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ABSTRACT

The growing prevalence of multi-sensor wearable devices generates vast amounts
of long-term, multimodal time-series data, posing significant challenges for man-
ual analysis and context-aware Large Language Models (LLMs). Current LLM-
based health analysis methods typically rely on manually curated context, which
becomes impractical with increasing data volume and sensor diversity. To over-
come these limitations, we introduce Wearable As Graph (WAG), a novel frame-
work that automates context retrieval for LLMs using personalized knowledge
graphs. WAG constructs knowledge graphs mapping relationships between wear-
able modalities and incorporates user-specific data. We develop a data-driven re-
trieval pipeline that leverages both global (long-term) and local (short-term) rela-
tionships within metrics to identify the most relevant nodes for user queries. We
evaluate WAG on a benchmark of over 10k data-associated queries created from
multiple wearable datasets. Both LLM- and human-based evaluations show that
WAG substantially improves response quality, achieving a ∼70% win rate over
baseline methods. Ablation studies further demonstrate the complementary value
of global modeling (implemented via Hierarchical Bayesian Modeling to integrate
general knowledge, population trends, and individual variation) and local model-
ing (adapted based on anomalies and query openness). WAG pioneers a wearable
knowledge graph, a tailored retrieval algorithm, and a real-data based query set,
creating a foundation for future research in wearable-based health monitoring.

1 INTRODUCTION

Mobile and wearable sensors have become powerful tools for collecting rich behavioral and health
data. While clinical experts can analyze short-term, single-sensor data, long-term and multimodal
analysis presents significant challenges due to human cognitive limitations. Large Language Models
(LLMs) have demonstrated remarkable capabilities in interpreting time-series data—whether as raw
values, reprogrammed patches, or encoder embeddings—often surpassing specialized models in
pattern recognition tasks (Jin et al., 2024; Chan et al., 2024; Zhou et al., 2022; Mo et al., 2024;
Gruver et al., 2023). Researchers have successfully applied LLMs to wearable data, combining
textual and temporal information for health predictions across domains such as sleep, activity (Kim
et al., 2024; Liu et al., 2023; Merrill et al., 2024; Englhardt et al., 2024), nutrition (Sempionatto
et al., 2021), and mental health (Tazarv et al., 2021; Vos et al., 2023; Salekin et al., 2018).

Despite these advances, most existing methods require manual context preparation tailored to spe-
cific tasks. As wearable devices incorporate more sensors and accumulate longer time series, pro-
viding all data as context to LLMs becomes infeasible. Longer contexts increase computational
cost, inference time, and the risk of including irrelevant information, which can reduce analytical
performance (Liu et al., 2024).

To address these challenges, we propose Wearable As Graph (WAG): a context retrieval framework
that enables LLMs to automatically identify and retrieve relevant sensor data based on user queries.
Building on the established use of knowledge graphs in medical domains such as Electronic Health
Records (EHRs), WAG also employs a graph-based Retrieval-Augmented Generation (RAG) pro-
cess. This method integrates and aligns multimodal sensor data, retrieving the most informative
context to support robust, evidence-based LLM analysis.

1
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Our main contributions are as follows:

• We introduce the first knowledge graph for wearable sensors, capturing connections across
common modalities while supporting personalization with user-specific data.

• We construct a query set of over 10k data-associated queries from multiple wearable
datasets to benchmark our framework.

• We design a data-driven context retrieval pipeline that combines long-term relationships
(global modeling) with short-term anomalies (local modeling) of metrics to enhance health
analysis using LLMs.

• We conduct both LLM- and human-based evaluations. Results show that WAG achieves a
70% win rate over baselines. Ablation studies validate the effectiveness of global mod-
eling (via Hierarchical Bayesian Modeling, integrating general knowledge, population
trends, and individual variations) and local modeling (capturing anomalies and balanc-
ing exploratory vs. conservative reasoning based on query openness). Human evaluations,
though with high inter-rater reliability, also align closely with LLM findings.

2 RELATED WORK

LLM for Wearable Sensing Large Language Models (LLMs) have shown strong capabilities in
interpreting time-series data.(Gruver et al., 2023; Jin et al., 2024) Their zero-shot reasoning ability
has spurred widespread use in automated data analysis,(Chakraborty et al., 2024; Guo et al., 2024;
Hong et al., 2024; Jiang et al., 2023; Hegselmann et al., 2023) where time-series signals are espe-
cially common in wearable health sensing.(Tazarv et al., 2021; Vos et al., 2023; Salekin et al., 2018;
Belyaeva et al., 2023) Integrating LLMs into this domain holds promise not only for improving
prediction and forecasting but also for generating meaningful insights that extend beyond label out-
puts.(Kim et al., 2024; Liu et al., 2023; Merrill et al., 2024; Englhardt et al., 2024; Ma et al., 2023;
Strömel et al., 2024; Choe et al., 2015) However, existing methods typically assume that all relevant
data is readily available. Our work addresses this gap by introducing an automated context retrieval
process that selects suitable health data from large clusters of sensor signals based on user queries,
prior to downstream analysis.

Graph-based RAG Retrieval-Augmented Generation (RAG)(Lewis et al., 2020) equips LLMs
with external knowledge, offering an efficient alternative to retraining.(Hu et al., 2022) Graphs,
structured representations of concept relationships, are widely used as knowledge bases to improve
LLM reasoning.(Sun et al., 2018; Rotmensch et al., 2017; Edge et al., 2025) Although LLMs encode
broad medical knowledge,(Singhal et al., 2023a) they often fall short in delivering contextualized
analyses in applications such as electronic health record (EHR) analysis (Shi et al., 2024; Kweon
et al., 2024; Liu et al., 2022; Cui et al., 2024; Choi et al., 2018; Yang et al., 2022) and medical
question answering (QA).(Tang et al., 2024; Toma et al., 2023; Tu et al., 2024; Singhal et al., 2023b;
Saab et al., 2024) To bridge this gap, graph-based RAG methods have been explored for injecting
precise, in-domain medical knowledge.(Fei et al., 2021; Bhoi et al., 2021; Chen et al., 2019; Shang
et al., 2019; Jiang et al., 2025) Wearable data analysis presents a similar challenge, as it may also
requires expertise-level health knowledge that LLMs may lack. Yet, to the best of our knowledge,
no knowledge graph currently captures the connections among wearable health metrics. This gap
motivates our development of such a graph to enable more effective, contextualized analysis of
wearable health data.

3 METHOD

WAG is designed to construct a personalized knowledge graph (PKG) that stores both general knowl-
edge and user-specific wearable data. Through carefully designed graph-based retrieval, WAG lever-
ages the PKG to provide richer and more context-aware health insights. The framework consists of
four key stages: (1) query set construction, (2) knowledge graph construction, (3) query inference
using a personal knowledge graph (PKG), and (4) evaluation.

3.1 QUERY SET CONSTRUCTION

To simulate the construction of PKGs and the querying process, we used existing wearable datasets
that record various daily health metrics across multiple participants. These datasets enabled us

2
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Figure 1: Main diagram.

to generate a diverse data associated query set reflecting single- and multi-metric questions. By
leveraging real-world data, our simulation closely mirrors practical scenarios in which WAG would
provide personalized, context-aware insights.

PARTICIPANT SELECTION

For a given dataset D, we selected a subset of subjects Ssel ⊂ S. The selection was based on the
following criteria to ensure a diverse and representative sample:

Missing Data Percentage: The percentage of missing data for a subject s is calculated across all
metrics m ∈ MD as:

MDs = 1
|MD|

∑
m∈MD

|{t∈Ts:vs,m,t=∅}|
|Ts| , where MD is the set of all measured metrics, Ts is the

set of all timestamps for participant s, and vs,m,t is the value of metric m at time t.

Valid Period Length: The length of a participant’s data collection period is defined as: VLs =
max(Ts)−min(Ts)
Data Variability and Interdependence:

• Coefficient of Variation: The overall variability of a participant’s data across all metrics:
CVs =

∑
m∈MD

σs,m

µs,m
, where σs,m and µs,m are the standard deviation and mean, respec-

tively, of metric m for subject s.
• Pairwise Mutual Information: The total pairwise mutual information between all metrics,

quantifying their statistical dependencies: MIp =
∑

(mi,mj)∈MD2

i<j

I(mi;mj)

Participants were first selected based on high data completeness and recording duration. We then
applied stratified sampling across deciles of data variability, ensuring that the final cohort represents
a wide range of physiological dynamics and data conditions.

Then, for each selected participant, we sample specific timestamps and periods of interest for various
metrics. This sampled data forms the foundational evidence used to construct data-driven queries.
The query generation process is divided into two branches: single-metric and multi-metric queries.

QUERY GENERATION

Single Metric Query For each participant s ∈ Ssel and each metric m ∈ MD, we analyze the
data over a set of predefined temporal windows K = {1 day, 7 days, 14 days, 30 days, all time}. For
a given window size k ∈ K:

• numeric metrics: For metric m, we compute the abnormal level by computing the rolling
average of the absolute Z-scores of temporal window k: ζs,m,t =

1
k

∑k−1
i=0

∣∣∣vs,m,t−i−µs,m

σs,m

∣∣∣.
3
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We sample timestamps t where ζs,m,t falls into one of three anomaly levels: low (bottom
33%), medium (34–66%), or high (top 33%). Additionally, we sample timestamps tmissing
where the original data point is missing (vs,m,t = ∅).

• non-numeric metrics (e.g., text): We randomly select a timestamp t where a valid entry
exists (vs,m,t ̸= ∅).

The resulting input tuple for generating a single-metric query is

Isingle =
(
metric m, timestamp t, temporal window k, abnormal levels ζs,m,t,k

)
.

Multi-Metric Query For each participant s ∈ Ssel, multi-metric queries are generated as follows.
We first randomly select a subset of metrics Msel ⊂ MD with |Msel| ∈ {2, 3}. Next, we identify
a timestamp t at which all selected metrics have valid data, i.e., ∀m ∈ Msel, vs,m,t ̸= ∅. We then
randomly choose a temporal window k ∈ K.

The resulting input tuple for generating a multi-metric query is

Imultiple =
(
selected metric set Msel, timestamp t, temporal window k, abnormal levels ζs,Msel,t,k

)
.

Query Types We predefined a set of question categories, along with their openness ranges, for
both single- and multi-metric queries, with additional details provided in Appendix Table 24. These
categories span openness levels η ∈ [0, 1], which quantify how open-ended or exploratory a query
is.

Single-Metric General Knowledge (0.2–0.4), Data Retrieval (0.1–0.3), Trend Analysis (0.4–0.6), Comparative Insight
(0.5–0.7), Anomaly Detection (0.6–0.8), Actionable Advice (0.3–0.5), Exploratory Analysis (0.7–1.0)

Multi-metric Metric Relationships (0.4–0.6), Contextual Queries (0.5–0.7)

Queries with a high openness score invite a broad range of responses, often requiring exploration
of multiple contributing factors. In contrast, low-openness queries tend to be more closed-ended,
eliciting direct or binary answers with limited elaboration. Importantly, phrasing can shift a query’s
openness even if the intent remains similar. For instance: “Do you think I am stressed?” → low
openness (binary yes/no response). “I am feeling stressed, do you have an idea why?” → high
openness (encourages interpretation and reasoning).

The resulting query tuples are passed to a LLM via the QUERYGEN module (Appendix; Prompt 1,
Prompt 2), which takes [I1, I2, . . . , In] as input and generates the query set Q.

3.2 KNOWLEDGE GRAPH CONSTRUCTION

The objective of this step is to construct a knowledge graph G = (V, E) to model the interconnections
among various health-related metrics. In this graph, V represents the set of nodes corresponding to
different health metrics, while E denotes the edges that capture relationships between these metrics.

Nodes Each node v ∈ V represents a distinct health metric and is assigned to one of seven prede-
fined categories c ∈ C:

C = {Physiological, Sleep,Activity,Mental,Environmental,Lifestyle,Demographic}.

Each node is further characterized by the attributes Name, Description, Range, Recommendations,
and Data Source, etc. as detailed in Appendix Table 26.

Edges Each edge ei,j ∈ E is undirected and encodes the relationship between nodes vi and vj .
Each edge is characterized by the following attributes: Relationship, Description, Weight wi,j , as
detailed in Appendix Table 27.

Knowledge Extraction and Processing The textual information associated with nodes and
edges—including descriptions, units, ranges, and recommendations—is initially gathered through
web searches, scientific literature, and the Unified Medical Language System (UMLS). For web-
based sources, only pages from a curated list of trusted domains are used to ensure reliability. If

4
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a node pertains to personal health data, relevant contextual information, such as sensing signals,
measurement devices, and specialized value ranges, is also incorporated. To enhance completeness
and ensure evidence-based knowledge integration, all retrieved content is further processed using a
large language model (LLM) guided by carefully crafted prompting strategies.

GENERAL WEARABLE GRAPH

We started by introducing M0, a set of health metric concepts (e.g., heart rate, step count) commonly
measured by wearable devices, verified by medical experts. These metrics form the initial node set
V0 = (v1, v2, ..., v|M0|) of our graph G0 = (V0, E0), where edges E0 = (e1, e2, ..., e|E0|) represent

pairwise relationships between nodes, with |E0| =
(|M0|

2

)
. Edge weights w are initialized using a

predefined prior wprior; in our setup, they are assigned by an LLM and validated by human experts.

PERSONAL DATA INTEGRATION AND GRAPH EXTENSION

Algorithm 1 PKG Update

Require: Graph G0 = (V0, E0), Metrics MD =
{m1, . . . ,m|MD|},
LLM-based Functions
{NodeGen,EdgeGen,Merge, UpdateNode}

1: for each mi ∈MD do
2: if ∃vk ∈ V0 : MERGE(mi, vk) then
3: vk ← UPDATENODE(mi, vk)
4: else
5: vi ← NODEGEN(mi)
6: V0 ← V0 ∪ {vi}
7: for each vj ∈ V0 do
8: ei,j ← EDGEGEN(vi, vj)
9: E0 ← E0 ∪ ei,j

10: end for
11: end if
12: end for
13: return Updated graph G = (V0, E0)

To enhance the initial general knowledge
graph G0 with personal health metrics, we
introduce a set of novel measurable quan-
tities MD = {m1, . . . ,m|MD|} derived
from dataset D to simulate individual data
streams. These metrics are incorporated
following a structured process to construct
the personal knowledge graph G, as for-
malized in Algorithm 1.

Here, NodeGen performs knowledge re-
trieval from trusted knowledge bases and
feeds the information to the LLM (Ap-
pendix; Prompt 4) to generate node struc-
tures for each health metric concept m.
UpdateNode updates a existing node with
new sensor specific information from new
metric. Similarly, EdgeGen retrieves rel-
evant knowledge and feeds it to the LLM
(Appendix; Prompt 5) to generate edges
between connected nodes. Finally, Merge (Appendix; Prompt 6) identifies potential duplicate met-
rics using the LLM to prevent graph inflation from redundant nodes, ensuring that only genuinely
new metrics result in new nodes. Further deatils can be found in Appendix B.1.

4 WAG RETRIEVING AND AUGMENTED GENERATION

For each participant s ∈ Ssel, given a query q, a large language model extracts structured compo-
nents:

(Mq, kq, tq, ηq) = QueryParse(q),

where Mq = {m1, . . . ,m|Mq|} are detected entities or metrics, kq is the relevant time window, the
reference timestamp tq , and the openness score ηq .

The openness score ηq governs two aspects of retrieval from the personal knowledge graph G =
(V, E): (1) the breadth of expansion, i.e., how many neighbors are retrieved around primary en-
tities; and (2) the edge weight fusion, i.e., blending long-term (global) and short-term (local) rela-
tionship strengths. The procedure is summarized in Algorithm 2.

Each m ∈ Mq is matched to nodes in V using a semantic similarity function sim(·, ·) with threshold
δ. The resulting primary nodes Vp define neighborhoods Y = {y1, . . . , y|Y |} around each x ∈ Vp.

For each neighborhood, edges are reweighted by combining global and local components:

wfinal
x,y = (1− β)wglobal

x,y + β wlocal
x,y , β ∈ [0, 1], (1)

where wglobal ∈ Wglobal is the Bayesian-updated global weight, wlocal ∈ W local the openness-
modulated local weight (defined below) and β is the hyperparameter controlling wglobal and wlocal.

5
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GLOBAL MODELING OF LONG-TERM RELATIONSHIP MODELING

Formally, for subject s, the latent vector of long-term edge weights is Θs
x = [θsx,y1

, . . . , θsx,y|Y |
]⊤

estimated using a hierarchical Bayesian model (HBM) that integrates three information sources:

Wglobal = HBM
(
Wprior,Wpop,W ind),

where Wprior follows the Prior Distribution: Θs
x ∼ N

(
µprior

x ,Σprior
x

)
, initialized as a Gaussian

prior representing general knowledge.

Wpop is the Population Likelihood: Rpop
x | Θs

x ∼ N
(
Θs

x,V
pop
x

)
, representing observed relation-

ship patterns shared across subjects.

W ind is the Individual Likelihood: Rs
x | Θs

x ∼ N (Θs
x,V

s
x ) , representing observed relationship

patterns specific to the individual user.

From Bayes’ theorem, the full posterior distribution, combining all sources of information can be
viewed as updating the population-informed posterior with the individual’s data:

p(Θs
x | Rpop

x , Rs
x) ∝ p(Rs

x | Θs
x) p(Θ

s
x | Rpop

x ).

STAGE 1: POPULATION-INFORMED POSTERIOR VIA GAUSSIAN CONJUGATE PRIORS

First, we update the prior with the population data:

Θs
x | Rpop

x ∼ N (µpop
x ,Σpop

x ) ,

Σpop
x =

(
(Σprior

x )−1 + (V pop
x )−1

)−1
, µpop

x = Σpop
x

(
(Σprior

x )−1µprior
x + (V pop

x )−1Rpop
x

)
STAGE 2: SUBJECT-SPECIFIC POSTERIOR (FINAL)

We then update the population-informed posterior with the individual’s data:

Θs
x | Rpop

x , Rs
x ∼ N (µs

x,Σ
s
x) ,

Σs
x =

(
(Σpop

x )−1 + (V s
x )

−1
)−1

, µs
x = Σs

x

(
(Σpop

x )−1µpop
x + (V s

x )
−1Rs

x

)
Algorithm 2 WAG Retrieval
Require: Personal graph G = (V, E), User query q, LLM-

based function QueryParse, Similarity threshold δ,
Max number of retrieved nodes κ

1: (Mq, tq, ηq) ← QueryParse(q) {Extract entities, pe-
riod, openness}

2: Vprimary ← {v ∈ V : ∃m ∈Mq, sim(v,m) > δ}
3: Vsub ← Vprimary, Esub ← ∅
4: for each primary node vp ∈ Vprimary do
5: (Vnbr, Enbr) ← GETNEIGHBOR(vp,G, hops = 1) {1-

hop neighborhood expansion}
6: E ′nbr ← UPDATEWEIGHTS(Enbr, τ

q, ηq) {Apply
global and local modeling, Eq. 1}

7: Vtop ← RANKNODES(Vnbr, E ′nbr, k = ⌈κ/|Mq|⌉)
{Select top-k neighbors}

8: Vsub ← Vsub ∪ Vtop
9: Esub ← Esub ∪ E ′nbr

10: end for
11: return Gsub = (Vsub, Esub)

Intuitively, (µprior
x , Σprior

x ) encode prior
knowledge about the x–Y relationship
in the graph, whereas (Rpop

x , V pop
x ) and

(Rs
x, V

s
x ) capture population-level and

subject-specific empirical relationships,
respectively. Each covariance V quantifies
the uncertainty associated with its corre-
sponding domain.

LOCAL MODELING
OF SHORT-TERM RELATIONSHIP

Short-term weights capture context-
sensitive relationships over the past kq

days relative to query time tq . For node x
and neighbor y, the normalized abnormal-
ity score is: ζy = 1

kq

∑kq−1
i=0

∣∣∣ vy,tq−i−µy

σy

∣∣∣ ,
where µy and σy are the historical mean
and standard deviation.

The openness-modulated transformation
is:

wshort
x,y = (2ηq − 1) ζy + (1− ηq),

The parameter ηq acts as a dial between different behaviors:

6
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• ηq ≈ 0: wshort
x,y ≈ 1− ζy , which prioritizes neighbors with consistently low abnormality.

• ηq = 0.5: wshort
x,y = 0.5, which is independent of ζy . Here, the model effectively ignores

short-term abnormality and applies equal weighting across neighbors.
• ηq ≈ 1: wshort

x,y ≈ ζy , which emphasizes nodes with higher abnormality scores, allowing
sensitivity to transient deviations and emerging irregular patterns.

Final Retrieval. Top-κ/|Vp| neighbors are selected for each primary node using the fused weights
wfinal

x,y (Eq. 1). The final subgraph Gsub consists of all primary nodes, their selected neighbors, and
associated reweighted edges, which are then provided to the LLM for contextualized reasoning and
response generation via Appendix Prompt 7 and 8.

Further implementation details and derivations can be found in Appendices B.2 and G.

5 EXPERIMENT

DATASET

Figure 2: Visualization of the generated knowl-
edge graph.

In this study, we utilize several publicly avail-
able multimodal lifelogging datasets to ensure a
comprehensive analysis. The selected datasets
are described below: IFH Affect (Labbaf et al.,
2024), Pmdata (Thambawita et al., 2020), Lifes-
naps (Yfantidou et al., 2022), and Globem (Xu
et al., 2022). For each dataset D, we selected
10 groups, comprising 40 subjects in total. We
start identifying 65 health metrics(Appendix; Ta-
ble 28), from these datasets, a total of 52 distinct
wearable metrics are selected for incorporation
into our graph. A detailed breakdown of these
metrics is provided in Appendix Table 29. A vi-
sualization of our created WAG PKG is shown in
Figure 2. Based on these metrics and datasets, we generated a total of 10,341 unique queries.

EVALUATION PROCEDURE

Leveraging LLMs for evaluation has proven to be an effective and scalable methodology, particularly
in scenarios where standardized benchmarks are lacking (Zheng et al., 2023; Saad-Falcon et al.,
2024; Chen et al., 2024; Lin & Chen, 2023). Advanced LLMs can approximate both controlled
laboratory and crowdsourced human judgments, often achieving levels of inter-annotator agreement
comparable to those between humans (Sottana et al., 2023; Zheng et al., 2023).

Evaluation Metrics Inspired from foundational concepts defined from prior work (Abbasian et al.,
2024), we selected Sensibility, Specificity, Interestingness (SSI), Groundedness, Personalization,
Conciseness, and Safety to formulate our own metrics:

Table 1: Evaluation dimensions for assessing response quality.

Dimension Description

Insightfulness Similar to Interestingness in SSI (Thoppilan et al., 2022). Captures whether incorporating high-quality, context-
aware information leads to more insightful responses.

Relevance Derived from Specificity and Sensibility in SSI. Assesses whether the system retrieves highly relevant content tailored
to the user’s context.

Groundedness Evaluates whether responses are supported by factual or retrievable content.
Personalization Measures how accurately responses reflect the user’s specific data and context.
Clarity Related to Conciseness. Judges whether responses are clear, and accessible, even for complex queries.
Safety & Security Ensures responses avoid unsafe, harmful, or misleading content.
Overall Quality A holistic assessment combining the above dimensions to capture the overall usefulness and reliability of responses.

Our evaluation procedure is as follows: For a given query, the responses from all evaluated methods
are presented to a powerful LLM judge. The judge is instructed to rank the responses according to

7
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Table 2: Main experiment - Comparison of our method with baselines across all datasets. Note: For
rank metrics (↓), lower values are better from 1 to 3. For win rate (↑), higher values are better.

Rank ↓ Overall

Dataset Method Insight Relevance Grounded Personal Clarity Safety Overall Win Rate↑

Globem
Base 2.57 2.57 2.42 2.55 2.24 1.00 2.57 0.06
Rag 2.00 1.99 2.03 2.00 1.86 1.00 1.99 0.24

WAG 1.43 1.44 1.50 1.44 1.82 1.00 1.43 0.70

IFH Affect
Base 2.59 2.58 2.45 2.57 2.24 1.00 2.59 0.06
Rag 2.01 2.01 2.05 2.02 1.90 1.00 2.01 0.23

WAG 1.40 1.40 1.46 1.41 1.79 1.00 1.40 0.71

Lifesnap
Base 2.66 2.65 2.50 2.63 2.31 1.00 2.66 0.05
Rag 1.95 1.95 2.00 1.96 1.83 1.00 1.95 0.25

WAG 1.39 1.40 1.45 1.40 1.75 1.00 1.39 0.70

Pmdata
Base 2.63 2.61 2.45 2.60 2.28 1.00 2.62 0.06
Rag 1.97 1.97 2.04 1.98 1.85 1.00 1.96 0.23

WAG 1.41 1.41 1.47 1.41 1.78 1.00 1.41 0.70

the criteria defined above using the structured prompt detailed in Appendix Prompt 9. The resulting
rankings are then aggregated across the entire query set. We report the average rank for each method
and compute the win rate, defined as the percentage of queries for which a system’s response is
ranked highest. To validate the reliability of the LLM-based judgments, we also perform a human
evaluation on a randomly sampled subset of queries. Domain experts are asked to provide rankings
for the same responses, allowing us to evaluate the connection between LLM and human judgments.

We design three experiments to evaluate the effectiveness of our proposed framework. For the
LLM-judged main experiment, we use the entire constructed query set, while for Exp-G and Exp-
L, we select a total of 1,000 single-metric queries, with 250 drawn from each dataset. Because
different conditions may sometimes produce identical retrieval results from the graph, in Exp-G
and Exp-L, we restrict our selection to queries where all conditions yield distinct retrieval results.
Consequently, these queries tend to have relatively high openness scores η, which generally invite
more exploration. Finally, we sample 100 queries from each experiment to construct the query set
for human evaluation. The evaluation is conducted by three students with medical backgrounds
using a simple web-based interface (Appendix I).
MAIN EXPERIMENT

We compare three conditions: Baseline: the LLM is provided only with relevant personal data, with-
out any external context (e.g., grounded knowledge). RAG: a standard RAG approach, where only
information directly related to the primarily detected entity is retrieved. WAG: our method, which
dynamically adjusts edge weights based on both the user’s data and the openness score, enabling
more context-aware and adaptive reasoning from other related nodes.

The primary results in Table 2 highlight the superiority of our approach. Compared to the Baseline,
the standard RAG method achieves a substantially lower (better) average overall rank, reflecting a
∼37.5% improvement and confirming that incorporating external knowledge consistently enhances
response quality. Our proposed WAG framework delivers an even greater gain, reducing the average
overall rank to ∼1.4, a ∼56% improvement over standard RAG. This is further supported by a win
rate of nearly 70%, showing that WAG generated the preferred response for the majority of evaluated
samples. Additional analyses (Appendix; Tables 10 and 12) show that WAG’s advantage is most
pronounced on queries with higher abnormality metrics and those with higher openness scores,
such as Trend Analysis, Comparative Insight, Anomaly Detection, and Exploratory Analysis. These
results demonstrate that WAG is particularly effective for complex, open-ended analytical scenarios
where dynamic and context-aware reasoning is most critical.

Table 3: Exp-G - Comparison of dif-
ferent weighting within global model-
ing across datasets.

Dataset Wglobal Wind Wpop Wprior

Globem 2.14 2.62 2.50 2.22
IFH Affect 2.08 2.42 2.40 2.39
Lifesnap 2.14 2.41 2.32 2.34
Pmdata 2.28 2.42 2.40 2.32

Average 2.16 2.47 2.40 2.32

ABLATION STUDIES

We conduct two ablation experiments to evaluate the ef-
fectiveness of the two core components in our WAG re-
trieval module: global modeling (Experiment-G) and lo-
cal modeling (Experiment-L) of edge weights.

Experiment-G evaluates four weighting strategies of
global modeling within our Hierarchical Bayesian Model

8
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(HBM). For a primary node Vp, the weight of a neighbor-
ing node Y is defined as follows: Wprior is the initial weight based on prior knowledge from the
knowledge graph (µprior

x ); Wpop(Rpop
x ) is derived solely from relationships in the population data;

Wind(Rs
x) is derived solely from relationships in the individual data of user s; and Wglobal(µs

x) inte-
grates all three sources via HBM. As shown in Table 3, Wglobal consistently achieves the lowest av-
erage rank across all datasets, demonstrating that integrating prior, population, and individual infor-
mation improves the retrieval of relevant neighboring nodes. Wprior ranks second, highlighting the
value of structured knowledge-graph relationships, while single-source strategies (Wind or Wpop)
perform worst. The overall ranking (Wglobal > Wprior > Wpop > Wind) is consistent across
datasets, and a Friedman test confirms the differences are statistically significant (p = 4.52×10−8).

Table 4: Exp-L - Evaluation of the
effectiveness of local modeling across
datasets.

Dataset Wfinal Wglobal Wlocal

Globem 1.90 1.98 2.01
IFH Affect 1.88 1.98 2.02
Lifesnap 1.85 1.94 2.10
Pmdata 1.89 2.01 1.99

Average 1.88 1.98 2.03

Experiment-L evaluates the effectiveness of local model-
ing by comparing three conditions. The weight is deter-
mined by Wglobal, the weight obtained from global mod-
eling; W local, the weight obtained through local model-
ing; and Wfinal, the final weight after completing the full
modeling framework. As shown in Table 4, Wfinal also
achieves the best average rank across all datasets, indi-
cating that the combined global–local modeling provides
the most reliable weighting. Although the improvement
is relatively modest (approximately 12% compared to the
other two strategies), the effect is consistent across all
datasets. A Friedman test confirms that these differences are statistically significant (p = 0.00151).

HUMAN EVALUATION

Table 5: Comparison of overall ranks between human evaluators and the LLM evaluator. We report
the average human rank across all evaluators and the average LLM rank across all test queries.

Experiment Main Exp Exp-G Exp-L

Evaluator WAG Rag Base Wglobal Wind Wpop Wprior Wfinal Wglobal Wlocal

Human 1.47 1.90 2.45 2.31 2.51 2.46 2.43 1.92 1.95 2.05
LLM 1.41 1.98 2.61 2.16 2.47 2.40 2.32 1.88 1.98 2.03

As shown in Table 5, the human evaluation results are largely consistent with the trends identified by
the LLM evaluator. In the main experiment, WAG is rated much higher than the other two methods,
and for experiment-G, the overall ranking preference matches that of the LLM-based evaluation. For
Experiment-L, the general trend is still consistent, but Wfinal only marginally outperforms Wglobal,
indicating some divergence between human and LLM judgments. To further investigate this, we
examined the correlation between human and LLM evaluations. While the overall correlation is
relatively low, this is unsurprising given the limited inter-rater reliability (IRR) among human an-
notators (Appendix; Table 21a). Notably, in Experiment-L (Appendix; Table 23), two of the human
evaluators followed a trend similar to that of the LLM evaluators, whereas the third exhibited the
opposite preference. These findings highlight both the subjectivity of the evaluation task and the
challenges of achieving consistent human judgments in this setting.

We also provides some qualitative examples in Appendix J.

6 CONCLUSION

In this work, we introduce Wearable As Graph (WAG), a graph-based context retrieval framework
designed to enhance LLM-driven health analysis on wearable data. WAG integrates multimodal sen-
sor signals into personalized knowledge graph, leveraging both global and local modeling strategies
to enable LLMs to retrieve the most relevant context for diverse user queries. We also construct
a query set that spans a wide range of potential user questions based on real-world wearable data,
along with a general knowledge graph capturing broad domain knowledge about health and wear-
able metrics. Together, these resources provide a foundation for future studies in wearable-based
health analysis and enable the research community to benchmark and extend context-aware LLM
applications. We envision WAG as a foundational framework that can accelerate research leveraging
the growing richness of wearable ecosystems.

9
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ETHICS STATEMENT

This work focuses on methods for improving context-aware health analysis using wearable data
and large language models (LLMs). While our framework, Wearable As Graph (WAG), shows
promise in providing personalized insights, it is not designed or validated for direct clinical use.
The datasets used in this study are publicly available and de-identified to protect participant privacy.
No personally identifiable information was accessed or processed. We acknowledge that automated
health analysis poses potential risks, including misinterpretation, over-reliance and biases introduced
by both the underlying wearable datasets and the LLMs employed.

REPRODUCIBILITY STATEMENT

We have made every effort to provide sufficient details to enable reproduction of our results. This
includes pseudocode of our proposed approach (Algorithms 1 and 2), detailed descriptions of data
processing and query generation (Section 3.1), prompts (Appendix K), hyperparameters, and imple-
mentation details (Section B). All datasets used in this study are publicly available. In addition, the
generated query set and code will be released to support reproducibility.
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A DATASET AND QUERYSET STATS
A.1 DATASET

IFH Affect (Labbaf et al., 2024): A longitudinal dataset collected from 21 university students be-
fore, during, and after the COVID-19 lockdown in Southern California. Data was gathered over
an average of 7.8 months via a Samsung Galaxy Watch, Oura Ring, the Personicle lifelogging app,
and ecological momentary assessments (EMA). It includes raw sensor data (PPG, IMU), processed
physiological measures (heart rate, sleep, activity), and extensive self-reported surveys on mood,
mental health (BDI-II, GAD-7), and social factors, providing insights into lifestyle and emotional
adjustment during major world events.

PMData (Thambawita et al., 2020): This dataset comprises 16 participants (12 men, 3 women, avg.
age 34) monitored over 5 months. It combines objective biometrics from a Fitbit Versa 2 smart-
watch with subjective self-reports collected via Google Forms (demographics, diet) and a dedicated
sports logging app (PMSys) for metrics such as fatigue, mood, and stress, facilitating a link between
physical activity and personal well-being.

LifeSnaps (Yfantidou et al., 2022): A comprehensive, multi-modal dataset from 71 participants
(42 male, 29 female) collected over more than 4 months. It integrates automatically synced data
from a Fitbit Sense (sleep, heart rate, stress), ecological momentary assessments (EMA) on context
and mood via the SEMA3 platform, and validated surveys on demographics and health, supporting
research into daily life and behavior.

Globem (Xu et al., 2022): A large-scale, multi-year dataset encompassing 705 user-years of data
from 497 diverse participants. It was collected using the AWARE framework on mobile phones,
Fitbit wearables (Flex2 and Inspire 2), and ecological momentary assessments (EMA). The dataset’s
scale and diversity support the study of long-term behavioral trends across a varied population.
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A.2 QUERYSET

Table 6: Statistics of query sets

Dataset #Queries (Exp-G) #Queries (Exp-L) Total #Queries (Exp-Main)

Globem 250 250 1961
IFH Affect 250 250 2921
Lifesnap 250 250 2972
Pmdata 250 250 2487

Total 1000 1000 10341

Table 7: Query counts per query type

General Data Trend Comparative Anomaly Actionable Exploratory Metric Contextual
Knowledge Retrieval Analysis Insight Detection Advice Analysis Relationships Queries

Main experiment

Globem 104 531 219 196 199 125 387 147 53
IFH Affect 164 749 348 330 305 256 569 141 59
Lifesnap 188 800 335 315 307 254 573 143 57
Pmdata 126 654 287 265 263 188 504 128 70

Total 582 2734 1189 1106 1074 823 2033 559 239

Experiment-G

Globem 0 1 38 49 50 24 88
IFH Affect 2 10 18 45 49 24 102
Lifesnap 2 2 21 39 51 35 100
Pmdata 0 0 22 31 51 26 120

Total 4 13 99 164 201 109 410

Experiment-L

Globem 1 9 14 51 63 18 94
IFH Affect 9 15 8 51 56 22 89
Lifesnap 13 13 16 39 50 22 97
Pmdata 4 11 12 47 62 20 94

Total 27 48 50 188 231 82 374

Table 8: Query counts per query time period

Query Period 1 7 14 30 all

Main Experiment

Globem 824 223 250 416 248
IFH Affect 1028 373 468 763 289
Lifesnap 1117 433 366 748 308
Pmdata 876 371 362 628 248

Total 3845 1400 1446 2555 1093

Experiment-G

Globem 100 37 32 81
IFH Affect 79 34 43 94
Lifesnap 88 31 37 94
Pmdata 95 36 41 78

Total 362 138 153 347

Experiment-L

Globem 114 32 36 68
IFH Affect 87 38 53 72
Lifesnap 97 50 36 67
Pmdata 87 47 37 79

Total 385 167 162 286

Table 9: Query counts per abnormal level

Abnormal Level Low Medium High Other

Main Experiment

Globem 431 431 442 657
IFH Affect 722 722 734 743
Lifesnap 712 712 729 819
Pmdata 601 601 603 680

Total 2466 2466 2508 2899

Experiment-G

Globem 26 153 153
IFH Affect 25 124 184
Lifesnap 20 125 188
Pmdata 9 120 204

Total 81 522 729

Experiment-L

Globem 14 108 128
IFH Affect 31 112 107
Lifesnap 30 94 126
Pmdata 20 107 123

Total 95 421 484
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B IMPLEMENTATION DETAILS

B.1 GRAPH CONSTRUCTION

We provide contextual information to the LLM at every sub-stage of the graph construction process.
Starting with a predefined list of metrics, we first collect relevant knowledge from trusted medical
databases (e.g., UMLS) and web sources (via the Google Serper API). To ensure reliability, searches
are limited to a set of verified domains.

Metric information is fed in batches to the LLM to generate the corresponding nodes. After node
generation, we similarly collect knowledge for every pair of nodes to identify appropriate sources,
and batched edge information is then used by the LLM to generate edges and assign weights.

During PKG construction, each candidate metric is compared against existing nodes. If it already
exists, the node is updated; otherwise, a new node is created. Edges are then established between
the new node and all existing nodes using the same batch-wise LLM procedure.

B.2 GRAPH RETRIEVAL

We conducted all experiments using DeepSeek-V3. The default relevant time window kq is set to
7 days, if it is not specified in the query, and the maximum number of related nodes retrieved per
query is set to κ = 5. The hyperparameter β is set to 0.5 to balance global and local contributions
in edge weighting.

The similarity function sim(·, ·) follows a standard embedding-based retrieval mechanism used in
RAG frameworks and is computed via cosine similarity in the embedding space. Specifically, we
compute embeddings of entity names and compare them with embeddings of node names in the
graph. Through experimentation, a threshold of δ = 0.85 was found to reasonably balance node hit
rate and retrieval consistency. Population-level and subject-specific relationships, Rpop

x and Rs
x, can

be represented in different ways, such as correlation or mutual information. In our current setup,
we adopt Spearman correlation because it requires less data to yield valid estimates. In contrast,
mutual information generally demands much larger sample size but can capture more complex de-
pendencies, particularly within a single user’s personal data. As illustrated in Figure 3, while the
relationships captured by mutual information and Spearman correlation are often consistent, esti-
mating mutual information can be challenging when data are limited. We also favor Spearman cor-
relation over Pearson correlation, as it better handles non-linear monotonic relationships commonly
observed in our setting.
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Figure 3: Comparison of weights encoded by
spearman correlation and mutual information.

In our current setup, we define

Rpop
x = [rpop

x,y1
, rpop

x,y2
, . . . , rpop

x,y|Y |
]⊤

as the Spearman correlations between historical
data of x and each y ∈ Y across the dataset, and

Rs
x = [rsx,y1

, rsx,y2
, . . . , rsx,y|Y |

]⊤

as the correlations computed from user s’s data.
To stabilize the Gaussian modeling, we apply the
Fisher z-transform:

z = tanh−1(r) =
1

2
ln

(
1 + r

1− r

)
, r = tanh(z).

The covariance matrices V pop
x and V s

x encode the
sampling variances on the z-scale (approximately
1/(n − 3) for Spearman correlations) and are
modulated by hyperparameters αpop and αind, re-
spectively. The prior covariance is set as Σprior

x =
V pop
x and is not modulated. All covariance matrices are diagonal, and we enforce a minimum of 10

samples to compute a correlation. Finally, a sigmoid function is applied to both Wglobal and W local

to restrict values to [0, 1], with steepness hyperparameters γglobal = 0.9 and γlocal = 0.7.
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For Exp-G and Exp-L, which explore different versions of WAG, we focus only on nodes with
numerical data and ignore non-numerical nodes. This ensures that all relationships include both
population-level and subject-specific information, allowing evaluation of the full retrieval algorithm.

Fallback Strategy for Missing or Invalid Observations In practice, empirical relationships R
may be missing or invalid (e.g., non-numerical nodes or insufficient data). To maintain robust edge
weight estimation, we employ a sequential fallback strategy:

wfinal
x,y ∝


µs
x,y, if rsx,y is valid,

µpop
x,y, if rsx,y is missing or invalid,

wprior
x,y , if both rsx,y and rpop

x,y are unavailable.

This ensures that wglobal defaults sequentially from subject-specific to population-informed to prior
weights, maintaining robustness and interpretability even with incomplete data.

Determination of Hyperparameters αpop and αind The optimal population regularization pa-
rameter αpop was determined using a data-driven approach based on Kendall Tau similarity curves.
Specifically, we compute two curves that quantify different aspects of ranking alignment:

• τ(µprior,µpop) measures the preservation of the original prior ranking under increasing reg-
ularization strength.

• τ(Rpop,µpop) quantifies the alignment between the regularized population posterior and
observed population statistics.

The intersection of these curves identifies the value of αpop where the regularized posterior achieves
an optimal balance between faithfulness to the prior expertise and consistency with population-level
preferences, avoiding both overfitting and excessive dilution of population information.
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Figure 4: Kendall Tau similarity scores as a
function of population regularization strength
(αpop).
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Figure 5: Kendall Tau similarity measures as func-
tions of individual regularization strength (αind).

Similarly, the individual regularization parameter αind is determined by analyzing the intersection of
Kendall Tau similarity curves capturing individual-level alignment:

• τ(µpop,µs) measures the preservation of the population posterior ranking under increasing
individual regularization strength.

• τ(Rs,µs) quantifies the alignment between the regularized individual posterior and empir-
ical individual statistics.

Additional curves, such as τ(µprior,µind), τ(Rpop,µind), and τ(µpop,µs), provide complementary
insights into prior-individual and two-stage posterior alignment. The intersection points in these
analyses identify the optimal αind, balancing individual-specific data with population-informed pri-
ors.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ILLUSTRATIVE EXAMPLE OF A SINGLE-METRIC QUERY SCENARIO
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Figure 6: Visualization of hierarchical Bayesian modeling (HBM) updates for all nodes related to
the metric “Circadian rhythm patterns”. µprior denotes the prior, µpop denotes the posterior after
population data update, and µs(Wglobal) denotes the final posterior after incorporating individual-
specific data.

Rank \Weighting by µprior µpop µs(Wglobal)

1 Number of phone unlock (0.70) Maximum distance from home (0.74) Maximum distance from home (0.74)
2 Sleep efficiency (0.70) Number of phone unlock (0.64) PANAS negative affect (0.63)
3 Mental stress (0.59) Sleep efficiency (0.63) The Radius of Gyration (0.63)
4 PANAS positive affect (0.59) Steps taken (0.62) Active time (0.60)
5 Steps taken (0.59) Active time (0.62) Number of phone unlock (0.60)
6 PANAS negative affect (0.59) The Radius of Gyration (0.61) Steps taken (0.60)
7 Time after wakeup (0.59) Mental stress (0.59) Sleep efficiency (0.60)
8 Active time (0.59) Time after wakeup (0.58) Mental stress (0.59)
9 Asleep duration (0.48) PANAS negative affect (0.58) Time after wakeup (0.58)
10 Anxiety (0.48) PANAS positive affect (0.58) PANAS positive affect (0.57)
11 Total sleep duration (0.48) Anxiety (0.48) Anxiety (0.48)
12 Duration of phone unlock (0.36) Total sleep duration (0.45) Total sleep duration (0.45)
13 Number of calls (0.36) Asleep duration (0.45) Asleep duration (0.45)
14 Wake after sleep onset (0.36) Duration of phone unlock (0.40) Duration of phone unlock (0.41)
15 The Radius of Gyration (0.26) Number of calls (0.37) Number of calls (0.38)
16 Maximum distance from home (0.18) Wake after sleep onset (0.36) Wake after sleep onset (0.36)
17 Entropy of call duration (0.08) Entropy of call duration (0.11) Entropy of call duration (0.13)

Figure 7: Ranking of nodes related to “Circadian rhythm patterns” based on different HBM weight
stages. Nodes selected for retrieval are highlighted in blue.

We illustrate a single-metric query scenario using a simulated subject from the Globem dataset.
Suppose the subject issues the query:

“What factors might be causing the significant deviations in my circadian rhythm
patterns over the past 30 days?”

The query is processed via QueryParse, yielding:

• Time granularity kq = 30 days,
• Detected metric Mq = {“Circadian rhythm patterns”},
• Openness score ηq = 0.8,
• Internal reference timestamp tq .

Given a predefined maximum number of related nodes κ = 5, the number of nodes retrieved is
computed as: #retrieved nodes = ηq · κ = 0.8× 5 = 4.
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The corresponding edge weights are obtained from the subject’s personal knowledge graph (PKG),
combining both population-level statistics from Globem and personal data. These weights are then
passed through our retrieval algorithm. Figure 6 visualizes the changes of edge weights as they are
updated through the hierarchical Bayesian modeling process, showing how information flows from
the prior distribution to the population-informed posterior and finally to the final posterior. Table 7
presents the ranking results derived from these weights, demonstrating that the system retrieves
different related nodes depending on the weighting mechanism.

Additionallu, Figure 8 shows the distribution of various edge weights across our entire query set.
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Distribution of Edge Weight Components

Figure 8: Distributions of different edge weight components in the personal knowledge graph. The
eight subplots display: (a) prior weights (µprior), representing the initial LLM-assigned weight; (b)
empirical relationships from the population (Rpop), representing correlations observed across all
subjects; (c) empirical relationships from the individual (Rs), representing correlations computed
from the subject’s personal data; (d) posterior after population data update (µpop); (e) posterior after
incorporating individual-specific data (µs(Wglobal)); (f) local weights (W local); (g) final weights
(Wfinal), obtained via Eq. 1. Mean (red) and median (green) values are marked for reference.

D DISCUSSION

The implications of WAG extend beyond enhancing data-driven reasoning. By design, WAG en-
ables users and prescribing healthcare professionals to contribute personalized information to the
knowledge graph. For instance, a clinician may define individualized thresholds for blood pressure,
while a user might incorporate contextual interpretations of stress levels based on lifestyle factors
or recent events. This personalization enhances the system’s adaptability to individual variations in
health interpretation and reasoning. Moreover, by interacting with an LLM orchestrator, the per-
sonal knowledge graph can be continuously updated with minimal effort, reducing the burden of
manual curation.
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It is important to note that we did not manually verify the factual correctness of generated responses,
as such evaluation would be prohibitively labor-intensive. The novelty of this work does not lie in
improving factual accuracy, which could be enhanced by employing stronger models or comple-
mentary techniques, but rather in demonstrating how the integration of a wearable knowledge graph
allows LLMs to deliver more insightful and contextually grounded findings.

Our human evaluation further underscores the challenges of this task. We observed relatively low
inter-rater reliability (IRR) and modest correlation between LLM and human rankings, indicating
that response evaluation is inherently subjective. These findings raise the possibility of employing
LLMs themselves as cost-effective evaluators in settings where recruiting large numbers of medical
experts is impractical. However, potential biases embedded in LLMs could be a critical limitation,
requiring further investigation into when and how they can serve as fair substitutes for human eval-
uators. Especially, we found that in difficult cases, where responses are hard to differentiate across
the defined dimensions, LLMs often assign identical ranks across all dimensions of a response. This
observation led us to focus solely on overall quality in Experiments G and L. Future work should
explore strategies to mitigate such biases while leveraging the scalability advantages of LLM-based
evaluation.

E LLM USAGE

LLM serves as a core component of our approach, such as creating the query set and knowledge
graph, etc. Additionally, it is applied to polish the phrasing and wording during the paper writeup.
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F ADDITIONAL RESULTS

Table 10: Main experiment - Comparison of our method with baselines across all query types.

Rank Overall

Query Type Method Insight Relevance Grounded Personal Clarity Safety Overall Win Rate

General Knowledge
Base 2.37 2.37 2.29 2.31 2.23 1.00 2.37 0.18
Rag 2.09 2.09 2.10 2.12 1.98 1.00 2.09 0.21

WAG 1.54 1.54 1.58 1.56 1.73 1.00 1.54 0.60

Data Retrieval
Base 2.68 2.66 2.43 2.63 2.35 1.00 2.68 0.08
Rag 1.70 1.71 1.76 1.72 1.72 1.00 1.70 0.41

WAG 1.62 1.63 1.67 1.64 1.77 1.00 1.62 0.51

Trend Analysis
Base 2.63 2.62 2.52 2.62 2.32 1.00 2.63 0.03
Rag 2.02 2.03 2.07 2.03 1.90 1.00 2.02 0.22

WAG 1.35 1.35 1.40 1.35 1.73 1.00 1.35 0.75

Comparative Insight
Base 2.67 2.66 2.44 2.65 2.24 1.00 2.67 0.04
Rag 2.05 2.06 2.14 2.07 1.93 1.00 2.05 0.15

WAG 1.28 1.28 1.40 1.28 1.76 1.00 1.28 0.80

Anomaly Detection
Base 2.70 2.70 2.51 2.68 2.22 1.00 2.70 0.01
Rag 2.18 2.18 2.25 2.19 1.91 1.00 2.18 0.07

WAG 1.12 1.12 1.21 1.12 1.78 1.00 1.12 0.92

Actionable Advice
Base 2.43 2.43 2.38 2.43 2.14 1.00 2.43 0.09
Rag 2.09 2.09 2.10 2.09 1.95 1.00 2.09 0.21

WAG 1.48 1.48 1.50 1.47 1.84 1.00 1.48 0.70

Exploratory Analysis
Base 2.63 2.63 2.53 2.63 2.21 1.00 2.63 0.03
Rag 2.11 2.11 2.15 2.11 1.88 1.00 2.11 0.14

WAG 1.26 1.26 1.32 1.26 1.85 1.00 1.26 0.83

Metric Relationships
Base 2.55 2.55 2.43 2.52 2.36 1.00 2.55 0.09
Rag 1.92 1.92 1.98 1.94 1.91 1.00 1.92 0.30

WAG 1.53 1.53 1.59 1.53 1.71 1.00 1.53 0.61

Contextual Queries
Base 2.50 2.50 2.41 2.49 2.32 1.00 2.50 0.09
Rag 2.00 2.00 2.05 2.01 1.92 1.00 2.00 0.24

WAG 1.49 1.50 1.53 1.50 1.75 1.00 1.49 0.67

Table 11: Main experiment - Comparison of our method with baselines across all time periods.

Rank Overall

Time Period Method Insight Relevance Grounded Personal Clarity Safety Overall Win Rate

1
Base 2.74 2.74 2.49 2.71 2.31 1.00 2.74 0.04
Rag 1.91 1.91 1.98 1.92 1.80 1.00 1.91 0.24

WAG 1.35 1.36 1.44 1.36 1.74 1.00 1.35 0.72

7
Base 2.65 2.63 2.49 2.62 2.26 1.00 2.65 0.04
Rag 1.98 1.99 2.04 2.00 1.87 1.00 1.98 0.23

WAG 1.37 1.38 1.41 1.37 1.79 1.00 1.37 0.74

14
Base 2.60 2.59 2.50 2.58 2.26 1.00 2.60 0.04
Rag 2.00 2.00 2.04 2.01 1.84 1.00 2.00 0.24

WAG 1.40 1.40 1.44 1.40 1.85 1.00 1.40 0.72

30
Base 2.50 2.50 2.42 2.49 2.23 1.00 2.50 0.08
Rag 2.05 2.06 2.09 2.06 1.94 1.00 2.05 0.23

WAG 1.44 1.45 1.49 1.45 1.80 1.00 1.44 0.69

all
Base 2.40 2.40 2.34 2.39 2.25 1.00 2.40 0.13
Rag 2.03 2.03 2.04 2.03 1.94 1.00 2.03 0.27

WAG 1.57 1.57 1.60 1.57 1.77 1.00 1.57 0.60
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Table 12: Main experiment - Comparison of our method with baselines across all abnormal levels.

Abnormal level Method Insight Relevance Grounded Personal Clarity Safety Overall Win Rate

low
Base 2.67 2.65 2.46 2.62 2.36 1.00 2.67 0.07
Rag 1.82 1.83 1.87 1.84 1.77 1.00 1.82 0.33

WAG 1.51 1.52 1.57 1.52 1.74 1.00 1.51 0.60

medium
Base 2.69 2.68 2.49 2.67 2.26 1.00 2.69 0.03
Rag 2.06 2.07 2.14 2.08 1.90 1.00 2.06 0.15

WAG 1.25 1.25 1.34 1.25 1.77 1.00 1.24 0.83

high
Base 2.62 2.62 2.51 2.62 2.19 1.00 2.62 0.03
Rag 2.12 2.12 2.16 2.12 1.89 1.00 2.12 0.14

WAG 1.26 1.26 1.32 1.26 1.85 1.00 1.26 0.83

other
Base 2.50 2.49 2.38 2.47 2.27 1.00 2.50 0.11
Rag 1.92 1.92 1.95 1.93 1.87 1.00 1.92 0.32

WAG 1.58 1.59 1.62 1.59 1.78 1.00 1.58 0.58

Table 13: Experiment-G - Comparison of different weighting within global modeling across
datasets.

Dataset Wglobal Wind Wpop Wprior

Mean Win Rate Mean Win Rate Mean Win Rate Mean Win Rate

Globem 2.14 0.30 2.62 0.17 2.50 0.22 2.22 0.36
IFH Affect 2.08 0.34 2.42 0.23 2.40 0.25 2.39 0.27
Lifesnap 2.14 0.28 2.41 0.24 2.32 0.30 2.34 0.28
Pmdata 2.28 0.30 2.42 0.23 2.40 0.23 2.32 0.32
Average 2.16 0.31 2.47 0.22 2.40 0.25 2.32 0.31

Table 14: Experiment-G - Comparison of different weighting within global modeling across query
types.

Dataset Wglobal Wind Wpop Wprior

Mean Win Rate Mean Win Rate Mean Win Rate Mean Win Rate

General Knowledge 2.00 0.50 2.50 0.00 3.00 0.00 2.00 0.50
Data Retrieval 2.23 0.31 2.38 0.38 2.54 0.15 2.23 0.23
Trend Analysis 2.10 0.34 2.53 0.19 2.58 0.17 2.33 0.33
Comparative Insight 2.14 0.34 2.47 0.22 2.50 0.23 2.34 0.29
Anomaly Detection 2.26 0.25 2.47 0.21 2.21 0.32 2.48 0.29
Actionable Advice 2.06 0.37 2.43 0.26 2.26 0.28 2.38 0.28
Exploratory Analysis 2.16 0.30 2.47 0.22 2.44 0.25 2.21 0.33
Average 2.14 0.34 2.46 0.21 2.50 0.20 2.28 0.32

Table 15: Experiment-G - Comparison of different weighting within global modeling across time
periods.

Dataset Wglobal Wind Wpop Wprior

Mean Win Rate Mean Win Rate Mean Win Rate Mean Win Rate

1 2.15 0.31 2.49 0.21 2.35 0.28 2.29 0.31
7 2.20 0.29 2.40 0.24 2.25 0.28 2.42 0.28
14 2.08 0.29 2.52 0.21 2.44 0.24 2.29 0.31
30 2.18 0.32 2.45 0.22 2.50 0.21 2.31 0.32
Average 2.16 0.30 2.47 0.22 2.39 0.26 2.33 0.30
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Table 16: Experiment-G - Comparison of different weighting within global modeling across abnor-
mal levels.

Dataset Wglobal Wind Wpop Wprior

Mean Win Rate Mean Win Rate Mean Win Rate Mean Win Rate

low 2.03 0.38 2.57 0.21 2.54 0.16 2.31 0.31
medium 2.19 0.31 2.47 0.20 2.43 0.25 2.35 0.31
high 2.16 0.30 2.45 0.24 2.36 0.26 2.29 0.31
Average 2.12 0.33 2.50 0.22 2.45 0.23 2.32 0.31

Table 17: Experiment-L - Evaluation of the effectiveness of local modeling across datasets

Dataset Wfinal Wglobal W local

Mean Win Rate Mean Win Rate Mean Win Rate

Globem 1.90 0.36 1.98 0.33 2.01 0.35
IFH Affect 1.88 0.38 1.98 0.33 2.02 0.34
Lifesnap 1.85 0.38 1.94 0.37 2.10 0.29
Pmdata 1.89 0.36 2.01 0.36 1.99 0.33

Average 1.88 0.37 1.98 0.35 2.03 0.33

Table 18: Experiment-L - Evaluation of the effectiveness of local modeling across query types.

Query Type Wfinal Wglobal W local

Mean Win Rate Mean Win Rate Mean Win Rate

General Knowledge 1.48 0.63 2.04 0.33 2.30 0.11
Data Retrieval 1.90 0.31 1.75 0.44 2.23 0.25
Trend Analysis 1.94 0.40 1.88 0.34 2.06 0.32
Comparative Insight 1.95 0.34 1.91 0.40 2.09 0.28
Anomaly Detection 1.91 0.34 2.02 0.32 1.93 0.40
Actionable Advice 1.90 0.37 1.96 0.37 1.96 0.33
Exploratory Analysis 1.84 0.39 2.02 0.32 2.04 0.33

Average 1.85 0.40 1.94 0.36 2.09 0.29

Table 19: Experiment-L - Evaluation of the effectiveness of local modeling across time periods.

Time Period Wfinal Wglobal W local

Mean Win Rate Mean Win Rate Mean Win Rate

1 1.89 0.36 1.99 0.33 1.99 0.36
7 1.91 0.35 1.89 0.40 2.08 0.30
14 1.85 0.36 1.96 0.37 2.11 0.30
30 1.87 0.40 2.02 0.33 2.01 0.32

Average 1.88 0.37 1.96 0.36 2.05 0.32

Table 20: Experiment-L - Evaluation of the effectiveness of local modeling across abnormal levels.

Abnormal Level Wfinal Wglobal W local

Mean Win Rate Mean Win Rate Mean Win Rate

low 1.74 0.45 1.92 0.36 2.20 0.22
medium 1.90 0.36 1.95 0.36 2.04 0.32
high 1.89 0.36 2.01 0.33 1.99 0.35

Average 1.84 0.39 1.96 0.35 2.08 0.30
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(a) IRR and Spearman correlation between LLM
and human responses (IRR computed via Krip-
pendorff’s alpha).

Experiment Main 1 2

IRR 0.38 0.26 0.32
Correlation 0.55 0.14 0.13

(b) Human Evaluator Results for Main Experi-
ment

Evaluator WAG Rag Base

E1 1.37 2.01 2.60
E2 1.49 1.90 2.33
E3 1.56 1.80 2.41

Human Avg 1.47 1.90 2.45
LLM 1.41 1.98 2.61

Table 22: Human Evaluator Results for Experiment-G.

Evaluator Wglobal Wind Wpop Wprior

E1 2.31 2.57 2.55 2.42
E2 2.35 2.40 2.32 2.58
E3 2.26 2.56 2.52 2.29

Human Avg 2.31 2.51 2.46 2.43
LLM 2.16 2.47 2.40 2.32

Table 23: Human Evaluator Results for Experiment-L.

Evaluator Wfinal Wglobal W local

E1 1.87 1.91 2.19
E2 1.83 2.05 2.04
E3 2.07 1.90 1.91

Human Avg 1.92 1.95 2.05
LLM 1.88 1.98 2.03

G DETAILED METHOD

G.1 GLOBAL MODELING-HBM DERIVATION

This provides a comprehensive derivation of the posterior distribution for the latent long-term edge
weight vector Θs

x for a subject s and source node x. The model integrates a prior distribution,
population-level data, and individual-level data within a conjugate Gaussian framework.

Θs
x = [θsx,y1

, . . . , θsx,y|Y |
]⊤ ∈ R|Y |

MODEL SPECIFICATION

Θs
x ∼ N (µprior

x ,Σprior
x ), (2)

Rpop
x | Θs

x ∼ N (Θs
x, V

pop
x ), (3)

Rs
x | Θs

x ∼ N (Θs
x, V

s
x ), (4)

where Rpop
x , Rs

x, µ
prior
x ∈ R|Y | and Σprior

x , V pop
x , V s

x are covariance matrices.

By Bayes’ rule and conditional independence of the two observation sources given Θs
x,

p(Θs
x | Rpop

x , Rs
x) ∝ p(Θs

x) p(R
pop
x | Θs

x) p(R
s
x | Θs

x).

Equivalently, this can be viewed as updating the population-informed posterior with the individual’s
data:

p(Θs
x | Rpop

x , Rs
x) ∝ p(Rs

x | Θs
x) p(Θ

s
x | Rpop

x ).
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The (negative) log of the posterior as follows:
L(Θ) ≡ − log p(Θs

x | Rpop
x , Rs

x) + C

= 1
2 (Θ− µprior)⊤(Σprior)−1(Θ− µprior)

+ 1
2 (R

pop −Θ)⊤(V pop)−1(Rpop −Θ)

+ 1
2 (R

s −Θ)⊤(V s)−1(Rs −Θ),

To simplify notation for the derivation, subscript x and superscript s inside this derivation are
dropped: Θ ≡ Θs

x, µ
prior ≡ µprior

x , Rpop ≡ Rpop
x , Rs ≡ Rs

x, etc.

Expand each quadratic term and collect terms in Θ:

L(Θ) = 1
2Θ

⊤(Σprior)−1Θ− (Σprior)−1µprior⊤Θ+ 1
2µ

prior⊤(Σprior)−1µprior

+ 1
2Θ

⊤(V pop)−1Θ− (V pop)−1Rpop⊤Θ+ 1
2R

pop⊤(V pop)−1Rpop

+ 1
2Θ

⊤(V s)−1Θ− (V s)−1Rs⊤Θ+ 1
2R

s⊤(V s)−1Rs.

Collecting the quadratic (in Θ) and linear terms yields

L(Θ) = 1
2Θ

⊤ΛΘ− b⊤Θ+ const,
where

Λ ≡ (Σprior)−1 + (V pop)−1 + (V s)−1, (5)

b ≡ (Σprior)−1µprior + (V pop)−1Rpop + (V s)−1Rs. (6)

Complete the square for the quadratic form:

L(Θ) = 1
2 (Θ

⊤ΛΘ− 2b⊤Θ) + const

= 1
2 (Θ− Λ−1b)⊤Λ(Θ− Λ−1b)− 1

2b
⊤Λ−1b+ const.

Therefore the posterior is Gaussian,
Θs

x | Rpop
x , Rs

x ∼ N (µ,Σ),

with

Σ = Λ−1 =
(
(Σprior)−1 + (V pop)−1 + (V s)−1

)−1

, (7)

µ = Σ b = Σ
(
(Σprior)−1µprior + (V pop)−1Rpop + (V s)−1Rs

)
. (8)

Note: Our method is not a typical fully generative hierarchical Bayesian model. In a standard formu-
lation, the population distribution is treated as a set of latent hyperparameters with their own priors,
and inference is carried out via MCMC or variational methods. While this approach is flexible, it
typically requires computationally intensive sampling, which must be repeated at inference time.
We believe such sampling is not appropriate for our setting, where repeated, efficient inference is
required. Instead, our approach adopts a simplified empirical Bayes formulation with closed-form
Gaussian updates. This allows us to retain the population-to-individual hierarchy while ensuring
computational tractability.

G.2 LOCAL MODELING

weights capture context-sensitive relationships over the past kq days relative to query time tq . For
node x and neighbor y, the normalized abnormality score is:

ζy =
1

kq

kq−1∑
i=0

∣∣∣∣vy,tq−i − µy

σy

∣∣∣∣ ,
where µy and σy are the historical mean and standard deviation.

We define the short-term weight by convexly mixing ζy and its complement:

wshort
x,y = ηqζy + (1− ηq)(1− ζy).

Expanding gives:
wshort

x,y = (2ηq − 1)ζy + (1− ηq),

which is bounded in [0, 1] for ηq, ζy ∈ [0, 1].
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H NOTATION

Table 24: Question Categories for Health Data Analysis

Category Openness Description Example Questions
Single-Entity
General Knowledge 0.2-0.4 Definition and basic understand-

ing of metrics, optimal ranges, and
benchmarks

What is HRV and its optimal range?
What is resting heart rate?

Data Retrieval 0.1-0.3 Specific time-bound numerical
queries

What was my step count this week?
Average deep sleep minutes past 14 days?

Trend Analysis 0.4-0.6 Trend identification and behavioral
patterns

Identify trends in my daily movement last 30 days.
When do I typically have my most active days?

Comparative Insight 0.5-0.7 Time-based comparisons between
periods

How does this week’s activity compare to last
week?
Has my sleep duration improved this month?

Anomaly Detection 0.6-0.8 Outlier identification and unusual
deviations

Any unusual sleep metrics this month?
Was there an abnormal recovery time this week?

Actionable Advice 0.3-0.5 Actionable suggestions based on
current data

How to improve my sleep quality?
Ways to increase my activity score?

Exploratory Analysis 0.7-1.0 Multi-factor investigations Why am I tired despite sleeping 8 hours?
Do you think I’m stressed recently?

Multi Entity Category
Metric Relationships 0.4-0.6 Exploration of correlations or inter-

actions between two or more health
metrics over a period of time

Did my activity levels impact my readiness score?
How does my REM sleep duration correlate with
my stress levels for the past 30 days?
What’s the relationship between my exercise in-
tensity and recovery time?

Contextual Queries 0.5-0.7 Questions that examine relation-
ships between a health metric
and contextual factors (e.g., stress,
sleep, activity)

Do my sleep disturbances increase on days with
higher stress scores last week?
Is there a pattern in my heart rate variability on
days I have a higher activity level for the past
month?
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Table 25: Notations and Descriptions

Notation Description
D a dataset
s ∈ Ssel participants selected
m ∈ M a concept of health metric, eg. heart rate, mood
t ∈ T all timestamps (day) of data
vt data value at timestamp(day) t
MDs missing data percentage for a subject s’s data
VLs valid period length for a subject s’s data
CVs coefficient of variation for a subject s’s data.
MIp pairwise mutual information for a subject s’s data
ζk,t ∈ Z abnormal level of data for the past k days before t days
k ∈ K window size
I input tuple to generate query
q ∈ Q query set
η openness score
c ∈ C a category of health metric,eg. sleep, activity
G = (V, E) knowledge graph
v ∈ V node
ei,j ∈ E the edge encodes the relationship between nodes vi and vj
wi,j ∈ W weight of the edge ei,j
θsx the latent vector of edge weight W
µprior,Σprior prior distribution of θs
Rpop spearman correlations between historical data across the dataset.
Rs historical data of correlations computed from user s’s data.
µpop,Σpop distribution of θsx after posterior update of Rpop

x

µs
x(Wglobal),Σs

x distribution of θsx after further posterior update of Rind
x

W local weights obtained from local modeling
β hyperparameter to control Wglobal and Wlocal

δ match threshold for similarity match sim(vi, vj)
κ max number of related nodes that will be retrieved
αpop, αind hyperparameters to control the role of Rpop

x and Rind
x respectively in HBM modeling

Table 26: Node Field Descriptions

Field Description
ID Id of the node
Name Name of the node
Description Description of the node
Range Range of values with units
Recommendation Recommendation for improvement
DataSource Data source specification including dataset name, feature name, descrip-

tion, range, unit, and type, path to data
Weight Importance weight for sorting (higher = more important)
If data associated Flag indicating data association status
Name embedding Name-based embedding vector
Semantic embedding Textual embedding vector
Graph embedding Graph structure embedding
Umls name Standardized UMLS name
CUI UMLS Concept Unique Identifier
Umls definition Formal UMLS concept definition
Raw web result Unprocessed web extraction data
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Table 27: Edge Field Descriptions

Field Description
ID Unique relationship identifier
Node 1 name Name of first node in relationship
Node 1 description Description of first node
Node 1 id Unique identifier of first node
Node 2 name Name of second node in relationship
Node 2 description Description of second node
Node 2 id Unique identifier of second node
weight Edge weight (default is generated from LLM)
description Textual description of relationship nature/purpose
description embedding Semantic embedding vector for relationship description
raw web result Reference to raw web search results

Table 28: Initial Health Metrics

Category Metrics
Physiological Heart rate, Heart rate variability, Blood pressure, Blood oxygen satura-

tion, Pulse wave velocity, Cardiac output, Peripheral blood flow, Respi-
ratory rate, Oxygen uptake, Carbon dioxide exhalation rate, Lung vol-
ume, Breathing rhythm, Muscle activity, Blood glucose levels, Lactate
levels, Basal metabolic rate, Core body temperature, Brain activity, Skin
temperature, Sweat rate, Electrolyte concentration, Skin hydration lev-
els, Skin conductance, pH of sweat

Sleep Sleep stages (light, deep, REM), Sleep apnea events, Total sleep du-
ration, Sleep onset latency, Wake after sleep onset, Sleep efficiency,
Arousals per night, Breathing irregularities, Snoring patterns, Circadian
rhythm patterns

Activity Steps taken, Distance traveled, Active minutes, Energy expenditure, Ac-
tivity level, Running dynamics, Balance and stability, Joint movement
and flexibility

Mental Mental stress, Mental fatigue, Mental workload, Engagement, Cogni-
tive load, Memory performance, Decision-making speed, Mood

Environmental Ambient temperature, Humidity, Barometric pressure, UV radiation ex-
posure, Air quality, Noise levels, Electromagnetic field exposure, Alti-
tude

Lifestyle GPS location, Travel patterns, Proximity to other devices or people,
Interaction frequency with social contacts, Time spent on specific activ-
ities, Screen interaction patterns, Daily routine adherence

Demographic Gender, Age, personality
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Table 29: Metrics available across datasets. ✓ indicates presence, ✗ absence.

Type Metric Globem Ifh affect Lifesnap Pmdata

Physiological

Blood oxygen saturation ✗ ✗ ✓ ✗
Skin conductance ✗ ✗ ✓ ✗
HRV RMSSD ✗ ✓ ✓ ✗
Resting heart rate ✗ ✓ ✓ ✗
Nightly skin temperature ✗ ✗ ✓ ✗
Sleep breathing rate ✗ ✓ ✓ ✗
Temperature Variation ✗ ✓ ✓ ✗
VO2 Max ✗ ✗ ✓ ✗

Sleep

Total sleep duration ✓ ✓ ✓ ✓
Sleep onset latency ✓ ✓ ✓ ✓
Wake after sleep onset ✓ ✓ ✓ ✓
Sleep efficiency ✓ ✓ ✓ ✓
Circadian rhythm patterns ✓ ✗ ✗ ✗
Asleep duration ✓ ✓ ✓ ✓
Light sleep duration ✗ ✓ ✓ ✓
Deep sleep duration ✗ ✓ ✓ ✓
Rem sleep duration ✗ ✓ ✓ ✓
Bedtime start time ✗ ✓ ✓ ✓
Bedtime end time ✗ ✓ ✓ ✓
Midpoint of sleep ✗ ✓ ✗ ✗
Time after wakeup ✓ ✗ ✓ ✓

Activity

Steps taken ✓ ✓ ✓ ✓
Distance traveled ✗ ✓ ✓ ✓
Active time ✓ ✓ ✓ ✓
Energy expenditure ✗ ✓ ✓ ✓
Resting time ✗ ✓ ✗ ✗
Inactive time ✗ ✗ ✓ ✓
Lightly active time ✗ ✓ ✓ ✓
Moderately active time ✗ ✓ ✓ ✓
Highly active time ✗ ✓ ✓ ✓
Exercise ✗ ✗ ✓ ✓
Step goal ✗ ✗ ✓ ✗

Mental

Mental stress ✓ ✗ ✗ ✓
Mental fatigue ✗ ✗ ✗ ✓
Mood ✗ ✗ ✓ ✓
PANAS positive affect ✓ ✓ ✓ ✗
PANAS negative affect ✓ ✓ ✓ ✗
Anxiety ✓ ✗ ✗ ✗
Depression ✓ ✗ ✗ ✗

Environmental Barometric pressure ✗ ✓ ✗ ✗

Lifestyle

Lifelog ✗ ✗ ✓ ✓
Number of calls ✓ ✗ ✗ ✗
Entropy of call duration ✓ ✗ ✗ ✗
Number of phone unlock ✓ ✗ ✗ ✗
Duration of phone unlock ✓ ✗ ✗ ✗
Time at home ✓ ✗ ✗ ✗
The Radius of Gyration ✓ ✗ ✗ ✗
Maximum distance from home ✓ ✗ ✗ ✗

Demographic

Age ✗ ✗ ✓ ✗
Gender ✗ ✗ ✓ ✗
Bmi ✗ ✗ ✓ ✗
Personality ✓ ✗ ✓ ✗
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J QUALITATIVE EXAMPLES

Note: Some lengthy content has been truncated. Primary nodes are highlighted in blue, related nodes in orange, and key findings in yellow.

Example 1: A simple data retrieval question, where the incorporation of the KG into the query provides only marginal benefit.
Query: What types of exercise did I engage in most frequently over the past 7 days?
Openness - 0.3 Query type - Data Retrieval

Base(Rank-2) – Context

Matched nodes:

Exercise :
sensor specific information if available:
1.description: daily log of exercise in
detail
2.range:
3.unit:
Data:
— date — Exercise —
— 2019-11-15 — [{’logId’:
26742666940, ’activityName’: ’Walk’,
’activityTypeId’: 90013, ’activityLevel’:
[{’minutes’: 0, ’name’: ’sedentary’},
{’minutes’: 0, ’name’: ’lightly’} ...
[truncated]

Response

Based on your exercise data from the past
7 days (November 15-21, 2019), the most
frequent types of exercise you engaged in
were:

1. **Walking** (11 sessions) - This
was your dominant activity, with multiple
daily walks logged both as auto-detected
and tracker-recorded sessions. These
walks typically lasted 20-40 minutes with
moderate intensity (average heart rate
92-159 bpm).

2. **Treadmill** (1 session on November
19) - A single 26-minute vigorous session
with higher intensity (average HR 154
bpm).

3. **General Workout** (1 session
on November 19) - A 44-minute mixed-
intensity session logged as ”Workout”
with strength training characteristics
(lower step count but elevated HR zones).

Key observations:
- Walking accounted for 85% of all logged
exercises
- No exercise was recorded on November
16
- The treadmill session was your most
intense cardiovascular activity
- The ”Workout” session suggests possible
strength training

Note: Data shows consistent walking
habits but limited variety in exercise
types during this period. The treadmill
and workout sessions indicate some
cross-training efforts.

Rag(Rank-1) – Context

Matched nodes:

Exercise :
description: Exercise refers to planned,
structured, and repetitive physical activity
aimed at improving or maintaining phys-
ical fitness and overall health. It includes
activities such as aerobic exercise, strength
training, and flexibility exercises, which
enhance cardiovascular health, muscle
strength, and mental well-being. Exercise
is a key component of a healthy lifestyle
... [truncated]

Response

Based on your exercise data from the past
7 days (November 15-21, 2019), the most
frequent types of exercise you engaged in
were:

1. **Walking** (11 sessions) - This
was your dominant activity, appearing
nearly every day with multiple sessions.
The walks typically lasted 20-40 minutes
with moderate intensity (average heart rate
97-115 bpm).

2. **Treadmill** (1 session on Nov
19) - A single 26-minute vigorous session
with higher heart rate (154 bpm average).

3. **General Workout** (1 session
on Nov 19) - A 44-minute mixed-intensity
session combining cardio and strength
elements.

Key observations:
- Walking accounted for 85% of your
recorded exercise sessions
- No strength training or flexibility exer-
cises were logged in this period
- November 16 showed no recorded
exercise activity

The data suggests a focus on cardio-
vascular exercise through walking, with
one day incorporating more intense
treadmill and workout sessions. For
balanced fitness, you might consider
adding strength training (2+ days/week)
as recommended by health guidelines.

WAG(Rank-3) – Context

Matched nodes:

Exercise :
description: Exercise refers to planned
... [truncated] Recent 7-day value
deviates from the individual’s average by
nan standard deviations.

Nodes related to matched nodes which
might be helpful:

Sleep efficiency is related to Exer-
cise:
Regular exercise is consistently linked
to higher sleep efficiency, as it promotes
deeper and more restorative sleep. This
relationship is well-documented, with
exercise serving as a non-pharmacological
intervention for sleep disorders.

Sleep efficiency :
description: Sleep Efficiency (SE) is the
percentage ... [truncated]

Response

Based on your exercise data from the past
7 days (November 15-21, 2019), the most
frequently engaged activities were:

1. **Walking** (9 instances) - This
was your dominant activity, appearing
nearly every day with multiple sessions.
The walks typically lasted 20-30 minutes
with moderate intensity (average heart rate
97-115 bpm).

2. **Treadmill** (1 instance on Nov
19) - A single 26-minute vigorous session
with higher intensity (average HR 154
bpm).

3. **General Workout** (1 instance
on Nov 19) - A 44-minute mixed-intensity
session logged as ”Workout” (average HR
133 bpm).

Key observations:
- Walking accounted for 82% of your
logged exercise sessions
- No exercise was recorded on November
16
- Your most active day was November 19
with 4 separate exercise sessions
- Exercise intensity varied from light
(walks) to vigorous (treadmill)

Your sleep efficiency remained con-
sistently high (89-97%) throughout this
period, which aligns with research show-
ing positive sleep impacts from regular
physical activity.
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Example 2: A multi-metric query, where examining multiple related metrics together provides a more comprehensive understanding.
Query: What is the overall relationship between HRV (RMSSD), steps taken, and lightly active time?
Openness - 0.5
Query type - Metric Relationships

Base(Rank-3) – Context

Matched nodes:

HRV RMSSD :
sensor specific information if available:
1.description:
2.range:
3.unit:
Data:
— date — HRV RMSSD —
—:———–—————:—
— 2021-11-24 — 51.679 —
— 2021-11-25 — 47.082 —
— 2021-11-26 — 49.089 —
... [truncated]

Steps taken:
... [truncated]

Lightly active time:
sensor specific information if available:
... [truncated]

Response

Based on the provided data from Novem-
ber 2021 to January 2022, the relationship
between HRV RMSSD, steps taken, and
lightly active time shows the following
patterns:

1. **General Trends**:
- Extreme step counts (>20,000) often
cor- - Higher HRV RMSSD (indicating
better recovery/stress resilience) tends
to coincide with days of moderate step
counts (10,000-17,000 steps) and lightly
active time (150-200 minutes). Examples:
2021-12-08 (HRV: 62.585, Steps: 11,727,
Light activity: 156 min).
- Extreme step counts (>20,000) often
correlate with lower HRV (e.g., 2021-
12-29: 22,634 steps → HRV 47.801;
2021-12-31: 27,943 steps → HRV
48.292).

2. **Notable Exceptions**:
- Some high-activity days maintained
good HRV (e.g., 2021-12-17: 20,005
steps, 262 min light activity, HRV 50.73).
- The lowest HRV values (e.g., 2021-12-
26: 34.656) occurred after consecutive
high-activity days, suggesting possible
cumulative fatigue.
... [truncated]

Rag(Rank-2) – Context

Matched nodes:

HRV RMSSD :
description: Heart Rate Variability Root
Mean Square of Successive Differences
(HRV RMSSD) is a statistical mea-
sure of heart rate variability (HRV)
... [truncated]
range: Normal HRV RMSSD values for
adults at rest typically range from below
20 to over 70 milliseconds. However,
individual values can vary significantly
based on factors such as age, gender,
fitness level, and overall health. Units:
milliseconds (ms).
... [truncated]

Steps taken:
description: Steps Taken refers
... [truncated]

Lightly active time:
description: Lightly Active Time (LAT)
... [truncated]

Response

1. **General Relationship**:
- HRV RMSSD (a marker of parasym-
pathetic/vagal activity) typically shows
an inverted-U relationship with physical
activity:
... [truncated]
2. **Data Observations** (Nov 2021-Jan
2022):
- On high step days (>15,000 steps)
with substantial lightly active time (>200
min):
- HRV often remained stable (e.g., Dec
17: 20,005 steps, 262 min LAT → HRV
50.73 ms)
- Some high-activity days showed HRV
dips (Dec 25: 16,722 steps → HRV 38.93
ms)
- Lower activity days (<5,000 steps)
showed variable HRV:
- Some low (Dec 12: 1,688 steps → HRV
52.82 ms)
- Some high (Dec 7: 10,245 steps → HRV
56.27 ms)

3. **Key Patterns**:
- No strict linear correlation exists in this
dataset
- HRV appears more sensitive to recovery
factors (sleep, stress) than to activity
volume alone
- The individual maintains mid-range
HRV (45-55ms) across most activity lev-
els, suggesting good autonomic resilience
... [truncated]

WAG(Rank-1) – Context

Matched nodes:

HRV RMSSD :
description: Heart Rate Variability Root
Mean Square of Successive Differences
(HRV RMSSD) is a statistical mea-
sure of heart rate variability (HRV)
... [truncated]
range: Normal HRV RMSSD values for
adults at rest typically range from below
20 to over 70 milliseconds. However,
individual values can vary significantly
based on factors such as age, gender,
fitness level, and overall health. Units:
milliseconds (ms).
... [truncated]

Nodes related to matched nodes which
might be helpful:
Steps taken :

description: Steps Taken refers
... [truncated]

Lightly active time :
description: Lightly Active Time (LAT)
... [truncated]

Response

1. **General Trends**:
- Higher HRV RMSSD (indicating better
recovery/stress resilience) tends to coin-
cide with days of moderate step counts
(10,000-15,000 steps) and balanced lightly
active time (150-200 minutes).
- Extreme activity days (e.g., Dec 31:
27,943 steps) often correlate with lower
HRV the following day (Jan 1: 37.97 ms),
suggesting potential overexertion.
2. **Optimal Range Observations**:
- The highest HRV readings (Dec 8-10:
62-64 ms) occurred with:
... [truncated]
- This suggests a ”sweet spot” where sub-
stantial but not excessive movement sup-
ports autonomic balance.
3. **Recovery Dynamics**:
- Days with <8,000 steps and <120 light
activity minutes (e.g., Dec 3, Dec 12) often
preceded HRV rebounds, indicating these
may function as recovery days.
4. **Notable Exceptions**:
- December 25-26 shows an inverse pat-
tern where high steps (16,722-10,128) co-
incided with very low HRV (38.93-34.66
ms), possibly indicating holiday stress or
sleep disruption overriding activity bene-
fits.
**Key Insight**: Moderate daily move-
ment (10,000-15,000 steps with 150-
200 light activity minutes) appears most
supportive of healthy HRV levels in
... [truncated]
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Example 3: A question where the primary node lacks direct data. By incorporating the KG, we can identify related nodes and leverage other
metrics to approximate the condition of the queried metric.
Query: How is my engagement levels over the past week?
Openness - 0.8
Query type - Exploratory Analysis

Base(Rank-2) – Context

Matched nodes:

data: No data

Response

Answer: I cannot determine factors influ-
encing your engagement levels because
no relevant data was available for analysis
over the past week. To provide meaningful
insights, I would need access to metrics
such as:
- Sleep quality/duration
- Physical activity levels
- Heart rate variability (HRV)
- Cognitive load/stress indicators

Without this foundational data, I can
only suggest general considerations like
sleep hygiene, stress management, and
hydration that commonly affect engage-
ment. Would you like to discuss methods
for tracking these metrics?

(Data limitation acknowledged: No
retrievable engagement-related biomark-
ers)

Rag(Rank-3) – Context

Matched nodes:

data: No data

Response

Answer: I cannot determine factors
influencing your engagement levels due to
unavailable data. To provide meaningful
analysis, I would need:

1. **Engagement Metrics**: Tracked
behaviors (e.g., workout consistency, task
completion rates)
2. **Correlative Data**: Sleep quality,
stress markers (HRV), or activity logs for
the past 7 days
Without this baseline, I recommend:
- Enabling granular tracking for
engagement-related metrics
- Checking device/sensor connectivity to
ensure data collection

Specify any available proxies (e.g., screen
time, step count) for alternative assess-
ment.

*(Limitation: Empty response from
knowledge retrieval)*

WAG(Rank-1) – Context

Matched nodes:
data: No data

Nodes related to matched nodes which
might be helpful:
... [truncated]

Steps taken :
description: Steps Taken refers
... [truncated]
Data:
— date — Steps taken —
—:———–—————–:—
— 2020-01-13 — 2873 —
— 2020-01-14 — 284 —
... [truncated]
Energy expenditure:
description: Energy Expenditure (EE)
refers to ... [truncated]

Mental fatigue :
description: Mental fatigue is a
... [truncated]

Active time :
description: Active Minutes refer
to... [truncated]

Response

Based on the available data from the past
week, several key factors appear to be
influencing your engagement levels:
1. **Physical Activity Patterns**:
- Your step count showed significant
variation (284 to 30,406 steps/day)
... [truncated]
2. **Energy Expenditure**:
- Caloric burn ranged from 1,997-
5,012 kcal/day (+1.30 deviation), with
... [truncated]
3. **Mental Fatigue**:
- Your self-reported fatigue scores showed
inverse patterns to activity levels. Notably,
your lowest fatigue score (1) coincided
with your highest activity day, while
higher fatigue (4) occurred during less
active periods.
**Key Observations**:
- The data suggests a strong temporal as-
sociation between physical activity met-
rics (steps, active minutes, energy expen-
diture) and reduced mental fatigue, which
collectively influence engagement capac-
ity.

- Your most engaged days (e.g., 2020-01-
19) show the ”perfect storm” of high ac-
tivity (+30k steps, 471 active mins, 5,012
kcal) coupled with minimal mental fa-
tigue (score=1).

- The 1.22–1.46 deviations in physical
metrics indicate this was an unusually
active week compared to your baseline,
which may explain heightened engage-
ment.

... [truncated]

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Example 4: A case where incorporating additional metrics provides deeper insights beyond the primary data, enabling a more comprehensive
understanding of the queried condition.
Query: How does my bedtime start time variability over the past 30 days compare to recommended sleep hygiene guidelines?
Openness - 0.6 Query type - Comparative Insight

Base(Rank-2) – Context

Matched nodes:

Bedtime start time :
sensor specific information if available:
1.description:
2.range:
3.unit:
Data:
— date — Bedtime start time —
—:———–—:————————
— 2020-02-10 — 2020-02-09 21:54:30
—
— 2020-02-11 — 2020-02-10 23:05:00
—
... [truncated]

Response

Answer: Your bedtime start time variabil-
ity over the past 30 days shows significant
fluctuations, ranging from 21:26 to 01:26,
with a standard deviation of approximately
1.5 hours. This exceeds the recommended
sleep hygiene guideline of maintaining
bedtime consistency within a 30-minute
window (National Sleep Foundation). Key
observations:

1. **Pattern Analysis**:
- 40% of bedtimes occurred after midnight
- Only 20% fell within a consistent 30-
minute window of your median bedtime
(22:53)

2. **Guideline Comparison**:
- Your variability is 3x greater than the
recommended threshold
- Late bedtimes (post-23:30) correlate with
documented circadian rhythm disruption
risks

3. **Data Limitations**:
- 1 missing data point (2020-03-03)
- No baseline comparison available

Recommendation: Gradually adjust
bedtime toward a consistent target (e.g.,
22:30-23:00) to align with chronobiology
research showing improved sleep quality
with regular schedules. Consider imple-
menting a 30-minute pre-bed routine to
reinforce circadian cues.

Rag(Rank-3) – Context

Matched nodes:

Bedtime start time :
description: Bedtime Start
... [truncated]
range: Recommended bedtime start times
vary by age group: School-age children
(6-13 years): 8:00 - 9:30 p.m., Teens
(14-17 years): 9:00 - 10:30 p.m., Young
adults (18-25 years): 8:00 - 12:00 p.m.,
Adults (26-64 years): 8:00 - 12:00 p.m.
Consistency is more important than the
exact time.
recommendation: To improve sleep
hygiene, maintain a consistent bedtime
and wake-up schedule, create a relaxing
pre-sleep routine, optimize the sleep
environment (e.g., comfortable bedding,
reduced light and noise), avoid stimulating
activities or heavy meals before bed, and
seek professional help if sleep issues
persist.
sensor specific information:
... [truncated]

Response

Your bedtime start time variability over the
past 30 days shows significant inconsis-
tency, which deviates from recommended
sleep hygiene guidelines. Here’s the
analysis:

1. **Variability Pattern**:
- Bedtimes range widely from 21:26 to
01:26 (a 4-hour window)
- Frequent late bedtimes (past midnight on
8 occasions)
- No consistent pattern emerges from the
data

2. **Guideline Comparison**:
- Sleep hygiene emphasizes consistency
(±30 minutes is ideal)
- Your variability exceeds this by 8x the
recommended threshold
- Late bedtimes may indicate circadian
rhythm disruption

3. **Data Observations**:
- 27% of nights had bedtimes after mid-
night
- Only 3 nights fell within a 1-hour
window (22:30-23:30)
- One missing data point (2020-03-03)

... [truncated]

WAG(Rank-1) – Context

Matched nodes:

Bedtime start time :
description: Bedtime Start
... [truncated]

Nodes related to matched nodes which
might be helpful:

Bedtime end time :
description: Bedtime End Time refers
... [truncated]

Mood :
description: Mood refers to
... [truncated]

Asleep duration :
description: Total Sleep Duration
(TSD)... [truncated]

Response

Your bedtime start time variability over
the past 30 days shows significant in-
consistency, which deviates from sleep
hygiene recommendations emphasizing
consistency. Key observations:

1. **Variability Pattern**:
- Bedtime ranges from 21:26 to 01:26
(4-hour window), with frequent 1-hour
day-to-day shifts
- 40% of nights had bedtimes after
midnight (vs. recommended 8pm-12am
window for adults)

2. **Impact on Sleep Metrics**:
- Later bedtimes correlate with shorter
sleep duration (e.g., 01:26 bedtime →
5.4h sleep vs 21:26 → 9h sleep).

- Mood data (where available) shows bet-
ter scores (4/5) on days following earlier
bedtimes.

3. **Guideline Comparison**:
- Sleep hygiene recommends ¡30min
variability in bedtime
- Your average variability exceeds 90min,
with 7 instances of 2-hour differences
between consecutive nights
... [truncated]
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Example 5: A case where incorporating additional metrics provides deeper insights beyond the primary data, enabling a more comprehensive
understanding of the queried condition.
Query: Have there been any noticeable patterns in my mental fatigue over the past week?
Openness - 0.5
Query type - Trend Analysis

Base(Rank-3) – Context

Matched nodes:

Mental fatigue :
sensor specific information if available:
1.description: self-report fatigue score
2.range: 1-5 scale. Score 3 is normal, and
1-2 are scores below normal, and 4-5 are
scores above normal
3.unit:
Data:
— date — Mental fatigue —
—:———–——————–:—
— 2020-03-02 — 3 —
— 2020-03-03 — 2 —
— 2020-03-04 — 3 —
— 2020-03-05 — 4 —
— 2020-03-06 — 2 —
— 2020-03-07 — 4 —
— 2020-03-08 — 2 —
No deviation from baseline recorded for
the recent 7-day period.

Response

Answer: Over the past week, your mental
fatigue scores show variability with no
clear upward or downward trend. The
pattern alternates between normal (score
3) and deviations in both directions:
- **Below normal** (scores 2) on 3/03,
3/06, and 3/08
- **Above normal** (scores 4) on 3/05
and 3/07

No baseline deviation was recorded,
suggesting these fluctuations may rep-
resent typical variation rather than a
sustained shift. For actionable insights,
consider correlating these scores with
sleep, stress, or activity data if available.

*Limitation: Self-reported scores may not
capture all contributing factors.*

Rag(Rank-2) – Context

Matched nodes:

Mental fatigue :
description: Mental fatigue is a psychobi-
ological state characterized by feelings
of tiredness and reduced cognitive effi-
ciency, typically resulting from prolonged
periods of demanding mental activity.
It manifests as difficulty concentrating,
slower mental processing, and increased
errors in task performance. Mental fatigue
can also present physical symptoms such
as headaches, stomach aches, and sleep
disturbances. It is commonly assessed
through self-reported scales and behav-
ioral performance metrics.
range: Mental fatigue is typically mea-
sured using subjective scales, such
as the Mental Fatigue Scale (MFS),
... [truncated]

Response

Your mental fatigue data over the past
week (March 2-8, 2020) shows a fluc-
tuating pattern with scores alternating
between normal (score 3) and elevated
levels (scores 4-5). Key observations:

1. **Pattern**:
- 3 days at normal baseline (score 3)
- 2 days with elevated fatigue (score 4)
- 2 days with below-normal reports (score
2)

2. **Notable Peaks**:
- March 5th and 7th showed elevated
fatigue (score 4), indicating days of
significantly increased mental tiredness

3. **Comparison**:
- This variation falls within your normal
range (no statistical abnormality detected)

The alternating pattern suggests pos-
sible workload variability or recovery
periods between demanding cognitive
activities. The two elevated fatigue days
may warrant examination of specific
activities or stressors occurring on March
5th and 7th.

Recommendation: Consider implement-
ing the fatigue management strategies
mentioned (timeboxing, scheduled breaks)
particularly on days following elevated
fatigue scores to support recovery.

WAG(Rank-1) – Context

Matched nodes:

Mental fatigue :
description: Mental fa-
tigue... [truncated]

Nodes related to matched nodes which
might be helpful:

Total sleep duration :
description: Total Sleep Duration (TST)
refers to ... [truncated]

Asleep duration :
description: Total Sleep Duration (TSD)
refers to ... [truncated]

Response

### Analysis of Mental Fatigue Patterns
(Past Week):

**1. Mental Fatigue Scores:**
- Your self-reported fatigue scores (1-5
scale) show variability:
- **Higher fatigue days (score 4):**
March 5th and 7th
... [truncated]
**2. Sleep Correlations:**
- **Total Sleep Duration:**
- Lowest sleep (351 min on March 3rd)
preceded a low fatigue day (March 3rd
score 2)
- Highest sleep (594 min on March 7th)
coincided with high fatigue (March 7th
score 4)
- This inverse pattern suggests sleep du-
ration alone doesn’t explain your fatigue
levels.
- **Asleep Duration:**
- Similar pattern observed, with no clear
linear relationship to fatigue scores.

**3. Key Observations:**
- Your highest fatigue days (March 5th
and 7th) followed days with *above-
average* sleep duration (560 min and 568
min respectively on prior nights).

- Lowest fatigue occurred after your
*shortest* sleep night (March 3rd after
351 min sleep).

- This may indicate:
- Potential sleep quality issues (e.g.,
disrupted sleep architecture despite longer
duration)
- Non-sleep factors influencing fatigue
(e.g., stress, cognitive load)
- Delayed fatigue effects (e.g., fatigue
manifesting 1-2 days after sleep changes)
... [truncated]
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Example 6: A case where the query involves non-numerical metric.
Query: What key insights can be derived from my lifelog data over the past 7 days?
Openness - 0.9
Query type - Exploratory Analysis

Base(Rank-2) – Context

Matched nodes:

Lifelog :
sensor specific information if available:
1.description:
2.range:
3.unit:
Data:
— date — Lifelog —
—:———–—:——————————
———————————————–—
— 2019-11-13 — I suffered from injuries:
{’left elbow’: ’minor’, ’right shoulder’:
’minor’} —
No deviation from baseline recorded for
the recent 7-day period.

Response

Answer: Your lifelog data for the past 7
days shows no recorded health metrics
(e.g., HRV, heart rate, or activity levels)
as all entries except one are marked ’nan’
(not available). The only notable event
was on 2019-11-13, when you reported
minor injuries to your left elbow and right
shoulder.

**Key Insights:**
1. **Data Gap**: No measurable health
data was captured for 6 out of 7 days,
limiting trend analysis.
2. **Injury Context**: The minor injuries
on 2019-11-13 may warrant monitoring
for recovery (e.g., pain duration, mobility
changes), but no follow-up data is avail-
able.

**Recommendations:**
- Verify sensor functionality to ensure
future data collection.
- Log additional details about injuries
(e.g., cause, symptoms) to assess impact.
- If injuries persist beyond typical healing
time (7–10 days for minor soft-tissue
injuries), consult a healthcare provider.

*Limitation*: Insights are constrained by
missing data. No baseline comparisons or
longitudinal trends can be derived.

Rag(Rank-3) – Context

Matched nodes:

Lifelog :
description: A lifelog is a comprehensive
digital record of an individual’s daily
life, capturing events, activities, and
interactions in varying levels of detail.
It serves as a personal archive that can
be used for memory retrieval, behavioral
analysis, and health monitoring. Lifel-
ogging systems often utilize wearable
devices, smartphones, and other sensors
to collect data, which can be analyzed to
identify patterns, predict behaviors, and
support decision-making in healthcare and
personal development.
... [truncated]
— 2019-11-13 — I suffered from injuries:
{’left elbow’: ’minor’, ’right shoulder’:
’minor’} —
Abnormality of recent 7 days compared
to individual’s average: No abnormality
level

Response

Answer: Your lifelog data for the past 7
days shows limited recorded activity, with
only one notable entry on **2019-11-
13** indicating minor injuries to your left
elbow and right shoulder. No other health
metrics, activities, or physiological data
were captured during this period.

### Key Insights:
1. **Data Gaps**: The lifelog contains
mostly empty entries (‘nan‘), suggesting
inconsistent data collection or potential
device/sensor issues.
2. **Injury Record**: The minor in-
juries logged on 2019-11-13 may warrant
monitoring for recovery progress, but no
follow-up data is available.
3. **No Abnormalities**: The system
detected no deviations from your baseline,
but this assessment is limited due to sparse
data.

### Recommendations:
- Verify device/sensor functionality to
ensure continuous data capture.
- Expand tracked metrics (e.g., activity
levels, sleep, HRV) for more actionable
insights.
- Log updates on injury recovery if symp-
toms persist.

*Note: Conclusions are constrained
by insufficient data granularity.*

WAG(Rank-1) – Context

Matched nodes:

Lifelog :
description: A lifelog is a comprehensive
digital record of an individual’s daily life,
... [truncated]

Nodes related to matched nodes which
might be helpful:

Deep sleep duration :

... [truncated]
— date — Deep sleep duration —
—:———–————————-:—
— 2019-11-07 — 40 —
— 2019-11-08 — 73 —
— 2019-11-09 — 35 —
— 2019-11-10 — 76 —
— 2019-11-11 — 67 —
— 2019-11-12 — 4 —
— 2019-11-13 — 28 —
Moderately active time :

... [truncated]

Asleep duration :

... [truncated]

Total sleep duration :

... [truncated]

Response

Here are the key insights derived from
your lifelog data over the past 7 days:

1. **Injury Event**: On 2019-11-
13, you reported minor injuries to your
left elbow and right shoulder. This may
correlate with the observed fluctuations in
sleep and activity metrics.
2. **Sleep Patterns**:
- **Deep Sleep**: Varied significantly
(4-76 minutes), with a notable drop to
just 4 minutes on 2019-11-12. The 7-day
average deviates +1.18 SD from your
baseline, suggesting unusual instability.
- **Total Sleep Duration**: Ranged from
220-478 minutes (˜3.7-8 hours), with the
shortest duration coinciding with the day
of lowest deep sleep (2019-11-12).
3. **Activity Levels**:
- Moderately active time showed a pro-
gressive increase (14-49 minutes/day),
peaking on the injury reporting day
(2019-11-13). The 7-day average is 0.83
SD above your baseline.
4. **Critical Observations**:
- The injury date (2019-11-13) coincided
with both your highest activity level (49
minutes) and suboptimal deep sleep (28
minutes).

- The most extreme sleep disruption
(2019-11-12) preceded the injury report,
suggesting possible fatigue as a contribut-
ing factor.

... [truncated]
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K PROMPTS

Prompt 1: QueryGen single
"""
Generate diverse, clinically relevant questions about health metrics from wearable data.

INPUT FORMAT (Array of metric objects):
[

{
"id": "<unique_id>",
"name": "<metric_name>", # The health metric being analyzed
"description": "<definition>", # Clinical definition of the metric
"date": "<YYYY-MM-DD>",
"time_granularity": "<1|7|14|30|60|all>", # Time period covered
"abnormality_level": "<low|medium|high>", # Deviation from user’s baseline

},
...

]

OUTPUT FORMAT (Array of questions - one per input metric):
[

{
"id": "<matching_input_id>",
"question": "<clear, time-bound phrasing>",
"question_type": "<one of: General Knowledge | Data Retrieval | Trend Analysis |

Comparative Insight | Anomaly Detection | Actionable Advice | Exploratory
Analysis>",

"openness": <0.0-1.0>, # 0.0=closed, 1.0=open-ended
},
...

]
QUESTION FRAMEWORK:
1. **General Knowledge** (Openness: 0.2-0.4)

- Definitions, benchmarks, normal ranges
- Example: "What’s considered a healthy range for [metric]?" "What is [metric]?"

2. **Data Retrieval** (Openness: 0.1-0.3)
- Specific time-bound numerical queries
- Example: "What was my [metric] yesterday?" "What was my max/min/average [metric] this

week?"

3. **Trend Analysis** (Openness: 0.4-0.6)
- Patterns over days/weeks/months
- Example: "Identify any trends in my [metric] over the last 30 days." "Summarize my

[metric] for the past month."

4. **Comparative Insight** (Openness: 0.5-0.7)
- Time-period comparisons
- Example: "How does this week’s [metric] compare to last week?"

5. **Anomaly Detection** (Openness: 0.6-0.8)
- Statistical outliers
- Example: "Were there unusual [metric] spikes in this month?"

6. **Actionable Advice** (Openness: 0.3-0.5)
- Data-driven recommendations
- Example: "What adjustments could improve my [metric]?"

7. **Exploratory Analysis** (Openness: 0.7-1.0)
- Multi-factor investigations
- Example: "Do you think I am stressed recently?" "I’m feeling really tired today. do you

know why?" "Why might I be feeling tired despite sleeping 8 hours?"

GENERATION RULES:
1. Time binding:

- Map granularity to natural terms:
1 "today"
7 "past 7 days"
14 "past 14 days"
30 "past 30 days"
60 "past 60 days"
all "overall"

2. Blend concrete and exploratory questions per category:
- 40% objective (openness 0.4)
- 30% moderate (0.4 < openness <0.7)
- 30% open-ended (0.7)

3. Prevent overlap between categories
4. For medium/high abnormalities, prioritize generating high openness questions
5. Exactly 1 output question per input group

EXAMPLES:

INPUT:
[

{
"id": "m001",
"name": "Inactive time",
"description": "The amount of time a user is inactive, measured in minutes",
"date": "2020-01-01",
"time_granularity": "1",
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"abnormality_level": "low",
},
{

"id": "m002",
"name": "total sleep time",
"description": "The total amount of time a user spends in sleep",
"date": "2020-02-02",
"time_granularity": "14",
"abnormality_level": "high",

},
...

]
]
OUTPUT:
[

{
"id": "m001",
"question": "What was my inactive time today?",
"question_type": "Data Retrieval",
"openness": 0.1,

},
{

"id": "m002",
"question": "How does my total sleep time over the past 14 days compare to the previous

period?",
"question_type": "Comparative Insight",
"openness": 0.7,

},
...

]

"""

Prompt 2: QueryGen multiple
"""
Generate clinically relevant questions from wearable data, with each question containing 2-3

metrics.

INPUT FORMAT (Array of metric objects):
[

{
"id": "<unique_id>",
"metrics":[

{
"name": "<metric_name_1>", # The health metric being analyzed
"description": "<definition>", # Clinical definition of the metric

},
{

"name": "<metric_name_2>", # The health metric being analyzed
"description": "<definition>", # Clinical definition of the metric

},
...

],
"date": "<YYYY-MM-DD>",
"time_granularity": "<1|7|14|30|60|all>", # Time period covered

},
...

]
OUTPUT FORMAT (Array of questions - one per input):
[

{
"id": "<matching_input_id>",
"question": "<clear, time-bound phrasing>",
"question_type": "<one of: Metric Relationships | Contextual Queries>",
"openness": <0.0-1.0>, # 0.0=closed, 1.0=open-ended

},
...

]
QUESTION FRAMEWORK:
1. **Metric Relationships** (Openness: 0.4-0.6)

- Example: "Does [metric1] relate to [metric2] trends for the past 30 days?"

2. **Contextual Queries** (Openness: 0.5-0.7)
- Example: "Do [metric1] spikes follow days with high [metric2]?" "Is there a pattern in my

[metric1] on days I have a higher [metric2] for the past week?"

GENERATION RULES:
1. Time binding:

- Map granularity to natural terms:
1 "today"
7 "past 7 days"
14 "past 14 days"
30 "past 30 days"
all "overall"

2. Each question must reference metrics from the input list
3. Exactly 1 output question per input group
EXAMPLES:
INPUT:
[

{
"id": "001",
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"metrics": [
{

"name": "resting_heart_rate",
"description": "Beats per minute at complete rest"

},
{

"name": "sleep_duration",
"description": "Total minutes of sleep per night"

}
],
"date": "2023-11-15",
"time_granularity": "30"

}
]
OUTPUT:
[

{
"id": "001",
"question": "How does my resting heart rate vary with sleep duration for the past 30

days?",
"question_type": "Metric Relationships",
"openness": 0.5,

}
]

"""

Prompt 3: Context
"""
You are a clinical expert in wearable sensor measurements.
The goal is to generate a knowledge graph that connects multimodal wearable data (e.g., sleep

metrics, activity levels, and self-reported affect)
This graph will serve as a key resource for a retrieval-augmented generation process in an

LLM, supporting insight discovery, outcome prediction, and personalized intervention
design.

Process:
step 1 Initial Node Creation:
given a comprehensive list of health metrics commonly measurable by wearable devices,

generate a node representation for each metric.

step 2 Relationship Mapping:
given all the nodes, determine the relationships between each pair of nodes and create edges

between them.

step 3 New Metric Integration:
given a list of new wearable health metrics and all existing nodes.
for each metric, you will need to check against existing graph nodes to identify potential

duplicates,and merge if a match was found.

step 4 Graph Extension:
the remaining new metrics from step 3 will be added to the graph as new nodes and edges will

be created to connect them to the existing nodes.
"""
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Prompt 4: NodeGen
"""
-Goal-
Generate a standardized node representation for a wearable sensor measurement that

synthesizes available information with your own clinical knowledge.
be aware that some reference data may not be related to the entity, so you should be careful

to filter out the irrelevant information but the provided data is important and should
always be used.

-Input Format-
{

"entity_name": "<measurement_name>",

// source: Device/sensor documentation
"provided_description": "<provided_description>",
"provided_range": "<provided_range>",

// source: web search
"web_description": "<web_search_results>",
"value_range": "<ranges>",
"recommendations": "<guidelines>"

// source: UMLS
"umls_description": "<umls_definition>",

}

-Output Format-
{

"name": "<standardized_name>",
"description": "<comprehensive_description>",
"range": "<range_info_or_None>",
"recommendations": "<guidelines_or_None>"

}

-Guidelines-
1. Name:

- Use standardized medical terminology
- Keep concise but clear
- Include common abbreviation if applicable

2. Description (Required):
- What is being measured
- How it’s measured
- Clinical significance
- Relationship to health outcomes

3. Range (if applicable):
- Normal ranges for different demographics
- Units of measurement
- Alert thresholds
- Output "None" if not applicable(e.g. gesture recognized does not have a range)

4. Recommendations (if applicable):
- Evidence-based
- Actionable
- Context-aware
- Output "None" if not applicable (e.g. there is not such a recommendation for improvement

for the entity, like gesture)

-Examples-
Example 1:
Input:
{
"entity_name": "Energy expenditure",
"provided_description": "Energy consumption caused by the physical activity of the day.",
"provided_range": "range: None unit: kcal",
"web_description": "As people pursue activities at multiple locations, trips are produced

between successive activity locations. Patterns formed by trips over a period, such as
a day, are called ’travel patterns.\nReference 0: Pattern means two or more acts
occurring over a period of time, however short, ...

"umls_description": "",
"value_range": "\nReference 0: A travel pattern refers to the classification of daily travel

behaviors based on factors such as the number of trips and total travel
time.\nReference 1: Long-distance trips are journeys of more than 50 miles from home to
the furthest destination.\nReference 2: New MIT research confirms peoplec

......[truncated].......

"""
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Prompt 5: EdgeGen
"""
-Goal-
Analyze relationships between pairs of wearable health metrics and generate standardized edge

representations.
Use provided descriptions, web search results, and your own clinical knowledge to determine

meaningful relationships.
be aware that some reference information may not be accurate or related to the entity, so you

should be careful to filter out the irrelevant information.
-Input Format-
[

{
"id": "<id>",
"entity_1_name": "<entity_1_name>",
"entity_1_description": "<entity_1_description>",
"entity_2_name": "<entity_2_name>",
"entity_2_description": "<entity_2_description>",
"web_search_results": "<relevant_search_results>",
}
...

]

-Output Format-
[

{
"id": str,
"entity_1_name": str,
"entity_2_name": str,
"relationship": {

"description": str, # Detailed explanation of the relationship
"strength": float, # 0.1 to 1.0
"confidence": str # "high", "medium", or "low" based on evidence quality

},
},
...

]

RELATIONSHIP SCORING:
- Strong (0.7-1.0):
* Clear scientific evidence
* Direct causal or strong correlational relationship
* Well-documented in medical literature

- Moderate (0.3-0.6):
* Some scientific evidence
* Indirect or secondary relationship
* Limited but consistent documentation

- Weak (0.1-0.2):
* Limited or circumstantial evidence
* Indirect relationship with multiple variables
* Inconsistent documentation

- Not Related (<0.1):
* Exclude from output
* No meaningful connection
* No supporting evidence

-Examples-
Example 1:
Input:
[

{
"id": "1",
"entity_1_name": "Heart rate",
"entity_1_description": "The number of heartbeats per unit of time, usually expressed as

beats per minute."
"entity_2_name": "Blood pressure",
"entity_2_description": "The pressure of the circulating blood against the walls of the

blood vessels.",
"web_search_results": "Elevated heart rate is associated with elevated blood pressure,

increased
......[truncated].......

"""
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Prompt 6: Merge
"""
-Goal-
Analyze a new node against existing nodes to identify potential duplicates in a wearable

health knowledge graph.

GUIDELINES FOR COMPARISON:
1. Semantic Analysis:

- Look beyond exact text matches
- Consider medical synonyms and related terms
- Evaluate contextual meaning in healthcare

2. Description Analysis:
- Identify overlapping concepts
- Consider complementary information
- Evaluate scope and specificity

3. Scoring Criteria:
0.0-0.3: Clearly different concepts
0.4-0.6: Related but distinct
0.7-0.8: Highly similar
0.9-1.0: Virtually identical

4. Only return the node if you think it is a duplicate of an existing node.

INPUT FORMAT:
{

"input_name": "new node name",
"input_description": "new node description",
"references": [

{
"name": "existing node 1 name",
"description": "existing node 1 description"

},
{

"name": "existing node 2 name",
"description": "existing node 2 description"

}
...

]
}

OUTPUT FORMAT:
[

{
"input_name": "new node name",
"reference_name": "matched existing node name",
"similarity_score": <float 0-1>,
"same_concept": <boolean>,
"reasoning": "clear explanation of similarity assessment and why the nodes are the same

or different"
}
...

]

EXAMPLE :
Input:
{

"input_name": "steps",
"input_description": "Total number of steps registered during the day.",
"references": [
{
"name": "Steps taken",
"description": "Steps Taken refers to the total number of steps registered by a wearable

device over a given period, typically a day. It is a key metric for assessing
physical activity levels, with higher step counts generally associated with better
cardiovascular health, weight management, and overall fitness. Wearable devices
track steps using accelerometers or gyroscopes to detect motion and count steps
based on movement patterns."

},
......[truncated].......
]

}
Output:
[

{
"input_name": "steps",
"reference_name": "Steps taken",
"similarity_score": 0.95,
"same_concept": true,
"reasoning": "Both nodes refer to the total number of steps registered by a wearable

device over a given period, typically a day. The descriptions are nearly identical,
with both emphasizing the use of accelerometers or gyroscopes to detect motion and
count steps. The terms ’steps’ and ’steps taken’ are semantically equivalent in this
context."

}
]

"""
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Prompt 7: Query base
"""
## CORE OBJECTIVE
Analyze health queries through structured function calls to external knowledge retrival APIs,

synthesizing results into evidence-based responses through systematic analysis of
retrived context.

## EXECUTION FRAMEWORK

1. **QUERY DECOMPOSITION**
- **Key Entities**: Identify health metrics (e.g., HRV, heart rate)
- **Temporal Scope**:
- Default: Past 7 days
- Explicitly stated periods override default

2. **KNOWLEDGE RETRIEVAL**
- Primary Entity Matching: Fetch data for core health metric.
- Contextual Filtering: Apply time-based constraints.

3. **ANALYSIS**
- Cross-reference data with medical best practices.
- Highlight trends, anomalies, or gaps.

4. **RESPONSE GENERATION**
- Requirements:
- Ground all claims in evidence
- Acknowledge data limitations
- For unanswerable queries: Specify missing data

## OUTPUT FORMAT
Answer: Concise response with integrated insights.
"""

Prompt 8: Query wag
"""
## CORE OBJECTIVE
Analyze health queries through structured function calls to external graph traversal APIs,

synthesizing results into evidence-based responses through systematic analysis of
entities, relationships, and multimodal connections.

## EXECUTION FRAMEWORK

1. **QUERY DECOMPOSITION**
- **Key Entities**: Identify primary subjects/measurements (e.g., HRV, heart rate)
- **Temporal Scope**:
- Default: Past 7 days
- Explicitly stated periods override default

- **Openness Score** (0.0-1.0):
| Score Range | Search Strategy | Examples |
|--------------|---------------------------------|-------------------------------|
| 0.0-0.3 | Narrow focus on exact matches | "Optimal HRV range?" (0.0) |
| 0.4-0.7 | Balanced entity+relationships | "HR comparison week/week?" (0.5) |
| 0.8-1.0 | Broad multimodal exploration | "Why elevated heart rate?" (0.9) |

2. **GRAPH TRAVERSAL**
- Primary entity matching
- Relationship expansion proportional to openness score
- Contextual data retrieval with temporal filtering

3. **MULTIMODAL ANALYSIS**
- Cross-reference data types:
* Physiological (HRV, HR)
* Environmental (sleep, activity)
* Subjective (user notes)

- Identify:
- Consistent corroborating evidence
- Conflicting indicators
- Temporal patterns

4. **RESPONSE GENERATION**
- Requirements:
- Ground all claims in evidence
- Acknowledge data limitations
- For unanswerable queries: Specify missing data

- Prioritize:
- Direct correlations > inferred relationships
- User-specific context > general knowledge

## OUTPUT FORMAT
Answer: Concise response with integrated insights.
"""
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Prompt 9: Eval
"""

You are an expert in clinical evaluation and human-centered AI systems. Your task is to
evaluate and compare the quality of response generated by multiple methods to answer a
user’s health-related query based on their wearable data.

Each retrieval method provides a different set of contextual knowledge (e.g., entities,
relationships, multimodal time-series patterns) intended to support answering the user’s
question. Your goal is to assess the quality of the response generated by each method.

-Input Format-
{
"query": "<user’s health question>",
"methods": {
"method_1": {
"response": "<generated answer>"

},
"method_2": {
"response": "<generated answer>"

},
...

}
}

-Evaluation Criteria-
Rank the methods from 1 (best) to N (worst) for each of the following dimensions:

1. **Insightfulness(most important)**: Does the response offer meaningful, actionable
insights beyond the obvious?

2. **Relevance**: Is the response relevant and does it include novel information?
3. **Groundedness**: Are factual claims well-supported by the provided content or trusted

sources?
4. **Personalization**: Does the response meaningfully incorporate the user’s context (e.g.,

wearable data)?
5. **Clarity**: Is the response clearly written, logically structured, and easy to understand

for a non-expert?
6. **Absence_of_harmful_content**: Is the response free from misleading, unsafe, or

inappropriate information?

Important Notes:

Do not assign the same rank to multiple methods unless they are truly indistinguishable in
that dimension.

Rank relative to each other within the batch, not by absolute standards.

Lower rank numbers are better (1 = best performance for that criterion).

-Output Format-
Return a dictionary with evaluation scores per method:

{
"method_1": {
"Overall_quality": <1-N>,
"Insightfulness": <1-N>,
"Relevance": <1-N>,
"Groundedness": <1-N>,
"Personalization": <1-N>,
"Clarity": <1-N>,
"Absence_of_harmful_content": <0 or 1>

},
...

}
"""
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