep Schedule Optimization****
 - Your data shows excellent sleep efficiency (consistently 90%+), suggesting your current routine is working well. Maintain your consistent bedtime/waketime schedule, as this is the strongest protective factor evident in your data.
- 2. **Activity Timing Adjustment****
 - While your active minutes (avg ~300/day) exceed recommendations, note that January 29 showed both low activity (163min) and slightly reduced down affluency (90% vs typical 94%). Consider

Primary Metrics

Sleep efficiency:

Related Metrics

Inactive time:

Context

Matched nodes:

Sleep efficiency description: Sleep Efficiency (SE) is the percentage of time spent asleep compared to the total time in bed, calculated as the ratio of Total Sleep Time (TST) to Time in Bed (TIB) multiplied by 100. It is a critical metric in assessing sleep quality and identifying disorders like insomnia, with higher values indicating more efficient sleep. Wearable sensors estimate SE using accelerometers or heart rate variability to determine sleep and wake states. range: Normal SE is 80%-90% for healthy adults, with values below 80% indicating potential sleep disturbances. Units: percentage (%). recommendation: To improve sleep efficiency, maintain a consistent sleep schedule, avoid screen

Rank this result:

Response

- Address awakeness: YOUR WASO averages 42 minutes (above the 30-minute healthy threshold). Implement:

- Consistent bedtime/wake time (even weekends)
- 1-hour pre-sleep relaxation routine
- Cool (18-20°C), dark sleeping environment

- 3. **Behavioral Timing****
 - Avoid exercise within 4 hours of bedtime
 - Limit caffeine after 2pm and alcohol within 3 hours of sleep
 - Reduce screen exposure 1 hour before bed (blue light disrupts melatonin)
- 4. **Pattern Recognition****
 - Your best efficiency (99%) occurred on days with: Light activity >200min (Jan

Related Metrics

Active time:

Context

Matched nodes:

Sleep efficiency description: Sleep Efficiency (SE) is the percentage of time spent asleep compared to the total time in bed, calculated as the ratio of Total Sleep Time (TST) to Time in Bed (TIB) multiplied by 100. It is a critical metric in assessing sleep quality and identifying disorders like insomnia, with higher values indicating more efficient sleep. Wearable sensors estimate SE using accelerometers or heart rate variability to determine sleep and wake states. range: Normal SE is 80%-90% for healthy adults, with values below 80% indicating potential sleep disturbances. Units: percentage (%). recommendation: To improve sleep efficiency, maintain a consistent sleep schedule, avoid screen

Rank this result:

Response

Based on your sleep efficiency data and related metrics, here are evidence-based lifestyle recommendations to improve your sleep quality:

- 1. **Sleep Schedule Optimization****
 - Your data shows excellent sleep efficiency (consistently 90%+), suggesting your current routine is working well. Maintain your consistent bedtime/waketime schedule, as this reinforces circadian rhythms.
- 2. **Activity Modifications****
 - Your active minutes (avg ~300 min/day) far exceed recommendations. Consider shifting some activity to earlier in the day - high energy expenditure late in the evening (like your 4399 kcal raw on 1/10 min cause sleep fragmentation

Related Metrics

Active time:

Context

Matched nodes:

Sleep efficiency description: Sleep Efficiency (SE) is the percentage of time spent asleep compared to the total time in bed, calculated as the ratio of Total Sleep Time (TST) to Time in Bed (TIB) multiplied by 100. It is a critical metric in assessing sleep quality and identifying disorders like insomnia, with higher values indicating more efficient sleep. Wearable sensors estimate SE using accelerometers or heart rate variability to determine sleep and wake states. range: Normal SE is 80%-90% for healthy adults, with values below 80% indicating potential sleep disturbances. Units: percentage (%). recommendation: To improve sleep efficiency, maintain a consistent sleep schedule, avoid screen

Rank this result:

Response

Based on your sleep efficiency data and related metrics over the past 30 days, here are evidence-based lifestyle recommendations to improve your sleep quality:

- 1. **Sleep Schedule Optimization****
 - Your sleep duration shows significant variability (ranging from 5 to 8.5 hours). Implement a consistent bedtime and wake-up time (4:30 minutes) to regulate your circadian rhythm.
- 2. **Wakefulness Reduction****
 - Your Wake After Sleep Onset (WASO) frequently exceeds the 30-minute threshold (peaking at 62 minutes).
 - Action: Create a sleep-conducive environment by:
 - Maintaining bedroom temperature at 18-21°C.

Primary Metrics

Sleep efficiency:

Related Metrics

Asleep duration:

Context

Matched nodes:

Sleep efficiency description: Sleep Efficiency (SE) is the percentage of time spent asleep compared to the total time in bed, calculated as the ratio of Total Sleep Time (TST) to Time in Bed (TIB) multiplied by 100. It is a critical metric in assessing sleep quality and identifying disorders like insomnia, with higher values indicating more efficient sleep. Wearable sensors estimate SE using accelerometers or heart rate variability to determine sleep and wake states. range: Normal SE is 80%-90% for healthy adults, with values below 80% indicating potential sleep disturbances. Units: percentage (%). recommendation: To improve sleep efficiency, maintain a consistent sleep schedule, avoid screen

1674 J QUALITATIVE EXAMPLES

1675 Note: Some lengthy content has been truncated. Primary nodes are highlighted in blue, related nodes in orange, and key findings in yellow.

1676 **Example 1:** A simple data retrieval question, where the incorporation of the KG into the query provides only marginal benefit.

1677 **Query:** What types of exercise did I engage in most frequently over the past 7 days?

1678 *Openness - 0.3 Query type - Data Retrieval*

1680 Base(Rank-2) – Context	1681 Rag(Rank-1) – Context	1682 WAG(Rank-3) – Context
<p>1683 Matched nodes:</p> <p>1684 Exercise : 1685 sensor specific information if available: 1686 1.description: daily log of exercise in detail 1687 2.range: 1688 3.unit: 1689 Data: 1690 — date — Exercise — 1691 — 2019-11-15 — [{}{'logId': 1692 26742666940, 'activityName': 'Walk', 1693 'activityTypeId': 90013, 'activityLevel': 1694 [{}{'minutes': 0, 'name': 'sedentary'}, 1695 {'minutes': 0, 'name': 'lightly'} ... 1696 [truncated]</p>	<p>1697 Matched nodes:</p> <p>1698 Exercise : 1699 description: Exercise refers to planned, structured, and repetitive physical activity aimed at improving or maintaining physical fitness and overall health. It includes activities such as aerobic exercise, strength training, and flexibility exercises, which enhance cardiovascular health, muscle strength, and mental well-being. Exercise is a key component of a healthy lifestyle ... [truncated]</p>	<p>1700 Matched nodes:</p> <p>1701 Exercise : 1702 description: Exercise refers to planned ... [truncated] Recent 7-day value deviates from the individual's average by nan standard deviations.</p> <p>1703 Nodes related to matched nodes which might be helpful:</p> <p>1704 Sleep efficiency is related to Exercise: 1705 Regular exercise is consistently linked to higher sleep efficiency, as it promotes deeper and more restorative sleep. This relationship is well-documented, with exercise serving as a non-pharmacological intervention for sleep disorders.</p> <p>1706 Sleep efficiency : 1707 description: Sleep Efficiency (SE) is the percentage ... [truncated]</p>
<p>1708 Based on your exercise data from the past 7 days (November 15-21, 2019), the most frequent types of exercise you engaged in were:</p> <p>1709 1. **Walking** (11 sessions) - This was your dominant activity, with multiple daily walks logged both as auto-detected and tracker-recorded sessions. These walks typically lasted 20-40 minutes with moderate intensity (average heart rate 92-159 bpm).</p> <p>1710 2. **Treadmill** (1 session on November 19) - A single 26-minute vigorous session with higher intensity (average HR 154 bpm).</p> <p>1711 3. **General Workout** (1 session on November 19) - A 44-minute mixed-intensity session combining cardio and strength elements.</p> <p>1712 Key observations: 1713 - Walking accounted for 85% of all logged exercises 1714 - No exercise was recorded on November 16 1715 - The treadmill session was your most intense cardiovascular activity 1716 - The "Workout" session suggests possible strength training</p> <p>1717 Note: Data shows consistent walking habits but limited variety in exercise types during this period. The treadmill and workout sessions indicate some cross-training efforts.</p>	<p>1718 Based on your exercise data from the past 7 days (November 15-21, 2019), the most frequent types of exercise you engaged in were:</p> <p>1719 1. **Walking** (11 sessions) - This was your dominant activity, appearing nearly every day with multiple sessions. The walks typically lasted 20-40 minutes with moderate intensity (average heart rate 97-115 bpm).</p> <p>1720 2. **Treadmill** (1 session on Nov 19) - A single 26-minute vigorous session with higher heart rate (154 bpm average).</p> <p>1721 3. **General Workout** (1 session on Nov 19) - A 44-minute mixed-intensity session combining cardio and strength elements.</p> <p>1722 Key observations: 1723 - Walking accounted for 85% of your recorded exercise sessions 1724 - No strength training or flexibility exercises were logged in this period 1725 - November 16 showed no recorded exercise activity</p> <p>1726 The data suggests a focus on cardiovascular exercise through walking, with one day incorporating more intense treadmill and workout sessions. For balanced fitness, you might consider adding strength training (2+ days/week) as recommended by health guidelines.</p>	<p>1727 Based on your exercise data from the past 7 days (November 15-21, 2019), the most frequently engaged activities were:</p> <p>1728 1. **Walking** (9 instances) - This was your dominant activity, appearing nearly every day with multiple sessions. The walks typically lasted 20-30 minutes with moderate intensity (average heart rate 97-115 bpm).</p> <p>1729 2. **Treadmill** (1 instance on Nov 19) - A single 26-minute vigorous session with higher intensity (average HR 154 bpm).</p> <p>1730 3. **General Workout** (1 instance on Nov 19) - A 44-minute mixed-intensity session logged as "Workout" (average HR 133 bpm).</p> <p>1731 Key observations: 1732 - Walking accounted for 82% of your logged exercise sessions 1733 - No exercise was recorded on November 16 1734 - Your most active day was November 19 with 4 separate exercise sessions 1735 - Exercise intensity varied from light (walks) to vigorous (treadmill)</p> <p>1736 Your sleep efficiency remained consistently high (89-97%) throughout this period, which aligns with research showing positive sleep impacts from regular physical activity.</p>

1728

Example 2: A multi-metric query, where examining multiple related metrics together provides a more comprehensive understanding.

1729

Query: What is the overall relationship between HRV (RMSSD), steps taken, and lightly active time?

1730

Openness - 0.5

1731

Query type - Metric Relationships

1732

Base(Rank-3) – Context	Rad(Rank-2) – Context	WAG(Rank-1) – Context
<p>Matched nodes:</p> <p>HRV RMSSD : sensor specific information if available: 1.description: 2.range: 3.unit: Data: — date — HRV RMSSD — — :— — 2021-11-24 — 51.679 — — 2021-11-25 — 47.082 — — 2021-11-26 — 49.089 — ... [truncated]</p> <p>Steps taken: ... [truncated]</p> <p>Lightly active time: sensor specific information if available: ... [truncated]</p>	<p>Matched nodes:</p> <p>HRV RMSSD : description: Heart Rate Variability Root Mean Square of Successive Differences (HRV RMSSD) is a statistical measure of heart rate variability (HRV) ... [truncated] range: Normal HRV RMSSD values for adults at rest typically range from below 20 to over 70 milliseconds. However, individual values can vary significantly based on factors such as age, gender, fitness level, and overall health. Units: milliseconds (ms). ... [truncated]</p> <p>Steps taken: description: Steps Taken refers ... [truncated]</p> <p>Lightly active time: description: Lightly Active Time (LAT) ... [truncated]</p>	<p>Matched nodes:</p> <p>HRV RMSSD : description: Heart Rate Variability Root Mean Square of Successive Differences (HRV RMSSD) is a statistical measure of heart rate variability (HRV) ... [truncated] range: Normal HRV RMSSD values for adults at rest typically range from below 20 to over 70 milliseconds. However, individual values can vary significantly based on factors such as age, gender, fitness level, and overall health. Units: milliseconds (ms). ... [truncated]</p> <p>Nodes related to matched nodes which might be helpful: Steps taken : description: Steps Taken refers ... [truncated]</p> <p>Lightly active time : description: Lightly Active Time (LAT) ... [truncated]</p>
<p>Based on the provided data from November 2021 to January 2022, the relationship between HRV RMSSD, steps taken, and lightly active time shows the following patterns:</p> <p>1. General Trends: - Extreme step counts (>20,000) often correlate with higher HRV RMSSD (indicating better recovery/stress resilience) tends to coincide with days of moderate step counts (10,000-17,000 steps) and lightly active time (150-200 minutes). Examples: 2021-12-08 (HRV: 62.585, Steps: 11,727, Light activity: 156 min). - Extreme step counts (>20,000) often correlate with lower HRV (e.g., 2021-12-29: 22,634 steps → HRV 47.801; 2021-12-31: 27,943 steps → HRV 48.292).</p> <p>2. Notable Exceptions: - Some high-activity days maintained good HRV (e.g., 2021-12-17: 20,005 steps, 262 min light activity, HRV 50.73). - The lowest HRV values (e.g., 2021-12-26: 34.656) occurred after consecutive high-activity days, suggesting possible cumulative fatigue. ... [truncated]</p>	<p>1. General Relationship**: - HRV RMSSD (a marker of parasympathetic/vagal activity) typically shows an inverted-U relationship with physical activity: ... [truncated]</p> <p>2. Data Observations** (Nov 2021-Jan 2022): - On high step days (>15,000 steps) with substantial lightly active time (>200 min): - HRV often remained stable (e.g., Dec 17: 20,005 steps, 262 min LAT → HRV 50.73 ms) - Some high-activity days showed HRV dips (Dec 25: 16,722 steps → HRV 38.93 ms) - Lower activity days (<5,000 steps) showed variable HRV: - Some low (Dec 12: 1,688 steps → HRV 52.82 ms) - Some high (Dec 7: 10,245 steps → HRV 56.27 ms)</p> <p>3. Key Patterns**: - No strict linear correlation exists in this dataset - HRV appears more sensitive to recovery factors (sleep, stress) than to activity volume alone - The individual maintains mid-range HRV (45-55ms) across most activity levels, suggesting good autonomic resilience ... [truncated]</p>	<p>1. General Trends**: - Higher HRV RMSSD (indicating better recovery/stress resilience) tends to coincide with days of moderate step counts (10,000-15,000 steps) and balanced lightly active time (150-200 minutes). - Extreme activity days (e.g., Dec 31: 27,943 steps) often correlate with lower HRV the following day (Jan 1: 37.97 ms), suggesting potential overexertion.</p> <p>2. Optimal Range Observations**: - The highest HRV readings (Dec 8-10: 62-64 ms) occurred with: ... [truncated] - This suggests a "sweet spot" where substantial but not excessive movement supports autonomic balance.</p> <p>3. Recovery Dynamics**: - Days with <8,000 steps and <120 light activity minutes (e.g., Dec 3, Dec 12) often preceded HRV rebounds, indicating these may function as recovery days.</p> <p>4. Notable Exceptions**: - December 25-26 shows an inverse pattern where high steps (16,722-10,128) coincided with very low HRV (38.93-34.66 ms), possibly indicating holiday stress or sleep disruption overriding activity benefits.</p> <p>Key Insight**: Moderate daily movement (10,000-15,000 steps with 150-200 light activity minutes) appears most supportive of healthy HRV levels in ... [truncated]</p>

1779

1780

1781

1782	Example 3: A question where the primary node lacks direct data. By incorporating the KG, we can identify related nodes and leverage other metrics to approximate the condition of the queried metric. Query: How is my engagement levels over the past week? <i>Openness - 0.8</i> <i>Query type - Exploratory Analysis</i>		
1786	Base(Rank-2) – Context		Rag(Rank-3) – Context
1787	<p>Matched nodes: data: No data</p>		<p>Matched nodes: data: No data</p>
1788			<p>Matched nodes: data: No data</p> <p>Nodes related to matched nodes which might be helpful: ... [truncated]</p> <p>Steps taken : description: Steps Taken refers ... [truncated]</p> <p>Data: — date — Steps taken — — : — — 2020-01-13 — 2873 — — 2020-01-14 — 284 — ... [truncated]</p> <p>Energy expenditure: description: Energy Expenditure (EE) refers to ... [truncated]</p> <p>Mental fatigue : description: Mental fatigue is a ... [truncated]</p> <p>Active time : description: Active Minutes refer to... [truncated]</p>
1789	Response	Response	Response
1790	<p>Answer: I cannot determine factors influencing your engagement levels because no relevant data was available for analysis over the past week. To provide meaningful insights, I would need access to metrics such as:</p> <ul style="list-style-type: none"> - Sleep quality/duration - Physical activity levels - Heart rate variability (HRV) - Cognitive load/stress indicators 	<p>Answer: I cannot determine factors influencing your engagement levels due to unavailable data. To provide meaningful analysis, I would need:</p> <ol style="list-style-type: none"> 1. Engagement Metrics: Tracked behaviors (e.g., workout consistency, task completion rates) 2. Correlative Data: Sleep quality, stress markers (HRV), or activity logs for the past 7 days <p>Without this baseline, I recommend:</p> <ul style="list-style-type: none"> - Enabling granular tracking for engagement-related metrics - Checking device/sensor connectivity to ensure data collection 	<p>Based on the available data from the past week, several key factors appear to be influencing your engagement levels:</p> <ol style="list-style-type: none"> 1. Physical Activity Patterns: - Your step count showed significant variation (284 to 30,406 steps/day) ... [truncated] 2. Energy Expenditure: - Caloric burn ranged from 1,997-5,012 kcal/day (+1.30 deviation), with ... [truncated] 3. Mental Fatigue: - Your self-reported fatigue scores showed inverse patterns to activity levels. Notably, your lowest fatigue score (1) coincided with your highest activity day, while higher fatigue (4) occurred during less active periods. <p>Key Observations:</p> <ul style="list-style-type: none"> - The data suggests a strong temporal association between physical activity metrics (steps, active minutes, energy expenditure) and reduced mental fatigue, which collectively influence engagement capacity. - Your most engaged days (e.g., 2020-01-19) show the "perfect storm" of high activity (+30k steps, 471 active mins, 5,012 kcal) coupled with minimal mental fatigue (score=1). - The 1.22-1.46 deviations in physical metrics indicate this was an unusually active week compared to your baseline, which may explain heightened engagement. <p>... [truncated]</p>
1791			
1792			
1793			
1794			
1795			
1796			
1797			
1798			
1799			
1800			
1801			
1802			
1803			
1804			
1805			
1806			
1807			
1808			
1809			
1810			
1811			
1812			
1813			
1814			
1815			
1816			
1817			
1818			
1819			
1820			
1821			
1822			
1823			
1824			
1825			
1826			
1827			
1828			
1829			
1830			
1831			
1832			
1833			
1834			
1835			

1836

Example 4: A case where incorporating additional metrics provides deeper insights beyond the primary data, enabling a more comprehensive understanding of the queried condition.

1837

Query: How does my bedtime start time variability over the past 30 days compare to recommended sleep hygiene guidelines?

1838

Openness - 0.6 Query type - Comparative Insight

1839

Base(Rank-2) – Context	Rag(Rank-3) – Context	WAG(Rank-1) – Context
<p>Matched nodes:</p> <p>Bedtime start time : sensor specific information if available: 1.description: 2.range: 3.unit: Data: — date — Bedtime start time — —:—: — 2020-02-10 — 2020-02-09 21:54:30 — — 2020-02-11 — 2020-02-10 23:05:00 — ... [truncated]</p>	<p>Matched nodes:</p> <p>Bedtime start time : description: Bedtime Start ... [truncated] range: Recommended bedtime start times vary by age group: School-age children (6-13 years): 8:00 - 9:30 p.m., Teens (14-17 years): 9:00 - 10:30 p.m., Young adults (18-25 years): 8:00 - 12:00 p.m., Adults (26-64 years): 8:00 - 12:00 p.m. Consistency is more important than the exact time. recommendation: To improve sleep hygiene, maintain a consistent bedtime and wake-up schedule, create a relaxing pre-sleep routine, optimize the sleep environment (e.g., comfortable bedding, reduced light and noise), avoid stimulating activities or heavy meals before bed, and seek professional help if sleep issues persist. sensor specific information: ... [truncated]</p>	<p>Matched nodes:</p> <p>Bedtime start time : description: Bedtime Start ... [truncated] Nodes related to matched nodes which might be helpful:</p> <p>Bedtime end time : description: Bedtime End Time refers ... [truncated]</p> <p>Mood : description: Mood refers to ... [truncated]</p> <p>Asleep duration : description: Total Sleep Duration (TSD)... [truncated]</p>
<p>Answer: Your bedtime start time variability over the past 30 days shows significant fluctuations, ranging from 21:26 to 01:26, with a standard deviation of approximately 1.5 hours. This exceeds the recommended sleep hygiene guideline of maintaining bedtime consistency within a 30-minute window (National Sleep Foundation). Key observations:</p> <p>1. Pattern Analysis: - 40% of bedtimes occurred after midnight - Only 20% fell within a consistent 30-minute window of your median bedtime (22:53)</p> <p>2. Guideline Comparison: - Your variability is 3x greater than the recommended threshold - Late bedtimes (post-23:30) correlate with documented circadian rhythm disruption risks</p> <p>3. Data Limitations: - 1 missing data point (2020-03-03) - No baseline comparison available</p> <p>Recommendation: Gradually adjust bedtime toward a consistent target (e.g., 22:30-23:00) to align with chronobiology research showing improved sleep quality with regular schedules. Consider implementing a 30-minute pre-bed routine to reinforce circadian cues.</p>	<p>Your bedtime start time variability over the past 30 days shows significant inconsistency, which deviates from recommended sleep hygiene guidelines. Here's the analysis:</p> <p>1. Variability Pattern**: - Bedtimes range widely from 21:26 to 01:26 (a 4-hour window) - Frequent late bedtimes (past midnight on 8 occasions) - No consistent pattern emerges from the data</p> <p>2. Guideline Comparison**: - Sleep hygiene emphasizes consistency (± 30 minutes is ideal) - Your variability exceeds this by 8x the recommended threshold - Late bedtimes may indicate circadian rhythm disruption</p> <p>3. Data Observations**: - 27% of nights had bedtimes after midnight - Only 3 nights fell within a 1-hour window (22:30-23:30) - One missing data point (2020-03-03) ... [truncated]</p>	<p>Your bedtime start time variability over the past 30 days shows significant inconsistency, which deviates from sleep hygiene recommendations emphasizing consistency. Key observations:</p> <p>1. Variability Pattern**: - Bedtime ranges from 21:26 to 01:26 (4-hour window), with frequent 1-hour day-to-day shifts - 40% of nights had bedtimes after midnight (vs. recommended 8pm-12am window for adults)</p> <p>2. Impact on Sleep Metrics**: - Later bedtimes correlate with shorter sleep duration (e.g., 01:26 bedtime \rightarrow 5.4h sleep vs 21:26 \rightarrow 9h sleep). - Mood data (where available) shows better scores (4/5) on days following earlier bedtimes.</p> <p>3. Guideline Comparison**: - Sleep hygiene recommends ± 30min variability in bedtime - Your average variability exceeds 90min, with 7 instances of 2-hour differences between consecutive nights ... [truncated]</p>

1890	Example 5: A case where incorporating additional metrics provides deeper insights beyond the primary data, enabling a more comprehensive understanding of the queried condition.		
1891	Query: Have there been any noticeable patterns in my mental fatigue over the past week?		
1892	<i>Openness - 0.5</i>		
1893	<i>Query type - Trend Analysis</i>		
1894	Base(Rank-3) – Context	Rag(Rank-2) – Context	WAG(Rank-1) – Context
1895	Matched nodes:	Matched nodes:	Matched nodes:
1896	<p>Mental fatigue : sensor specific information if available:</p> <p>1.description: self-report fatigue score</p> <p>2.range: 1-5 scale. Score 3 is normal, and 1-2 are scores below normal, and 4-5 are scores above normal</p> <p>3.unit:</p> <p>Data:</p> <p>— date — Mental fatigue —</p> <p>—:—</p> <p>— 2020-03-02 — 3 —</p> <p>— 2020-03-03 — 2 —</p> <p>— 2020-03-04 — 3 —</p> <p>— 2020-03-05 — 4 —</p> <p>— 2020-03-06 — 2 —</p> <p>— 2020-03-07 — 4 —</p> <p>— 2020-03-08 — 2 —</p> <p>No deviation from baseline recorded for the recent 7-day period.</p>	<p>Mental fatigue : description: Mental fatigue is a psychobiological state characterized by feelings of tiredness and reduced cognitive efficiency, typically resulting from prolonged periods of demanding mental activity. It manifests as difficulty concentrating, slower mental processing, and increased errors in task performance. Mental fatigue can also present physical symptoms such as headaches, stomach aches, and sleep disturbances. It is commonly assessed through self-reported scales and behavioral performance metrics.</p> <p>range: Mental fatigue is typically measured using subjective scales, such as the Mental Fatigue Scale (MFS), ... [truncated]</p>	<p>Mental fatigue : description: Mental fatigue ... [truncated]</p> <p>Nodes related to matched nodes which might be helpful:</p> <p>Total sleep duration : description: Total Sleep Duration (TST) refers to ... [truncated]</p> <p>Asleep duration : description: Total Sleep Duration (TSD) refers to ... [truncated]</p>
1912	Response	Response	Response
1913			
1914	Answer: Over the past week, your mental fatigue scores show variability with no clear upward or downward trend. The pattern alternates between normal (score 3) and deviations in both directions:	Your mental fatigue data over the past week (March 2-8, 2020) shows a fluctuating pattern with scores alternating between normal (score 3) and elevated levels (scores 4-5). Key observations:	### Analysis of Mental Fatigue Patterns (Past Week):
1915	- **Below normal** (scores 2) on 3/03, 3/06, and 3/08	1. **Pattern**: - 3 days at normal baseline (score 3) - 2 days with elevated fatigue (score 4) - 2 days with below-normal reports (score 2)	- **1. Mental Fatigue Scores:** - Your self-reported fatigue scores (1-5 scale) show variability:
1916	- **Above normal** (scores 4) on 3/05 and 3/07	2. **Notable Peaks**: - March 5th and 7th showed elevated fatigue (score 4), indicating days of significantly increased mental tiredness	- **2. Sleep Correlations:** - **Total Sleep Duration:** - Lowest sleep (351 min on March 3rd) preceded a low fatigue day (March 3rd score 2) - Highest sleep (594 min on March 7th) coincided with high fatigue (March 7th score 4) - This inverse pattern suggests sleep duration alone doesn't explain your fatigue levels.
1917	No baseline deviation was recorded, suggesting these fluctuations may represent typical variation rather than a sustained shift. For actionable insights, consider correlating these scores with sleep, stress, or activity data if available.	3. **Comparison**: - This variation falls within your normal range (no statistical abnormality detected)	- **Asleep Duration:** - Similar pattern observed, with no clear linear relationship to fatigue scores.
1918	*Limitation: Self-reported scores may not capture all contributing factors.*	The alternating pattern suggests possible workload variability or recovery periods between demanding cognitive activities. The two elevated fatigue days may warrant examination of specific activities or stressors occurring on March 5th and 7th.	**3. Key Observations:** - Your highest fatigue days (March 5th and 7th) followed days with *above-average* sleep duration (560 min and 568 min respectively on prior nights).
1919		Recommendation: Consider implementing the fatigue management strategies mentioned (timeboxing, scheduled breaks) particularly on days following elevated fatigue scores to support recovery.	- Lowest fatigue occurred after your *shortest* sleep night (March 3rd after 351 min sleep). - This may indicate: - Potential sleep quality issues (e.g., disrupted sleep architecture despite longer duration) - Non-sleep factors influencing fatigue (e.g., stress, cognitive load) - Delayed fatigue effects (e.g., fatigue manifesting 1-2 days after sleep changes) ... [truncated]
1920			
1921			
1922			
1923			
1924			
1925			
1926			
1927			
1928			
1929			
1930			
1931			
1932			
1933			
1934			
1935			
1936			
1937			
1938			
1939			
1940			
1941			
1942			
1943			

1944

Example 6: A case where the query involves non-numerical metric.

1945

Query: What key insights can be derived from my lifelog data over the past 7 days?

1946

Openness - 0.9

1947

Query type - Exploratory Analysis

1948

Base(Rank-2) – Context

1949

Matched nodes:

Lifelog :

sensor specific information if available:

1.description:

2.range:

3.unit:

Data:

— date — Lifelog —

— : — : —

— 2019-11-13 — I suffered from injuries:

{'left_elbow': 'minor', 'right_shoulder': 'minor'} —

No deviation from baseline recorded for the recent 7-day period.

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

Answer: Your lifelog data for the past 7 days shows no recorded health metrics (e.g., HRV, heart rate, or activity levels)

1974

as all entries except one are marked 'nan' (not available).

1975

The only notable event was on 2019-11-13, when you reported

1976

minor injuries to your left elbow and right shoulder.

1977

1978

Key Insights:**

1979

1. **Data Gap**:** No measurable health data was captured for 6 out of 7 days, limiting trend analysis.

1980

2. **Injury Context**:** The minor injuries on 2019-11-13 may warrant monitoring for recovery (e.g., pain duration, mobility changes), but no follow-up data is available.

1981

1982

Recommendations:**

1983

- Verify sensor functionality to ensure future data collection.

1984

- Log additional details about injuries (e.g., cause, symptoms) to assess impact.

1985

- If injuries persist beyond typical healing time (7–10 days for minor soft-tissue injuries), consult a healthcare provider.

1986

Limitation*: Insights are constrained by missing data. No baseline comparisons or longitudinal trends can be derived.

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Response

Answer: Your lifelog data for the past 7 days shows limited recorded activity, with only one notable entry on ***2019-11-13*** indicating minor injuries to your left elbow and right shoulder. No other health metrics, activities, or physiological data were captured during this period.

1998

Key Insights:1. **Data Gaps**:** The lifelog contains mostly empty entries ('nan'), suggesting inconsistent data collection or potential device/sensor issues.

1999

2. **Injury Record**:** The minor injuries logged on 2019-11-13 may warrant monitoring for recovery progress, but no follow-up data is available.

2000

3. **No Abnormalities**:** The system detected no deviations from your baseline, but this assessment is limited due to sparse data.

2001

Recommendations:

2002

- Verify device/sensor functionality to ensure continuous data capture.

2003

- Expand tracked metrics (e.g., activity levels, sleep, HRV) for more actionable insights.

2004

- Log updates on injury recovery if symptoms persist.

2005

Note: Conclusions are constrained by insufficient data granularity.

Rag(Rank-3) – Context

Matched nodes:

Lifelog :

description: A lifelog is a comprehensive digital record of an individual's daily life, capturing events, activities, and interactions in varying levels of detail.

It serves as a personal archive that can be used for memory retrieval, behavioral analysis, and health monitoring.

Lifelogging systems often utilize wearable devices, smartphones, and other sensors to collect data, which can be analyzed to

identify patterns, predict behaviors, and support decision-making in healthcare and personal development.

... [truncated]

— 2019-11-13 — I suffered from injuries:

{'left_elbow': 'minor', 'right_shoulder': 'minor'} —

1999

No deviation from baseline recorded for the recent 7-day period.

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

WAG(Rank-1) – Context

Matched nodes:

Lifelog :

description: A lifelog is a comprehensive digital record of an individual's daily life,

... [truncated]

Nodes related to matched nodes which might be helpful:

Deep sleep duration :

... [truncated]

— date — Deep sleep duration —

— : — : —

— 2019-11-07 — 40 —

— 2019-11-08 — 73 —

— 2019-11-09 — 35 —

— 2019-11-10 — 76 —

— 2019-11-11 — 67 —

— 2019-11-12 — 4 —

— 2019-11-13 — 28 —

Moderately active time :

... [truncated]

Asleep duration :

... [truncated]

Total sleep duration :

... [truncated]

Response

Here are the key insights derived from your lifelog data over the past 7 days:

1. **Injury Event**:** On 2019-11-13, you reported minor injuries to your left elbow and right shoulder. This may correlate with the observed fluctuations in sleep and activity metrics.2. **Sleep Patterns**:**- **Deep Sleep**:** Varied significantly (4-76 minutes), with a notable drop to just 4 minutes on 2019-11-12. The 7-day average deviates +1.18 SD from your baseline, suggesting unusual instability.- **Total Sleep Duration**:** Ranged from 220-478 minutes (3.7-8 hours), with the shortest duration coinciding with the day of lowest deep sleep (2019-11-12).3. **Activity Levels**:**

- Moderately active time showed a progressive increase (14-49 minutes/day),

peaking on the injury reporting day (2019-11-13). The 7-day average is 0.83 SD above your baseline.

4. **Critical Observations**:**

- The injury date (2019-11-13) coincided with both your highest activity level (49 minutes) and suboptimal deep sleep (28 minutes).

- The most extreme sleep disruption (2019-11-12) preceded the injury report, suggesting possible fatigue as a contributing factor.

... [truncated]

1998
1999

K PROMPTS

2000

Prompt 1: QueryGen-single

2001

```

"""
Generate diverse, clinically relevant questions about health metrics from wearable data.

INPUT FORMAT (Array of metric objects):
[
    {
        "id": "<unique_id>",
        "name": "<metric_name>", # The health metric being analyzed
        "description": "<definition>", # Clinical definition of the metric
        "date": "<YYYY-MM-DD>",
        "time_granularity": "<1/7/14/30/60/all>", # Time period covered
        "abnormality_level": "<low/medium/high>", # Deviation from user's baseline
    },
    ...
]

OUTPUT FORMAT (Array of questions - one per input metric):
[
    {
        "id": "<matching_input_id>",
        "question": "<clear, time-bound phrasing>",
        "question_type": "<one of: General Knowledge | Data Retrieval | Trend Analysis | Comparative Insight | Anomaly Detection | Actionable Advice | Exploratory Analysis>",
        "openness": <0.0-1.0>, # 0.0=closed, 1.0=open-ended
    },
    ...
]

QUESTION FRAMEWORK:
1. **General Knowledge** (Openness: 0.2-0.4)
    - Definitions, benchmarks, normal ranges
    - Example: "What's considered a healthy range for [metric]?" "What is [metric]?""

2. **Data Retrieval** (Openness: 0.1-0.3)
    - Specific time-bound numerical queries
    - Example: "What was my [metric] yesterday?" "What was my max/min/average [metric] this week?"

3. **Trend Analysis** (Openness: 0.4-0.6)
    - Patterns over days/weeks/months
    - Example: "Identify any trends in my [metric] over the last 30 days." "Summarize my [metric] for the past month."

4. **Comparative Insight** (Openness: 0.5-0.7)
    - Time-period comparisons
    - Example: "How does this week's [metric] compare to last week?""

5. **Anomaly Detection** (Openness: 0.6-0.8)
    - Statistical outliers
    - Example: "Were there unusual [metric] spikes in this month?""

6. **Actionable Advice** (Openness: 0.3-0.5)
    - Data-driven recommendations
    - Example: "What adjustments could improve my [metric]?""

7. **Exploratory Analysis** (Openness: 0.7-1.0)
    - Multi-factor investigations
    - Example: "Do you think I am stressed recently?" "I'm feeling really tired today. do you know why?" "Why might I be feeling tired despite sleeping 8 hours?""

GENERATION RULES:
1. Time binding:
    - Map granularity to natural terms:
        1 "today"
        7 "past 7 days"
        14 "past 14 days"
        30 "past 30 days"
        60 "past 60 days"
        all "overall"
2. Blend concrete and exploratory questions per category:
    - 40% objective (openness 0.4)
    - 30% moderate (0.4 < openness < 0.7)
    - 30% open-ended (0.7)
3. Prevent overlap between categories
4. For medium/high abnormalities, prioritize generating high openness questions
5. Exactly 1 output question per input group

EXAMPLES:
INPUT:
[
    {
        "id": "m001",
        "name": "Inactive time",
        "description": "The amount of time a user is inactive, measured in minutes",
        "date": "2020-01-01",
        "time_granularity": "1",
    }
]

```

```

2052
2053     "abnormality_level": "low",
2054     },
2055     {
2056         "id": "m002",
2057         "name": "total sleep time",
2058         "description": "The total amount of time a user spends in sleep",
2059         "date": "2020-02-02",
2060         "time_granularity": "14",
2061         "abnormality_level": "high",
2062     },
2063     ...
2064   ]
2065 OUTPUT:
2066 [
2067   {
2068     "id": "m001",
2069     "question": "What was my inactive time today?",
2070     "question_type": "Data Retrieval",
2071     "openness": 0.1,
2072   },
2073   {
2074     "id": "m002",
2075     "question": "How does my total sleep time over the past 14 days compare to the previous
2076     period?",
2077     "question_type": "Comparative Insight",
2078     "openness": 0.7,
2079   },
2080   ...
2081 ]
2082 """
2083

```

Prompt 2: QueryGen_multiple

```

2084 """
2085 Generate clinically relevant questions from wearable data, with each question containing 2-3
2086 metrics.
2087
2088 INPUT FORMAT (Array of metric objects):
2089 [
2090   {
2091     "id": "<unique_id>",
2092     "metrics": [
2093       {
2094         "name": "<metric_name_1>", # The health metric being analyzed
2095         "description": "<definition>", # Clinical definition of the metric
2096       },
2097       {
2098         "name": "<metric_name_2>", # The health metric being analyzed
2099         "description": "<definition>", # Clinical definition of the metric
2100       },
2101       ...
2102     ],
2103     "date": "<YYYY-MM-DD>",
2104     "time_granularity": "<1/7/14/30/60/all>", # Time period covered
2105   },
2106   ...
2107 ]
2108 OUTPUT FORMAT (Array of questions - one per input):
2109 [
2110   {
2111     "id": "<matching_input_id>",
2112     "question": "<clear, time-bound phrasing>",
2113     "question_type": "<one of: Metric Relationships / Contextual Queries>",
2114     "openness": <0.0-1.0>, # 0.0=closed, 1.0=open-ended
2115   },
2116   ...
2117 ]
2118 QUESTION FRAMEWORK:
2119 1. **Metric Relationships** (Openness: 0.4-0.6)
2120   - Example: "Does [metric1] relate to [metric2] trends for the past 30 days?"
2121 2. **Contextual Queries** (Openness: 0.5-0.7)
2122   - Example: "Do [metric1] spikes follow days with high [metric2]?" "Is there a pattern in my
2123     [metric1] on days I have a higher [metric2] for the past week?"
2124
2125 GENERATION RULES:
2126 1. Time binding:
2127   - Map granularity to natural terms:
2128     1 "today"
2129     7 "past 7 days"
2130     14 "past 14 days"
2131     30 "past 30 days"
2132     all "overall"
2133 2. Each question must reference metrics from the input list
2134 3. Exactly 1 output question per input group
2135 EXAMPLES:
2136 INPUT:
2137 [
2138   {
2139     "id": "001",
2140   }

```

```

2106
2107     "metrics": [
2108         {
2109             "name": "resting_heart_rate",
2110             "description": "Beats per minute at complete rest"
2111         },
2112         {
2113             "name": "sleep_duration",
2114             "description": "Total minutes of sleep per night"
2115         }
2116     ],
2117     "date": "2023-11-15",
2118     "time_granularity": "30"
2119   }
2120 }
2121
2122 """
2123

```

Prompt 3: Context

```

"""
2124 You are a clinical expert in wearable sensor measurements.
2125 The goal is to generate a knowledge graph that connects multimodal wearable data (e.g., sleep
2126 metrics, activity levels, and self-reported affect)
2127 This graph will serve as a key resource for a retrieval-augmented generation process in an
2128 LLM, supporting insight discovery, outcome prediction, and personalized intervention
2129 design.
2130 Process:
2131 step 1 Initial Node Creation:
2132 given a comprehensive list of health metrics commonly measurable by wearable devices,
2133 generate a node representation for each metric.
2134
2135 step 2 Relationship Mapping:
2136 given all the nodes, determine the relationships between each pair of nodes and create edges
2137 between them.
2138
2139 step 3 New Metric Integration:
2140 given a list of new wearable health metrics and all existing nodes.
2141 for each metric, you will need to check against existing graph nodes to identify potential
2142 duplicates, and merge if a match was found.
2143
2144 step 4 Graph Extension:
2145 the remaining new metrics from step 3 will be added to the graph as new nodes and edges will
2146 be created to connect them to the existing nodes.
2147
2148 """
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

```

2160

Prompt 4: NodeGen

2161

2162

```

"""
-Goal-
Generate a standardized node representation for a wearable sensor measurement that
    synthesizes available information with your own clinical knowledge.
be aware that some reference data may not be related to the entity, so you should be careful
    to filter out the irrelevant information but the provided data is important and should
    always be used.
-Input Format-
{
    "entity_name": "<measurement_name>",

    // source: Device/sensor documentation
    "provided_description": "<provided_description>",
    "provided_range": "<provided_range>",

    // source: web search
    "web_description": "<web_search_results>",
    "value_range": "<ranges>",
    "recommendations": "<guidelines>"

    // source: UMLS
    "umls_description": "<umls_definition>",

}

-Output Format-
{
    "name": "<standardized_name>",
    "description": "<comprehensive_description>",
    "range": "<range_info_or_None>",
    "recommendations": "<guidelines_or_None>"
}

-Guidelines-
1. Name:
    - Use standardized medical terminology
    - Keep concise but clear
    - Include common abbreviation if applicable

2. Description (Required):
    - What is being measured
    - How it's measured
    - Clinical significance
    - Relationship to health outcomes

3. Range (if applicable):
    - Normal ranges for different demographics
    - Units of measurement
    - Alert thresholds
    - Output "None" if not applicable (e.g. gesture recognized does not have a range)

4. Recommendations (if applicable):
    - Evidence-based
    - Actionable
    - Context-aware
    - Output "None" if not applicable (e.g. there is not such a recommendation for improvement
        for the entity, like gesture)

-Examples-
Example 1:
Input:
{
    "entity_name": "Energy expenditure",
    "provided_description": "Energy consumption caused by the physical activity of the day.",
    "provided_range": "range: None unit: kcal",
    "web_description": "As people pursue activities at multiple locations, trips are produced
        between successive activity locations. Patterns formed by trips over a period, such as
        a day, are called 'travel patterns.\nReference 0: Pattern means two or more acts
        occurring over a period of time, however short, ...",
    "umls_description": "",
    "value_range": "\nReference 0: A travel pattern refers to the classification of daily travel
        behaviors based on factors such as the number of trips and total travel
        time.\nReference 1: Long-distance trips are journeys of more than 50 miles from home to
        the furthest destination.\nReference 2: New MIT research confirms peoplec
        .....[truncated]....."
}
"""

```

2207

2208

2209

2210

2211

2212

2213

```

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

```

Prompt 5: EdgeGen

```

"""
-Goal-
Analyze relationships between pairs of wearable health metrics and generate standardized edge
representations.
Use provided descriptions, web search results, and your own clinical knowledge to determine
meaningful relationships.
be aware that some reference information may not be accurate or related to the entity, so you
should be careful to filter out the irrelevant information.
-Input Format-
[
  {
    "id": "<id>",
    "entity_1_name": "<entity_1_name>",
    "entity_1_description": "<entity_1_description>",
    "entity_2_name": "<entity_2_name>",
    "entity_2_description": "<entity_2_description>",
    "web_search_results": "<relevant_search_results>",
  }
]
...

-Output Format-
[
  {
    "id": str,
    "entity_1_name": str,
    "entity_2_name": str,
    "relationship": {
      "description": str, # Detailed explanation of the relationship
      "strength": float, # 0.1 to 1.0
      "confidence": str # "high", "medium", or "low" based on evidence quality
    },
  }
]
...

RELATIONSHIP SCORING:
- Strong (0.7-1.0):
  * Clear scientific evidence
  * Direct causal or strong correlational relationship
  * Well-documented in medical literature

- Moderate (0.3-0.6):
  * Some scientific evidence
  * Indirect or secondary relationship
  * Limited but consistent documentation

- Weak (0.1-0.2):
  * Limited or circumstantial evidence
  * Indirect relationship with multiple variables
  * Inconsistent documentation

- Not Related (<0.1):
  * Exclude from output
  * No meaningful connection
  * No supporting evidence

-Examples-
Example 1:
Input:
[
  {
    "id": "1",
    "entity_1_name": "Heart rate",
    "entity_1_description": "The number of heartbeats per unit of time, usually expressed as
beats per minute.",
    "entity_2_name": "Blood pressure",
    "entity_2_description": "The pressure of the circulating blood against the walls of the
blood vessels.",
    "web_search_results": "Elevated heart rate is associated with elevated blood pressure,
increased
.....[truncated]....."
  }
]
"""

```

Prompt 6: Merge

```
2268
2269 """
2270 -Goal-
2271 Analyze a new node against existing nodes to identify potential duplicates in a wearable
2272 health knowledge graph.
2273
2274 GUIDELINES FOR COMPARISON:
2275 1. Semantic Analysis:
2276     - Look beyond exact text matches
2277     - Consider medical synonyms and related terms
2278     - Evaluate contextual meaning in healthcare
2279
2280 2. Description Analysis:
2281     - Identify overlapping concepts
2282     - Consider complementary information
2283     - Evaluate scope and specificity
2284
2285 3. Scoring Criteria:
2286     0.0-0.3: Clearly different concepts
2287     0.4-0.6: Related but distinct
2288     0.7-0.8: Highly similar
2289     0.9-1.0: Virtually identical
2290
2291 4. Only return the node if you think it is a duplicate of an existing node.
2292
2293 INPUT FORMAT:
2294 [
2295     "input_name": "new node name",
2296     "input_description": "new node description",
2297     "references": [
2298         {
2299             "name": "existing node 1 name",
2300             "description": "existing node 1 description"
2301         },
2302         {
2303             "name": "existing node 2 name",
2304             "description": "existing node 2 description"
2305         }
2306     ...
2307 ]
2308
2309 OUTPUT FORMAT:
2310 [
2311     {
2312         "input_name": "new node name",
2313         "reference_name": "matched existing node name",
2314         "similarity_score": <float 0-1>,
2315         "same_concept": <boolean>,
2316         "reasoning": "clear explanation of similarity assessment and why the nodes are the same
2317             or different"
2318     }
2319     ...
2320 ]
2321
2322 EXAMPLE :
2323 Input:
2324 [
2325     "input_name": "steps",
2326     "input_description": "Total number of steps registered during the day.",
2327     "references": [
2328         {
2329             "name": "Steps taken",
2330             "description": "Steps Taken refers to the total number of steps registered by a wearable
2331                 device over a given period, typically a day. It is a key metric for assessing
2332                 physical activity levels, with higher step counts generally associated with better
2333                 cardiovascular health, weight management, and overall fitness. Wearable devices
2334                 track steps using accelerometers or gyroscopes to detect motion and count steps
2335                 based on movement patterns."
2336         },
2337         ....[truncated].....
2338     ]
2339 ]
2340
2341 Output:
2342 [
2343     {
2344         "input_name": "steps",
2345         "reference_name": "Steps taken",
2346         "similarity_score": 0.95,
2347         "same_concept": true,
2348         "reasoning": "Both nodes refer to the total number of steps registered by a wearable
2349             device over a given period, typically a day. The descriptions are nearly identical,
2350             with both emphasizing the use of accelerometers or gyroscopes to detect motion and
2351             count steps. The terms 'steps' and 'steps taken' are semantically equivalent in this
2352             context."
2353     }
2354 ]
2355
2356 """
2357
```

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

Prompt 7: Query_base

```
"""
## CORE OBJECTIVE
Analyze health queries through structured function calls to external knowledge retrieval APIs,
synthesizing results into evidence-based responses through systematic analysis of
retrieved context.

## EXECUTION FRAMEWORK

1. **QUERY DECOMPOSITION**
- **Key Entities**: Identify health metrics (e.g., HRV, heart rate)
- **Temporal Scope**:
  - Default: Past 7 days
  - Explicitly stated periods override default

2. **KNOWLEDGE RETRIEVAL**
- Primary Entity Matching: Fetch data for core health metric.
- Contextual Filtering: Apply time-based constraints.

3. **ANALYSIS**
- Cross-reference data with medical best practices.
- Highlight trends, anomalies, or gaps.

4. **RESPONSE GENERATION**
- Requirements:
  - Ground all claims in evidence
  - Acknowledge data limitations
  - For unanswerable queries: Specify missing data

## OUTPUT FORMAT
Answer: Concise response with integrated insights.
"""
```

Prompt 8: Query_wag

```
"""
## CORE OBJECTIVE
Analyze health queries through structured function calls to external graph traversal APIs,
synthesizing results into evidence-based responses through systematic analysis of
entities, relationships, and multimodal connections.

## EXECUTION FRAMEWORK

1. **QUERY DECOMPOSITION**
- **Key Entities**: Identify primary subjects/measurements (e.g., HRV, heart rate)
- **Temporal Scope**:
  - Default: Past 7 days
  - Explicitly stated periods override default
- **Openness Score** (0.0-1.0):
  / Score Range | Search Strategy | Examples /
  /-----|-----|-----/
  / 0.0-0.3 | Narrow focus on exact matches | "Optimal HRV range?" (0.0) /
  / 0.4-0.7 | Balanced entity+relationships | "HR comparison week/week?" (0.5) /
  / 0.8-1.0 | Broad multimodal exploration | "Why elevated heart rate?" (0.9) /

2. **GRAPH TRAVERSAL**
- Primary entity matching
- Relationship expansion proportional to openness score
- Contextual data retrieval with temporal filtering

3. **MULTIMODAL ANALYSIS**
- Cross-reference data types:
  * Physiological (HRV, HR)
  * Environmental (sleep, activity)
  * Subjective (user notes)
- Identify:
  - Consistent corroborating evidence
  - Conflicting indicators
  - Temporal patterns

4. **RESPONSE GENERATION**
- Requirements:
  - Ground all claims in evidence
  - Acknowledge data limitations
  - For unanswerable queries: Specify missing data
- Prioritize:
  - Direct correlations > inferred relationships
  - User-specific context > general knowledge

## OUTPUT FORMAT
Answer: Concise response with integrated insights.
"""
```

2376

Prompt 9: Eval

2377

2378

2379

You are an expert in clinical evaluation and human-centered AI systems. Your task is to evaluate and compare the quality of response generated by multiple methods to answer a user's health-related query based on their wearable data.

2380

2381

2382

2383

Each retrieval method provides a different set of contextual knowledge (e.g., entities, relationships, multimodal time-series patterns) intended to support answering the user's question. Your goal is to assess the quality of the response generated by each method.

2384

-Input Format-

2385

```
{
  "query": "<user's health question>",
  "methods": {
    "method_1": {
      "response": "<generated answer>"
    },
    "method_2": {
      "response": "<generated answer>"
    },
    ...
  }
}
```

2386

-Evaluation Criteria-

Rank the methods from 1 (best) to N (worst) for each of the following dimensions:

2387

1. **Insightfulness** (most important): Does the response offer meaningful, actionable insights beyond the obvious?

2388

2. **Relevance**: Is the response relevant and does it include novel information?

2389

3. **Groundedness**: Are factual claims well-supported by the provided content or trusted sources?

2390

4. **Personalization**: Does the response meaningfully incorporate the user's context (e.g., wearable data)?

2391

5. **Clarity**: Is the response clearly written, logically structured, and easy to understand for a non-expert?

2392

6. **Absence_of_harmful_content**: Is the response free from misleading, unsafe, or inappropriate information?

2393

Important Notes:

2394

Do not assign the same rank to multiple methods unless they are truly indistinguishable in that dimension.

2395

Rank relative to each other within the batch, not by absolute standards.

2396

Lower rank numbers are better (1 = best performance for that criterion).

2397

Output Format-

Return a dictionary with evaluation scores per method:

2398

```
{
  "method_1": {
    "Overall_quality": <1-N>,
    "Insightfulness": <1-N>,
    "Relevance": <1-N>,
    "Groundedness": <1-N>,
    "Personalization": <1-N>,
    "Clarity": <1-N>,
    "Absence_of_harmful_content": <0 or 1>
  },
  ...
}
```

2399

"""

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429