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Abstract

Often times in imitation learning (IL), the environ-
ment we collect expert demonstrations in and the
environment we want to deploy our learned policy
in aren’t exactly the same (e.g. demonstrations
collected in simulation but deployment in the real
world). Compared to policy-centric approaches
to IL like behavioural cloning, reward-centric
approaches like inverse reinforcement learning
(IRL) often better replicate expert behaviour in
new environments. This transfer is usually per-
formed by optimising the recovered reward under
the dynamics of the target environment. How-
ever, (a) we find that modern deep IL algorithms
frequently recover rewards which induce policies
far weaker than the expert, even in the same en-
vironment the demonstrations were collected in.
Furthermore, (b) these rewards are often quite
poorly shaped, necessitating extensive environ-
ment interaction to optimise effectively. We pro-
vide simple and scalable fixes to both of these
concerns. For (a), we find that reward model en-
sembles combined with a slightly different train-
ing objective significantly improves re-training
and transfer performance. For (b), we propose a
novel evolution-strategies based method (EvIL)
to optimise for a reward-shaping term that speeds
up re-training in the target environment, closing a
gap left open by the classical theory of IRL. On a
suite of continuous control tasks, we are able to re-
train policies in target (and source) environments
more interaction-efficiently than prior work.

1. Introduction
Consider the problem of predicting driver behaviour across
a network of roads. Let’s say there are |S| nodes in our
routing graph and |A| roads going out of each node. If we
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simply wanted to predict the path usually taken between
some start node s1 and some goal node s2, we could collect
data of drivers navigating between these two points and
learn a policy by regressing from their states to their actions,
an approach known as behavioural cloning (BC, Pomerleau
(1988)). As we’d need to learn an action at each state, this
would require learning |S||A| parameters. Now, let’s say
we wanted to learn the path taken between the same start
node s1 and some new goal node s3. We’d need to repeat
this entire procedure once again. Thus, to learn how to
navigate from one goal to all destinations, a policy-centric
approach like BC would need |S|2|A| parameters. In con-
trast, a reward-centric approach to imitation like inverse
reinforcement learning (IRL, Ziebart et al. (2008a)) would
simply require learning the |S||A| parameters of the under-
lying reward function from expert data and then could be
optimised to find the shortest path between any two nodes
in the graph. This ability to learn a compact representation
that generalises well across multiple tasks / environments
was one of the key reasons IRL was developed in the first
place. Indeed, as Ng et al. (2000) put it, “the entire field of
reinforcement learning is founded on the presupposition that
the reward function, rather than the policy is the most suc-
cinct, robust, and transferable definition of the task”. This
intuition remains true in the modern day, perhaps explaining
why robust real-world mapping services like Google Maps
are build on top of the bedrock of IRL (Barnes et al., 2023).

If we look at classical IRL algorithms like Maximum En-
tropy IRL (Ziebart et al., 2008a) or LEARCH (Ratliff et al.,
2009), they usually have a double loop structure. In the
outer loop, one trains a discriminator to solve a classifica-
tion problem between learner and expert trajectories. The
discriminator is then used as a reward function in the inner
loop, where the learner optimises this adversarially chosen
reward function via reinforcement learning. Observe that
because we are actually optimising the reward function to
completion in each inner loop iteration, we have reason to
believe we will be able to retrain effectively from scratch,
a point borne out in practice across a wide variety of dis-
ciplines (e.g. in robotics (Silver et al., 2010; Ratliff et al.,
2009; Kolter et al., 2008; Ng et al., 2006; Zucker et al.,
2011), computer vision (Kitani et al., 2012), and human-
computer interaction (Ziebart et al., 2008b; 2012)).

More modern approaches to IRL like GAIL (Ho & Ermon,
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2016) keep the double loop structure but perform a small
amount of policy optimisation in each inner loop iteration,
rather than completely resolving the RL problem. While
this means we expend less environment interactions in each
inner loop iteration, it also means that we no longer can
ensure that retraining from scratch on the recovered reward
function will guarantee performance similar to that of the
expert. Beyond being merely a theoretical concern, we find
that the rewards recovered by modern deep IL algorithms
preclude such effective retraining, even in the environment
the expert demonstrations were collected in. This raises
one our work’s key questions: how can we preserve the
computational benefits of modern IRL while matching the
re-training ability of classical IRL?

However, even the rewards recovered by classical IRL meth-
ods suffer from a weakness: there is no need for them to
be nicely shaped, which can preclude efficient retraining.
In fact, later in the same paper, Ng et al. (2000) raise the
following question: “shaping rewards can produce reward
functions that make it dramatically easier to learn a solution
to an MDP, without affecting optimality. Can we design IRL
algorithms that recover ‘easy’ rewards?” As we discuss
in greater detail in the following sections, classical IRL al-
gorithms are entirely agnostic to reward shaping, as they
assume we have the ability to perfectly compute the optimal
policy at each iteration and use a loss function for updating
the reward estimate that is invariant to shaping terms. Thus,
the classical theory of IRL doesn’t provide any clear answers
for how to make re-training more interaction-efficient.

We provide a method for efficient and effective retraining in
IRL that scales to modern deep learning architectures and
algorithms. First, we find that a combination of reward
model ensembles, random policy resets, and a more sta-
ble loss function allows for more effective retraining that
enables the agent to more closely match expert performance.
For the second, we introduce a novel evolution-strategies
based method that directly optimises for efficiency in
re-training, beating out classical value function-based ap-
proaches to reward shaping. We refer to the combination
of these two techniques as EvIL: an algorithm that allows
effective and efficient re-training in novel environments.

More explicitly, our contributions are four-fold:

1. We empirically demonstrate that rewards recovered
by conventional IRL algorithms consistently fail in pro-
ducing optimal agents when employed to retrain an
agent from scratch. This holds true even when the re-
training occurs within the same environment where the data
was initially collected, differing from the picture in theory.

2. We provide a suite of adjustments that make retrain-
ing based on the reward recovered by IRL more effec-
tive. Our adjustments are simple to implemented require

minimal additional environment interactions, preserving the
efficiency of more modern approaches to IRL.

3. We introduce a novel evolution-strategies based ap-
proach to potential-based reward shaping that allows
for efficient retraining. Rather than classical heuristic ap-
proaches that attempt to uniformly approximate the value
function of the optimal policy, we instead use zeroth-order
optimisation to directly optimise for interaction-efficient
retraining. We also show a speedup in vanilla RL.

4. We perform extensive experimental evaluation of our
proposed method across a suite of continuous control
tasks and find that it leads to significantly more efficient
and effective retraining in source and target environ-
ments than prior work. We show that we can combine
both of these techniques to reap the benefits of efficient and
effective retraining even in environments that are markedly
different than what the demonstrations were collected in.

We begin with a discussion of related work.

2. Related Work
Inverse Reinforcement Learning. IRL is commonly
framed as a two-player zero-sum game between a policy
player and a reward function player (Syed & Schapire, 2007;
Ho & Ermon, 2016; Swamy et al., 2021). Intuitively, the
reward function player tries to pick out differences between
the current learner policy and the expert demonstration,
while the policy player attempts to maximise this reward
function to move closer to expert behaviour. As pointed
out by Finn et al. (2016), this setup is effectively a GAN
(Goodfellow et al., 2014) in the space of trajectories.

IRL algorithms can be categorised into two flavours: primal
and dual (Swamy et al., 2021). In a primal algorithm, one
follows a no-regret strategy for both the policy and reward
player. Practically, this corresponds to taking a small step
on the reward function before performing a small amount
of policy optimisation. Most modern deep IL algorithms
like GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2018)
follow this approach. In contrast, the classical approaches
to IRL (e.g. MaxEnt IRL (Ziebart et al., 2008a), LEARCH
(Ziebart et al., 2008a), Abbeel & Ng (2004)) are of the
dual flavour: one follows a no-regret strategy for reward
selection against a best response via RL for policy selection.
Practically, this corresponds to optimising the reward to
completion at each iteration. For example, in MaxEnt IRL,
the best response is performed via soft value iteration. From
the perspective of interaction efficiency, primal methods
are preferable to dual methods due to lesser interaction in
their inner loop. However, from the perspective of ensuring
effective retraining (more formally, from the perspective of
best-iterate convergence), dual methods are preferable due
to their explicit retraining at each iteration. Our goal is to
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achieve the best of both worlds: we seek to preserve the
retraining ability of classical dual methods while leveraging
the interaction efficiency of modern primal methods.

Efficient Inverse RL. Various authors have attempted to
improve IRL, both in terms of sample efficiency (number of
expert demonstrations required) and interaction efficiency.
Swamy et al. (2022) provide the minimax-optimal algorithm
for IRL in terms of sample efficiency – this is complimentary
to the interaction efficiency we focus on in our work. Swamy
et al. (2023) provide the first general poly(H) interaction
complexity algorithm for IRL. In contrast, we focus on
efficient retraining. Furthermore, we can easily combine our
approach with theirs as they are orthogonal – they focus on
reducing exploration during policy search under an arbitrary
reward function while we provide a method to learn well-
shaped reward functions that can be used by an arbitrary
downstream policy optimisation procedure. The same can
be said for the hybrid RL based approach of Ren et al. (2023)
and the BC regularisation suggested by Tiapkin et al. (2023).

Reward Shaping. Starting with the seminal work of Ng
et al. (1999), reward shaping has emerged as a critical com-
ponent of reducing the interaction complexity of reinforce-
ment learning methods (Jaderberg et al., 2019; Wu & Tian,
2017). As we discuss further below, reward shaping is often
thought of as reducing the effective horizon of the plan-
ning problem. In the search-based planning literature, this
is often referred to as A⋆ search (Likhachev et al., 2003;
2005). Even in the era of deep RL, the effective horizon
of a problem has remained as an accurate predictor of the
performance of policy optimisation algorithms (Laidlaw
et al., 2023). From this perspective, the optimal shaping
term would be the value function of the optimal policy – the
greedy policy would then be the optimal policy. However,
ensuring that we’ve learned a value function that closely
approximates the true optimal value function everywhere
in the state space (more formally, an admissible heuristic
(Russell & Norvig, 2010)), is a rather tall order, outside
of small tabular problems like those considered in Cooke
et al. (2023). We find that in practice, using the critic of a
strong policy as a learned shaping term improves interac-
tion efficiency, but that our approach is able to significantly
out-perform this baseline. We hypothesise this is because
a learned critic is likely only accurate on states the optimal
policy visits, while our method directly optimises for reduc-
ing training time by looking for a shaping term that provides
signal over the entire course of training, including on the
state distribution of the initial weak policy.

Evolution Strategies for RL. Recent work leverages JAX-
based (Bradbury et al., 2018) hardware acceleration for RL
to massively parallelise training (Lu et al., 2022a). This has
been used for large-scale multi-agent learning (Rutherford
et al., 2023) and rapid population-based training (Flajolet

et al., 2022). Another, more related, line of work leverages
these techniques to perform evolution-based (Salimans et al.,
2017) bi-level optimisation. For example, Lu et al. (2022a);
Jackson et al. (2023) evolve surrogate objective functions to
effectively discover new, performant reinforcement learn-
ing algorithms. Lu et al. (2023); Lupu et al. (2024) in-
stead evolve and analyse adversarial environment features
and data that influence long-term RL learning behaviour
whilst Khan et al. (2023); Lu et al. (2022b) do the same for
adversarial policies. Thus, Evolution Strategies (ES) are
well-suited for long-horizon and noisy bi-level optimisation
tasks, such as those involving an RL inner loop. We apply a
similar evolution-based approach for reward shaping.

3. Background
We provide a quick overview of relevant background.

3.1. Inverse Reinforcement Learning as Game Solving

We consider a finite-horizon Markov Decision Process
(MDP) (Puterman, 2014) parameterized by ⟨S,A, T , H⟩
where S, A are the state and action spaces, T : S × A →
∆(S) is the transition operator, and H is the horizon. In
imitation learning, we see trajectories generated by an ex-
pert policy πE : S → ∆(A), but do not know the re-
ward function. Our goal is to find a reward function that,
when optimised, recovers a policy with similar behaviour
to that of the expert. We cast this problem as a zero-
sum game between a policy player and an adversary that
tries to penalise any difference between the expert and
learner policies (Syed & Schapire, 2007; Ho & Ermon,
2016; Swamy et al., 2021). More formally, we optimise
over policies π : S → ∆(A) ∈ Π and reward functions
f : S × A → [−1, 1] ∈ Fr, where we assume that both
Π and Fr are convex and compact so Sion’s minimax the-
orem holds. We use ξ = (s1, a1, r1, . . . , sH , aH , rH) to
denote the trajectory generated by some policy. Using
J(π, r̂) = Eξ∼π[

∑H
h=1 r̂(sh, ah)] to denote the value of

policy π under reward function r̂, we have the following:

min
π∈Π

max
f∈Fr

J(πE , f)− J(π, f). (1)

3.2. Potential-Based Reward Shaping

Potential-based reward shaping (Ng et al., 1999) is a tech-
nique for speeding up policy optimisation by reducing the
effective planning horizon of the problem which guarantees
preserving policy optimality. More formally, we define a
potential function Φ : S → R that assigns real values to
states s ∈ S in the environment. The potential-based shap-
ing term F : S × S → R is then defined as the change in
the potential over the course of a transition. i.e.

FΦ(s, s
′) = Φ(s′)− Φ(s). (2)
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This shaping term is added to the standard reward during
training: if in the original MDP M the reward is r(s, a) for
transitioning from s to s′ with action a ∼ π(s), then in the
new MDP M ′ the reward is updated to be

r′(s, a) = r(s, a) + F (s, s′) (3)

at all but the last timestep, for which r′(sH , aH) =
r(sH , aH)+F (sH , s1). Observe that for any policy π ∈ Π,
J(π, r) = J(π, r′) as the F (s, s′) term telescopes. Thus,
π⋆ = argmaxπ∈Π J(π, r′) = argmaxπ∈Π J(π, r) – we
preserve policy optimality. Thus, in theory, PBRS only af-
fects the speed at which we converge to the optimal policy,
rather than the value of the policy we end up converging to.

3.3. Evolution Strategies

Evolution Strategies (ES) are zeroth-order, population-
based, stochastic optimisation algorithms. First, they use
random noise to generate a population of candidate solutions.
These solutions are then evaluated using a fitness function.
Lastly, the population is iteratively improved over time by as-
signing higher weight to better-performing population mem-
bers. This causes the population to move closer and closer to
the optimal solution, and the process is repeated until a sat-
isfactory solution is found. Recently, ES has been success-
fully applied to a variety of tasks (Real et al., 2019; Salimans
et al., 2017; Such et al., 2018). ES algorithms are gradient-
free and well-suited for (meta-)optimisation problems where
the objective function is noisy or non-differentiable and the
search space is large or complex (Beyer, 2000; Lange, 2023;
Lu et al., 2023; 2022a; Houthooft et al., 2018). This in-
cludes reward function shaping (Niekum et al., 2010) and
RL hyperparameter search (Elfwing et al., 2018).

There are several types of ES algorithms, one of the most
well known is the covariance matrix adaptation evolution
strategy (CMA-ES) (Hansen & Ostermeier, 2001), which
represents the population by a full-covariance multivari-
ate Gaussian. Although CMA-ES can be applied to our
problem, it has only proven successful in low to medium
dimension optimisation spaces. Another widely applied
ES algorithm is OpenAI-ES (Salimans et al., 2017) which
estimates the gradient through the following function:

∇θEϵ∼N(0,1)F (θ + σϵ) =
1

σ
Eϵ∼N(0,1){F (θ + σϵ)ϵ}

This is an unbiased estimate and, in contrast to meta-
gradient approaches, ES avoids the need to backpropagate
the gradient through the whole training procedure, which
often results in biased gradients due to truncation (Werbos,
1990; Metz et al., 2022; Liu et al., 2022). As CMA-ES strug-
gles with higher dimensional problems, we use OpenAI-ES
for optimizing shaping terms across all of our experiments.

4. Reward-Centric Challenges of Efficient IRL
We attempt to solve the IRL Game (Eq. 1) via a more
interaction-efficient primal strategy: taking small steps on
the reward function via gradient descent and on the policy
via RL, as in Ho & Ermon (2016). As we described in the
related work, in contrast to dual algorithms that repeatedly
retrain the policy at each step, this means we have weaker
guarantees as far as the performance of the policy trained
on the recovered reward. This is more than just a theoretical
concern: as we will demonstrate in the following sections,
standard GAIL-like algorithms often recover rewards that,
when optimised from scratch, do not lead to strong policies.
Unfortunately, switching back to a dual strategy might re-
quire an infeasible amount of interaction for the scale of
problems more modern primal methods seek to solve. We
therefore are left with our first open question to ponder:

Challenge 1: How do we ensure the final reward function
returned by primal IRL methods permits effective (even if
not efficient) retraining from scratch?

Assuming that we successfully solve the Challenge 1, a
key next question is that of interaction-efficient learning.
Observe that because Eq. 1 can be written as a difference
of performances, it is invariant to shaping potential-based
terms. Thus, for the wide variety of algorithms that are
essentially solving this game (e.g. MaxEnt IRL (Ziebart
et al., 2008a) or GAIL (Ho & Ermon, 2016) – see Swamy
et al. (2021) for a more complete list), we have no way
to ensure that they are picking well-shaped rewards, and
therefore have no way to encourage the discriminator to pick
rewards that are suitable for re-training. This issue is well
known even in the classical IRL literature (Ng et al., 2000).
This leads to the next key question we seek to answer:

Challenge 2: How should we modify the discriminator
learning process to ensure that the overall IRL procedure
returns well-shaped rewards for efficient retraining?

In theory at least, given a reward function r, there is a clean
example of a shaping term that permits efficient training.
Consider setting Φ(s) = V ⋆(s): the value function of the
optimal policy π⋆ and assume deterministic dynamics. Then,
by the definition of an advantage function, we have that

r′(s, a) = r(s, a) + V ⋆(s′)− V ⋆(s) = A⋆(s, a).

The greedy policy with respect to this modified reward (i.e.
the optimal advantage function A⋆) is π∗. Thus, we only
need a planning horizon of 1 to compute the optimal policy.
At heart, this is why potential-based reward shaping speeds
up RL: it reduces the amount of planning the agent has
to perform. In general, one has to pay exponentially in
the horizon of the problem for RL (Kakade, 2003), so a
perfectly-shaped reward function can provide an exponential
speedup in terms of overall interaction efficiency.
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In the language of search-based planning, V ⋆(s) can be
thought of as an optimal heuristic. Unfortunately, without
access to π⋆, it is rather difficult to compute V ⋆ for all but
small tabular problems (e.g. via value iteration). Even with
access to π⋆, estimating a V̂ ⋆ that is accurate uniformly
over the state space is rather challenging, as we’d need to
roll out π⋆ from a wide variety of states, including those
entirely outside of its induced state visitation distribution.
In practice, one can often at best hope to have access to the
critic used in the training of π⋆, which is likely only accurate
on states visited by π⋆ and not the states visited early on in
training by weak policies, where shaping is most important.
Thus, in practice, we are left with an open question.

Challenge 3: In practice, how do we learn a potential-based
shaping term that is useful throughout the course of training
from scratch?

We now discuss concrete and scalable solutions to each of
these challenges before validating their empirical efficacy.

5. EvIL: Evolution Strategies for
Generalisable Imitation Learning

We now provide solutions to the preceding challenges.

5.1. Solution 1: Improving Retrainability in IRL

In order to improve retrainability of the rewards recovered
by primal IRL algorithms, we propose a trifecta of strategies
that can be applied across a variety of base algorithms.

1A: Policy Buffer. To mitigate the risk of the IRL dis-
criminator forgetting valuable signals it previously provided
during an earlier policy update, we maintain an ongoing
buffer containing all past policy trajectories. This continu-
ous retention allows for the consistent retraining of the IRL
discriminator on the full history of learner policies. This
differs from the more common practice of taking a small gra-
dient step on the classification loss between the expert and
most recent learner policy. In a sense, this can be thought of
as moving from procedure reminiscent of Online Gradient
Descent (Zinkevich, 2003) to one reminiscent of Follow the
Regularised Leader (McMahan, 2011). While both are no-
regret algorithms in theory, prior work in imitation learning
has found that the latter can sometimes produce more stable
results (Ross et al., 2011).

1B: Discriminator and Policy Ensembles. To address
potential errors where the discriminator might assign an
unusually high value to a state not visited by the policy, we
adopt an ensemble-based approach. The policy reward is
calculated as the average of all the discriminators. While
ensembling techniques are common in RL for approxima-
tions of pessimism (Kidambi et al., 2020), we instead use
them to enlarge the portion of the state space where our

discriminator provides useful feedback, which can be impor-
tant during the random exploration that is usually a critical
part of the start of RL training. Accordingly, to ensure that
each discriminator is trained on a sufficiently different set
of states, we also train an ensemble of policies, using data
from one policy per discriminator.

1C: Random Policy Resets. During IRL training, it’s pos-
sible for the inner learner policy to converge prematurely,
limiting exploration of all relevant states. This might cause
the discriminator to overfit to a specific learner state distri-
bution, which might differ from the totality of states seen
during a fresh re-training. To elide this concern, we occa-
sionally re-initialise the learner policy during training, with
linearly decreasing probability as training advances. This
still allows the learner to match expert performance while
enhancing retrainability. In a sense, this can be thought of
as annealing from dual to primal IRL over the course of a
single training run, allowing us to reap the benefits inherent
to both families of approaches.

Combined, all these modifications (along with other slight
changes like improved regularisation on the discriminator)
significantly improve retraining performance under the re-
covered reward. We call the resulting algorithm IRL++. We
also performed an ablation of these components and other
techniques we found to provide limited benefits – see Figure
6 in the appendix for more details.

5.2. Solution 2: Decoupling Shaping from
Discrimination

We propose using a two-stage procedure to improve re-
training efficiency for IRL: first, learning a reward, and
second, learning a shaping term to be added in during the
re-training procedure. This allows us to avoid the issue that
sequence of loss functions that the discriminator sees during
game-solving are invariant to how well shaped the chosen
reward function. Critically, because shaping terms do not
change the set of optimal policies (Ng et al., 1999), opti-
mising the recovered reward plus the shaping term cannot
affect the correctness of the overall procedure and therefore
preserves the strong performance guarantees of IRL.

A bit more explicitly, we propose first running IRL++ to
recover a reward function that admits effective (but not effi-
cient) retraining. Second, we optimise for a shaping term
that maximises the area under the curve of the reward recov-
ered by IRL++ (as we have no access to the ground truth
reward function). This gets directly at the objective we care
about – retraining interaction efficiency – without going
through the detour of trying to learn a value function net-
work that is accurate on the set of states encountered during
retraining. The area under the curve of an RL training curve
as a function of a shaping term added to the reward function
is clearly a complex and non-differentiable objective. We
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Algorithm 1 Reward Shaping with Evolution Strategies

Input: Reward function r̂, population size N , inner loop updates M , learning rate α, noise standard deviation σ
Initialise potential parameters θ
// Outer-loop, optimise shaping parameters
repeat

Generate Gaussian noise ϵ1, ...ϵN ∼ N (0, I) to generate N members in the population
for i = 1, . . . , N do

Φθi = Φθ + σϵi
AUCi = 0
Initialise policy πi0

// Inner-loop, tracking RL training efficiency
for j = 1, . . . ,M do

πij ← RL Step on reward r̂′ = FΦθi
+ r̂

AUCi ← AUCi + Eξ∼πij
[
∑H−1

h=0 r̂′(sh, ah, sh+1)]
end for

end for
// Estimate gradient and update meta (shaping) parameters
Li ← −AUCi

θ ← θ − α 1
Nσ

∑N
i=1 Liϵi

until convergence
Output: Final shaping function Φθ

therefore need an shaping term optimisation procedure that
is amenable to such circumstances, which leads to the last
component of our overall proposed procedure.

5.3. Solution 3: ES for Potential-Based Shaping

Rather than attempting to learn V ⋆, we propose simply
evolving a potential Φ that leads to faster training. Specif-
ically, we use the area under the curve (AUC) of the per-
formance J(π, r̂) vs. environment interactions plot as the
fitness function for the ES optimisation. As shown in Algo-
rithm 1, we calculate reward AUC during training by saving
the policy’s performance after each gradient update. After
the inner loop procedure is complete, the AUC is passed
onto the OpenES algorithm. This estimates the gradient to
maximise AUC and updates the shaping meta parameters
accordingly. We note that such a technique is of interest
in learning shaping terms even for vanilla RL with known
rewards and confirm its efficacy at doing so in Figure 1.

We refer to the combination of IRL++ with an evolved
shaping term as EvIL: EVolution strategies for Imitation
Learning. See Algs. 1 and 2 for full details of our method.

5.3.1. WHEN IS EVIL A GOOD IDEA?

A natural question when reading the preceding section might
be the following: if we care about improving the sample
efficiency of IRL retraining, doesn’t expending a large in-
teraction budget by repeatedly retraining the agent from
scratch to learn a good shaping term via evolution seem
counter-intuitive? Indeed, if one were to perform such

shaping-via-evolution in the real world, EvIL would likely
cost more to implement than it would save in the final re-
training in the novel (or same) environment.

However, for a variety of domains, we have access to a rea-
sonably accurate simulator. Such simulators are often used
to perform the interactive learning component of IRL, with
the recovered reward then optimised in the real world to
recover strong policies / trajectories (e.g. in the autonomous
driving domain (Vinitsky et al., 2022; Gulino et al., 2024)).
As discussed above, this recovered reward can be (and of-
ten is in practice) poorly shaped. Thus, by running EvIL
inside the simulator, we can trade exploration in the real
world for exploration in simulation, which is likely to be
cheaper and safer. Of course, then one has to contend with
the well-known sim2real gap, both in terms of the recovered
reward and on the learned shaping term. We investigate
this concern in depth in our experiments section, where we
explore the effect of a shaping term in improving retraining
performance in a novel environment (e.g. the real world
instead of the simulator the shaping term was trained in)
and find encouraging results across the board. Thus, we be-
lieve that on problems where a cheap approximate simulator
exists, EvIL presents a feasible path for improving the in-
teraction efficiency of retraining on the reward recovered by
IRL. Even on problems where this is not the case, one could
potentially learn a model to perform IRL in, as explored by
Ren et al. (2023). It would be an interesting direction for
future work to perform ES-based shaping inside a learned
model (where interaction is relatively inexpensive) and see
how much benefit it provides for real-world retraining.
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Algorithm 2 EvIL: Evolution Strategies for Generalisable Imitation

Input: Expert trajectories DE , Learning rate α, Ensemble size K,
// Step #1: Run IRL++
Initialise policy π0, reward functions f1:K

0 , and buffer D0.
for i = 1, ..., N do
Di ← Di−1 ∪ {ξi ∼ πi}
ℓi(f) = Eξ∼Di

[∑H
h f(sh, ah)

]
− Eξ∼DE

[∑H
h f(sh, ah)

]
+ ||f ||2

∀k ∈ [K], fk
i+1 ← fk

i − α∇f ℓi

Take small RL step on −1
K

∑K
k fk

i to get πi+1.
end for
// Step #2: Shape IRL reward
Run Algorithm 1 on r̂ = −1

K

∑K
k fk

N to evolve shaping term Φθ.
Output: Shaped reward FΦθ

+ r̂.
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Figure 1. Shaping RL. Our method successfully recovers a potential-based reward function that helps an RL agent learn faster. We
compare against the baseline of using the expert value function as a shaping term when retraining and non-shaped RL training on the real
reward. We compute standard error across 5 seeds. J(π) is the performance of the learner under the ground truth reward.

6. Experimental Results
In this section, we aim to answer the following questions:

1. Can ES (Algorithm 1) be used to learn a shaping
function that improves interaction efficiency? We
first investigate whether ES successfully learns an ef-
fective shaping function in RL with a hand-designed
reward. We compare to a strong baseline: the critic of a
policy trained extensively on the ground-truth reward.

2. Does our modified IRL procedure ensure we recover
reward functions that admit effective retraining?
We investigate whether, by taking the final reward func-
tion returned by our modified procedure and optimising
it extensively in the training environment, we are able
to find a policy with similar performance to the expert.

3. By combining the preceding techniques (i.e. EvIL),
are we able to efficiently and effectively retrain poli-
cies in both the source and target environments?
We investigate whether we are able to more sample-
efficiently find high quality policies, both in the source
and in target environments. Specifically, we consider
environments where we add stochasticity to the dynam-
ics or slightly change the link lengths of our agent.

Together these questions get at our over-arching goal with

EvIL: the ability to robustly transfer expert behaviour to
novel environments with limited interaction.

We conduct our experiments across three distinct MuJoCo
environments: Hopper, Walker, and Ant. All learners re-
ceive 100 trajectories from the expert policy, trained us-
ing Proximal Policy Optimisation (PPO) (Schulman et al.,
2017) over 5e7 timesteps. We perform two sets of transfer
experiments per environment. In the first, with probabil-
ity ptremble, a randomly selected action is executed instead
of the one determined by the agent’s policy, potentially
leading the agent to encounter previously unseen states at
test time. In the second, more challenging set of experi-
ments, we randomly sample link lengths from a distribution
with significant support outside of the dynamics the expert
demonstrations were collected under.

Our IRL implementation is built upon the GAIL framework
proposed in Ho & Ermon (2016). To enhance its perfor-
mance, we follow the recommendations of Swamy et al.
(2022), such as incorporating a gradient penalty (Gulrajani
et al., 2017) to stabilise the discriminator training process
and a linear learning rate decay for the actor, critic, and
discriminator. Within the inner loop of our optimisation
strategy, we employ PPO (Schulman et al., 2017). Across
all experiments, our IRL discriminator is trained on states
only, rather than state-action pairs. This reflects an under-
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Figure 2. Shaping IRL. We show our method can successfully recover a potential-based reward function that makes the recovered reward
function easier to learn. We use the shaping term combined with a reward recovered from IRL++. We compare against three baselines:
the reward recovered from an ensemble of discriminators, without shaping, the reward recovered by a classic IRL method, and the IRL++
reward shaped using the expert value function when retraining. For each, we train on 5 seeds, with shading representing standard error.
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Figure 3. EvIL Transfer on Trembling Hand Environment EvIL outperforms both BC and IRL++ on transfer to an environment
where, with ϵ probability, a random action is executed in the environment rather than the one the agent selected. IRL++ out-performs BC,
highlighting the importance of interactive training for effective transfer.

appreciated benefit of IRL: the ability to perform imitation
without access to action labels, which are difficult to obtain
in various domains (e.g. learning from third-person videos).

All our code is implemented in JAX (Bradbury et al., 2018)
using the PureJaxRL (Lu et al., 2022a), Brax (Freeman
et al., 2021), and evosax (Lange, 2023) libraries to maximise
parallelisation of training. For all our experiments, we use 5
parallel learners and 5 discriminators.

6.1. ES-Based Shaping of Ground-Truth Rewards

As a sanity check, we first confirm that performing ES-based
shaping recovers V ⋆ in a small tabular in Figure 7 in the
appendix. Next, in Figure 1, we compare the performance of
an RL agent trained with our evolved shaping function to the
performance of an agent trained on the ground truth reward.
We see that we are consistently able to recover a shaping
that leads to better interaction efficiency, even on top of a
hand-designed reward function. Furthermore, we find that
we consistently compete with or exceed the performance
of using the critic of a strong policy as a learned shaping
term. Recall that this is a very strong baseline that assumes
access to a privileged piece of information. We attribute
the strength of our method to directly optimising for the
desired objective, allowing one to ensure one does not waste
representational capacity on accurately fitting V ⋆ on states
that are unimportant for efficient re-training.

In greater detail, we evolve the shaping term over 300 gen-
erations with a population size of 64. To expedite the op-

timisation procedure, we only shaped the first 50% of RL
training for all environments. We note that none of our train-
ing runs had converged after 300 generations, indicating we
could have kept training to further improve the efficacy of
our learned shaping term, indicating the results we report
are a lower bound on the maximal efficacy of our method.

6.2. IRL++: Retraining with the Recovered Reward

In Figure 2, we show that naively re-training on the final IRL
reward function performs poorly. Specifically, in the Ant
environment, employing this reward function results in a
negative reward, while in the Hopper, Walker and Humanoid
environments, the policy plateaus, ceasing to learn at a
sub-optimal performance. These policies might be stuck
in local minimum and never converge, regardless of how
many environment interactions they get to experience. In
contrast, after employing the suggestions from the preceding
section (i.e. IRL++), we find that retraining from scratch (in
teal) gives us significantly better performance with enough
training time. This confirms that IRL++ permits effective
re-training. However, in environments like Walker and Ant,
training is perhaps less efficient than desirable, which segues
into the results for our complete method.

6.3. EvIL: Retraining with an Evolved Shaping Term

For EvIL, we combine our proposed reward model ensem-
bling and policy resets (i.e. IRL++) with an evolved shaping
term. The shaping rewards were evolved over 300 genera-
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Figure 4. EvIL Transfer on Randomised Dynamics Environment EvIL outperforms both BC and IRL++ on transfer to an environment
where link lengths and joint ranges are randomly sampled and differ from the demonstrations. As before, IRL++ out-performs BC.

tions with a population size of 64. The Hopper and Walker
shaping function were optimised on the first 20% of training
only, while Ant and Humanoid doubled the amount of train-
ing considered for the last 100 generations. In Figure 2, we
see that across the board, EvIL (in orange) leads to marked
improvements over optimising the unshaped reward. For
both Hopper and Humanoid, we are able to match / exceed
expert performance while for Ant we are able to achieve a
score thousands higher than the IRL baseline. The VE shap-
ing baseline we consider is particularly strong due to the
privileged information it has access to: an estimate expert’s
value function (i.e. the final critic from the RL training
we used to generate the expert). Interestingly, we find that
the performance of VE shaping is inconsistent: it hinders
training in the Hopper, Walker and Humanoid environments,
but is effective in the Ant environment. We hypothesise this
is due to differing levels of covariate shift in terms of the
state distribution of the initial and expert policies.

6.4. EvIL Transfer Performance

To assess the transferability of the policies learned by all
methods, we consider two sets of modifications to the en-
vironment. First, we consider, with probability ptremble =
0.05, forcing the policy to execute a random action, a cor-
ruption that is not present in the expert demonstrations. We
retrain under the recovered reward in this stochastic en-
vironment but do not give the learner access to the test
environment during the inverse RL procedure. Echoing our
argument in the introduction of the paper, we find that the
interactive methods are able to more effectively transfer than
offline approaches like behavioural cloning. Furthermore,
we find that our learned shaping term improves both the
effectiveness (final performance) and efficiency (interaction
before performance peaks) of the retraining procedure.

To highlight the robustness of our method, we then consider
a significantly more challenging transfer task: controlling
an agent with different link lengths than the one the expert
demonstrations were collected with. Specifically, we intro-
duce random variations in the link lengths and joint ranges
of the target agents (details postponed to the Appendix).
Performance was evaluated by sampling 10 different agent

variations from each MuJoCo environment. Our findings in
Figure 4 show that EvIL consistently outperforms the BC
and unshaped baselines. BC performance exhibits a notable
decline across all three environments when compared to
both the trembling hand case and the standard environment,
highlighting the difficulty of this transfer learning task.

In summary, our experiments support our hypothesis that the
combination of ingredients that make up EvIL are critical
for ensuring that we are able to effectively and efficiently
mimic expert behaviour in novel environments.

7. Conclusion
Summary. We empirically demonstrate that the reward
functions returned by modern deep IRL algorithms do not
admit effective retraining. We propose a set of fixes, IRL++,
that help recover reward functions that, when optimised,
lead to policies that match expert performance. However,
such retraining can be rather expensive in terms of the num-
ber of interactions required. In response, we propose EvIL:
a full-stack algorithm that combines IRL++ with an evolu-
tion strategies-based approach for learning shaping terms.
On top of the retraining efficacy IRL++ gives us, EvIL
gives us efficiency. We validate EvIL’s performance on
challenging transfer tasks involving unseen environments
and find that it is able to out-perform the prior art.

Acknowledgements
SS was supported by Google TPU Research Cloud (TRC)
and Google Cloud Research Credits program.

GKS thanks Drew Bagnell for his thoughts on our core algo-
rithm and suggestion of the value function shaping baseline.

JF is partially funded by the UKI grant EP/Y028481/1 (orig-
inally selected for funding by the ERC). JF is also supported
by the JPMC Research Award and the Amazon Research
Award.

9



EvIL: Evolution Strategies for Generalisable Imitation Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Barnes, M., Abueg, M., Lange, O. F., Deeds, M., Trader, J.,
Molitor, D., Wulfmeier, M., and O’Banion, S. Massively
scalable inverse reinforcement learning in google maps.
arXiv preprint arXiv:2305.11290, 2023.

Beyer, H.-G. Evolutionary algorithms in noisy environ-
ments: theoretical issues and guidelines for practice.
Computer Methods in Applied Mechanics and Engi-
neering, 186(2):239–267, 2000. ISSN 0045-7825.
doi: https://doi.org/10.1016/S0045-7825(99)00386-2.
URL https://www.sciencedirect.com/
science/article/pii/S0045782599003862.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Cooke, L. H., Klyne, H., Zhang, E., Laidlaw, C., Tambe,
M., and Doshi-Velez, F. Toward computationally efficient
inverse reinforcement learning via reward shaping. arXiv
preprint arXiv:2312.09983, 2023.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-
weighted linear units for neural network function
approximation in reinforcement learning. Neu-
ral Networks, 107:3–11, 2018. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2017.12.012.
URL https://www.sciencedirect.com/
science/article/pii/S0893608017302976.
Special issue on deep reinforcement learning.

Finn, C., Christiano, P., Abbeel, P., and Levine, S. A con-
nection between generative adversarial networks, inverse
reinforcement learning, and energy-based models, 2016.

Flajolet, A., Monroc, C. B., Beguir, K., and Pierrot, T. Fast
population-based reinforcement learning on a single ma-
chine. In International Conference on Machine Learning,
pp. 6533–6547. PMLR, 2022.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch,
I., and Bachem, O. Brax - a differentiable physics engine

for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Fu, J., Luo, K., and Levine, S. Learning robust rewards with
adversarial inverse reinforcement learning, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Gulino, C., Fu, J., Luo, W., Tucker, G., Bronstein, E., Lu,
Y., Harb, J., Pan, X., Wang, Y., Chen, X., et al. Waymax:
An accelerated, data-driven simulator for large-scale au-
tonomous driving research. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. Improved training of wasserstein gans,
2017.

Hansen, N. and Ostermeier, A. Completely derandom-
ized self-adaptation in evolution strategies. Evolution-
ary Computation, 9(2):159–195, 2001. doi: 10.1162/
106365601750190398.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing, 2016.

Houthooft, R., Chen, R. Y., Isola, P., Stadie, B. C., Wolski,
F., Ho, J., and Abbeel, P. Evolved policy gradients, 2018.

Jackson, M. T., Lu, C., Kirsch, L., Lange, R. T., Whiteson,
S., and Foerster, J. N. Discovering temporally-aware rein-
forcement learning algorithms. In Second Agent Learning
in Open-Endedness Workshop, 2023.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
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stette, E., Rocktäschel, T., and Foerster, J. Scaling oppo-
nent shaping to high dimensional games. arXiv preprint
arXiv:2312.12568, 2023.

10

https://www.sciencedirect.com/science/article/pii/S0045782599003862
https://www.sciencedirect.com/science/article/pii/S0045782599003862
http://github.com/google/jax
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
http://github.com/google/brax
http://github.com/google/brax
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249


EvIL: Evolution Strategies for Generalisable Imitation Learning

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
Advances in neural information processing systems, 33:
21810–21823, 2020.

Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert, M.
Activity forecasting. In Computer Vision–ECCV 2012:
12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part IV 12, pp.
201–214. Springer, 2012.

Kolter, J. Z., Rodgers, M. P., and Ng, A. Y. A control
architecture for quadruped locomotion over rough terrain.
In 2008 IEEE International Conference on Robotics and
Automation, pp. 811–818. IEEE, 2008.

Laidlaw, C., Russell, S., and Dragan, A. Bridging rl theory
and practice with the effective horizon. arXiv preprint
arXiv:2304.09853, 2023.

Lange, R. T. evosax: Jax-based evolution strategies. In
Proceedings of the Companion Conference on Genetic
and Evolutionary Computation, pp. 659–662, 2023.

Likhachev, M., Gordon, G. J., and Thrun, S. Ara*: Anytime
a* with provable bounds on sub-optimality. Advances in
neural information processing systems, 16, 2003.

Likhachev, M., Stentz, A., and Thrun, S. Anytime dynamic
a*: An anytime, replanning algorithm. 2005.

Liu, B., Feng, X., Ren, J., Mai, L., Zhu, R., Zhang, H.,
Wang, J., and Yang, Y. A theoretical understanding of
gradient bias in meta-reinforcement learning, 2022.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt,
C., and Foerster, J. Discovered policy optimisation. Ad-
vances in Neural Information Processing Systems, 35:
16455–16468, 2022a.

Lu, C., Willi, T., De Witt, C. A. S., and Foerster, J. Model-
free opponent shaping. In International Conference on
Machine Learning, pp. 14398–14411. PMLR, 2022b.

Lu, C., Willi, T., Letcher, A., and Foerster, J. N. Adversar-
ial cheap talk. In International Conference on Machine
Learning, pp. 22917–22941. PMLR, 2023.

Lupu, A., Lu, C., Liesen, J. L., Lange, R. T., and Fo-
erster, J. N. Behaviour distillation. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=qup9xD8mW4.

McMahan, B. Follow-the-regularized-leader and mirror de-
scent: Equivalence theorems and l1 regularization. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 525–533. JMLR
Workshop and Conference Proceedings, 2011.

Metz, L., Freeman, C. D., Schoenholz, S. S., and Kachman,
T. Gradients are not all you need, 2022.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte,
J., Tse, B., Berger, E., and Liang, E. Autonomous in-
verted helicopter flight via reinforcement learning. In
Experimental robotics IX, pp. 363–372. Springer, 2006.

Niekum, S., Barto, A., and Spector, L. Genetic program-
ming for reward function search. Autonomous Mental
Development, IEEE Transactions on, 2:83 – 90, 07 2010.
doi: 10.1109/TAMD.2010.2051436.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Ratliff, N. D., Silver, D., and Bagnell, J. A. Learning to
search: Functional gradient techniques for imitation learn-
ing. Autonomous Robots, 27(1):25–53, 2009.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regu-
larized evolution for image classifier architecture search.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):4780–4789, Jul. 2019. doi: 10.1609/aaai.
v33i01.33014780. URL https://ojs.aaai.org/
index.php/AAAI/article/view/4405.

Ren, J., Swamy, G., Wu, Z. S., Bagnell, J. A., and
Choudhury, S. Hybrid inverse reinforcement learn-
ing. 2023. URL https://www.robot-learning.
ml/2023/files/paper42.pdf.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Russell, S. J. and Norvig, P. Artificial intelligence a modern
approach. 2010.

Rutherford, A., Ellis, B., Gallici, M., Cook, J., Lupu, A.,
Ingvarsson, G., Willi, T., Khan, A., de Witt, C. S., Souly,
A., et al. Jaxmarl: Multi-agent rl environments in jax.
arXiv preprint arXiv:2311.10090, 2023.

11

https://openreview.net/forum?id=qup9xD8mW4
https://openreview.net/forum?id=qup9xD8mW4
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://www.robot-learning.ml/2023/files/paper42.pdf
https://www.robot-learning.ml/2023/files/paper42.pdf


EvIL: Evolution Strategies for Generalisable Imitation Learning

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I.
Evolution strategies as a scalable alternative to reinforce-
ment learning, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Silver, D., Bagnell, J. A., and Stentz, A. Learning from
demonstration for autonomous navigation in complex un-
structured terrain. The International Journal of Robotics
Research, 29(12):1565–1592, 2010.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. Deep neuroevolution: Genetic al-
gorithms are a competitive alternative for training deep
neural networks for reinforcement learning, 2018.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, S. Of
moments and matching: A game-theoretic framework for
closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021.

Swamy, G., Rajaraman, N., Peng, M., Choudhury, S., Bag-
nell, J., Wu, S. Z., Jiao, J., and Ramchandran, K. Minimax
optimal online imitation learning via replay estimation.
Advances in Neural Information Processing Systems, 35:
7077–7088, 2022.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, Z. S. In-
verse reinforcement learning without reinforcement learn-
ing, 2023.

Syed, U. and Schapire, R. E. A game-theoretic approach to
apprenticeship learning. Advances in neural information
processing systems, 20, 2007.

Tiapkin, D., Belomestny, D., Calandriello, D., Moulines,
E., Naumov, A., Perrault, P., Valko, M., and Menard, P.
Regularized rl. arXiv preprint arXiv:2310.17303, 2023.
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A. Appendix
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Figure 5. IRL IRL training across MuJoCo environments compared to expert and BC performance. 5 seeds each, shading represents
standard error.
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Figure 6. Ablation for EvIL on the Ant environment. EvIL uses an ensemble of size 5. a. We compare EvIL with an ensemble that
does not utilise a replay buffer. In this case, the discriminator only observes samples from the most recent policy version. b. We compare
against a version of EvIL that doesn’t implement resets of the learner policies. c. We check the effect of ℓ2 regularisation on the
reward network d. The ablation explores the effect of using a single learner seed (and 5 discriminators) instead of multiple seeds. e. We
use a bigger reward network (two hidden layers of size 512) to verify the issue doesn’t lie in our reward network not having enough
representational capacity to accurately describe the expert behaviour.

B. Environment Dynamics Randomisation
To vary the source tasks, we sample the links’ size and the joint range parameters as follows:

1. Hopper:

• Foot Link Size: U [0.05, 0.07]× U [0.1755, 0.2145]

• Leg Link Size: U [0.03, 0.05]× U [0.23, 0.27]

• Thigh Link Size: U [0.04, 0.06]× U [0.2, 0.25]

• Torso Link Size: U [0.04, 0.06]× U [0.2, 0.25]

• Thigh Joint U [−2.79253,−2.44346]× U [0, 0]

2. Walker:

• Left Foot Link Size: U [0.05, 0.07]× U [0.09, 0.11]

• Right Foot Link Size: U [0.05, 0.07]× U [0.09, 0.11]

• Left Leg Link Size: U [0.03, 0.05]× U [0.23, 0.27]

• Right Leg Link Size: U [0.03, 0.05]× U [0.23, 0.27]
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Figure 7. Heatmaps representing the values of the shaped reward (left) and the optimal value function (right) corresponding to each
position the agent could move to in the 5x5 grid. The goal (represented with the G) is in the bottom left corner of the grid.

Method Number of Agents
1 Agent 5 Agents

EvIL 0.4082 (± 0.1166) 0.6696 (± 0.0176)
EvIL - No buffer 0.2702 (± 0.1204) 0.5739 (± 0.0192)
EvIL - No L2 0.3942 (± 0.0861) 0.6124 (± 0.0233)
EvIL - Bigger Reward Net 0.2603 (± 0.0901) 0.5058 (± 0.0057)
EvIL - No Reset 0.0951 (± 0.1111) 0.2544 (± 0.0170)
IRL -0.0180 (± 0.0895) 0.1424 (± 0.0153)
IRL + Resets 0.2912 (± 0.1573) 0.6277 (± 0.0279)
IRL + L2 -0.0579 (± 0.2612) 0.2724 (± 0.1020)
IRL + Bigger Reward Net -0.0940 (± 0.1415) -0.0216 (± 0.0444)
IRL + Buffer 0.2053 (± 0.0413) 0.4310 (± 0.0180)

Table 1. Correlation between the recovered reward and the real reward at the end of the IRL procedure. Ablation for EvIL and IRL. We
report mean and standard error on the states visited by the learner.

• Left Thigh Link Size: U [0.04, 0.06]× U [0.2, 0.25]

• Right Thigh Link Size: U [0.04, 0.06]× U [0.2, 0.25]

• Left Thigh Joint U [−2.79253,−2.44346]× U [0, 0]

3. Ant:

• Left Leg Link Size: U [0.05, 0.11]

• Right Leg Link Size: U [0.05, 0.11]

• Left Leg Link Size: U [0.05, 0.11]

• Back Right Leg Link Size: U [0.05, 0.11]

• Aux 1 Link Size: U [0.05, 0.11]

• Aux 2 Link Size: U [0.05, 0.11]

• Aux 3 Link Size: U [0.05, 0.11]

• Aux 4 Link Size: U [0.05, 0.11]

• Left Ankle Link Size: U [0.05, 0.11]

• Right Ankle Link Size: U [0.05, 0.11]

• Back Left Ankle Link Size: U [0.05, 0.11]

• Back Right Ankle Link Size: U [0.05, 0.11]

• Joint Hip 1 U [−40,−20]× U [20, 40]

• Joint Hip 2 U [−40,−20]× U [20, 40]

• Joint Hip 3 U [−40,−20]× U [20, 40]

• Joint Hip 4 U [−40,−20]× U [20, 40]

• Joint Ankle 1 U [−80,−60]× U [−40,−20]
• Joint Ankle 2 U [−80,−60]× U [−40,−20]
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• Joint Ankle 3 U [−80,−60]× U [−40,−20]
• Joint Ankle 4 U [−80,−60]× U [−40,−20]

C. Hyperparameters

Table 2. Hyperparameters for Training IRL
Parameter Value
Number of Reward Hidden Layers 2
Size of Reward Hidden Layer 128
Reward Activation tanh
Number of Outer Loop Steps 2441
Inner Loop Learning Rate 4e-3
Inner Loop Gradient Updates 1
Inner Loop Num Steps 10
Inner Loop Num Envs 2048
Num Trajectories Sampled each Policy Update 10
Gradient Penalty Coefficient 10
Outer Loop Learning Rate Schedule Linear
Number of Discriminators 5
ℓ2 coefficient 0.0
Outer Loop Learning Rate Start 1e-2
Outer Loop Learning Rate End 1e-5

For the Ant environment, the Final Outer Loop Learning Rate is 1e-6.

Table 3. Important parameters for Training Reward Shaping with ES
Parameter Value
Population Size 64
Number of Reward Hidden Layers 2
Size of Reward Hidden Layer 128
Reward Activation tanh
Number of Generations 600
ES Sigma Init 0.03
ES Sigma Decay 1.00
ES LR 1e-3
Outer Loop Learning Rate 5e-3
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